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Produits en couronne
de groupes et de groupes ordonn6s

par Patrick SiMONETrA
(Universite de Paris VI F)

Introduction
l£s praiuits en couronne ont de tr&s nombreuses applications dans 1’6tude des

groupes et des groupes de permutations. D’une part iIs servent a consauire des exemples
de groupes ayant des propri6t6s particuli6res. D’autm part, ils ont parmi les groupes de
permutations un certain caractire universel comparable a celui des pr(xluits de Hahn pour
les groupes ordonn6s. Nous n’exposerons pas ici ces applications, bien que nous en
citions quelques lines, et nous nous permettrons de renvoyer le luteur a la bibliographie
pour plus d’information. Apr&s avoh raplx16 quelques d6frnitions g6n6rales, nous
montrerons que cenains types de produits en couronne permettent de consnuin de
nouveaux exemples de groupes non ab<1liens d6cidables. Pour terminer nous compliterons
ces r€sultats par la preuve de l’ind&cidabilit£ des produits en couronrn classiques (res-
treint et complet) d’un groupe par un groupe contenant un 616ment d’ordre infini.

Notations et d6finitions:

Soit A un groupe, et E et F deux ensembles
, eA, x-1, d6signeront respectivement Ia loi de A, son 616ment neutre, et 1’inverse

d’un 616ment xGA
Si x,yeA, xY=y-lxy et [x;y]=rly-lxy sont respectivement le conjugu6 de x par y

et le commutateur de x et de y
Si H est un sous-grouFn de A, cA(H)={aeAFvh€H h.a=a.b} est le cenUalisa-

teur de H dans A.
Si xGA, <x> A et cA(x) ={aeA Ix.a=a.x} sont respectivement Ie sous-groupe de

A engendr6 par x et le centralisateur de x dans A
AB d6signe Ie groupe des applications de E dans A; si fC AE, Ie support de f est

I’ensemble supp(f) ={ x€E I f(x) #e„ };

P est Ie sous-groupe de AE, form6 par les applications de E dans A a support
frni
Dans le cas oa E est un ensemble totalement ordonn&, on peut consid6rer le sous-groupe

P de AE, forrn6 des applications de E dans A a support bien ordonn6.

Si E et F sont des ensembles totalement ordonn6s, nous noterons E x F le prcxluit ExF

muni de l’ordre anti]exicographique:
pour (x,y) et (z,t) dans ExF, (x,y) = (z,t) si yat ou (y =t et xZz).



I/ Produits en couronne de groupes de permutations

Un groupe de permutations est un couple (A,O), oil 0 est un ensemble et A est un
groupe agissant Hdd lenIent sur n (i.e. la seule action uiviale est ceUe de 1'6i6ment
neutre) .
Soient (A ,n) et (B, T) deux groupes dc permutations. Si fe AT et beB, I’application
0(f,b) de a xT dans lui-m6me d&finie par:

V( cl,P)COxT (a,a).acf,b)=(a.f(P), e.b),
est une permutation de 0XT. 11 est ais6 de v6rifier que nous obtenons ainsi un groupe de
pennuutions sur cet ensemble. Ce groupe, noe (A,mI(B, T), est appe16 produit en
couronne de (A,n) par (B, T)

Un exemple important d’application de ces pr(xluits en couronne, est leur utilisa-
tion pour la construction de sous-groupes de Sylow des groupes de permutations sur un
ensemble ani et pour en d6termLner des g6n6rateurs (voir par exemple [Hl] § 5.9).

Rernarquu: L£s O(eA„b) oCr beB forment un sous-groupe de (A,n)2 (B, T) isomorphe a
B. hIS 0(f,eB) oa fe AT forment un sous-groupe normal de (A,a)2 (B, T) isomorphe a AT,

et Ie quotient de (A,0)?(B, T) par oe sous-.groupe est isomorphe a B. L£s g(eA,,b) oil
be B forment un sous-groupe de (A,ml (B, T) isomorphe a B. B se plonge ainsi naturelle-
ment dans (A,O)I (B, T), WIi est done le produb semi<iirect de AT par B, I’action d’un
616ment b€B sur feAT 6tant d6finie par: vxe T fb(x) =f(x.b-1).

Pour aeA et TeT, on note ( 1’616ment de AT d6fini par:

<(t)=eA Si t#7,
at (7) = a

Pour chaque TeT, 1’application qui a aCA associe { plonge A dans AT et dorn dans
(A,a)2 (B, T) (trIals iI existe bien sar beaul'oup d’aunes plongements).

Le produit en couronne restreint de (A,a) par (B, D, not6 (A,0)t (B, T), est le

sous-groupe de (A,0)L(B, T) dont les &16ments sont les 0(f,b) oa fC M et b€B. Lnrsque
(B,T) est transitif (i.e. vt„t,eT rb€B tel que t,.b=t,), (A,O)i(B,T) peut aussi dIre vu

comme le sous-groupe de (A,a)tCB,T) engendr6 par B et les ( oa 7 est fix6 et aeA, (ce
grouFn ne d£pend pas alors de reT)
(A,O)i(B, T) est le pr(xiuit semi-direct de An par B

l£s produits en couronne (restreints ou non) de grou[us de permutations sont
associatifs: si (A,n), (B, T) et (C,U) sont nois groupes de rxrmutations, et si 1’on identifie
(n xT)xU avec Ox(T xU), a lars ((A,a)tCB,T))KC,U) et (A,{))t((BIT)t(C,U)) sant
isomorphes (m6me chose pour les prcxiuits en couronne restreints). On put done, pour
tout entier n, d6fink sans ambigult6 le produit en couronne de a groupes de lxrmufations.
En fait, les produits en couronnes peuvent se g6n&raliser a des famiIIes quelconques de
groupes de permutations. Nous ne rappellerons pas ici ces constructions et leurs nombreu-
ses applications a 1’6rude des groupes de permutations transitifs; nous renvoyons a tHI],
[H2] et [Ho].
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p. Sinvrxtb

I£ pr(xiuit en couronne est 6galement un outil important darn 1’6tude des groulxs
de permutations de chaine. 11 s'agit des groupes de permutations (A,n) ad 0 est une
chaine, c’est a dire un erlsemble t(ltalement ordonn6, et oa 1’action de A pr6serve l’ordre
de O. (A.O) admet un ordre d6fmi par les images des 616ments de a:

pour al,a2 eA, al 5 a2 si pour tout aGO, a.a1 gcr.a2.
Cet ordre n’est pas en gen6ral un ordre total; iI est compatible avec Ia loi du groupe A:
pour x,y,ze A, xgy implique x.zgy.z et z.xgz.y.
Si (A,0) et (B, T) sont des groupes de permutations de chaines, les produits en couronne
(A,0)?(B, T) et (A,a)Z (B, T) sont alor= des groupes de perrnutaUons pr6servant l’ordre de

Ox T. Nous renvoyons par cxemple a [G] ch, 5 pour I'utilisation des produits en

couronnc dans ce contexte

Si (B, T) est un groupe de Iwrmutation de chaine, il n’est pas hop difficile de voR

que les acf,b) oa fC Ft et b€B forment un sous-grouFU de (A,a) KB, T). Nous appelons
ce groupe le produit en court)nme "bien ordonn6'1 de (A,n) par (B, T), et nous le notons
((A,0)KB, T)) ' ; iI d6pend de l’ordre fix6 sur T.

11/ Produits en couronne de deux groups.

Nous donnons maintenant une autre version des produit en couronne, qui est en
fait un cas paniculier de la pr6c6dente, mais qui est celle qui nous int6resse sp6cialement.
Tout groupe A agit sur lui merrIe par translation a droite, et peut doric 6tre vu comme un
groupe de permutations nansitif que nous noterons (A, A). Si A et B sont deux groupes, le
produit en couronne de A par B est Ie groupe AWB =(A, A)2 (B,B). C’est le produit
semi-direct de AB par B, 1’action d’un 616ment b€B sur fe AB 6tant d&finie par:

vx€B fb(x)=f(xb'1)
Les 61&ments de AWB s’&crivcnt dor£ sous la forme b.f oil bC B et fe AB

On d6finit 6galement les sous-groupes suivants de AWB
- le produit en couronne restreint de A par B: A\vB=(A, A)i(B,B), qui est le

pr(xluit semi-direct de P par B, et,
lorsque B est un groupe totalelnent ordonn6, c’est a dire un groupe muni d’un ordre total
compatible avec la structure de groupe,

-le produit en couronne "bien ordonn6" de A par B: (AWBy=((A,A)2(B,B))•

qui est le prcxluit semiJirect de An par B
Chacun de ces groupes peut &tie consid6r6 cc)mme un groupe de permutations de

l’eruemble A xB. 11 faut bien faire attention cependant, au fait que les praluits en
couronne de groupes que nous venons de d6firrir ne se manipulent pas comme les prcx]uits
en couronne de groupes de pcnnut3tions, et ils n’ont pas les m6mes propri6t6s. En
particulier, iIs ne sont pas associatifs: si A, B et C sont uois groupes, alms (AIVB)WC et
AW(B\VC) soN en gen£ral tliviaIcment diff6Nnts, ne serait4e que pour des raisons de
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cardinalit&. II faut comprendre que dans le produit (A, A)2 ((B,B)2 (C,C)), (B,B)2(C,C) est
consid6r6 conrme un groupe de permutations sur BxC alors que dans la d6finition de
ATV(BWC), B\VC est consid&r6 comme un groupe de permutations agissant sur lui-
m6rrle

L’une des principales propri6t6s du groupe AWB est celle de contenir toutes les
extensions du groupe A par Ie groupe B, corrLrne lc praise le th6orime suivant du a L.
Kaloujnine et M. Krasner (voir par exemple [Sc] th. 111.5.k)

Th6or ime: Si G est une extension du groupe A par le groupe B, alors il existe un
plongement l: A –. AWB teI que rCA) CAB et (r(G). AB)/AB =B

II:S pr(xiuits en coulonne de deux groupes A et B conservent cenaines des
propri6t6s des grotlpes A et B: il n’cst pas trop difficile de voir, par exemp Ie, que si A et
B sont des groupes r6solub Ies, alors AWB est lui m&me r6soluble; si p est un nombre
premier et si A et B SOII des p-groupes, a]ors le pnduit en couronne resUeint AwB est
6galement un p-groupe; si A et B sont des groupcs de torsion, alors AwB est lui aussi un
groupe de torsion

Toutes ces propri6t&s font des pruluits en couronne un outil tr&s utile comme
source d’exemples et a l’heure d’6tudier certaines classes de groupes. Ils peuvent
suppl&er, par exemple dans 1’6tude de Incxldles existentiellement clos ou dans des
prot>1&mes de plongenrent, a l’\lsage du prtxiuit libre avec amalgamation ou des extensiorB
H.N.N. lorsque ceux4i ne peuvent servir. Ix pnxiuit en cnurortne est l’outil essentiel qui
a lnrmis a D. Saracino de n'lonu'er que la th6orie des groupcs r6solubles de classe de
r6solubilit6 au plus n, n 6tant un non-,bre entier donn6, n’a pas de mod&le<ompagne (voir
[S] th. 1). G. Baumslag a red6inontr6, en utiIisant le prcxiuit en couronne restnint, que
tout groupe se plonge dans un gloupe divisible. La pnuve originale de ce r6sultat, due a
B.H. Neumann utilise le produit libre ayn amalgamation. Mais la preuve de G. Baums-
lag a l’avantage de pouvoir s’adapter pour molltrer que tout p-groupe se plonge dans un
p-groupe divisible et que tout groupe de torsion se plonge dans un grouln de torsion
divisible (voir [B] th. 4.3, 4.4 et 4.5).

Supposons maintenant que A et B sont des groupes totalement ordonn6s. On peut
alors munir les produits en couronne AwB et (AWB) ' (d6fini pour I'ordre de B) d’une
SUrlcture de groupe totalement ordonn6 en les mlrnissant de l’ordn d6fini par: pour b€B
et fe AB a support nni (resp. a support bien ordonn6),

b.f =e ssi b>eB ou (b=eB et f(min(supp(f)))2eA)
oO e d£signe l’element neuUe de A\+B (resp. de (AWF3) ' ). Nous noterons rcsTnctivement

AwB et (A\VB)- les groupcs ordonn6s diVISi d6finis. Remarq\ions que le prcxluit en

couronne CWD de deux groupes C et D IIe peut Que muni d’un ordre tou] compatible
avec la structure de groupe que si C ou D est r6duit a son 616ment neuUe (voir [N]
lemma 2.1)

Nous nous somines int£ress6s aux pr(xiuits en couronnc pane qu’ils semb]aient
aussi pou’v'oir fournir de nouvcaux exelnples de groupes et de groupes ordonn6s dkida-
bles. Sans hop entrer dans les details, disons que l’id6e de d6put 6tait l’ana logie entre les
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P. Simornar

prc>dutt.s en courortne bien ordonn& et les corps de series formelles k((B)) a exposants
dans un groupe ordonn6 B et a coefficients dans un corps k. Les 616ments de k((B)) ne
sont rien d’autre que des applications de B vers k dont le support, c’est a dire 1’ensemble
des 616nrents de B dont 1’image est non llulle, est bien ordonn6; la multiplication dans le
corps k((B)) induit une action du groupe B sur Ie groupe additif k((B)),, et le produit
semi--direct correspondant n’est ?!yue que le produit en couronne bien ordonn6 (R,WB)•
l£s th6or6mes d’Ax-Kochen et Ershov sur les corps valu6s, permettent dans certairu cas
de d6duirc la th6oHe d’un corps de s6ries formelles k((B)) de la th6orie du groupe
ordonn6 B et de ce]Ie du corps k, de sorte que k((B)) est d6cidable lorsque k et B Ie sent.
Nous nous sonrmes pod les questions analogues pour les pr(xiuits en couronne bien
ordonn6s et avons trouv6 les r6sultats suivants:

Proposition 1: Si A est un groupe db61ien qui est sonww directe d’m groupe divisible et
sans torsion et d'un nonLbre jlni de groupes d'nposant premier et si B est un groupe
totatement ordonn6 r6sotuble ators
1) pour tout groupe A’ et tout groupe totalemen! ordonne B' :

a. ,4 = X’ er B = B’ implique (HWB) ' = (H’WB’) ',
b. A 3 A' et Bg B’ imf)ligue (AWBy s (A’WB’)' pour le plongement naturel.

2) Si B est en plus decidable, ators Ie groupe (AWBy est d4cidabte.

Si A S A’ et B S B’, le plongement mturel de (AWBy dans (A’\VB’)' est celui qui
identifie (A\VB) ' avec Ie sous-groupe de (A’WB’)- dont les 616ments s’6crivent sous la
forme b.foil bC B et feA’B' avec f(B’) gA et supp(f) SB

ProposItion 2: Si A est un groupe at>atten totalement ordonne divisible, et B est an
groupe totalement ordonn6 r6sotuble alors

1) Pour tout groupe totatem£nt ordonn6 divisible A' et tout groupe totalement
ordonn4 B' ,

a) B = B’ ssi (HWB)- = (A ’WB’)-
b) A g ,4’ er Bs B' ssi (dTYB)- 3 (1 ’}YB’)-

2) B est d6cidable ssi (AWB)- est decidabte.

Ixs preuves de ces deux propositions, que nous ne donnons pas ici, se trouvent
dans [Si] ch. IV prop. 7.1.7 et 7.1.19. Elles sont I'une des applications d’une 6tude plus
g6n6rale, que nous avons conduite avec Frangoise Delon, concernant des structures
constittl6es par un groupe totalement ordonn6 B agissant sur un groupe at#lien G avec
une valuation de G dans B. Nous avons montr6 pour cenaines de ces structures un
principe d’Ax-K(xhen-Ershov, analogue a celui qui concerne les corps valu6s.

Si A est un groupe totalement OJdonn6 at#lien non trivial et B est un groupe
totalement ordonn6 r€soluble de classe n, nous pouvons voir que le praiuit en couronne
(AWB)- est r6solub Ie de classe n+ 1. In prolx)sition 2 nous donne la possibilit£ de
construire des groupes totalerncrlt ordorm6s r6solubles d6ciddbles, de classe de r6so:ubilite
arbiaairenrent grande. Si par exemple A est un groupe at#lien ordonre divisible, et C, est
le groupe ordonn6 d6fini par r6cunence:C1 = A, et pour n> 1 C,=(AWCn1)-,
alors chaque C, est r6soIuble de classe n, et d€€idable grace a la proposition 2. Pour
n>2, les C, ne sont pas des groupes lin6aires sur un corps commutadf (voa par exemple
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[W] th. 10.21) et ne font dorIC pas panic des exemples classiques de groupes non at#liens
d6cidables.

L£s produits en couronne AIVB et AwB d'un groupe A par un groupe ordonnable
B sant en revanche toujours ind6cidables lorsque A et B ne sont pas r6duits a leur 616ment
neuUe. Nous avons en cffct montr6 dans [Sil ch. 4 section 8, la proposition suivante:

Proposition 3: Si A et B soar deux groupes, si A# {ef , et si B connem un dl&ment

d’ordre injrni, dIon les produits en couronne AWB et A tvB sora ind£cidables,

In prcuve de c€tte proposition, que nous donnons ci<iessous, consiste a interpr6ter
la structure <Z,0,1, +,-, 1 > des entiers rclatifs avec l’addition, 1’oppose et la relation de
divisibilit6, dans les groups AWB et AwB, ce qui suffit a en d6montrer l’ind6cidabilit6
(voir m). L’ind6cidabilit6 des produits en couronne rcstreints, sous les hypotheses de la
proposition 3, n’est pas surprenante: si les praluits en couronrn bien ordonn6s pr6sentent
certaines analogies avce les corps de s6ries formelles, les prcxluits en couronne resUeints
ressemblent d’une celtaine fagon aux anneaux de polyn6mes; or iI s’avare OIe ces
derni&res structures sora en g6n6ral ind6cidables (voir [R] et [D] cor. 1.63)

Dans la preuve de la proposition 3 nous emploierons les notations suivantes:

Nous notons eA, eB et e les 616ments rnutres respectivement de A, B et AWB.
Si fe AB, soit I supp(f) I €NU{®} Ie cardinal de son support.
Si beB, soit ord(b) GNU {@} l’ordm de b.
Soit +b={ fe AB : pour tout xeB, f(xb)=f(x) }; iI s’agit de 1’ensemble des

fonctions p6riodiques de p€ri(xie b. On voit que +b=CAnn(b) nAB, et est donc un sous-
groupe de A8. Si fC $b, supp(f) est stable par trans]ation a drain par b; la r&iproque est
6videnrrnent fausse

Soient aCA et beB. Nous d6finissons les 616ments a , a et f&b de AB par:

a (eB)=a ct a(x) =ex pour x +en,
a(X) =a pour tout xeB,
f, b(x)=a si xC <b> et f,b(x)=eA sinon,

On v6rifie que a et f,b appaniennent a +,; d’autre part,

Lemme l: 1) Sl fe '% ators ord(b) divise I supp (f) 1 . En particulier , if b+ ea alors
\ supp(D I # 1, et si ord(b)=u. alors soit f=e soit supp(f) est infmi.

2) Pour told J et tout f' de AB, supp(f" if’)-;=supp(f)
3) Si I supp(D 1 =1, alors CARB(Dg AB, En particu tier, si aecA(A)\{ef , a tors

C4\\n{a > =48.
4) Soient aQA\{el, b.b' eB et fe AB. Lf,$b'£j=e ssi b'e <b> et [f,in=e.

Preuve: 1) Si f C +b, < b> OFQre simplenlent sur s11pp(f) par translation a droite;
iI s’agit donc d’un r6sultat classique en th6orie des groupes.

2) Pour bC B, f'-lff'(b) = f“1(b)f(b)f’(b) =eA ssi f(b) =eA
3) Soit b.f'eAWB, oi heB et f’ e AB; b.f’ commute avm f ssi b-lfb=f’ff’-1, ce

qui implique, d’apr ds 2), supp(f) --supp(b-lfb) =supp(f).b; ceci n'est possible que si b=e.
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En particuIier, colirule iI est clair que a collulrute avec tout 616ment de AB et
supp(a);= {eB} on obtient cAWB(i)= Aa,

4) [f,b;b'fI=e ssi ff,bfl=b’-If,bb’. Si b’e <b> , (ff,bf1)(b’)=eA et
(b’-If,bb’)(b’) =f,b(e8) =a# eA. D’autre pan, si b: C <b> , f, b commute avce b’. Nous
voyons done que si [f„b;b’f] =e aIors b’ C <b> et [f, b;fI=e. La r6ciproque est triviale. []

lzmme 2: Soient b.caB et leAs , Alors
1) cfQCAWB(b) ssi ceCB(b) et fe+b

2) cjec,w,(c„w,(b)) ssi ce < a> et fe (c,,(A’)n n q)
le CIb\

CA(A)= {ef , a tors pour rout beB, C„,BCC,.,(b)) = <b>

En paniculier, st

Preuve: 1) Pour tout ceB et fC A8, b- Icfb=cf ssi b'lcb=c et b'lfb=f, puisque
Bn AB={e}. b commute dorIC avec cf ssi cecB(b) et feCAWB(b) nAB=+b.

2)Soit gC CARB(C„WB(b)); g s’6crit g=cf avec ceB et fC AB. On a
CAWB(b) G CAWB(gy

- Pour tout aCA, ae CAWB(b)n cAWB(c), et dorIC a commute av% f. Par cons6-

quent, pour tout x€B, et tout aeA, f(x)a=af(x) et f€CA(A)B= C,,(A B) .
- Pour tout aCA, fLb commute avec b et done avec g. Nous en d6duisons grace au

lenrme 1 4), que cC <b> , et iI existe un ender relatif n tel que c=b-.
- Comme c et g commutent avce tous les 61&ments de CAnn(b), f fait de mane, et

par cons&qucnt fC +, pour tout xe cBO)
R6ciproquement, si nez et fe (CA,(AB)n n +1), on v6rifie aiament que b'T

C C.(b)

commute avec tous les &16ments de CAnn(b). L]

Leanne 3: Skpposons C,(A) # {ef . Soil Div(x,y) la reLation binaire sur AWB, d6jrnie

Div(g,g’) ssi il eriste hC AB tel que C„,tB(g)gClw3(g'h)
par

Alors Div est d£:frnissabte dans AWB (mec un paramatre) et pour tout b,b'eB, A' CAb ,
Div(bf.b'j') ssi il eriste nez tel que b' =tf .

Preuve: Pour voir que Div est d6frnissable il suffit de v6rifier que AB 1’est; si
aCCA(A)\{eA}, le centralisateur de a darLS AWB est A8 d’aprds le lemme 1 3), ce qui
prouve que

Div(g,g’) -. 3u (['1;a]=e A (VV [v;g] =e -–, [„;g’uj=e)).
Si aCCA(A)\{eA} alors f,bC CA,(A B) ; d’apr&s le lemme 1 4), f,beCAn8(bf), et s’iI existe

he AB tel que CAWB(bf)E C„WB(b’f’h), aIors f,be CAWB(b’f'h). Ceci implique b’ e <b > ,
toujours d’apres le lernme 1 4).

R6ciproquement, si nGZ, f,f’ C AB, et h’ =(bf)’'bD alors h’ = 11 (f -1)b' C A8, et,a
b:T’ =(bf)’tr’f’; si on pose h=Or’f’)-1, alors he AB et b"f’h=' (bf)n . II est clair que
CAWB(bf) g CAWB((bf)n). []
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Preuve de l’ind6cidabilit6 de A\VB:
Soit b un 616lllent d’ordre infini de B. Nous distinguerons deux cas:

CwI: CA(A)= {eA}. Salt div(x,y) la relation binaire
div (x,y) '-+ VZ ( m=zx –' yz=zy ) .

<b> est d6finissabie: d’aprds le leanne 2 2), pour tout g€AWB, gC <b> ssi
AWB A div(b,g).
Si n,m€Z, A\VB - div (b", b") ssi m I n. Nous en d6duisons que < <b> ,e,b,.,-1,div>
est isomorphe a <Z.0,1, +,-, 1 >, cette structure est d6finissable dans <AWB,b}, et la
th6orie de A\VB est dorIC in'16cidable

CasI: CA(A) # {eA}. Soit ae CA(A)\{eA}. D’apres lc lelnme 3, AB et Div sont d6finissa-
bles dans ( A\VB, a) et Div est colnpatible avce la relation d'6quivalence associ£e au sous-
groupe normal AB. Soil div ]a relation quotient de Div d6nnie £ur (AWB)/AB, et g la

classe d’un e16ment ge A\\B dans ce groupe. (A\VB)/AB b div(g , g ') ssi g ’ C < g > . 6

est d’ordre infini, et colnrne dans le premier cas, on montre que < < 6 > ,e,b,.,-1,div> est

isomorphe a {Z,0, 1, +,-, 1 >, et cette structure est interpr6Uble dans <AWB, a,b>. La
th6orie de A\VB est done ind6cidable. n

Lemma: Si bCB est d'ordre inflni, alors CA,B(b)=CB(b)

Preuve: 11 suffit de remarqucr que, d’arras le lemrne 1 1), +bn P ={e}; Ie
r6sultat d6coule alors inlm6diatement du lelrulre 2. []

LemMr : Soit pCI,y,z) La forrnule
pfx,y,zJ ; b;d=e A Qu [x;„J=e N 1l;d=t11;yjl.

Soien£ aCA\{ef et beB d’ordre infrni. Pour low g€AwB. AwB bp(i,b,g) ssl
gC <b>

Preuve: Soit nez et g=b-. [g;b] =e, et il nous faut Uouver u,e P tel que
[i;g] = [u,;b]. Si n=0, iI suffit de prendre uD=e
Si n> 0, d6fmissons u, par: u,(b') =a si iC {0,..,n-1}

Un(X) =eA slnon

Si n<0. u,(bi)=a-1 si iC {n,..,-1}
Un(X) =eA salon.

Dans tous les cas, u, est un 616ment de F et [u;i] =e
Si n+0, pour tout x eB, [u,;b](x) ,'u,-1(x).u„(xb-1)

1 si x=e.a

=a si x=b'’=g
On a donc [u,;b] = a-lb-'ib-= [i;g]
R6ciproquenrent, soit g tel que AwB b pCi,b,g). [b;g] =e, et dOIE gCB d’apris le
lemme 4. Nous pou\’ons supposer que g #e. Soit u€AwB teI que [i;u] =e et

[i;g] = [u;b]. ue P d’apr as le lemme 1 3), et pc ir tout x€B, [u;b](x)=(u(x))'lu(xb-1);
d’autre part,

8



P. Sinxlmtn

[a;g](x)=a'1 Si x=eB
=a SI X=g
=eA slnon.

Nous en d6duisons:

uCb-1)=u(eDa-1 (1)
u(gb-') = u(g)a (2)

u(x) =u(xb-1) pour xe {eg,g} (3)
Si ge <b> , alors pour tout ender n non nuI, b-e {eB,g}, et (3) implique u(bn) =u(b"1).
On en d&duit par r6cunence que, si n>0, uCb-)=u(eB), et si n<0, u(bn)=u(b-1). b 6tant
d’ordre infiri et u ayant un support fiM, iI est n6cessaire que u(eB) =u(b-1)=eA. (1)
implique alors a=eA, ce qui est conUaire aux hypothises. Nous avons dorIC gC <b> . []

Preuve de l’ind6cidabilit& de Av/B:
D’apras le lemme 5, si b est un 616ment d’ordre infini de B et a un 616ment de

A\{eA}, <b> est d&finissable dans {AwB, a ,b}. Soit div la relation binaire d6finie par
div(y,z) '-+ v(i,y,z)

On constate que < <b> ,e,b,.,'1,div> est isomorphe a {Z,0,1, +,-, 1 >, et cate structure est
interpr6Uble dans {A\vB, a ,b). In th6orie de AwB est done ind6cidable. []

Corollaire : Pour tout groupe A non trivial, et tout groupe ordonnable B non trivial, les
th&ories des groupes AWB et AwB sont ind6cidabtes.

Preuve: Un groupe ordonnable n’a, a pan 1’616ment neutre, que des 616ments
d’ordre infini. D
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Lo nrod('l-cunrpagn(nI cIc la tlr(’:oric’ dcs corps de diff6rcncc
Zo6 C:hdtziclakis, CNR.S/Paris 7

R6sultats alg6briques
Rapl)elons qu'trn arrrrcarr d(' (liff6rt’rrce ('st UII anrr('au ,4, muni (I’un monomorphisme

a : 44 + 1. L(' larrgzlg(' (l:IIrs I(’(lr1('l rroils trzlvirillOIIS est. cclrri (1('s anIr(ta,ux, augment6 (1’rln
I)r6di('at d(' fonctioll rlnairr polrr a. Los rf'sultats qrle rrous citons dans ce chapitre peuvent
('’tre trouvc’'s dans 1(' livrc' de Richard Cc>IIn [C]

Si 1’ann('ar1 ,4 (’st irrt agro, a so prolorrgc de faqon rrniqrrc arl corps des fractions de A,
Si A cst tIn corps on parle de corps de (liff6r('nce,

Le IlloIrornorplrisrnc a rr’('st I)iIS In’'('6sszlircIrr('rrt srlrjcctif; cc'pendant, tout dnncau de
(tiff6renc(' a unc cxtcnbion dans IdqECllr c7 est un automorphisme; dr plus il v a une plus
petit(’ tellt' ext(:rrsi( iII, dOIlt iious (lonnuns rnaintcnarrt la constructior1

Soit .4_1 = {& I a e X} un(' tx)pic isonrorph(' dc ( I, a ); on plc>ngc A dans A_1 par
a +} aCa); illors (J. a(J), a) = (,41 , J. a). Dr ct’ttc facon on construit un syst ame inductif
( ,4_„ , a) )„ eN (l-anrrcaux (ie (liff6r<'nce ?tyre A_„+ 1 = a( J_„ ). Si I? cst la limitc inductive
(Ics A_„ . al(>rs a cst IUI {111t(>rrrc)rphismr' (Ir 13

A part;ir de maintenant, dans tolls les corps de diff6rence, a est un automor-
phisnre.

Soit JC url u)rps do (liff6rt'rr('t', OII (lc’'finit l-ilnnc’all dc polyn6mc'bi do ciiff6rcncc sur I\
(lans los virria.I)les _Vl , . . . . 'X„ . ('onrrrr(' 6taIrt l’anncau (le pol)'nr)nlcs
X [_\-1, . . . , X„ , a(_\-] ). . . . . cr(X„ ). a2(,Y1 ). . . . ]: 1’action do a 6tc’nd ceDe sur if et en\-oic

a" (Xi ) SIn crl+ I ( X, }. OII (1611c>tc' cc't ann(' i111 d(' 1>oly11f)nlos par If{X>

II y a unc nr>tic)n naturr]l€' dc a-i(Hal: I C K <_T> est un a-id6dl si c’est un id6al clc>s

bar a et a–1. Ln a-icl(’'al corrcspc)IId all rl€>yau (I'un llomc>lnorphisrrRt dc it(I> dans un
:tlrrr('iru (1(' (liff(’'rcIrc(’

Attention: K (X> n'('.st pas no('tlr6rir’n: soit I Ic a-idc’*al engondr6 par _Ya(X). _\’a2 ('\’ ).
Xa" (_\- ), . . . . Url a-i(16al I cst I)ilrfilit si t(nlt 61(qrrr('nt a (Ic)nt un produit de tr ansfornr6s

est clans I. appartient lui-nl aIrlr a I-. nt>t(>ns (111-url tel i(16al ost en particulicr radiciel. Nous
a\-ons alot>; la ('on(lition (Ic ('lr:liII(’ zlsc('rr(lilrrt(' 1)011r Ies a-icl(_'arrx I)arfaits. Notons aussi qrre
tc>lrt ai(lc’'ill prt'nri('r cst pi\rfilit. Rolls arc>irs z11tssi url(* tout a-i(tt''ill parfait c'st l’interscctioIr
des a-id6atrx pr(’rni('rs lc ('olrt(’rrant

Soient ( F. a) C ( it. a ) d('s c(>rps cIc cliff(’'ren('c'. t?t a url uplrt d’616rrrc’rrts dc K, On
(Icinc>to par F(rr )n 1(' pl11s Iw’fit cc)rps do (lift(“rc’rIce ('olrtcnant a, ("c'st a dire Ir coprs
F( . . . . a–1 ( a ). rl. a( a ). , . . ), A r/ nr)IIS ilssorit>IIS un a-i(16al /(a/F) C F <X> de la mani are
rrat;ur(’11(', ('rr (I(’'firrissarrt

/( a/F) = \f c F 1 _\-> 1 /( a ) = o} .

Clair('rncnt . J( u IF I c'st lui a-i(tc’'a1 1)rc'nrier.

Il se pont que fI-.dr f/( FCa )a/ F) writ hui, Dans cr cas. p(nrr II suftisamrrrent grand,
F( a )a t’st imc’ ('xt('rrsi(nl alg(’'bri(IIIO (Ie Ft tI , a( ri ). . . . . a" ( r/ ) ); pour in ? n 1 c's ent,iers dn, =,if
[F(a. aCa ). , . . . a111+ 1 (a )) : FCa, aCa ). , . . , al"(a ) )] fornrcnt une suite d6croissante, qui sc
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stat>ilisc' c'n IIn ('nti('r appr16 lc (logrc’' limitc rIc FCa )a slrr F; cc' depT6 limit(: cst IIII invariant
rlt' I'('xtrrrsic)11 F( rr )n /F, i.r., il no (161)t'ntl pas dos gf'nar ilt('lrrs rlroisis.

D(' 1)Irrs ('rr <':lr:1('t6risti(Ill(' (J, IIII(’ tt'll€' (’xt(’rrsi011 ('st ('rr fait cng('rr(Ir6r par rrn serll
61(“nrcnt.; clr (';lr'il('t(lristi(llrc I)osit,iv(', iI fa11t faire :lttcrrti(nl aux exteIrsioIrs iIrs6parablc’s,
('('pcnclant Irlr r(lsrrlt iIt arIaloErIC ('xist(’,

R6sultats de tlr6orie des rrrodbles
Los rc“slrltllts (It' cc (-llnl)itrc' sturt OII I)artie das h L. van den Dries, A. Macintyre et C.

\\\)o(1, rrrzlis rr'<)Ilt jiIIII;lis 6t(“ 1)111)1i(’'b;; 1('s r6slrltats ('orrc('rrralrt 1'6quivalCIr('( t (’'16Inentd,irc et

1('s types SoIIt (1('s tra(llr('tiorls (1(' (1(’'rrrorrstrations potlr 1('s corps PA(-l i IIotr(' ('OIIt('xt('.
Rolls v( )11lOIIS (lorrrr('r rur€' :1xiollliltisation de la tIl(’'ori(' IC'FJ, nro(li'l(' - c'(III1}):1£? ioI, (I<'

IiI tlr(’'oric' (lcs ('orI)s (1(' (liff6r('rr('c'. 11 s agit (I'PXt>J'iltr('r rIllc toIIt systi'nIe (I'(’'(j11:ITi011, (
(I'irr6quatious (lrti iI tIll(’ solrrtioII (1:IrIS irlr(' t'xr('llsit'lt :I lrllt ' soltltion.

Proposition 1. Sc>if JC'FI Itl tlrc"01 it' .k )III lc'b rrlrltli’It'.. xr -:It tIes structurr' t [< , a , . i,II,
fit isa IIt :

( i ) a cst IIrr :111t(> IIIorI> 1115111t’ rlc' 1\

( ii) it ('st ill,g(’'1)ri(lrr<'rrr('lrt f'los

(iii ) Si t’ cst lun’ vi\ril't€’' (16firlit' blrr it , €'r l- C t’ < a( t’ ) lure varictc’' (tt’'finic' h11r A- it'llt'
unc los l>r(>j('('ti(nls tlc’ I - <tlr {’ c't ajt- \ srnLt tII'llsc's cli ills t’ ct a( (' ). Alors it €' xl.tt
a e L ( K ) t<'1 rpu' I rr, a: all ': 1

Alt)rs IC'F'+ (' b;t 1(' lrrof1('1-t'<)IIII)ilp.110II (It' IiI tllt’'or'i<' ( It'h. t'orI is d(' (lifT(“r(’rIce,

/)f'm,on.$t7'at£r/n„ (2uc'l(1111’s rrrc)th cl-il1)£)III slrr I('s fc'rrrrc’s ('ml>1(>Ff’s: tIll(' vllrict6 cst pour
nc)us un (*nsc' IIII >lt' ilIHc’'t>ri(jlrc' (rlt’*fiIri stIr A- ) irr("tlllc'til )It'; iiI vtlri€'t€: a( C: ) rst ('t'llc dont les
pc>irrts s(nlt { a( rI ) a ( C ’} ; t- ( it ) clc'lr(>tr I'cIrscrrrl>It' ( Ics 1 >tints /\’-ri\tionn('ls ( Ir tF, Notons
(111(’ ('(’s I)roI)r'i('t(“s SoIIt expr(’ssil)1('s (lzlrrs rrotre langilg(', 1)uisqrl'(’11es SOIIt. ('sscntiellemerrt,
:llg(’'1 )ri(III('s .

Nous :l11(nls (I'il1)or(1 nrorrtr('r' cjlr(' 1('s IIIO(Ii'I('s d(' la tIl(’'ori(' ,4C'F,4 sont existentiellc-
rrrent clos. Potlr c(’II, IIotoIrs (I'al)or(1 gIro I'orr I)('rrt f'lirrrirrer les in6quatioIrs par l’astuce
Iral)itrrcllc. (’t (IOII(' s(’ rarrr(’rr('r ;I lit r<’'solrrtiorls (I'(’'(jlrittioIrs (lc la fornr(’

fl r .I' „[(.1')) = . . . = f FIIL ''. . . . .'k(„)) = O,

c)1~1 ,1- = {,1'1. . . . . r„ ). It's pt>!)’nf)rrrl's f,- st)IIt clc’s 1)c)lvlrf)rrrr's il coc'fticirnts (lans 1\

\’aria1)It's .r. . , , . at (i' ).
Soit Z IIII(' (’xt(’rrsioII (lc it (1:IrIS IiI(Irl(’11(' ('(’ systi'lrr(’ (1'6quations a irlr(' solution, a

Soient C- C Ak11 IiI vnric'tc; (!6finit* stIr l„i <1(nlt ( a. . . . . al– 1 ( ri ) ) est IIII 1)c)int g6nt’'rique. et 1-
coIIc d(nlt ( rr. . . . . al1 (a). a( rI ). . , . . at( r/ ) ) cst 1111 lx>int g6nc’'ri(luc'. Alors C’ c*t 1- satisfont
It's Irvpc)tlri's('s clc ( iii ). et (Ic)Irc iI c'xib,to A C L’ I it ) tt*1 rjllc' ( b. ajL} ) C I ’: c’'c'rivoIIS b commc
( ('. . . . , al–l(r' ) ): : llc>rs r' ('st 1-<’*16111t'nf ch€’rch€’'

XIoIIftoIIS rrrilint('nant (Irl(' toIIt ('orI)s cIc diff(ir(’ll('(' if sc 1)lon.go (lalrs IIrr rnod ale de
IC'FA: li's ilxit)un's ( i ) ct Iii ) llc’ 1)t>sent aucun prt)bli'rrr(', car t011t alrtorrr(>rplrisme d'un
c'clrl)s s-(’*tt'rr(I t'r! IIII ilrrtc>morplrisrrrt' (It' ba c16t11rr' aIg(’'I>ri(luc, Soient d(nrc C’ rt 1’' rc>mme

(18115 ( iii ). ilvt'r Jf ilig(“1)riq11t'111t'rn clc)s. eT a 1111 p(}irlr g6n6rique cIe tF, b . ct F la cla-
turc alg(’'l>rirl11c' rIc it( rr ): pujsrlrrc' F ['st nlg61)ri(lut'rnc’IIt cIc>s et t r.tIf gl F r K) = r/ f IV ( [ ) =

')
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r/ / 717 (a( tF)), nc>us pouw)ns trouw'r (lans F 1111 point, b g(’'ncriquc dc aCU) tel que (a, b) e V
l’isomorphisrne a crItIC ACa) ct K (b) (qui prolongo a et envoic a sur b) i,’6tend alors i F.

Proposition 2. Sc)it if [ AC'FA, F lc sc>us-corps de if fix6 par a. Alors F est pseudo-fini

D 6 Tn,on,stl'a,tiorr,. II cst ('lair cjlr(' F est I)arfait; (1(: 1)lus iI cst PAC: si la variet6 U est
(16finie sur F, alors U = a(CF) ct. lions poll\’ons prc'ndre pour 1/ Id va.rict6 diagonale. 11

rest,e maint('nant i InoIrtrcr qrlc F a exact('rnent UII(’ cxtensioIr alg6briquc (Ic chaquc degr6
NotoIls FnII la clC>Euro :llg6briqtl(' cIo F; illors cr(Falg ) = Fnlg , ('t donc Gal((F"lg / F) est
(’rrgendr6 par a; F a, (1(nrc a.u pIlls une (’xt('rrsion do ('lraqrrc (Iesr(I; porrr montrer qu’iI en a
uil(', nott)ns (Irl(' le systi'rnc

„"(.„) = „. „ + „(.„), . „ + ',"–1(.„)

a IIne soltltiorr dans 1111(' oxtensioII de it , ('t donc darrs I< .

Proposition 3. Soi('nt ( if, a1 ), ( E. a2 ) (It'ux modE’les cIc’ AC;FA, contcnant un sous-corps
dr cliff6ren('c’ (E. a) qlri rst algt’'t>riqucm(’IIt (los. Alors

IIt . a\ ) =B (L. a2 )

Di:In.on.st.Ta,tion., On I)('rrt supp c>set if ct E !Ej+-s:ltrrr6s dc mame cardinaht6. Pdr un
argument de va-ct-viont il suffit (tc nrontr€*r quo pour tout (616Inent ) a C if il existe b e E
rt tIll Eisomt)rphisnlc’ P : E(ri ):{q –> El b):{1# qui OIlyoie a sur b.

Soit zX Ir diagramme saIls quantiHcateurs dr ECa)3{#, al’ec les variables ra , a e
ECa):{g . Rc'mpla cant I par Knt' ('opic' £-isomorph(’ s'il lc faut, nous pc>ul’ons supposer
(111(' Z et I( S011t li11(“:lirclnellt (lisjoints il11-dess11s (1(' E. Soit NI le corps composite de Z
et El n\T\g : c’('st le cc>rps de fractions (1(' ECa );{g ®E E, D6Hnissons r sur £1 en posant
rCc =':' d) = a1 ( c) {': a2( d); r proloIIKe a1 . a. I . t’t s-at('11(1 on lln automorphisme do A/alg

Plribqlrc JC'FI est nroc1 al(' conrpli't('. coli ilnplique qrtc Tlr(E. a2 , c)'crU A est con-
>list(Ilt; par s:lt11rati011. A cst r6alisc’' clans L. par ( b„ ); c16finissons p : ECa ):{g par a b} ba

C(' r(“slrltilt a 1)irlr stIr plusit’lrrs ('c)rollzlir('s

Corollaire I. Sc)it*nt ( A, a1 ). ( E , n2 ) (It'lrx nrt)di'ic's clr ACPI do m8mr caract6ristiquc,
<'t A' la c18trrr(' algal)I'i(Ill(' (III s0115-('orps pr('lrricr. Alors

( A ' at > = ( E. a2 ) dH,
(A’. al it) = (x" a2 it)

Corollaire 2. Soit K [ AC'FI. E url s( ills-corps (I<’ K (’t a. b (lcs rrplcts. Alors tp(a/ E) =
tp( b/E ) si (’t sculrnl€'1H s-il ('xistc' Inl E-isc)Illorl>llislllc ; : E( rI ):lg –> E( b):lg qui cnvoie a
stIr a

Corollaire 3. Les notious alg(“1 )ri(luc ('t IIlo(Idle–tlr(’'oriqr1(' (1(’ cIf)t urc algd’l)rique d’rln corps
(1(’ (liff(’'r('rr('(' ('oTrrci(I('rrt

DI“.III.lITI.st,rn.t.itITl„ Sc>it E 1111 sc)IIs-cc>rps (lc cliff(’'rc'rr€'€’ rIc' it F AGrA, rt suppose)IIS le E:
alg6briqucrr1('nt clos OII taut <ltu' cc)rI>s. II irons filllt montr(*r que si a e K \\ E al(us

3



fp(a/E) iI trne infinitc’* (lc- r€’':tlisations. St)it F = ECa ) gIg, et soil (F1, a1 ) unc (•opie de
( F, a). linc“airern(’nt (lisjoint(' (Ie if all-(It'b;sus cIc' E. Proc'6dant dc m6mc que dans la
(1(’'lrrorrst.riltion de IiI Prol)ositioll 3, on 6t('rr(1 a ct a1 en 1111 zlrrtonlorplrirrre r dc’ la, cl(")trrr('
:rlg6T)ri(III(' NI (III ('orI)s conlposit(' (I(' I\: ('t F1 . P11is l-on pIorIg(' XI (lans IIn mo(1 ale Z do
JC’FI. On a alors K < L. c't Z \ T\: conti(*IIt rurt' r6alis;ati(nl de tl>t o F E). Cc qui mc)IItre
t>ion gut' fp( a/E) p('ut Ctr c rd:llis(’' un(' infinit6 dc’ f(>is (Inns url mod&lr srlffisdmrncnt sa,tur6
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Le groupe des automorphismes du corps des
complexes laissant les nombres alg6briques

fixes est simple.

Dani('l Las(III

.Jan\'’i(’r 1994

1 Introduction

('t*t t'xj>1>s€; rc'l>t'c'IId t't'rt ai IIS l-6slllt ats fl€' 1-art ic'lt' "I('s allt(>trlc)rl)llismes cl-IIII
sc'tlllll(' ftll-lc'ITlt'Ill rllillitlltl1" [ 1 ] . 1 )dlls r-t't art il-It', 1)11 clt’'rllt)Ill,rc', t'IItre a IItres.
(jllt' I(' gII)tIl)t' (I'alltoTllt)r'})lli bill It's (I'lIII(’ st,I'll('t.Ill'(' f(jrt('Ill('I it. IIlillilrla I(', sat,llr6e'

t't tIllIIt)IIII)rat)It' c'st -’lrrt's(Ill('A sillll)E(' (OII vt'l-ra pIlls lolll lc' sc'IIS exact de cl.
I)I'c'scjllc'-' ). I.t' c-as ilt's trill)s alp,cII)t'irlll['Ill('Ilt c'lcls rlr' r-arar't(;risti(III(' o est I)art i

c'llli&l't'III('Irt iIItx'l-('ssa Ilt . 1,(' I'(:slllt at, I)CIlt. s(' g(''llt’'ralis('r aII (' its 11(iII (16Irc)IIII)raI)lc.
t't’ (IIli I)('rlll('I (l’ol)t('llil' I(' tIl(it)I'i'Ill(' Stli\’ilIIt

Th6orime 1 t.t 1Iron pt tIts quI O111nrplllslll th cIt tF laissant fi.ris tolls Its nornbrx s
tIlt if \iI'l 1l111 s t st silll IIII

( Ici a' tIt"sigllt' ]c' c't)rIls tIt's Ilt)IIII)res c'tiTtlplt'XC'S. )

I)all>. 1'aI'ti('l(’ Ill('Ilt ic)1111(’' 1)1115 llalll. till allllt)ll('c' ('(' r6sllltat i l’aicle (I(' I'll\’.
bI)III('s(’ (Ill t'titltitllt. I'll (I('s bIlls tl(' t'l't ('xl)c)s(“ ('st II(’ 111011lr('I' (Ill('. eli fail
I'Il.\'T)ollli's(' tIll t'(Jllt,illll (’st iTlllt il('. ITII allt.r(' 1)IIt, ('st fl-FII I)r(:setlt,('r la T)r('tlv(
saIls .jzlIIlals fa It'(' I'('11'r('ll('(' a (I('s III it it)IIS (l€' t II(it)I-i(’ (It's lllt)(li'l('s. a fill (Ill'('ll(' soit
iIIttlttlf liill('lllllt ('t)llll)ll:}lt'llsil) It' I)t)Ill' (jllif't)11tIll(' t'o1111ait 1111 1)('ll fl'algi'l)re. (’('p€'11

(IIIIII . t't'l I (' j>1'('11 \'(' s('l'a (“('l'it t’ (1(' tIl c:till i I)t)ll\'t)il' t111ssi atr(’ Ill(' ('tiI]1]11t' 1111(’ 1)I'(’rr\’t'

tIll tlltlc]l+'lllr' III [ VIii r I)]IIb lclill ) €jlli zllllrlllt' rjllt' It' srt)III)c' ilt's a lltoltu)r})llislrlt's
tl'ltllt' sl rllt-tllrc' Pol-1 t’ITlc'Ilt llliIIinlal€' ['t s;llllr6c' (rlllc'lcjllc' stiit sa ('art]inalitci] est

I JI'C'S(III(' sillll)I(
OII ('(JIIIIII('I1('(' 1);IT' IIIt I't)fIIIIt'(' fIII('1(III('S III)tat it)IIS

• h' (it Isi.gII(' la ('&ll'flilla IiI( I fl('Q' ( h' = 2N" )

• r ; tIt'sigIlt' I(’ gl'tJlll)t' ( It's illlt,(JI11C)rl)llisI11t's (It' a' lilis;sa III Ii:{('s 1 t's IIt)IIII)r(*s
iI I g(11 )I'i[jll€'s

• ! ! (It'bii.gII(' I'('Ils('1111)It' tI('s SttIIs-('til'l)s zllgtlj>t'irlll('ll}(’IIt t'lt)s f 1(' q
('aI'f IIII II III(: SI I'I€'tt'IIIt'III IIII'(:I'It'III'(' ;I r,'

(IIli SCJllt fl



• si /\’ ( ! ), r //, flt’'si.UII(’ 1(’ gl't 1111)(' (II'S a III t)llltil'l)llisIlle’s (It' /\’ laisisttIll 1(’s

tIt)lttllt'('s a I,q(llll'i(III('s tiN('s. t’I .tl///,'(Q' ) fI( Isi.gIlt’ 1(' grt Jill)(' (1('s alltt)llltil'l)llislll('s (1('
(I' lilissttIlt 1('s bt)IIII s (1(' /\- lix('s

D6fllritiolr 2 Sc)it 11 F ( ; . ( )II (IiI ljllt tI tsI I)r)I'llt’ s ’il t .ri.-iI ( it ( St trI gIlt I)Olll'

111111 it ( a'. g ( rr ) t st nlgt'llrlqut sur it U {a } .

OII I'('ll\;ll'cjll(’ tjllt' I('s ?IlltC)lllc)I'})llislll('s 1)IiI-11(’'s f(JI'Ill('Ilt IIII st)IIs-.qrtilll)(' Ilt)I'IIla
c 1(' r ;. t’1 si // t'.-.t lltlt'Ttc’' t'l f IIII’ It' ('t)I'l)s /\- t'sl t'tJII III It' flzllls la (I(:{illit i011 2. al(irs It’
I'llrjl\ /\' c'hT l;lisstl qlt)t);llc'l IIt’In tIxI’ liar !/ cr' tjlji s €"1-rit f/ [/\-] = 1< - )

1.t' tjttltJt'i'tIt(' 1 (It“('bIll(’ ilrllll(:(li;lt('III('TIt tl(’s (I(’llx j;l't)I)tJSit i(ills stli\-allt ('s

PrOPOSItIOII 3 .SrI // // II II t' It’ tIIt // / III)it I)CtI'III' IIII IIb 6/ -1 /rJ I'S

f / = IF ' u ( r/l )[' a t r/-1 ) a 1/[’

tIf ; II fsi gIlt 1-1 IIst inUIt \ll\1lh h e (;} J

PrOPOSItIOn 4 1.'Idt IIII It’ t St it St III t’It' tIIt III I)OI'IIt’ [ItIIt.-I ( ,

2 Preuve de la proposition 3
OII \'a ll}t)IItl'('l' la broIiosit,ioII :{. })Olll' I OItt (' ('(’It.(’ bl-(’11\’('. OII lix(' lltl alltt)-
111t)I'l)Itis111(' // II(' (; lltJll t)t)I'tt(1. 011 a I)t'sc)iII lllaillt('llallt (1(' (III('KIll('s 1101,at,loIIS

SIll JI)Itllllt'Ilt,;lil't 's.

• \ (It’'hi.gIlt’ I'alrl)lil'alittll tIt' ff < f; cltllts ff cjlli h ( /1. /r ) IIl it c'ol'rc'sDc>llrlrt

// - 1 o r/ o L- n r/–1 a A' o h . 011 VI)it IIIIt’ \ ( /I. r/ } e r/a o ( I/– I )[;
• hi /\' e ! ! . \ K tlt’'siKllt' l-al )1)i it'll tilt1 1 t It' ( : 1\ x ( ; 1\ 1l113 ;1 { FI , A' } Fa it, c-tirrt's})trllrlr('

II :' r/ o A'l o r/ 1 o A' o // [ililtrt'tIlt'll1 (lit . \ /\- c'sT la rc'slric-tiol-, tl(' \ i ( /h' x f //( )
1.'('ss('lllit'1 (1(' la (I(:lllt)IISII'al,it)II t'sl (-(illl('llll (lalls I(' I('ll IIII(’ sllivaI it

Lemnre S So iF I\- e !! , ll. k nppu Ill II Il IIt iI ( ; h . I{1 e 11 rt .[ C ( ; I( I. OII SIr PRost

gIll I( L 1{1 tt gIlt .f pl'nlrlll fIl \ N IIl, k\ , 'I /r//b iI I .ri.at 1l1 it kf duns ( ; tcl q Itt
\Ll11.L'1 \ pI-olrlll qf }

OII a ill'a I)(’StJill (1(’s I It'll)( st)IIs-l('ITIlllt'S slli\'illlt s. Jf'i f't I)Ills It>ill. iIltl('})('ll(lallt s
\'('Ill flil'(’ aIR(:1)I'i(jt[t'lllt'IIt illtl(:bt'lltl}tIlt s ('I lil flilll('Ilsit iII r'st la ('al'tlilla lit( I tl'lIII('
1 ):ISt ' t It' 1 I'll Ilsc'('lltlallt'('

Sous- leI)11 lie 6 S II1)1)rib(> IIb €jll t it,\ . 1{ \ t 1 it : bc);( III It'ois t’lt’ III t 11 is IIt St. q IIt
1{\, , T 1{ \ . tIIIt 1{\\ '–_ it : it tttIt it \ t t t(.I SOIIt III df 1)t 11 (1(III tS (III tIt SSIIS dt 1\,\. OII
bIII)I)Obt IIt 1) 1 IIb tItIt II \ C_ ( 1 1{ \ 1l111 it Iet ; 1~ , . tIIIt tI \ \ t(\\ = 111 \ 1(U – it . .'I /O /'.-

II t .rIb it tIll ll\ltttIllCtl' IItt is,XIiI II tIll Its ( ; })I'rrtt)Illlttlll ! iI ttl ItIl.\ 11 \ t t IIi



D. Lascar

Preuve : Soit, /\’ I(' ('(;1'1)s ('IIg('rIclr(1 1)ar 1{ \ U /\’: . ('ollsi(16rolls I'apT)li('at,ioll // de /\
(lalls I< Ilt:tillit’ [Ie la iIi(oil s11iv;111tl' : tc111t c’.I(it11r.11t fI [It, /\- 1)c11t s'6r-rirt' /?(G, b1. G).
oil /? ('st 1111(' fl'&ICt,i011 I'ati(Jllll(’II(' i f'o('{ti('i('11t,s ('Ill,i('rs. 1)II 1111(’ b;IItt(' (]’61dIII('Ilt,s cI(

I< -1). 61 tIII(' SIIII t’ fI't:IC’'III('IIt,S fI(' /\’1 – /ft) . ('I /;2 1111(' S11itt' tI't:I(:111eIIt,S (1(’ /\’2 – At).
OIt :)clst' : // ( b) = it( //11(G), // 1 (G). //2(B) ). OTI vt’'i-inc nltlrs q11c' l-a,1)1)licat,ioll h cst
llit'll Ilt"Fillit’ ( //( A) Ilt' tlc;pt'llrl I)as tIc’ la rt’llrdst'11tatioll /?( bn. b\ . f/2) rllc)isie) ('I qllr
t' t'St IIII +IIItCJI11t)rI)IIISIIIC' €1t' 1\ (IIII S(' IaISSt' I)I't)IOIIF\('I S;IIIS I)('ItI(’ I ([' t,C)IIt ('IIt I('I
Q

Sous-\emme 7 Soil it e St trI qui 11 [ /\-1 = K tt X ItII cardinal infr’rir tlr o-11 tcgal
iI h . /I in IS iI t /isil- KI e 11 . It C it I ttl gut- It1 tl g LIt \\ soirn I indt'pt II danI'--
tIn dtS.SUS dt it t I CII III( /\-1 / It} = X

Preuve : Oil tr)list rllit IIar illrjllct,irlll lltlc' sllilt' ( rI, i ; e A) llc j>oillt.s rl<'q' d(' t,eIIe

sc)rtt' cjllt'. bt)III it)III ; ( A. J/( a,- ) Ilt' st)it IIdS a lgtll)ricjll€' sllr /{( {g( al ) ; J < ;} U
{ a ' : .; B ; } ). ('t't-i t'bil pubisil)lc' ji?lrtr' t]llt' r/ ll t'st lia>i I)urllt’'
Q

'\0115 atta(IIIoIIS lllaitltt'Ilallt la (I(’'tIlt)IIst rat ioII (III lellIIrr(’ S.

Preuve : OII 1)(’IIt It'ollv('l' II I C r / cIt('ll(lallt, /I ('I, laissallt, /\“ glol)al('lrrcIlt, fixc’.
I>t)st)IIS /12 – tI \ 1 I<’ . IJllll,at. (111(’ (It’ (-oIIsl I'llirc /I/ c't k’ I)r(ilong('allt r('sl)cctiv('n]eIIt.
// ('I /,' ('i, apI)al't,t’llallt, ;I ('; t('ls (III('

( 1 ) 111–\ o f/ o kl- I o r/–1 n k-1 o //1 prcllolIRC. /

c)II rt>llstlrllril fl e .'ll// r,-(a' ) t't h' I)rulong<'allt A' tt is 1l11(

( 2 ) II- o f/ o kl– \ o //– 1 o k1 o rr Ill-tIll)IIg<' //2 o ,/-n/l;
( II sllfliI'a a Iril's tl(' })I'(’II(IF(’ /I/ = r/ o // 1 ). Iy iII)ri's I(' s(jlls-Icl IIIll(' 7. il €’xist (
I<„ e !! tt'l rj11t' ttiIII(/f11/ /\- ) = tlim( /\-’/ it ) t't tc'l cj11t' I<„ eI it -1 = r/ [A'uj
st)ic'tIt illclt’'j>c'llt]a IIt s all Ilt'sSlls [It' I< - . OII (-]lt)isit rI e .'lu//,'(a' ) llc s(rrtc' (jllc
a [/f/] = 1< \ . S(lit .fI C ( /N, I'al Il)lit-at it)11 II o //: o /’o/1;1 o tI– 1 ( iI fa11drait pl11t at
t''c-rirc' .F\ = ( rr 1 K -I ) o /12 o /'o//;1 n (r/ 1 ItF \- 1 }.

11 III)IIS fallt fIoII(' lllailllt'llallt tl't)11\’('I- I," C (; })I'(iloIIg('allt A' t.c'l (111(-

'! ) .I/ o k1 o tI-\ o A'/ I)II)it)lIRt' /'1

St)iI hI e ( //f, l>r€11t>llxt'tl111 A' rt kn C r //,-1 1)rtllcl11£€'a 111 .r/–lo f1 oX'r1 og (011. pl11s

t'xa(-Tt'lllellt l>rl)[ttIlg('allt rJ/ 1 ltn\– I o .I-1 a hi I o (// ! /fo ) ). tlc' s11rte (j11€' Jr o Al1 or/
cbI (lga 1 ;1 .FI o hi 1 . OII rt'£llilr(jllt' altirs tl11c' k,1 1 I< = A' (1)artl' cl11t’ f1 1)I'ol011g('

f/ .: k- \ o //1 n A' ). OII lllilist' alt)t's l€' StIllS-lt'I11111t' fi [jIli Ilt)lls llit r]lj'il t'xiste
A'/ G r/ 1)1’tilt)IIg(’a IIt sitlllllt &lIIt’'Ill('Ilt ko t't k 1. /\It)rs r/ a I:1– \ a tI–\ a k1 1)r(;ltillg('
'I ' kG\ ' 11\ fJ k I = ]
tO

\lCJflititillS Ittqi'l't'lllc'Ill I(' I('llllllt' S

I,en\me 8 Soil it ( St . II t t h n ppa I-Il II tl Ill a ( ; h . kF e (2 , [ e ( ; t t h C ( ; h

(III S\I}I})CISt tIII I t\ (_ I<1 tt tIIIt it })I'd1(III 1It \ 1.(LIt. k\ . /I /aI'S it t IISt t 1( \ e St. tI \
t- 1 k\ IIII nb c : K \ t IIb qui I< 1 c K \ , f/ [ /\-1 ] = K \ = ./' [ /\- 1 1. carliLl< \\ = t-llrtll it 1 ) it
\ 1\ \LII !. k\ ) pInIOn gt II

{



Preuve : OII ('oIISt I'llit (I' iII)bI-fI (1(’s allttJlll(irli}lis111(’s //’ ('t k1 (-(J111111t' fla11s lc-

1(’111111(' 1)I'(’'t'(:'1('111. 1)llis. ;I I'ilitlt’ tl'IIII t'ai bit)llll(’lll('IIt. tIll 1,.VI)(’ I.i;\\'('lltlt'illl-SktJl('lrr.
'Jll tr' JIIV(' 1111 stills-till I IS \\ \ tlc' a' It'l rjlu' /\-/ f_ /\ 1. r/ [/\-1 ] = /(1. .1- [/\'] ] = /\-1 ('t
t'tl I'll\ /\’1 ) = <'Ill'llt I< 1 ) t't il sllllit alt)rs II(' litis(’r // \ = 111 1 /{1 (’1, X'1 = k1 1 I\
:'1

Strit .f :- ff. oli \-a lllrllltrt'r (111-il t’list t' II , , A', , // I. t*t A': It'ls cjlu' \Lh , . A'_ ) o
\ \ lll'.. A'! ) )1 = .f. I.t' It'llllllt' [llli s11it cl11:stit111' 1111 1)r['t11ic,r pab

Le\\\me 9 Sc) it it C St . ll . I.' . II’ . k1 Il1)1)Ill't t 111111 t & ( ; 1{ . 11 G_{l' t 1 ci11 5111>1)ost

tItle I prnlon flt \ 1,LII. k\ or \ ( //1, /,'1) }– 1 . 'l /rll'. il t .ribit[ it I e St it hI . k\ + 1111 . h1,
u HIlo 11 t liu III d ( iN \ prn1 on giant it . k . 1l1 . k-1 lr hrt rt irt illinI it is qui 11 \K \\ = 1\
lrll'Ill /\'1 \ = c'ttl'llll{ ) I I / p I'nF01111t \ r\-1 ( // 1 . [1 } a ( \ /\-1 ( hq . A'i ) ) -

Preuve : OII t'tlltllllt'llc-' Ddr l-lltlisir K\ e !! t(1 (jllt' ('rll'r/( /\' ] ) = r'rrl'r/( it )
'r .; li \ - .r/ [ /\- 1 J = li \ t't ./' [/\- I ] = K \ . Slli1 ll'\ t'1 A'’I a1)part t'llant a ( /h', I)ro.
I11IIRt'd 111 £-t'SI)t't-tIVC'IIU'III /// t't h' '. OII VtIIt d 111l-S rl11t' ( / K\ ) O\ / ,-,( / 1/1. 1 '/1 ) 1)rtjItj11gt

\ 1, \ II . A' ) . ( ; ri t't' all lc'111111t' S. t)11 Irtl11vc' I< = ( ! ! tC'l [l111. t-111-111 /\- 2 ) = r-all/( /\' )
'/ [ /\'2] : I< = . ./' [ A-=j = /\- 2 €'1 //: c'1 k- i al)jlitrtt'llilllt ;I ( ; /,', 1>rc)it)llgt'allt r('sp('l't irc-

Ilt'Ilt // t'l A' Tt'ls cjllt' \ 1( JIll: . k= \ jlrtllt)llgt' ( [ /f \ ) a \K1(/1/1,£-ll) . /\11tre1111'11t llit
( .f I< 1\ a \ / ,-=( 111 . A ':) I)rcllc>IIE(' \ 1,-1 ( 111\ . A /1 ) . ( ) TI lltilisc' rnrt>r€' 1 c' lc'11111t('. c 'I OII

t rc111vt' K-\ ( SI tt'l (jljt' I'lr ItII I<'\ ) = t'tlrfll it ). f/ [/f:i] = }\:-- b . .[ [/f:t] = /\-3 rt /1’3 cl
A'f + ;l1)Flnrl c'll;lllt h f //, ' FlrLlltlllgt'aTlt rc's1)cu'l ivc'ltl1'111 /1/1 c’t /,'’1 lc'ls (j11t' \ /,-' ( hf--+. 1/3)

I)rtilttllgc' ( f- [ /\'2 ) a \ /,', ( /12, A'2 ). I]a i11t t-114111 . c"l'st ( .f J /\'I) o \ /\'..,(h£1. A'/1 ) q11i pro.
It)lIRt' \ IC .' 1 1l: . £'2 ) t't L)II I't)llstrllit aillsi 1111(' sllitt’ ('rt>issallt c' ( /\' 1 ; ; C # ) cl-61(;111('nt s

cIt' ! ! c’1 tIt's slti1 t's C-rCliss;Illt ['s ( //: : / c !!. ; 1;air). (X'r : ; e (2. ; 1)air). ( 111 : / c £2q ;
i tIlj>all-). \ A'/’ : ; e !!, ; illIItair} tIt' st)rt,t'rjll'('II Dc>silllt I{ \ = U led/ /f' . 11 \ = U;eN /12=

I" \ U ,b, k!' . // I = U ,ed II"h+ I. A ' I = U ,(y. k"!t * I . C ) 11 OI)tIelkTlt' tI It’11 €' C' [l11€' 1'011

\'( )IIla it
rl

OII I)('Ill Ill;lilll(’ll;lIIt t('l'llliII('l' lil I)roll\'€' fI(’ IiI I)rtJl)t)SiliCJ11 :+. 011 t’'1111111;'t't' a
a' = { II , : rt e II- } . tIll t't)l£strllil I)at- i111l11c't ic>11 III's sIIit('s t-roissi111tes ( I< .\ ; r1 e h' )
' l-1'jtlrTlt'lltbtlt' Sl. I // , : rt e h- I. ( i- , : r\ C h- ). ( /I/b : rt C /r ). I F/b : rt e h- ) rl-€''](lt11e11ts

tlc' rfA., . tt'Ilt's rjltt', In;llr it,Ill r1 e h'. ./- [/\- 1] = 1< ',1. J/ [ /\-,1 ] = K,1. a 1 c /\' 1 1,t ./
}ll't>ltillgt' \ /„, ( /I, ' A'„ ) a ( \ ( //’, . k1 b ) }1 . OII clc;ltlal-rt' avcu' /\'11 t:gal a 11 t'ttrT)s tIt's
Ilt)llll)I't’s illgt’'l)I'i(Ill('s (’1 //11. k,\ . //{1. A',/, (lg;lllx ;I I'icl('lltit(’' SIll’ I< ,\ : II'S allt rcs (Ittl1)es
>tllll l-t'hl)lljt's grilr' tIll lc’ltl111t' ll. c't i] SIlltit tIt' jlcls€'1- /1, = U1€ti /1., , k _ = UvF,r.. A'
/rl = U , ep II1 . , /,' 1 = U 1,,r L-1 .
m

3 Preuve de Id proposition 4
IIt ' jrrt'lj\'t' I It' in jlrtIF)tlsititlll I t'bt rjt)1111t-'t' tIa Ils [ 1 ] . \I. Zit'HIt'r a t'11 a tlt>11n(1

IIIIt' ItIItI't' (1111 t-tII1('1 I1)1111(' ;IIISSI SI III f'}It'?I('I(’'I'ISt I(II1(' 11 '('St 1)as IIIIII('. O11 \'a ('II

I



D. Lascar

f}t)1111('1' III1(' I.I1)isii'Ill('. colrll)li't('Ilr('Ill (’'l(il]l('lltail'(' ('t. (IIli s(' g(’'II(:l'alist' fa('il('llreIlt' a
IiI t'aril(-t(’'rist i(III(' IIt)11 111111('.

Soit r/ 1111 t1111,t>1110rl)llisTll(' 1)(il'll( I. soit, /\’ al)bart ('llaTlt. i S2 t.(’I rjll(', 1)otlr t'ollt
II e(I'. r/(r/ ) t'sl algt"llri(jllt' sllr /\-( r/ )

S111l1)t)st)IIS 111t>Ttlt'11t alltilllt'Ill (jllt', I)tl11t- IIII I)t)illt rr eQ' – I< . g(a ) = a. OII va
1111)11ll-(’r f 111(' (-('la ('11traill(’ f 111(' // t’st I'itl('IIl it( i. Sc)it A 1111 alltre I)oillt, (Ie a: 11011

tllqt;l)ri(111t. s11r /\- ( a ). r\lclrs //( A) t'sl a IHt’'llricll£c' sllr /\-( A) . t'l il t'll ('s1 tlc' IIl&nic rIc
r/( A) -- A. I Jar aill('11rs, r/( a + A) = r/ + r/( C), cl lltlllr-. 'I + r/(6) rst a,lgc;l)riqltc sul
I< ' ( 1/ + A) . cIt’ ltlf'111c' (111t' d + q( I1) – (r/ t II) = //( D) – A. OII VI)it cltillr qllr y( b) – A lloil-

f.t 11. al.gIl}lrirl111’ sill 1( -( D} c't s11r /\- ( rr + A), l]t]11c' rjt>ii at>liartt'llir i it. I)llis(IIIO A €'t

r/ + Abc)11t a lgc’'l)ri(111c'ITlc’111 i11rl("1)t'11tla11ts tIll llc'sslls rlt' it . I)cisolls c' = V( b) – h. I)olll
la 11]&111t' rtlist)11, r/( r/b) rib Ill)it. a1 )liarl<'llir i / \- . ( )r //(a/i) = //(a)!/( A) = ah + ar
011 ('11 (1(’'(111it (111(' 11(' a1)1)}11'li(’Tlt i /\' . ('t' tl11i ll'('st, I)osb;iI)1(' (jlle si c' – 1). 11 ('ll
(I(lc'c)lllt’ (111(' // t'st (’'.gal a I'itl('Ilt.it(“ sill' I(' t'(illl})I(lIIlt'Ilt air(' (1(' I< ' . (ItJll(' SIll' (I' ttJllt
t’IIt lt't'

l{c'\'t.tlt111s a11 t'ab gf,11t ira I. Sc)it ,1 11 al)lt?lrtt'llallt I)as a it . llOSttIIS n/ = g( a ).
St;i1 /’( ,\-. .\'/ ) lllt I)I)iyllalllt' il t't)t'(lil-ic'll1 s clalls /\- tt'l rjll t' /’( a. r//) = II ('t 11(' tIt'gl't
111lrlil1111tll: tIll vtlit il tlssi rtllt' /’( r/ . .\-/ } t's1 It' 1>tllyTi6Tlle i rc>c'ffiricllt rlalls it( a ) tIe
(It:gIll lllillil11111 1l :11111111( 1 1)al' (11 . OII 1'('111al'(III(’ (III(' si r' ll-a.I)})ill'l.i(’III, 1)?IS a /\ ('t. Si

r/ <-st It'l rlll t' /’(r'. r/) = o. alltIS il t'xist c' IIII it 'iltltt]ltlorl>llislllt’ tlrq' (IIli r*nvol(' a
(.11 (' ('I 111 t'11 Ii . .\ti11s a lltJIIS 11)(>IItl'('l' rIll(' /J( r/ , .\’/ ) – tJ ll'a (jll lIII(' st'IIl(’ sollllioII
t lit IIS (1

F:11 t.Frt't . stlit h 1111 a11t rl' I)t)i11t II(' a'. Ilt)II al,oII)rirjlu' silt- it (a ) t't /\-] la r16t.Ilt-t'
itlqcll)ri(jllt' clt' it ' ( //J . I.t’ I)til\-llClIIt’ /’( r/. .\'[ J rt'slt' rjt' llc'grt’' lllil11111:1111 IInt-IIli tolls
It's 1)tJl.\'11t l111('s ;1 ('o('lli('it'Tlt s (l;111s 1{ -1 tllli s(i111 {1111111l1 is I)al' tI1 . 1 )1)Tl(' si I)t;llr t 111 e a’.

ct11 a &111ssi /’( rr . aa) = 1). a llit's il c'xislt' 1111 /\-1 t lljtt;lllorl>llisllle I- rIc' a' laissallt rr
tixt' t'l 1'11vll\'i111t II1 t'11 rI#. ( )11 \'llit tIlt)is tl11t• l-all ttllllcirlillistllt• // = //– 1 a ./- Or/ o .f– 1

1;1isst' /1 liN(' t't t'TI \'bit' ll' t'11 t 111 t't t’st t ('I clllt'. })t)tII' tt;Ilt r' ( a'. //(r') ('st ;IIg('bl'lcjll('
s111' /\’ ( (' ) . ('t’ tl11i II'('sl 1)tjssiiI )I('. ll'al)I'i's ('(' (jlli \'i('Ilt tl' all'(' (lit . (111(' si 111 = II

( '('1 I1 1111)IIt II’ (IIIt' It' (I('QI'(" tI(' /’ ('II .\'/ ('S;I t'.gIII ;I 1 ( ('11 ('£II'a('t(''I'ISt ](111(' II1)II

llllllt'. it II111tlrail ri1 iT'(' 1)It’ll\'(' fl'lltl I)('11 1)Ills (1(’ fill(’ss('). F)t)llr la illellrc ral:';oII.
sci11 (It'gIrl ('ll .\- tIt iit f'tl'(' ;IllSSi 1. .\ \It t't'tIt('Itt (lit . f/( 1/ ) = t \II + 'i. I)tJlll' (It's I)1)1111.s

It t'1 y II(’ I< . ICII II1)1)II(111:IIII 1(' 11161111’ I';IISOIIII('III('IIt I f/2 (’t ;1 tI + 1. I>II \'tJII
rl11-iI t'xiblt' -r . A I'l c tld IIb /\- It'lb ([llc' //( r/2 ) = -,t12 + A = rI :a: + IILtI .I + .J2 rt
f/( f/ + 1 ) -= t \II + I = ( Ir/ l– 1 ) : ('c't'i ll'('st I)tissil)I(' (IiI(' si r+ = 1 t't .i = Ii.

(It’'t't)111(’ I';lc'il(’lll('Ilt fIll(’ // ('st I'ifl('Ilt it(I

II I'll

IT)

4 Le coin des th6oriciens des mod61es.

1.i1 1)I't)1)t)Sit it 111 (j11t' I'tJ11 \'it’11t Ilt' IIII)tIl I't'l' II t'St (1ll IIII (' IIS 1)a I'ti('IIlit'l' tl'IIII I ll(’'t)I'('Ill(
1)IIIS .q(III(“t'aI I)tJrI II IIt SIII- I(’ ,tIt'OIII)(' fI';IIIIt)IIIt)I'I JtIISIII('S (I'IIII(' SIt-II('ttII'(' it)I't,t’IIIt'IIt



lllilli Ill&llc III)II lltllltlml)ralllr'. I,t’ t-as IIt’'Ilt)IIlt>rillllt' t’st t.raitt’' ChIllS [ 1 ]. SIll)postrlls
111&lil11 (’IIa IIt fIll(’ r ' StJil llllt' st,I'llt'lllr(' ft)I't(’lII('tIt lllillilllal(' (I(’ ('al'(lillalil( i h' IIOII
tjtllltiI111)I'a III('. St)iI !) la t-IiIss(' (I('s SoIIs–t'Tlst'll I1)1(’s Ill’ r “ v. alg(’'1)l-i(Ill('ttl('Ill, ('Ios ('t.
f 1(' I'II t'fIIIItI IIt tI I IIt-tII'It'lII't’ ;I tI . IIt)III' t't'S SI t'II('I IIrt'S, II (’XISt (' tI('S IIt)t IOIIS (I'aIg('1)I'I('II,(

fl'ill(1('1)t’ljfl;lllt'(’ ('t (1(’ flil11('11sioII. I,£t fl(’'tillil iI)II 2 a (IoII(- tIll sells. 011 IItil c’ra ( ;
It' gl't)Ilj>(' (1('s alllt)Illt)I'])}lislrl('s ft)rts (I(’ C'. 1,a I)I-c)I)osit ioII ' I I)-('st, bIlls vrait' I'll
q('Ilt'l'ill : a I)I)t'ltJllS /i It' sr)IIs-gl't)IIl)(' Ilt)I'lllal fI(' (; t'(JIIStit 1111 c les allt,O111t)I'l)llislrl('s
II)!'I s t’l 1)t it'lt(is (I(' r ' {('ll fait . si r ' t'st kJ(-alt'Ill('Ilt llrtJ(llllail'(’. Ii ll'(’st bas lrivial
\'tJll' III ). I. It I)rOI)t)SItItJII : I fIt)IIIIt'

Tlr6or ame TO i ,i gro upi quot it nI ( iI 13 ist him pil

Ilt’ fa Ill (111 t' I)('ll (1(' t'}lallgt'lII('Ilt s a la (I(“111t)Ilstl' tIl ioII (Ill(' IIcil is a\'oIls tIoIIII('(

tIt' lil I)!'t)bt)sit it)11 : 1 T)tJlII' ('ll fairt' lrllt' fl(llllt)llstl'at i(>II tIll t}l('til'('Ill(' it). 1)tis(ills
('Ilt't)I'(' /,- =- t'tll'(it ( ' \. 1.(' s(’111 IJt)illl fjll'il fitill(' lrlt)(lifi(’l' ('sl la bl'('ll\'(' fIll sc)ils'

I('llIIIlt' Ii. .\Iilis c'(' I('Illlll(' ('st I)r(:('is(:Ill('Ill la I)I'f)})ri(ltt’' (I'alll&llgalllat i(iII I)Olll' I('s
i1111rllllC>rlltliSIT It'S cjlli t'st tlt;lllcllll rc it' !)clllr It's st rllc-tllrt's sl at)It’s cIIIlls [2]
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Pr6sentation de la M6thode de D6composition Cylindrique de
Collins

Pierre i unlpcrt/

Lil nrdtlrt)LIC dc Cl>llln\ ICt )1 1 it i>u\ crt la \ tIle iI I'Ctudc calculilltlll-c tIc\ ctlj'ps rdcl\ cIt)\. Dc nt>nrbrcusc\

nrClht\lc\ tic culculh cllcctll \ tull CLC pl trFxr\Cc\. .L[ll\actl du\ th ii-ncb tie la aunplc\ltd Lhdrlrlquc, mills qui

llc changclrl pil\ la \tl-llCttIIC dc LIL;CI\It Ill dc\ ItIt nllllc\ gIll I-C\tO coIIc dc (-1)III Il\. Get artICle be prc)pt)\c

d'unul\scI' lit lrrCtllt RiC dc (-ttlltn\ plult- yI d’un pt llnl dc \ uc l<iglquc. oil nlt )nIl-IInt l’ullll buIltIn d'cnscnr bIc\.

dcI'l nl\\ablc\ dan\ la tha II'IC. qUI lint \ Is-iI-\ I\ tJ'ullc cla*,\c dc ItIj-nr uIL"b un ct )Ill ptlrtcnrcnt " unIt I )rmc" . ct

on anal} \dIrt I’d\pc,'I c) lllldlrquL’ dc IiI ,itict lj11pt )\ItII tII

1. langage et formule

Stitl L Ic langagc dc\ ilnllc’au\ tIj',Jtinnc’\ : L = { 1 .1 ), +.-.'. >. = }

1 .cs lctrnlulc\ \an\ quantll lcatcul- sturt LIC\ cl lnlbt llal\t >II\ bIR tlcctt11c\ d’Cquutlt IIl\ t )u d’ln6quatlt ln\

pttl}n6lnl lilo\ dim\ / lat tIll T={ \ I.. . \„ II

On ctlnsldCI'c lu lh6tll'lc ' J LIC\ ctu-p\ I'CcI\ CII I\. ct Irl)\ t-llnl nl ululll \. LIt-LIt lnnC\. it\ cc lc \chdnla d'a\Iomc LIC

III \ ulcul Intet-nrCLJtattt

[( 1 ) ( ; 1 1 • r: ) () ;T ( t :1 ) 1 x h ) )] [\ t .lt":: A ;’ I .. h)]
pcluj' chaquc ptll}n6nrc I) dc /I XI. 1 '11 :1 V:1 VII 1,

IR c\t un nlt )tJelc LIC coIIC lhCllt-IC. .. Dc nI +11151 cu\c\ \lltlalll UI\ get )llrCtI'lquc\ \tint c\pl'lmablc\ ct dc\

prc )blenrc\ LIC llatul-c tttpc>lltglquc pell\ cilt CLlr tial Ld\ IS&SI. 1 [3('R I

('cltc thctlt'tc 'i c\t ct+lnpletc (ptiul- chilqrlc lllrnrttlc cIt)\c. \t)it cllc-nlClllc. \t)it \u nCgatll)n e-,I

prI )Ll\ ilblci. I'd tlrCt)t'tc 'i c-.I Jdcldablc tIl c\I\Ic LIC\ 11101l11 >dc\ cII ccLl\ c\ ptluj' dCtcl-IIII ncl- \I unc it)rlrlulc

cIt >\c c\t \ Idle c lu nt >n ) : cIIo adl11ct tIlle clttrrt11itttt III cII cell\ c dc\ quanllllcatcul’\. c'est-a-LJllt que it)utc

It)rnrult’ c'.t L;qUI\ittC11tt.’ 11111,lull I ') .I lille it +1 lllulc \tIll\ quan III lciltcul- a\ cc Ic\ lrlCnlc\ \ill-lablc\ II bI-cs

ITlu'l, ICt )1 1

ddllnlll tIn : uil on-.cnlt)Ic \clrll-,llgChrlqllc c\t tin on\cnrhlc S I LIe IR’:1 dcI t nI pII' unc t(>rnlulc tl) dc I

X-+\’ :< 1 " ddI in it Ic dI \q Llc tIc cc11tl'c f > cl in\ t 11)

1 \ tq \\’ - 1 =t )" dcI InIt Id pII )jcctlt in ,Jc-. br&lnchc\ d’h\ pcl h llc

1.c \clrrl-irlgdhl-lqllc a\\IIL-IC it tl11c cquiltlt +11 c\t l’cII\clllblc LIC \c\ \tilutti)n\. iI IIlle lnCqutltlt in. I'cn\cn)bIc

dc \c\ \t)lult(Irt\ dan\ IR'' I .c\ cn\c111hlc\ \cnll-,llgchl'lquc\ \t 1111 ile\ piII' Ic\ tipcl-dIll)n\ cnscmbll\tc\



u\ucllc\ Lj1.II cc tl'l c',pt ljrdcnl IIII\ t'tllltIcclcUt\. ain\1 A ct I-l. v ,'I U . - ct ct tnlp. ( Ie ct)lnplClncntall’c), bc

ct >1-1-c\FXlndclll-II\. ( )Il t)htlcnl. dan\ Ic\ \cnll-ilIFt'hI-lqucs. tlnc -.ll'uctul'c ,J'illgCblc tic Btw)Ic qUI ct)I'rc\pcind

a lit -tLI'ucLul't- dc\ it)t'trlttlc\.

1_c\ qu;r11tlllcutcrll \ -11111 llc\ iI dc\ tl})cltlllt +11\ dc pI’tuCCllt Ill. I 'I quunllllcdlltln c\t\tcntlcllc c\t unc

prttlcctl(>n t 1\ : pr\ t, tIn l>hltcnt III qtlilnlll Icilllti11 llnl\ cr\cIIo LI’IIne Itil nrulc (1) par ct )nrplCnrcnlallr clc la

1)1\ \jcctlt III tIc IiI Ilt'g,tIll 311 dc (1)

dCllnlt it 'n ' tille cclltllc c-.t tin on\cnr bIc \rnli ;llgChl’ILltlC nc )n \ IcIO ct ct >nile\c

2. d6cisions de formules et d6compositions

( )n \ cut IX III\ tIll LICCtdCt \I do\ Ittl'lrr tIle\ \t IIII PI ' III\ able\ dan\ id 1 hCI )I'lc. 1 IU III )u\ cr dc\ c\pl'c\\It)n\ \IIn-.

quanlli lcdlctll CHIll \ dlclr Lc\ ,1 cc\ it tI lrltllc\.

del in 111t in : line dcct lm lx 1\IIli III ,1'tIn ,'\pilcc’I II<11 1)i ItI1- 1111 on-.clr1 bIc S ,Ie lclr11ru Ic\ dc 1, la\ ant au pIll\ n

\ ,lllilblc\ III)It’\i c\t u11 cn\c111 hlt LIC ItII tlllllc\ ,\ dc 1

\all\ qrltlnlll I,'alcul . a\ cc ct 111111rc \ .tl-lilhlc\ llbl c\ unILjllClrrcllt L't’I It'\ gIll appal-ul\\cIlt LIIIn\

qUI dcI lili\\cilt tIcs \cllr l-,llgcbl'lquc\ III III \ ltlt"..

:-i

tcllc\ que p\ itII it IIlle ItIt nrtIlt' 'I' ,Ic S . \l 11) c\t \tItl\tiII\able lllc MultI ' J 11l111--. II c\t\to title Itll'lrrulc

a de la decl +nlp \\lllt in ’\ tcllc qu'u11 FIInt \IIII\1111 \unI cello l+lrm utc b \aIIbI a\\c-\ aus\1 'Ii

Lltll \tInt '’tlntlltrnlc'." ' Ititl\ Ic*. pl IInt\ Lltll \illl\ltlnl IIne 111i'nlc Ittl'nltllc ,Ic A \lltl\ltlnt+ Ic\, nlenlc\

I t \I-nr Ul Ic S

OIr dll u. dc I)lux. tILle ILl LIC,'i 'Ill IX 1-.1111111 c\t ,'} lllrdl ILjUC pt ItII tIn ccI tillll t'tdrc dc\ \ dl'lilblt'\ \It. . . \11 \I

cIIo lnLltllt line -,IIlle dc dccclmptt\ItIl In\ A1) tIc IR., . A11 dc IR11 ' i tcllc que

Pt IUI' chuqtlc Ial CI IX IUI' chirquc cn-'''n1 bIc -'t'nrl-illgcbrlquc I) Jc la decl uuP lsjtti in A1 'Jc IIeI

pI-\ 1( D ) ct IIl’\ II '1'111 p.1)) \t neIIL 'It'- cn\cl11 bIc\ dc la decl tnljh l\ItIl III \: 1 ,Ic IRI

I cnldlqllc . Ll11c LICL'< ullpl'\ItIl 'II LIC IR c\t c\ t I lldl-lqtlc

I'cn\cm bIc

c\cmplc I ' ullc dCLtlmptl-.ltltln dc IR pt ltll' S= { \-- I >1 t' I \- t 1( \-_ i )=t l: c\1 AT : - I<\ - \=- 1 : - 1<\ A \<

\= 1 : 1<\ A \<3 : \=3 . 1<\

On \all ct,1l1l11 lille Jcct IIn}xI\ItII tII pt IUI tIll clr\cnlhlt’ d'cqu,IIII >11\ I lu ,I'llrcqu,ItIl In\ pt 11\ llrlllllillc\ cn tIlle

-.culc \,ll'lilhlc. \1 I'l >11 \,IIt ctilblll LIlle decl tnrplt\ltltln pt )ul clldcLlll dc\ pIll) nC)nlc\. cl \I l’tItl \all

Jc:Ict-nll llcl' Ic\ I'iIL-lllC\ ct 1111nr tIlle\ i F)III it CLllCtli dtI pp.d ; Lie it lut CI lu})Ic LIC pIll\ Ill-)nrc\.

I tlcl1111111'II tlllli'l’c' ,Ic t cllr , It' r -1'11111\ I-I +III \';Ilt,lt'llt'I iI LC cjlll ItII it It' It\ It:\tIII iII\ IcI) lr;}l-llc'llllcr jull IF I,I

tlclcl111111itllt tII LIt \ -\I=llc\ I

-1 III \c IIliIcc iIiIII\ Ic til\ Ic 11l11\ \11111'Ic. IIliII\ tltctl \I’ll IIII jlctlt llt' tlccll111jh\\cl tjtl'ullc jtlrllc \c11 ll illgClrrILjllC

lit I'c\ItItt II<’ 1 Ic\ ll\Ill)lllt\ ,Ic > \tIlII illltl \ ll)lcrlrrCICc\ tl'llIIC lilc,tII Ic\II-It’ll\ ct

Ill lrclll IIlle tItle IiI \It'Ll nIljy t\IIII III L ' IIt\ IC ItIlltc\ lc\ \11ttitllt iII\ ' c 1l111 IR-III \c ! IItre it ir jb1111111111 llc

I'C\jXILC it 111 1 ' 'II II iII it Llltlt\ jlILllCICtl\ LIt jh 11111\ ;llcctultjllc\ jlil<1{ } 1 )it lrill I,I !rllljct tIt III LIU\ jxl111t\ c\llCnlc\

\ic It>tIlt-\ Ic\ tlltlljklx,llllt \ t, )IIIIt \c\ II Ii(b 1.1 1\cII i

+ 1)1 ,Ill ttlltlc Ittr111tllc II ,lc lit tlCctl111lxl\111111t \. b ,if l1111,\.111t 1111 c11\cltltllc ,cl111 ;11=c}111,111L' I ). c1 11, ,111 tt\11lc

It't111tllc €1) tlc S ItII ,1 tt tIl\ It\ th 11111\ tlc I > \,1113l1 tIll 'I' IIII it III\ it \ jh 11111\ llc I > \,itII,it IIII (1)

– 2 –



P . Jumpertz

c\cmplc- 2 : line ddct lmp41\III(in dc IR: pt IUI S={ \=) : } cst A={ \<\ : . \=} - . \>)- }

c\cm pIc 3 : line dec( ImptIsIItI in ,lc IR: pt )tlr S = { t \ . I )( \- 4)( \-5)=1 1 : ( } - 1 )( } -2 )=f 1 } cst (lbtcnuc pill prt dull

cartcstctt dc\ ,icu\ LJCctlnrptl-)llltin\ ,Jc 11< { \< 1 : \= 1 : 1 <\ A \< 4: \=+: +<\ A \<5: \=5: 5<\ : CL { }<
\= 1 : 1<\ A \<== \=1: :<\ )

P(x):

M[y)

A={ \. 1 A \. I. \- I A \ . I. I ' ,\ A \. + A \. I. \ + /\ \

h\ I. \ 1 ,\ \ 1.1 \ A \. + A \ I. \ + /\ \ 1.4 \ A \'S A \ I. \

\- IA 1 \ A \ . 2. \ I /\ I. \ /, \ 2.1 \ /\ \

+, \ /\ \. 5 A \ \ 5 A \ .'- I A \.'. I

\I A\

4. \ A \ 5 Al- \ A \+A \ + A 1 \ A \A\
S..\ A \ A \\ A ) .

\ IA \ - :. I. \ A \ + .'. 5 -\ A \ :\ ) A \\ + /\ \ :. +. \ A \. 5 ,\ \A\

\ , \ + X \ /\ \ 5 A \ . ). \ A :-'\ )\ I A 2. \ 1 \ /\ \ + A\- 1 A A\

('cttc dCct>lrrp<1"\ItII )n c\t c\ llnd11quc quellluc \Int I 'I )Idl’c '.ul- { \.\ }

SI I'IIn a dcu\ duct >llrpt l-.IIII)n\ ptltll deII\ on\cl\lblc\ dc l<irnlltlc\ ,q ct tF gIll ,lcll nI-.--cnt dcu\ cn\cnrblc\

dc pt)l}nt lnlc\ qUI n't>III pa\ ,ic \ UI'lilhIL'\ L'l>lrr11runc\. t)n <>btlcnt tille decl)nlrxl\ILlcln pl)ul' Jl U g par Ic

prIXIUIL carte-.len dc\ dctl\ dccllnr ix )\ItII In\.

c\cmplc + : unc decl Im pt i\1111 in c\ llnLlrlCluc LIC IR- pt )u1 S= { \=\ : : \cIt +n I 'I u-drc dc\ \ arlublc\ \.\ c\t

A={ \<(' .(\ --(') ,,(',.' )). (\ (')„ (', } ).(\ '')„ ('' -)). (.) \)„ (''. ))„(\. ):).
(fl. \ ) A ((i . \ ) A ( \ \ :), (II. \)f', ( \ \ -’ ). (tI \ ) .\ (\ . II) A ( \ \ :). (Ii \ ) A (\ ' I)) A (\' \ :) }

111 dCc(ImpI1';1111 in dc IR plltlr { \<( ): \=1 1: r I<\ } LICl lnll dc\. ",') llndrc'." LIC IR: ' {\<ft}-xIR I {\=(1}xIR

{ 1 k\ :-xIR
/t

}’t>ul taIl-c tille decl lllljxl\ILllt11 c) l111dl lqtlc lx itII S. IIII cn-.cnrhlc Jc I(lllllulc\. II \111111 dc pt)u\ 1 )II- dcllnll

dc\ c} llndl’e-. liII Ic nf+111 brc do I'acl nc-. c\t ct Itt-.11111 t Ill'Ill' chil,luc pIll\ nt-IIlle ilpjXll-iII-.\IInt dan-. S. ct t IiI Ic

ntlnlbt'c dc iticl nc\ c<tnllllu11c\ PI tIll ch;lquc ct ItIjllC LIC PI II \ llf)nIc\ c-,I ,lu\\i ,'t)n\td11L. ( Jn \c I'ulrrcnc iI unc

\ltuutjtln "ilniIltlguc" du plc\11111 c iII Ic\len. lllul\ I,I LJCCllnrFxt\IIII in dcrx'nd dll ,'\ ItnLJtc c1 Ic\ Itincttt >II\ qUI

,ICI InI\\cnt Ic''. "tl-ilnchc\" nc \t InI pIll\ ct In\t,IIlle\

I llc decl >Ill FhI\IIjI !11 c\t lntclc\\tInto pt ItII LJCCldCl- \lIIIUlt,llrc111cllt Itlt't IIII oil\cllr bIc dc I(lt'nr tIle\

bi IUI- S tIn cn-.cnrtrlc II ni LIC II 'rIn uIL’\ ,Jc 1 .. \,III\ q uilntll Icd It-ul. I 'n cllcl'cllc uilc ,lccl Inl FX )\ILI t )II pc )III- S

I'cn\cnlblc dc\ lllj'nlu Ic\ \lblcnltc\ LIC IiI I,IQtlll \ul\ &ltltc . t"' '1),fl 1--1 ntl',. pl)tII chdquc pal'tltlt tn ell dcu\



cIa\\cs ( I. 1') dc I'cn'+clrlblc tlc lc)I'nrulc S

pl'tlpi tSI III )11

SI A csl unc decl lnljx )\ItII )n pc)ur ( S1 1) all )I'+ A cst unc ddct)n1 pt )\IIti )n pt iul' (S) ct mCnrc unc

tJCcturrpt ISI IIt in dc (S'). I'cnsc'nlblc cic IIIUtes Ic-. cl )nlblnulbons blxllc;cnnc\ dc\ lc)rmulcs dc S.

Dc plus \I I'tIn II \c un certaIn t)rdn dc\ \ al-lat)Ics ct que la ddccinr}x)\lllt)n p<iur ( So) cst c} llndrlquc dlCIrs

( )n c>btlcnt unc dcict +111 p(>stIlt)n c\ llndl'lq uc \cltln lc nrenrc t)I-tilt LIC\ \ al'lilblcs ptlul- S ct S’.

Line dCcclnrl)tlsILlt>II pcrnrcl LIC dCtcl'lrllllcl- I'cn\cnlblc dcs lot'ntulcs baLlsldILcs (qUI st)nt saLlsl-al tcs pt)ur

Itlu-. Ic-. cn'.cllr bIc'. \cnr I-algc;brlqrlc\ dcil1111\ pirl' Ia dCc<)nlp<)\I LIt )n ) t )u dc d6tcrnr lner Ic\ cn\cmblc\ $,cnr I

al gdbl'lquc\ c)II Ic\ I(ll'nrulcs. *.tInt \ I’ale\. SI Id ddct)nrpcy,lllt)n c\1 c\ llnLJI'lquc. tIn \ 6rllic Ia \ alldl td dcs

q uunllllcutllln\ d'unc it )i-in u Ic. cn regal IlIInI I'agcnccnrcn t c) llndl'lquc LIC\ \cmI-ill gCbrlquc\ t)u ccltc it )ini ulc

csI \ I-ale. On r)cut al n\1 tII lu\ or unc C\pl'L'\\It )n \an\ quantll lcatcul- Cq ul\ alcnLC i la it)I'nrulc dc d6pal'I,

c\cnlplc : " I\ \-+b\+c=ty' dqul\ aut a " h--+cztt" .

La ct)in plc\IIL; cII ct:II\ c dc la nlctlrt >,Jc LIC ('(illt n\ c\t LJtltthlCltrcnt c\pc)ncnLlcllc dan\ Ic nonrbrc dcs

\ anablcb pul-.qu'c Irl calculc unc decl)nIpc I\ltllln \ illablc FX)ur un cn'".cn1 bIc dc Itlrmulc\ qUI pcu\ cnt a\ t)II

unc altcrndncc- quclctlnquc dc\ qtIantll-lc;ltctlr\ C\I'.tcntlcl ct llnl\ cr'\cl (I'clrdrc dc\ \ ilrtublc'i rcsilanl
11 \c )

3. cylindre et projection

Dans la lndlhcldc Jc ( '( )III n'.. pl tUI- tII )u\ cl- unc Itlrnrulc sans quantlllcatcul' dqul\ alcntc a unc I'<)rmulc (1).

tIn chcltlrc unc dCctllnpcl\ItII)rl ccllulalrc lcllc que chaquc p(I1) n(’IIne qUI apparait dans (1) all un slgnc

d6tcl'nrlnc sul- chaqtlc cell tIle : iln LIII qu'tlnc tcllc dCctlmp<)\ltlt)n c\t "\lgnc-ln\a11antc". On pI-cnd dc)nc

cclmnlc ensemble tIc\ Itlrnlulc\ pIIUl- le\qucIlc\ t in chclthc la dCcc inl pc)\I IIt )n. I'cnscnrblc tIcs dlslrlbutl tins

dc slgnc\ \tII' I'cnscn1 bIc it ) dcs pt )l}nt')Inc\ appalrll \\tInt dan\ (11

(- 1) = U { I>(n = tI. PCT) > (L P{T) < c >}
I’ er

3.1 suite de projections

On cc)nstt'uII III LICCt)nIFX)\ItII in cn dcu\ phil\c\

) On I'cchcrL'lrc pal- ldcul'l-cncc un cn-.clllblc LIC cc )ttcJILlt Ills qUI Il\\LllCllt que Id decl 1111 pc )\ltlcln cst

c\ llnd11q uc

'( 'tlmm, c.It. ItlrtIIttl. 'I)„ tI. 1.III. 1111l} ,11111,1,11. .11 ,1. „\ .. ,1,'ll\ 11 ,111cr11i111..\ ,I.\ ,1u„IIt,llc,it,'ur\. ,IChr11.

1 xlr recurrence 'I'(\./I : = "\ } = /' pul\ iI>r_ e \./1 : ="1) VuV\ [( u=\ A\ => )v{ u=) A\ =/)] –>cl)llu.\ )

cn I'il1)jllltlllilllt iI \ ct 1 LII '1)„ t .Il tltttl\ c X:- = 1 1 II lclclltlllil11t I'c11\cllllllc tlc\ ttil111tlrc\ ctlm1)Ic\c\ i IIi:

Irc tu\ c Ic\ lilclllc\ ISc I'lllrltC t )r I'clbtcttttlltt tlc it IIlle\ Ic\ r;lcllic\ tIc I'lllllt( tltlllllc llllc c\ t)It\\11111 \illl\

cjuilntlllciltctll- tltlttl IiI tillllc c\t lrrrtlxtltjtllllrcllc ilu IIt III Ihrc dc l’ilclllc\



P . Jumpertz

Sl dcs Fx>1} names P( \o,\ 1 .... .\n ) , Incl ucnt dans Ttl ,\ drll'lcnl I'cnscmblc. nc)td ( T(To), dcs c(indl tic)ns

sui\ ante'; sur un ensemble (’ dans IR11. altlr'„; on petIt rctr(iu\ cr unc dCc<>mpc>slti(in dc C(>llins dc IRn+ 1

pour Ct) = U { P(q = f ), P(n > c). P(q < c)} sur chucunc dcs partIes connc\cs dc c
beT

Les ccinditlt)ns st)nI. cn dlstlnguant unc \ arIal)Ic \o ct cn tra\ tullallt dans ZI \ I ....,\nIl\oI

que Ic deBIt c11cctll (cn \( )) dc chatluc P -.Int ct )nstant, cc qUI pcut s'c\prImer cn dlsant que lc

ctrl-l'lclcnt prIncIpal n'cs.it pus nuI

\, pt ,O,,1,...,,„b E „,t,,.....,„1.,h .It„\ la lormulc "(a,(\,
k(

indiquc que Ic dcgr6 cl'l-cctll' dc P csI r. cst 616mcnt dc C( To )

- que Ic nc>mbIt dc raclncs dlstlnclcs bc)it cclnslant pc)ur chaquc pcll} name : sl pour it)ut P dc it), Q

c,t h ,1611, cc dc p p., ,.pp,ut i ,o. ,tCp\,udl>- lpg,d1 P,Q)= E b,1\, ,...,\„ I. \h .c>ti Ics bk\'obticnncnt i
k I

lhldc dcs qius-rdsulnntcst’, tilt)rs in tc)rlnulc "(h,{\1,...,\„) # tI)Al A bk(\F ,....\„) = cl)" . qui lndlquc
k

que Ic dcgr6 cl-l'ccUI' du ( p'';cudtb)pgcd( P.QI cst r, c\t 61dnrcnt dc (’ ITo)

que Ic nc)nlbrc dc racine\ cc)m nl uncs dc chaquc CCJUplC dc pcil} names still aussi cc)nstant, cc qUI

\'c\prIme StIlls la it)rmc dc condlllclns sul- le\ \c )us-rC\ultanLc\

si pc„i, in,it .t„Ipl, P,Q d, ,t, lps,HdEt->pg,'dr P.Q I= E b,r\,.'...\„ ).\h aIL>rs la t-ormulc
k

. \„ ) = o I" , qUI in,ligue que I, dcgrd cl'lcclll du ( pscudc>-)pgcd( P,Q) cst
k

I’e

,~„'*'”"(.i, ”~' ,~.„='')",„'

„(b,<,,.....,„1 # tt) „ F /\ b,E,

r. cst dldnlcnt dc C'(To )

L'cnscmblc. (’(To), dc ccs cc)ndltlc)n\ nc ddFrnd que dc Tt ). Les lormulc\ dc (-( To) sc)nt dcs l-c)rmulcs dc

L, citI Ie'. Lcl'mc!"; st)nt dcs p( I1) names dc ZI\ 1 .....\11 1. On appcllc 1 1 I'cn\cmblc dcs pcllynf)mc\ qUI

apFnlulsscnt dan\ Ic\ it >rnlulc\ dc (-( TII ). I)ul'\ tIn chclthc Icq cclndltlt )n\ d'unc dCc(imFxrqltlc in dc

Cclllln\- pour C I = U { P(n = tI. P(n / (1, PCa < t 1}

Alnsl. pc)ur J un cnt icr ct)nrprls cntrc t ) ct n- 1, P)ul- un cnscnrblc dc B)I) names T1 dans ZI\1.

chcrchc Ic\ A)1) name'' de Tl+ I {lnc'lu\ dan\ /I \1 , 1... .,\11 1 ) Inter\ cnilnt dans ('(T1 ). On ncltc

C1. 1= U { P(q = tI. PCa '> (i. Pca < CI).
I’ET, .I

On ttbtlcnt I'lnalcnrcnt C'11 t }tI Ics pt )I} nl-)nlcs dc T11 \t+nt dan\ ZI \111,

.\111. tIn

On a Irc)u\ C A)ur tc)ut cnllcl' J ''tln1 prI\ cnLl-c ti ct n. dcs cnscnrt>Ics dc it)I'nrulcs Sl=C'1 U... UC'11,

On ctlnstrult unc dCc(lmptl\ltjtln A 11 1 tIe It\pace IR11' 1 1 plur chatluc S1. LII \ultc dc d6cc>mplsltlcln\ Ao

dc IR..., A11 dc IRn * I c'.I line dfc( Im lx I-.ItII in c) llndl'lcItlc \cIt in 1 \ udrc dc\ \ ilrlllhlc\ \o.... .\11

! ) On I'cctlnrptrsc Ia decl )nlpt)\ltjcln \cIt in Ic\ \ ;ll'lublc\ rdcul'sl\ clrrcnl

f’I r\ \t)IIS rd\tllti111tc\ cllljlllc111 lcs ctlclltctc'11t\ tIcs 1)\eIIcIt I pgctl tlc tlctt\ 1 IIII\ lIAlIIc\ 1’ ct (J. iI I'illclc llc cillcul\

dc dCtcrlnlnilnt\ dc nl;ltrlcc\ ct>nljxl\Cc\ dc\ ctulllclcllt\ cIc I ’ ct (p. \tilr I( ’tIl I

nc dCctljnlx+ sltjtln rylrlr ( ' I scra unc Lldctlnljltl\1l11111 Ixiur f -tTl , )
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On ct 'ns;tI UII un cnbcn1 bIc "dcs pI>Int b tcnltltn-." dc Lclu\ Ics semI-al gdbl'lqucs d’unc daLI)rtl pctsltltln

c} llndrlquc. (’hague cell tIle csI rcprd';cnldc par un p(IInt terrIoln8. On Irc )u\ c dcs ptllnt\ tdmt llns

cl'l'ccU\ cmcnt' J ( c( +mmc unIque riicI nc d'un p< II \ name dans un 1 nlcr\ IIlle raIl(lnncl ) grace au\ suites dc

S turn I

PIlls pc)ul- dcs lx tl}ll6nlc\ 1)( \,} ). d} dIll IIt lu\ c; Ic\ pt)lnts tcnrt IIn\ { d1 ) dcs base', dcs c} llndrc\, tin calculc

dc\ suIte\ dc Stul-nl pt lur lc-. pt)l}ntbnlc\ [’( \.a1 ). cl tIn in )II\ c Ic-. Incl nc\ dc ccs FX)I} nt-)nlcs b1 1 . tIn

rcc( inl PC )\c Ic\ IXII nt\ It;nIt iI n\ ( b1 .1. i11 ) dc coIIc decl )nrrx )\ItII in (1 )n a " trIo\ t;" la dealnlp I\ItII in ). On Nut

PI >tIr\III\ it IC pI-t It't'\\II\.

P(x,y)

III decl )Ill pt )\ItII >n 1 IndIe -.all\t ,III II IIlle\ Ic\ LIt\It thulltln\ dc \lgnc\. I.c-. ct 3nltlnctlt lns n€1n- saIl\t-al-babIes

\c)nt CllnrlnCc\ liu I III ct a nic\tilt quc I't Jn calculc Ic\ \ul tcb dc SIUl-nI qUI llc ,Jl)nncnl que Ic\ I't)rmulc',
\aIIbI dIsable\,

3.2 cylindre et v6rification de formules

t :nc ItIt\ ccI cn\cn1 bIc tlbtcnu. bn \ CI'lllc lil "altI\lactltln dc la ll)t'nrulc cli \ul’ I ’en-lcnrblc dc', pt )Int s

ICtnt)In\. ( )n dc;tcl'llll lrc I'cn\cnr bIc dc\ \lgllc\ q llc chilq uc lx II) nAIllc I) dc tI) pl'cnd \u I' chatluc pc IInt

tcnrt )in (ct pIll- \IIlle. '.ul' chaquc coll ulc )

On \ CI’II IC \1 Ic\ cIIn Jl)nctjtln\ liu Ic\ dI\.jiilrctlt Ill-, dc ct )ndltlt IIl\ dc \IPl It’\ dc 1,1 Itlt'111ulc tI> \t )IIL \ t:I'll ICc'.

\ur chaquc FIInt tcnlt un a1. IIn clhtlcnt un cn\cn I bIc dc pt>Int\ lcnlt IIn'. IIU (1) cst \ l-tuc

I R “ ) { \-nIi . I- r#I t }

a, r> '1)(d )

On choI-che cn\Lille ,1 \,1\ tIll bI unc quan Ill IC,ItIL )n C-,I \all-.I Ill Ic ell I th'.cl \ ,IIII I,I dI\pt )\ItII in dc\ rXiI nt',

tI-(iu\ c\ dull\ Ic\ c} II ndrc'\ dc Id decl )111 IIt I\IIII Ill. Ddr c\cnr plc \1 u11c' \ iII III bIc c\t quantl1l6c unI\cr.cllcnlcnl

''tl \ dl'lllc ".UI' Irl ct )11.lt+nctlt 'Il dc\ })lljnl- lc11rt 1111\ d,111\ Ic lllCl11c c} II rl,llc. \I cllc c-,I qtlilntl! let

c\l-,Lcntlcllclrlcnt. -.ul' lu LJl\jt\ncLIt )II

X 1.iI rucllcrl tlc tIc- r„,tIlt- 14111. ,111\ cllll 1\cllllcttclll I.I lllil111jllll IIII'III llc\ ,clllllc\ c\t IiI jl;lltlclll.lrltC ,ic IiI

tttctltt'tIc cIt' C 'ltllttt\ I c\ cclltllc-- llc \t 'Ill IIIll-. tltl1111cc\ C\lllILltC111Clll I> iII tIc\ IttIllIIlle\

'JS'll \'aglt tl'llll 1 tt)tItI lll=Ctlrltllu I,lc111c ,I'1111 jltll}11l1111t .11,Ir\ Ic\ ,.IIc11I\ \t 1 c1, 1111 nI„,1111, i LC jlt,l\11,\nlc
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P . Jumpertz

V\ 1\ P( \.\ )>II

L.a deLI)nIFxl\IIII in a la l'>rnrc LI'un arhl\'.. .tin cllnrlnc Ic\ qui111111 lcatcur\ \cIt )n coIIC structure d'arbrc

4. d6veloppements : M6thodes en paralldle

LI ml:\c on ItU\ rc dc ccs dornIer\ calctll\ a un ct)fIt. CL th)Il pcul qt>uh&ulcr nc pas I'cl'lcctucr dc I'aQcln aus SI

unllttrnrc. On utlll\c ct )n.It )lntcnrcnl liu\ calcul\ dc'\ "\lilcks" ( ,II bl'c'\ dc-, pt ljnL\ tdnrc)In',) la I-c)rmc dcs
1<1rmulc\ IX)ul- I'Cdulrc lc calcul I FI( in 1

Line autrc applrk'hc pcut CIlt dc ct)n\tl'rlll’c unc lcpl-d\cnkILltlll ulgCbl'lqtlc du prt}bIOme I BKRI. On

transltlrmc Iu II +rm tIle it prc III\ cr stlu\ IiI I( >rmc d’IIne ct )rl.jtlnctl(in 1 tld'unc Cquull(in P( \ )=It et de pluslcur\

lndquatlc)ns Rl{\)>(1 dl)nI Ics pcll}nClnrc\ stInt dan\ ZI.\ I ( unc \culc \urlablc) ct P ct Ics R1 \ont suns

I'ircI nc ct >min ullc. On \ drlllcl-a. all)I"t. lu \all\I actIon dc ccltc ct )n.)(>nctlcln . On c<)mlncncc par tl'c)u\ cl' par

un dIgI)rlthnlc pill-allele. I) ct Ic\ R1, pIll\ I't )n ,'dlculc Ic\ dI\tt'thrtttcln\ dc '',lgncs dcs R1 ',ul' lcs luclncs dc

P cn rd-;c>I\ ant Lies \} \tClnc\ d'dquallt >n\ llncallc\. On pcul \lnlpllllcr Ic\ nlatrlccs qUI l-cpl-C\cntcnt lcs

dquuLlt>n\ (SI unc l<)rnlulc c\t cclnltdLltclittt'c I ct ctljlrbtnct Ic\ 111illl-icc\ \t )u-, la it)r111c d'un pl-tldull
lcnsclrlcl

On 1-1 \c a prltil-I I'cnscnlblc \ul Icq ucl t )n deCIde ,Jc\ Ittrnrulc",. I 'cnscm bIc Jcb I- itcine\ du pt+1\ nAme P. suns

chcl'chcl' Ic\ p< ljnl\ tcnlc+In\ ly )ul- it >utc\ Ic-. dI-.ll'l bLtttt ln\ dc \lyne'. ct )n Imc ditn\. ('tlllln s..

( -eLle mCthc)dc a dId dlcnduc uu cu\ ,Jc pt il}nflnrc\ iI pI u''+lcul''. \ irl'lublc\. pal- Rcncgal- IRcnl ct au ssl par

\1. F. Rc)) Il IRS I. On 11-iI\ IIlIIe pal- hlt )c dc quilnllllcillclll \ : iII)Ic\ line it an'.,,lflj'nratton tlrpc)lclglquc du

pl'crble:mc. I in dclcrnllnc I'cn\cnrblc "LIC\ pt)Int\ lcl11tiln\". \tIl- lcqtlcl t\n ddcldc Ic\ Il)rlnulc\. par

prtllcctlc)II ttl'Lhtlgc)naIc \ur’ unc d1111lc dc\ Fxljnl\ c\tremc\ dc chaquc ctlnrFxl',anlc c(lnnc\c LIes '.cmi

ulgCb11quc\ dcllnl\ pal' lcs lllj-llrulc\. I),Ill\ Id nrctht Idc II II:SI. Ic'. ',ullc\ dc Stul'ln-1 Iablchl pcl'lnctlcnt clc

calculcr \cI<)n unc l€1rmc lndcFX'ndanlc LIC* dcgrc\ cl lcctll - LIC\ rh II) name\ ( Ic\ culcul\ par \t )tIs-rdsul tunIc\

de la lndthtxJc dc Cc )III n\ dcmiurdcnt d cc que Ic FX II) nt\nlc \tIjt d'u11 deBIt cl I'cctll d61lnl ).

\laI\ cc\ aln41lc'lull( In\ dc\ meth(>LIC\ dc calcLll nc chil11gcllt pil\ l€1ndamuntitIcITtent I'tipprochc dc la

nrCtht\Jc dc ('t IIII n\ Lcllc qll'cllc iI CIC c\pIt-.cc Ici. I.'c\pllcl 111111 III ,Jc\ I(lt'nrttlc$'. pcrnlct dc dttnncr unc

It>rmc <)iI unc tJccl)lnptr\ItII in pt)url-all FIre rccl)nljx l\cc a\ cc d'ilutl c\. cl d'il\ tI11 1)1111 n\ unc nlcthtxlc clc

dcclslcln qu’un \} \tOnrc LIC pl't'U\ C jJlltll I. lrrcnilnl ell ,'< t111plC IC-, ,'ltnnccLcur\

t' 'I hIll\ it Lil\ tl'ltttc lnCgilllld lilrgc Rl{\ t 'IJ tI11 11,111. Ic\ ,-.1\ \.It 1l: 1,1 ,ll\1,lnct1,111 R11 \1 f ) v R11 \ j
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Priestley duality and distributive lat,t;ices with
operators

Roberto Cignoli

In t.his talk I \all try to summarizo some recrnt work done in Buenos
Aires on Prirst]ey duality for bounded distributive lattices. In the first part,
I will recall the Inain facts about Priestlev duality, and in the secon one I
will con('cnt,ra.to OII tlr(' ext cllsions of t,his (Irlalit.y obtained in Brrenos Aires

1 Priestley duality
The letters /., Xl \\’ill al\va\'s derrotc t)oun(led distributive lattices, i.e., dis-
tributive lattices \\'itIl smallest, ('lemcnt 0 and greatest element 1. By a
homonrorphisllr I shall tIll(lerst,and a lat,t.ice homomorphism that preserves

0 and 1. 1 will den otc by Z? the category of bounded distributive lattices
and honlonrorphisr11s. and by D Fi„ tIle flrll sIIt)(:atcgory of Z) whose objects
are the finite distributive lattices. Fllrthermore. the category B of Boolean
algebras an d BooleaII IronronIorpIrisIrIS will be treated as a full subcategory
of T

Recall that an element pcl is said to be join irreduciblc if p # 0
and whenever p $ a V b, then p $ a or p $ b. I denote the set of all
join-irrc'duciblc clements of T,. with the order inherited from L, by ,J(L)

1,et X be a pc)set (= partiallv or(lercld set) and Y- g X. I shall denote
by ( Y’] the set of all .r in X such that .r $ y for some F/ e Y-. The set [Y)
is defined dually. }’ is inc rt 'a.sing ( decreasing) if >’ = [Y) (Y- = (Y’] ), For
/ e X, I write (r] and [r) instead of ( { /}] and [{ r} ), respectively.

A tot.aily order-disroTlnrrf cd topological sparc is a triple (X, 'i, T) such
that {X, $> is at)oset. (X. r> is a topological space. and given .r, g in X such
tllat .r $ y, tller<' is a cl(>poll (= closed and open) incrcasillg sct fF such that
.r C (; and 11 g ( ', A Prit sIll A spa rt is a compact totally order-disconnected



tol)ological sl)acc. T (I('llot(' 1)y P t II(' cat,egory of Pri('st.1(’y spaces and orde
r-bl'('sct'\'ing ('orlt.illllotls flIIICl ioIls. and by P Fi,, t,II(' frlll sllb('atcgory wtlose
o1)j('(-ts are Ill(' fiIlil o I)ri€’stI('\' sba('(’s

la>r cactI lirir'stlc-\' sl)all' X. (lc'finc Dl X ) as tIle lattice of increasing open
SIll)sets of X , iITlrl foI- c't\€'11 c)rcl€'1'-})r(’s('rvillg r'f)lltirlllt ills functiorl f from X
into a Pricstlc'v spar(' I - . clclillr' 1)( / ): 1)1 \- ' J –r lit \ ) by t llc [>rcscripti(>n
I>( A )( 1’) = //–1 ( 1 ’). for each I - e /)( t-- J. It is c’as\- to check that D is a
coIltravarialrt flllr('t or ftoIII P itrto D. i.('. it fllllf'tt)I' fr( im 'P illto D“P , \vFl(’re
Cal’ (I('Irotcs tIle ot)1)f)sit (' of a cat egol'y CT

.\s a first t’xalnpl('. IIoto tllal tho falrriliar total]}' (liscollt’('t€'(1 topoTogi('al
spaces are tIle totally OI'(It'l'-(lis('onlle('tc(1 sl)a('(:s s11('ll ttlat thc orcI(’r relation
is I IIe c(lualit }'. ’I-ll('r('ft)t'(' tIle StOII(' st>a(’('s. i.('.. tIlt’ ('01111)act t.otally dis('c)II
Ircc-ted topological SIla r(' b, arc I)articlllar (-asc's of I)ric'stle\' spaces. If X is a
StOIlt’ spac('. tIl('II /9( .\- ) 1)(’(-OII Ics II It' 13ool(’all algebra of all clopen subsets
of .V . TIl('rc’fort'. IIV till<iII'I IIII o ilc'(-(>llllf tIltIt all f11rlctions bc't,ween Stone
spar('s are triviallv t)r(ll'r l>rrs(’rvirtq, \vt’ tIa\- c' that //lr cat root II S of Strint
spact is and rolltinuo trs Fnnrlious is a jull s\drraltgory of thc category P , and
th(' r(’strict,ion of D to S gives tIle well krlou’n Stone functor from S int.o
B'“

As a scroll(I ('xanlpl('. suppose that ,Y is a finite Priestley space. Since
,V is a IIallsdorrf spa('('. all its I)oiIrts are closed, and then the topology is
discrete. Hell(r: D(X) is the set of all incrcasing subsets of X. Therefore
Pr;„ is the categorY of fiTlite posrts and or(lcr-pres('rving functions, and the

rest,ri('tion of D t,o PJ.','„ is a hrnctor from Pr,'„ into DE"
’l'he most, inrportant, examples of Priestley spaces are obtairled as follows
1,(’t, 7' (1('Tlote the t.wo-c'lerrrt'IIt, chairr O < 1 en(Io\vcd with the discrete

tc>1)ology. TII(’n for each set / 7£ O. the set 'l'T . equipped with the product
t,ol)olog)’ an(1 t IIe point,wise order. is a Priestley space,

Since the set X(1 ) of all honromorphisrns from L into 7’ is a closed
SIll)set of Tl’ , it is alsc> a Priestley space, that is called the Priestley sparc oj
L. Alterrrativ('ly. X(L) can be ctrsrribed as the set of all prime filters of L,
or(I('red by illclu'iion and with the lopology having as a sub-basis the sets of
the form ar.(a) = {P e .V(L) ja e /)} and X(L) \ al(a). for each a e L

For rach llomomorpllisnr /I : I. –} if, define X(/1 ): X(I1) –} X(L) as the
coImposition X(/7 )(f ) = P o II . for each hornomorpltism y: J/ –} F. ';\lter-
nativrlv. \vo call define X(/1)(Q) = /1–1 (QI for each prime filter C? of the
lat t i('(’ ,\I
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It is easy t.o check that X defines a fun(:tor from the Z> into pQP
\Vhen Z is a Hoolcan algebra, the prime filters of L coincide with the

rrraximdl fIlters (= ultrafilt,cus), then it, follows t,ha.t the order relation in X(L)
reduces to the equality, and for each a e L, X(L) \at(a) = at(Ta), where aa
denotes the complement of ri. Therefore A’ (/,) becomes the set of ultrafilters
of L, with tIle topology having as basis the sets of the form al(a), for a e E.
Consequently, X rcstr icted to 6 gives the familiar functor from B into Sar
defined by Stone in 1936 ['12].

If L is a finite distributive lattice, then the prime ideals of Z are of the
form [p), for p e ./(L). Tllerefore X(L) can be identified with the order
dual of the post:t ,J(/,), and then D( X(/,)) can in tu rn be identified with the
lattice of all decreasing subsets of the poset of join-irreducible elements in
E. Moreover, it is I)laiII thaI tIle restriction of X to Dr in is a contravariant
ftlnct,or into Pr,'„ .

It was proved by Priestley [33, 3+](see also [37, 19] that az: L –} D(X(L))
is an isomorphism, and that rx : X –} X(D(X)) , defined by the prescription
ex(r) = {t/ inD(X) I.r e r/} is both a homeomorphism and an order
isomorphism for each Priest.]cy space X, in ot,her words, she proved the
following

Theorem 1 (Priestley [33]) The InTlrIots D: P –} ZYP and X: D –} pcw
dcFne a naturnl duality brtrccen tIlt, catrgories D and P . The unit and coutit
of the corresponding qdjunctioTt arc t and n respect.ive.ty.

At t,11(' light, of 1 llc al)ovc remarks on BooleaII algebras and finite distribu-
tire lattices, we see that as particular cases of I)riest,ley’s results we obtain
the well known cluality bctwc€’n Boolean algebras and St,one spaces devel-
oped by Stone in 1936 [?], as \yell as a celebrated theorem of Birkhoff, first
publishcd in 1933 [2, 3] . asserting that each finite distributive lattice L is
isomorphic to thr lattice of al] (It'creasing subsrts of .J( L). As a matter of
fact,. the rcstri ctions of the functors D and X establish a duality between
the cat(’gori('s Dr in and Pri„.

'\ closed SIll)s(’t f of a topological ST)ac(' X is called irreducible if it is a
joirr-irrc(luciblc el(’IIrerlt in tIle lattice of closed SIlt)set,s of ,V . A specI IIII space
is a conrpact rj tol)ological sl)ace stlcll t,hat, its ('onrpact, open stlbs cts form a
multiplicati\’e basis arId ea('h irreducible closed set is the closure of a point

Every sp<'ctr a1 sparc X I)('colrlcs d Pricstley sparc P(X) wllen equipped
with the sprri11[i:frlinll ttrdt I", ,r $ // if and only if // C {,l;} and the patch

I



top t)log y , i.e.. the top(iIogy general('(I by tIl( t ('onrpact open subse ts of .V
all(I their collll)lcmcnts. NTor('ov('r rr C .V is (:olrrpact open if and only if
f ' e /)(ii( X ) ). (lonvcrsel}'. every I)ri('stlt'y sl>are .\- t)rcome!, a spectral space
b’( .V) if one forgets the or(l€’r rclat intl artll t'c)rlsiclcrs tIlt’ topology generated
1)y tIl(' (’orIll)act, op('11 SIll)sets of ,\'. l"tlrtII€'1'11ror('. for each sl)(:ctral space

X, S’( P(.V ) ) = X &lirr] f(Ir ca('11 1)ric'stlry sparc X. /i(.q(X)) = X (see, for

ill>;lance [13] )
('onscrjll('Ilt ly I)tit’st It'.\' 's I IIeoIr’III is a reforTrllrlatioll t)f a classi('al t,heorenr

of Stone [+3] . asserting. tllat rat'll t)t)llrl(Ie( I clistriblltivt' lattice is isomorphic
to tIl(' lat ti('(' of colIll)at't ol)('ll SIIt)s(’Is (]f a SI)('('t ral SI)ace.

OIIe acl\'arltag(' of I)t'i('st Icy s I>;It'I 's over SI J('('tral SF)aces is tllat the natll'
ral Ittorptlislrls are tIl(’ OI’(lcr I)r('s('l’\’itlg ('otltillllolls ftlIICt ioIIS. ilrstea(1 of tIle
awk\yard "collt.ilrtlous flllrct ions slt('lr tllat tIle iTIV('rs(' illrag(’ of ('acll con Ipart
ol)OII 51IDset is ('oIrrpa('l c)I)('ll." IIII\\' ('\’('I-. III(' III,'till afl \\IIII age of shiftilrg froIn
spe(’t,ral to 1)ri(’st ley ST)a(-('s is tll£lt (>llc’ oI}liIiI is a \'(’r.\’ IIi( e ('llaracterizat,iolr
of fIre (’ongrllOII('cs of 1)OIIII(Ie(1 (list I'il)tlti\'c' lat tic('s

Recall tllat, a con g rtl c 71 ce O OII L is all ('qllivdl(’11('(' relation srlch LIla,t
(a, h) e O all(1 (r, d) e O imply that (aVc, bv d) e O and (aAc, bAd) e O.
TIlt’ congrucnces on /,, (>rdc red by inc]ubion, forms a complete lat,tice, that is
denote(1 by (,'OII (L). GiveII a. A in L, (-)(a, b) denotes t]le principal corLgrILenct
gt'nrrrLLtd &# a and b, i.e., the intersection of all congruences containing the
pair (n, b)

A. Mont(’ilo [31 ] obs('rvcd t,hat for each set >’ of prime fIlters of L, the
relation

O(F) = {(a, h) e I. x I,\v P e Y-, a e P b} b e /’}

is a (-ongrlrc'nce ori L. Moreover, given O e C'on(L), if X denotes the
set of primo filters of the quotient lattice L/O, /z: I, –} L/O is the natural
I)rojection aIld Z = {/z–1 ( P) I P e X}, thell O = T hda( Z).

The (-orrc:spondclrc€' !’ b> O(1’) is lrot one-to-one. Indeed, one can
clldract,erizo the congrllcnce O( >’) in terms of the Priestley space of E
foIIo\vs :

(-)( 1’) = { (a, b) C /. x LEar.(r/ ) n I’ = al(b) n +’ }

and it foIIo\vs that for ('acll F. Z = X(L). O(}' ) = O(Y), and that O(Y) =
O( /) if and only if F = 7 (sec [9] ). From these results one can easily derive
tIl(' follow ill£{:

I
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Theorem 2 (Priestley [36, 37]) Lt t 1 br a boutdrd distribut.ioe lattice
and X = X(L) . Then thr. corr-cspr)nat urc. 1/ h> pr.( F) = O(X \ r) deBneb
an isomorphism pl. from C’on ( L) onto the jqtticr Op(X) of all open subs
ets of X

Coronary 1 For each Fnite di.',tributite lattice L, Con(L) is isomorphic to
the Boolean algebra of all subsets of J(Ll

The foIlowing characterization of principal congruences is an interesting
coIrsequerl('c of the at)ovc t,}rcorcIrr.

Corollary 2 Fo r a, & e /,. pl. (O(a, h) ) = a/. ( a ) JaI.( b) , where A

SUmm.t'tric diffrrcnrr .

For illrstall('(', froIrl tIl(' dl)ovc ('orol]aries OII(? can infer that the number

of congrucnccs of an 7?-elemerlt. chain is 2”–1, while the number of principal
collgruellces iS ?i + (n–21)(n–1)

Priestley’s throrems I and 2 have boon applied by several authors to
develop dualities for several classes of algebras having a bounded distributive
latt,ice re(luc-I, all(1 to ('llarilctcrizc IIlo ('orr('spondin}, SIIt)directly irreducibl e
algebras. See, for instance, [6, 7, 8, 11, 1-1, 13, 16, 17, 21, 28, 29, 30, 35, 36,
40, 41, 44, '15] as \veII as the books [. 1] and [5]. For further developments on
this line, conslllt t,llc rxcrllc'nt surveys [38] arl(1 [18].

2 Distributive lattices with operators
In a classical paper. J6nssc)n and 'l'arski [26] sho\vcd that a Boolean algebra
endowed witlr a farrrily of joirr-l)rescrvillg opcrat,iOIIS can be represented as a
suI)algebra of t,he Boolean algol)ra of all subsets of a set ,X, in such a way that
the oper at,ions are in correspondence with c('rtain relations defined on the
set X. Later on, IIallllos [22. 21] charactcrizcrl thc relations between Stone
spaces whicll corr('sporld to 0-pres('r\-ing joiIl-}lorllonrorphisnrs between the
corresl)on(ling Boo1(:all alg el)ras c)f ('lopcll sets. ’J' IIege relation were called
llorllr url rrluliolls, \Vr;gIlt [46] ('olnpl('t,cd thesr results by showinp that the
cldssical Stonc' duality I)etwcell tIl(' categories Ii and S can be* extended to
a (lualit,)- t)ct \\’('CII t,h(' rat('gori('s of Bool('all alg(’1)I'as and 0-preserving join-
hOlnoIlrorpllisnrs and Stoll(' sp ac('s all(1 [3oolean relations,



On the other hand, t,llere is a duality between the subalgebras of a Boolean
algol>rd B and certain rquiva]once relations on the Stone space X(B) (see,
for instance, F271 ).

TIle connection between the duality for join-homomorphisms and that for
subalgel)ras is given by tIle qILqnt.iFf.rs. A rluartlifltr on a Boolean algebra
B is a closure operator OII R srlch that its range is a subalgebra of B. The
dual of a quaIltifier (P (-onsi(lered as a 0-preserving join-homomorphism is
an equivalence relation which is also the dual of the range of a.

In tIle last fc\v years, with my students at Buenos Aires, we extended the
llalmos-\Vright duality to distributive ItItt ices [8, ] 0, 12, 32]

In this section E. JV \\’ill continue to denote borlnded distributive lattices
By a join-horlronrorphism from I, into A/ \vc rlnderstand a mapping J: Z –> M
such that j(0) = 0 dud j(a V b) = j(a) V JCb). The meet-homomorphisms
are defined dually. Note that a mapping /z: E –> a/ is a homomorphism if
and only if it is both a join-llornomorphism and a meet-homoInorphism. The
category of boundc'd distributive latticcs and join-(meet-)honromorphisms
will be denoted by ,7 (/H ). Obviously, D is a subcategory of both J and
/U. Note that the isonrorphisnrs iII these three categories are the same: the
one-to-one and onto honlornorphisrns.

Given a relation R £ X x }’, for each Z g X, R.( Z ) will denote the image
of Z by R, i.e.,

R(Z) = {y e Y 1, I' e Z (1, 7/) e R\

and for each Z C }’, R–\ ( Z) will denote the inverse image of Z by R, i.e.,

R– IIZ) = {r e X i R( { r} ) nz + O}

Note that the domain of R is R–1 (Y), in symbols, dorn(R) = E–1 (Y). When
r e X’ (y e Y), I write /?(r) ( R–1 (g)) instead of E({#}) (E–1 ({#}))

Let X and I' be Priestley spaces. A relation R C X x Y is said to be a
Priestley relation provided the following conditions are satisfied:

i) For each = e X, R(/) is a closed and decreasing subset of Y, and

ii) For each I' e DCF). /?–1 (1/) C D(X)

A PrIestley relation is said to be functional in case dorn(R) = X and E(/)
llas a greatest element for each r e ,X
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For Priestley spaces .V and }’, PR( X, Y’ ) will denote the set of all Priest-
Icy relations R. E X x }’, and PF( X , Y), t,he subset of functional Priestley
rela.t,ioIr s

\\ /hen ,Y and }’ are Stone SI)aces. Pri(’stley relations coincide with the
BooleaII relations dcfi11cd I)y llalnlos [22]. A Boolean rc'lat,ion is functional
if and only if /?(7) is a singleton for each / C X, i.e., if and only if R is a
function horn ,X into I

In what follow. ,X, }’ will (I('Ilot(' Pri('stle)’ spaces,

Since tIle composition of Priestley relations is a Priestley relation (see
[12] ), one can define tIle category PIt whose o+)jecLs are the Priestley spaces
and the lnorphisIrls arc the Priestley relations.

It is proved in [12] tIl it,t for each continuous and rnonotonic function
/: X –} \’, li j = { (r. y) e X x l’ I .I/ $ /(.r) } e PF( X, Y-). Conversely,
if R C P FkX . +’) then the funrlion In'. X d l’ obtained by defining h(z)
as the great('st. clement of R(.r). is continuous and moIrotonic. It is plain
t,hal, / i = R y , all(1 / = in t . In part,icular, the dual order ?E X x X is
tIle fun('tioIlal Priestley r('latiorl asso('iate(1 wit,ll the iderrtity function on X
'l'lrc’r(’fore, OIIe ('aII icl('Ilt.ify P n’it.II t, llc SIll)category of P it. having t,he same
oh.jects blU llaviIlg the functional Priostlc’y re]ations as morphisms.

For each J e J(L, I/ ), j* = {(Q, P) e X( A/) x X( /,) IP g J-IQ)} is
a Priestley rela.lion, and rlfnn(j') = {Q e X( M) FJ( 1 ) e a}. Moreover,
Je ,7( L, A/ ) is a horIlomorphism if and onjy if j* e Pf'(X( A/), X(L))

Therefore one call corlsi(Irr LIlo fllllct,(x X as a furlc'tor from PR into if %

by denning X(J) = J- for t'ach join-hornomorpllisrn j (see [12] for details).
For each R e PRt .V. I’ ). th(' correspondence IF b> /i– 1 ( C/) defines a join-

homonlorphi>im /?*: Dl\; ) –} /)(X), and /?*(+’) = rlonl (/?), Moreover, if
R. e PRLX . Y-). then for each .r e X a IId each g e l’, (#, J/) e R if and
only if (ex(,r ), ,-y(y) e /?*-. Tltcrefor(' one caII also consider the fUIrctor D
as a fllrlctor From ,7 into PFT'P . by (lcfinillg D( P) = /?* fo r each Priestley
relation R. Since cx : X –> X(D(X ) ) is both a llorneorIrorphism and an order
isomorplrisIlr, px = /?,* is all isoIrrorphisIrl in PR .

The following theorerII. established in [12] , generalizes Priestley duality
as \veII as IIalrnos-\Vribht (lualit)

Theorem 3 ( Thc fullctor5 D’.'P R –+ J'P and X-. J –+ PIP deBut a
natural duality b(ttrcl n thc rat ( qc)rit s f and PR. Thr unit and counit of
the col'r('spolldinq adj\tnct ion al' c p und a I'cspt'ctiv€'ty.



For each a' C L define M# = {(P, Q) e X(L) x X(L) IF no g a},
and for each R $ X x X define ## = {C/ e D(X) I E–1 (C/) = t/}. A lattice
pr'eordtr on a Priestley space A’ is a reflexive and transitive relation R that
satisfies the condition:

(f) C;iucn I,y in X such that (r, y) ( R, there is U e R# such that = e U
and y q U

The next theorem, albo proved in [12], establish a duality between 0-1-
sublattices of 1, and lattice preorders on X(E)

Theorem 4 The correspondence M H+ Al# defnes an antiisomorphism
from the lattice of all 0-1-sublattices of L onto the lattice of all lattice pre-
orders dcFnet! on X(E)

As particular cases of lattice preorders one can consider lattice orders and
lattice cquitalences.

Theorem 5 ([12]) The foUoluing propositions hold true for each 0- 1-sub-
lattice M of L.

i) M# is an order iS for each prime $her P of M theTe is e=uctly one pTime
$lter Q of L such that P = Q n M

a) /L/# is an equivalence if and only if all the elements of M are comple-
ment.e.rt

From (ii) in the above theorem, one obtains the well-known correspon-
clence between subalgebras of a Boolean algebra B and equivalences on the
Stone space X(B) satisfying condition (g) (see [27, 88.2])

For each join-homomorphism J; E –> L, let Mj- = {a C L } a $ j(a)}. It is
easy to clleck that Mj is a 0-1-gut)lattice of Z, and then }# = Mf is a lattice
preorder associated with J. It follows that J* g J#.

Recall that an atiditite closure on L is a join-homomorphism such that
a $ )(a) and j(j(a)) = a for each a e L. The image of j, J(L) is a 0-
l-subl,Itt.ice of L, and for each a e L, j(a) is the smallest element in the
se t (aI nJ(E) (see [1, 11.4, Theorem 11]). Let C(1) denote the set of all
additive closure operators on L, A qtlantiFer on L is a Je nj(L) such that
J(j(a) A b) = j(a ) A jCb) for all a. b in L.

8
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One have the following characterization of closure operators among join-
homomorphisms: J* = j# iff j e C(L) iff J* is a preorder. Analogously, a
0-1-sublattic(: A/ of L is the rang( I of a closure operator iff N'{# is a Priestley
relation (see [12] )

A J-distributive lattice is an algebra (L, V, A, j, 0, 1> such that <1, V, A, 0, 1>
is a bounded distributive lattice and j: L –> L is a join-homomorphism. The
particular case when j is a quantifier is consider in [8] under the name of
Q-distributive Idttices.

A ./-Priestley bipac(? is a Priestley space X endowed with a Priestley rela-
tion it. If (X, B) and (Y-, .S’) are ./-Priestley spaces, a J-function from (X, E)
into (Y-, S') is an order preserving continuous function fI X –} Y strch that
/-1(S–1 (F)) = R–1(/–1(F)) for each F e D( 1’ )

zFroIn Theorem 3 P('trovich [32] derived a duality between the categories
of ./-dist,rib11tivc' ]atticcs and homomorphisms and ,J-PriestleY spaces and
J-functions

I,ct (X, /i) be a ./-Priestlcy sparc. A subset, Z g X is called R-saturated
provided r e Z inlplies nrax X(r) S ;? for each r e X. The set of all
X-saturated subsets of X is denoted by .gaIn(X)

Petrc>virh [32] proved the following generalization of Theorem 2:

Theorem 6 (Petrovich) Tht congruc nct Intl icc of a .I -dist.rib uLivc lattice
IL, j) is an{iisomorph ic to the lattice of all closed j*-saturated subsets of
X ( L',

/.From this th('orem Petro\’ich obtained characterizat.ions of the simple
and tIle subclircctlv irrc(Itlcible ./-(listribut,ive lat,t,ices.
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A SIMPLIFIED DUALITY FOR
IMPLICATIVE LATTICES AND Z= GROUPS e

NESTOR G. MARTINEZ.

ABSTRACT. A topological duality is presented for a wide class of latticeordered
structures including lattice-ordered groups. In this new approach, which simplifies
considerably previous results of tIle author, the dual space is obtained by endowing
the Priestley space of the underlyilrg, lattice with two binary functions, linked by set.
theoretical cornplerrrent arId actirr£, as syInInetrical partlrers. In tIle particular case of
I-groups, one of these fulrctions is the rrsual product of sets and the dxiomatization
of the dual space is given by very simple first-order sentences, saying essentially that
both functions are &ssociative and that the space is a residuated semigroup with
respect to each of them.

This talk summarizes the main results of a paper with the same title that will
appear in a special issue of Studia Logica dc\’ot( Id to th(i Priestley duality.

Introduction.
This work call +)c sccIr ils a r('6rrcrrrf Int an(1 a sirrrI)lific;ltion of orrr I)r('viorls duality

developed in [11], in that first approach, having in rnind the topological represen-
t,dion of M. H. Stone for distributive lattic( IS {16] and the duality theory of H,
Priestley [14], [15], ive devc'lopc(I a topological dlrality for a wide class of lattice-
ordered algebraic structures, which we called inrplicative lattices. Also, we showed
that latticc-ordered groups can be characterized as inr]>licativc latticcs with some
extra conditions, and we c0111(1 derive a topological duality for tlresc groups

The main idea in that approaclr was to introdrrce irl tIre dual space of the under-
lying lattice OIrc stritablc' I)III:Ity itII(I contirruous frrrrction, a„'; tIle trarrslzttion of the
binary operation of the algebra.ic structure. However, when trying to axiomatize
the properties c)f tlris furrctioll ill tIle dual SI)acc, sorrr( t of tIle corrditiorrs wc got were
quite cornl)lic:ttcd and ol)scrrr('. Also, tlrt' nrorl)Irisrns of tlrt' dtral sl)ac(' \vere rather
unnatural and difficult to <lcscril)c.

The key i(Ica iII tlris rr(In' al)1)ro itch is to coIrsi(I('r zi s('c<)rr(1 1)inary flrrrctiorr in the
dual space, which is natur tiljy (It'fincc! frc>In the first t>Irt' t)v using set-theoretical
cornplerrrcnt; and which acts :is a s}-rrrrnetrica,I partn<'r, sirrrplifying all the proofs.

1991 M at/&c77tat ics Subjfct (;lassiJicatioll . AXIS Nlatll. SLIt)j(.ct (=Iassificat.ioll: 061)05, 06E15
06F15, 20F60

K eu words and phrases. duality, Priestley spac€'s, lattice-ordered groups, ilnplicative ]attices,
TIle aut Iror is support.c(1 at. tIlt' Nlat,ll('lrIdtical Institute of oxn)r(1 1)y a gralrt of tIlt' Argerrtinian

Conscjo dc Inrlcstigacioncs Cicrtti#cas y Tecn£cas (CONiCET) . The author wishes to acknowledge
the (;ONI(;ICT and tIle kill(i hospitality of tIle Nlathcmatical Irrstit,utt
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The conditions we get to ,txiomdtize the dual space are now all simple and
natural; the morphisms are also described in a nice way. Moreover, when applying
the general schema to the case of lattice-ordered groups, we obtain very simple
first-order conditions for the dual space, inrproving considerably our first versIon.

jI. The general setting: implicative lattices.

1.1, DEFINITION. A = (,4; V, A, –>) is an imphcatiuc lattice aF (4; V, A) is
a distributiue lattice and –} is a binary operation (calted the implication of A)
satisfying the foILorurng eqvattons.

ILI) = –> (g A y/) = (# –> g) A (a d y');
IL2) (= V =’) –> y = (z -+ y) A (zf –> y),
IL3) = –> (V V #f) = (z –> y) V (z –> yf),
IL4) (= Al’) –> g = (n -+ y) V (z’ -+ y).

Implicative Idttices provide the most general setting in which our duality can be
carried on. Well-known algebras coming from Logic, such as Boolean algebras, de
Morgan algebras, MV-algebras, ([7], [13]), or linear He),ting algebras [12], can be
characterized as implicative lattices with additional operations and thus, fall within
the scope of our approach (see the examples of [11] and also [10], as the first source
of the theory)

Implicative lattices are also closely related with lattice-ordered groups, as we
now show

1.2. Example: Recall that a Lattice-ordered grovp ( J-group, for short) is a partially
ordered group such that the underlying order is a lattice. Alternatively, an /-group
G can be defined as an structure G = (G; V, A, .,–1, e) such that (G; ',–1 , e)
is a group, (G; V, A) is a lattice and the following equations are satisfied for all
a, b, c e G:

1) a(b A c) = ab A ac; 3) a(b V c) = ac V ac;
2) (a A b)c = ac A bc; 4) (a V b)c = ac V bc.

Two elementary facts about /-groups that will be important in the sequel are:
• The underlying (unbounded) lattice of an Jgroup is distributive.
+ The inverse operation –1 is a Kleene negation, which means that
(a–1 )–1 = a ; (aA b)–1 = a–1 V b–1 and aAa–1 $ b V b-1 for all a, b e G.
(For the last condition, see, for example, [3], Chapter III, 14.)
From these facts and the equations 1)–4) above, it can be easily checked that if

G = (G; V, A, -,–1 , e) is an l-group and urc define a A b = a–1 b, then (G; V, A, a)
is an implicative lattice, which we call the tntpjtcqttuc lattIce of G

We will prove that in fact Z-groups can be characterized as implicative lattices
with a Kleene negation and an additional constant and that the general theory
developed below, strengthened in a very silnple way, yields a duality theory for
these groups.

Given an implicative lattice A, our starting point is to introduce two binary
functions on the set of prime lattice filters of A. To ensure good definition in every
pair of points, we consider a slight variant of this spectrum, allowing a and A to
be ad',nissible points.
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Let’s define then S( A) := {P q ,4 : P is a prime lattice filter of ,4} U {a, A} .
Our first I)inary frrncti(nI is given by the formula

PQ = U {y : r –> ge a} for all P, Qe SCA)
el

An en•ly cc)rnprrta.tic)ll. usirrg (>IIly tIle rules ILI)–IL3) shows that effectively PQ e
S( A) provided P, Q c S( A)

Consi(lc'r IIO\V tlr€' fanrilv

S(.4)’ = {P E ,4 : P is a prime lattice ideal of A} U {a, A}

It is equally ca,y to show thnt if P, Q e S( A)C and (with a little abuse of notation)
we denote again by PQ = U {# : 2: a y e O}, then PQ e S( A)C

6/
Since P e S( A)' if alld OIIly if its cc}Implement PC belongs to S( A), wc can define

a second binary ftrnction + iII S( A) by the formula:

P* Q = (pcQF)c for all P, O e SCA).

1.3+ Observation. Coming back to Example 1.2. note that if A is the implicative
lattice of an J-group G, PQ = {2g : # e P and y e t?}, (i.e., the usual product of
sets). In a similar way, P+ Q is the complement of the usual product of sets PC, QC.

Since implicative lattice$; are a juxtaposition of an algebraic structure and an
order structure, it is natrrral t,o expect that the algebraic structure given by the
irrrplrcitt,i(nI yields sorrrc sl)('('iill f('aturcs in the undcrlyirrg lattice of A, and tlrrrs jn
S( A). A crucial fact about ,S'( A) is tlrr existence of some distinguished elements,
\\’lriclr \v(' int,rt)<Irlr(' ill tIl(' fo11owills:

1,4, Lenlrnan FIll- r.irc:IL II C SCA) rnbd for crtclr a e A, ll't.'s dCfULr the set
P, := {r C /1 : a' –> o g P} , T+Lrn:

a) P, e SCA)
b) P, is the greatest Q ( SL Al such that a { QP
c) P. is the STnallCst. Q C S ( A) s'uch tlr(it, a C (2+P .
d) For all a, be A, P, C Pb or Pb g P,

Our n( txt task is to 1)rov(' tllat tIre irrlplicdtioIr of an inrpliciltivc lattice A cirir be
reconstructed frc)in tIl('' spcctrlrnr SCA) by tlsing either one of the binary functions
defined before plus set-tlu'orct.ical operations

IT50 LenInlao Let A bc an 'i7ru)licatillc: l<rtticc cmd let , and + bc the lli7tlrru jaIIct. ioIls

on SCA) dr Br bed aborTr . Frrr rnrll a e d Irt. ’s denote by aCa) = {P C S( A) : a e P}
Then :

i) aka a b) call br (rbtai71 cti fri]in aCa), a(b), and . by thc jorIn.-ala

(t) a(„ > b) :E n {Q : POe „(b)}
bea( a)

ii) aCa a b) can be also obt,airlcd fronl aCa), a(b) and + by the jorIn.u.h

(tt) aCa > b) = U {(2 : P+Q e a(b)}.
/)Ca( a )‘
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lattice A, SCA) is the irnplicatiuc space of A and for each hOTrbomoTph{srrb of im-
plicatiue latticcs h : A + A’.. SCh) ; S( A’) –> S( A) is deftnext by SCh)(P) = h–1 [P]
for aLI P e S(A’)

Then S is a col&£rauar£a7zt fvtrctor establishing a dqahty between IL and IS .

B3, The duality for lattice-ordered groups

In order to apply the general scheIna developed in the previous sections to the
theory of lattice-ordered groups, our first step is to characterize /-groups in terms of
implicativc latticcs. To do this, we consider implicative lattices with an additional
Kleene negation (standing for the inverse operation) and a constant, standing for
the unit of the group

3.1. Proposition, Let G = (G; V, A, .,–1 , e) be an I-group and deBne a –} b =
a–lb. Then /(G) == (G; V, A, –>,–1 , e) is an implicatiue lattice with a distinguished
element e and an t&mary operation == = =–1 satisfying:
i) =–la = a ;
ii) a –+ a = c,

iii) a -+ e = –'a ;
iv) a –> ( nb –> c) = =(a > b) –> c.

Conversely, let A = ( A; V, A, a, –', e) be an imphcatiue lattice IIlith a distin-
guished element e and an additional unary operation –' fUlfIlling conditions i)–iu)
aboue, Then, defIning =y = Tr –+ly arId z–1 = ==, G(A) := (,4; V, A, .,–1 , e) is
an I-group srLCh t/lat /(C( A)) = A

Let’s denote now by Z£* the category whose objects are implicative lattices
with a distinguished eleInerrt c and an additional unary operation –, satisfying the
equations i)--iv) of Proposition 3.1. and whose morphisms are the homomorphisms
of implicativc lattices preserving c and -', Let’s denote by g the category of lattice-
ordered groups.

From Proposition 3.1, we have that for each object A of££* there is an l-group,
(namely G( A)) such that A = /(G( A)). Note also that a function h : G –> G’ is
an homomorphisrn of J-groups if and only if h : /(G) –> /(G') is an homomorphism
of implicative lattice's preserving -' and e. Thus, [G, GfIg = [J(G),/(G1)]rr+ and
we have the following

3.2. Theorem. The maIl 1 jTorrt g to l£* deBIted in cactI I-group G as /(G) and
in each I-grouT)s Itorn.om.or})ttisrll it si7rl.plly as }I tstabl is}les a categorical cqu{ualence
betueelr the category of t-gTOUPS arId the category 1 C’

At this point, we have converted J-groups into implicative lattices with an extra
constant and an additional KlecIrc IrcgatioIr satisfyiIr}, tIle four equati<)Irs of Propo-
sit;ion 3.1. Our next step is to Hiv(’ al)I)r')priate trarlslations in our topological spaces
for the new operations and these fotrr (:qtlations

Recall first that a function g horn an ordered topological space (X; r, g) to
(X; T, $) is said an inuolutiort iff g is dll homeomorphism, g2 = Id, and # $ y
implirs g( g) $ 9(r) for all ? c X.
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all the proper clopcn arId incrca';irrg SIll)sets, with tIle lattice operations given by
tlnion and intersection

In rnany of the (?xanrplcs corniIrg frc )III loglc tIl(: url(lerlying distributive lattice is
borlnded; as we I)ointed OIIt befor<', r\'eli in tlris case \\'c are not allowed to use tIle
rrslral Priestley spire(?s, b(:cilrrs(’ 011r I)irr;lry flrIr('t.ions Ina,y 1)(: rIot defin(1<1 ill sonIC

pair of points (see [11], Obst’rvatioII 2,3). However, Ive can use the fallon’ing spaces:

2.3. DEFINITION. Bounded Priestley spaces of type OI.
A bounded Priestley space X is of type 01 if {pa) and \PI} are open sat3sets,

If X and X1 are bounded PTiestLeu spaces of type 01, fl X => XI is a -01-
motptdsm iB f IS a morphisrn of b(nbnded PrIestLey spaces satisfying:
0) /(p) = p: implies p = p1
1) ftp) = pb implies P = Po

Since a(0) = {,4} and a( 1) = S( A) \ {a}, from Theorem 2.1 the following can
also be derived:

2.4. Theorem: Duality theorem for bounded distributive lattices.
The map F of Theorem 2.1. establishes a d\Latity between the category of bounded

distributiuc tattices and the categorq oj bOII tied PriestLey spaces of type 01

\\e are ready now to introduc(' tIle (luzrl slurc('s of irrrplicati ve latticcs (coInparc
u'itIl tnrr previous version [11], DcfirlitioII 4.1 )

2.5. DEFINITION. IIrrplicative spaces.

i) X = (X; r, $, ', #, po, 111 ) ts an i7nplirat.iuc space if:
a) (X; 7, S , po, pl) is a titrtL7Ldrtl Prirst, try space

b) - and + are binary fulrcf.ions, trrdcr-lrrcscruing in each oariable and mICh that
is corrtinuous in tIlt: upper topology TI and + is corbtinvozs in the lotver

folioJoVI/ rl,

c) PPl = PI if I> + Po; I,nPl = 1>II,o = Pa

p*I)D = PQ if P + r, I; /,o */,1 = 1,\ */,o = 1, 1

d) p { if i7nl)lies if +q $ 1iu &yr all p. If , q ( X
e) if U is a proper clopen and increasing subset of X and q eX . there e=isis cm

ctcTn.CIlt p E X s-ucl t,IInt. In q t-LT arId pq { [
ii ) if X,Xf are i7nplicat.irll: sjlnc('s, ther I fIX –> X1 is a 7rl.orpFbis7rt of im.plica-

title spaces iII it. is a in.OTphisTn. of btnnLdra Priestley spaces vlhich sat.is Bes the
jotto-min.q t.Inn colt(htior is
1) ftpif tq) $ fLpql for qIt r.q tX
2) JtI„*q) $ ftp)* it'll f„, atl 1,.q t -\

Tlr(’ Ill;till arr€1 1itst r('srllt f )f tlris st’t't ioII <'st irl)lis IIf 's tIl(' ('irt(’gc)rical drlality I)<.

t\v('('n irrll)licat.ive 1;It,tic('s ;1.11(1 inrI)li<'at.iv(' SI)acf’s

2.6. Theorern. Duality t.Ireorerrr for irnplicative lattices.
Let:s denotc by IE tIle cutcgoru of hnphcntivc Lattices and by IS the categoTy of

impjjruthlc spaces. Coltsidr't the Ill.tIP SIIL i IS StLCh that for each iTrtplicative
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1.6. Corollary: Representation theorem for implicative lattices+
Let A be an implicatiue lattice and consider the famiLy of sets ECS(,4)) = {a(a) :

a e A\ , equipped with union, intersection, and with the binary operation aCa) +
a(b) given by any of the formulas (+) or (++) of Lc7nma 1.5 above.

Then (ECS( A)); U, n, +) is an i7nplicaLiuc lattice atbd the map a -+ aCa) is an
isoTrtorp}asm of implicatiue lattices,

B2. The general setting: the duality for implicative lattices.

Recall that a contravariant functor F from a category a to a category B estab-
lishes a categorical duality between a and 23 provided:
i) For e,ICh object Ii of B there is an object ,4 of a such that F( A) and B are

isonrorphic
ii) For each pair of objects X, A/ of a, the function from [A, A/]x to [F( A’), F( A)]a

induced by F is one-one and onto,
Also recall that an ordered topological space (X; 7, $) is a Priestley space iff it

is compact and totally order-disconnected (which means that for = X y e X, there
exists a clopen and increasing subset of X containing # but not y)

In a Priestley space (X; 7, g), the family of all the clopen and increasing subsets
is the basis of a topology rf, called the upper topology. (This topology coincides
with the Stone topology that ure used in [11]). Also, the family of clopen and
decreasing subsets is the basis of a second topology rI, called the lower topology.

Priestley spaces are the dual spaces of bounded distribrrtive lattices; but since we
are dealing with distributive lattice is not necessarily 1)oun(lcd, we have to consider
a slight rnodi6cdtion of the usual duality theory. Following Davey and Werner ([8].
Section 2,8) we will say that a Priestley space (X; r, $) is bounded iff there are two
points po, Pr e X such tlrat po $ : $ Pr for all / C A’

Let’s denote by BP the category whose objects are bounded Priestley spaces
and whose morphisms are those continuous and monotone functions preserving
both bounds. Let’s denote by Z> the category of distributive latit;ices with all the
lattice-homomorphisms. Imitating thc usual Priestley duality the following can be
derived:

2.1. Theorem. Duality theorem for (unbounded) distributive lattices.
Consider the whaT} F front D to BP srct\ that:

a) For each distribrtiue lattice A, F( A) = (S( A); rn , g, a, A) , where r/l is the
topology hauing as a szbbusis t.he !qTrtilu

B = {a(a) : a e X} U {a(a)c : a C A}

b) For each lattice-homom.orphism h from A to A' , FLh) : FLA') a FLA) is defIned
by F(h)(P) = h –1 [Pl for all P e S(A/)
Then F is a contrauariant fanctor estabhstMug a duaLity between T) and BP

2.2. Observation. In particular, by the isomorphism a H aCa) of Corollary 1.6,
the lattice A can be recaptured from it’s bounded Priestley space as the lattice of
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Proposition. Let A bc an iwbplicativc lattice with a distinguished element
c e A and an additional opeTntion –I satisfying the eqrLations i)–iII) of Proposition
3, 1, Let SCA) be the implicatiue spacc of A and let’s defIne gr SCA) a S( A) by
g(P) = P' = {/ : –'z g P} . Then
1) g is an inuolu,tion such that P C g(P) or g(P) c P for all P e SLA) (Kleene

condition) .
2) '7(') = {P e S(X) : gCr) C r}-
3) The functions - and + are both associatiue and satisfy.

?g(gce)f) g a; a C P*g(g(Q)*P)
4) g(P)r c g(g(p)p); g(g(P)*r) c gCP)*P.
5) g(Q) C (2 implies P g PQ for an P e S( A)

Q C g(Q) implies P+Q S P for all P e SCa)

3.4. Observation: Recall that a partially ordered scmigroup H = tH ', ., $) is
right-re$idzatcd iff for all a, b e X , there exists an element (a/b) C if such that
# $ (a/b) iff #b $ a. H is a left.-residuaLcd semigroup iff for all a, be if there exists
an element (a\b) e if such that = $ (a\b) iff bz $ a. H is called residuated iB
it is both right and left-residuated. Any partially ordered group is residuatcd, the
residual being precisely a d y = a–\ g.

It is not difficult to show that (SCA);g,•) is a residuated semigroup, with
right-residual (Q / P) = g(Pg(Q)) and left-residual ((2\P) = g(g(Q)P). Also,
(S( A); 3, +) is residuated, with right-residual (Q/P) = g(P+g(e)) and left-residual
CQ\P) = g(g(Q)*P)

Let’s introduce now tIle dual SI>ac('s of J-gr€)lrps (<-ornpare ag,till u'itIl our previous
v('rsion [11], D('firriti(nI 5.7):

3.5. DEFINITION: Let X t)c aIr implicativt’ space. \Ve say that
iIT

a) There is an in\'o]ution g : X –> X such that g(p) <~ p or p <~ g(p)
b) The set tC := {p C ,T : g(p) < p} is a closctl subset
c) ' arrfi + are I)otIl a.ssociativ(' arId satisfy:

pg(gtq II,) $ q-. qB /,’'g(g(q)*/,).
d) g(p)p < g(g(p)p) and g(g(p)+p) < g(p)+p for all p e X
c) g(q) < g implies p $ pq for all p e X;

q < g(q) impli('s lrtii $ p f(>r all ;I e X

X is an t-space

for all p e X.

C;onditi<)11 d) says tlriLt-, (X; r, $, g) is a NIcene sjlacc\ condition b) stands for
the exist(’rr<'t' <)f tIle unit. Xot€' that all tlrc' rcnr;linirrg c(>rr(litions arc first-order
s('ntc'rr<x's of tlrt' 1;ingu;lgc Z= = { $ , -, +. r/} ,

If (X; g) aIr(1 (X; g/) irrc' /-spite c's, a furrct,ion f : X –} X1 is a TrtorplbisTn. of
1- spaces iff / is a nI(>rplrisIn of ilrll)lic;rtiv<- sj>ilct's arId /(g(p)) = g/(/(p)) for all
/) e ,X

\Vc ar(: n’ it(ty to st,ille tIle IIlitill t}l<'or('Irr of th(' s('ction:

3.6. Tlreorenr. The duality theorem for J-groups. Let S bc the I nap selldirt g
each object A of IZ:* to (S( A): g) rnId each nlor]lhisrrt /2 : A –} A[, to SCh ) : S( A/) –>I
S( A), giucn as br.fIn-c by SCh)(P) = /z –1 [P] for all P e S(AD
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Then S estabLishes a duality betu)cen the categoru IV and the category IS* of
I-spaces. Thzs, by Theorem 3.2, the contrauarinnt ftlucEnt loS establishes a duality
between the category of 1-groxps and the categoru of 1-spaces

Let’s call abelian 1-spaces those Z-spaces in which ' and + are conmutat;ive. From
Observation 1.3 and Theorem 3.6 also the fo11owing can bc derived

3.7. Theorem. Duality for abelian I-groups. The map S of Theorem 3.6 es-

tab Iishes a duality bettueen the category of abelian l-grozps and the (Nlt) subcategory
of abelian i-spaces,
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Abstract

DlrrinF, the lust three years several rcscarchs on Cobham’s and Semenov’s the
orcnls lead tu rc'sults abc)ut liiiclli Arithrllt it.ics and Prcsburbcr Arithmetic. The
reader will find some of these rc'suIts in [Br,Han 94],[B,H,M,V 94],[Fab 92], [MI,ViI 93],
[MI, ViI 94],[Much 91],[Po 94],[Vil gZa] [Vil 92h].[Vil 92c]
In this survey we investigate around two classes of questions related to these results
One is conccrncd with dcfinal)ility qllt'st ions, the other one with dccidability questions.
At our knowledge, most of them are open
\\rc will dIsc; discllb-s cxtt'llsiolls tif ( Jc)b}raIn-s and Sc'mctnov's tht'orctms to nllmcra.tion

systems uqsociated with a 0-shift

1. Preliminaries.

Ill tllis section IVt’ give SOIllt' basic (lefillit ions abotIt automata theory and k-
recogllizabilit,y of sets of nat tlrdl nlllnbcrs
\\’e will us(' thrIll in t,llc s('(lu('I witllout, reft'rt'nce. The reader will find more
inforllrations in nilcrrtrc'rg’s book [F:il 74, chaptcr 5]

1 'l'ht' fIrst llllthc)r \vas pI’lrtially sIIpport cd by ESPRIT-BRA Working Group 6317 AS NII( tS
IInd I)y HL’\IAX t'AI)ITA 1, ANI) xlonII,IT\’ lin)jct:t Nlodcl the( iry and applications

2'Fhe second author was partially stljipt>rtcrl by 1,a Fondat icar de j’tTQ AXI. He would also
likt• t (> thank the Irl',titrItt' of ht:rttlt'mat it's and ('omptlt er Scir'rIce t )f the T 7niversity c)f bInns-
l{ainattt for its hospitality and tht' Pon(is Natit)llnl de la Rechcrche Srientifique of Helgiunr for
fi I PI)
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Let E be an alphabet, i.c. a fillite sct. \Ve (lenote by E* the set of words of finite
length OII E containing t.he rmpZy word A formed of Ilo symbol. Any subset I
of E’ is called a language OII t,lle alphabet E

Definition Let, E be an alphabet. A E- automaton is a finite labelled directed
graph Jt whose vertices are called states and which sat,isfles the following prop-
ertros

a) ’rhcre is a distinguished state called the initial stale

b) Some of tIlt' states are said to be Pnnl states

c) For any state q and any element a of the alphabet E, there is one and
only one arrow labelled by a leaving q

Furt,herrlrore \ye have the following definitions

Definition A word a C E' is said to bc accepted by the E-automaton J if
starting at the initial state of ,4 and reading a from left to right, taking arrows
labelled by the letters of a, one reaches a final state

Definition A language E on E is said to be E- T'ccognizable if there exists a
E-automaton such that the set. of words accepted by this automaton is exactly
1.

Remark Our definition of automaton is what is usually called a complete deter-
minist ic aId.OTlr at on . A non- dct rrminist ic automaton is one in which there can
be many arrows with the same label leavin& some state. It is well-known (see
[Ei1 74]) that the sets recognizable by non-deterministic automata are the same
as the ones recognizable by deterministic automata; so there is no restriction in
considering det.erlninistic autonlata

We here choose to read words from left to right. Reading from right to left
would llot change the notion of rccognizability, but it would be unnatural with
our definition of rocognizability for subscts of INn (see below)

Let Eh be the alphabet {0, 1, . . . , k – 1} . For it a positive integer, let [n]b be the
word on EE \v}lich is the inverse of the A’-ary expansion of n, i.c. if n = =?=oAi A’
with Ai C {0, . . . , l– 1 } , A, + 0. then [n]k = Ao - - - A, . By convention we define

[0]h as the empty word

Definition For I e IN , we say that a sllbset Z of IN is k- recognizable if
{[n]lin e L} is Er-recognizat)Ir.

It is quite useful to have a llotion of l-recognizability for subsets of IN'' for all

2
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positive natural nullltler n. For tllis,\vc follow thc approach of [Hod 83] which is
different from the (lefinit.ion generally used in language theory (for instance in
[Bc,Rc 88]). Nevcrtllcless il is a ll;rtural point of vic tv since it will allow Biichi's
thcorem to work in full gr11crdlity (see section 2). It is also the point of view
adopted by [SaI 87] irllc! [StIIII 77]

It is possiblf ' to r('1)reselrt tllples of llat tlr iII lrunrl)ors by words on (Ery ill the
followinF, way. Lot (1711. . . . , in. ) e /.V- . Add OII the right of each [in,']k the
mirlinral llumbcr of 0 ill order to llrakc t }loIn all of the same length and call
tht’se words ,di , Lol w',- = A,-1 - ' ' Xi. u’hero Ao e Ek , \Ve rrprrsent, (m1, . . . , Inn )
by [(1171, . . . , in„ )]h which is thI* wcrrd ( Al 1, 121, . , . , An 1 ) (;\12 , Az:, . , , , A. 2)

( Al. . A:. , . . . , A.* ) c (=it )' , i .c. thr word formed of the t.uples of first letters
secolld letters f:tr

Dt:finition \\c say tllat a subset I. llf IN11 is k- 1-r rngrrt=nblr if { [(7711

( inl, . . . , 777„ ) C /,} is =F-rt’cognizalrlr'.
Inn )]k;

Let us end this s;oct ion witt1 sonic lrotat tolls. \\'f' \vill (]0110te tIle set, of non-
nc'gittive iIItcgprs I)y IN, tIle set of irltegors t)y ;Z and t,llc set of nonnegative
real$; by IRt

2. Definable sets in Biichi Arithmetics.

The struct,tIres < IN . +, LI > for k = 2, 3, . . . itrt' cclltral in all t,he papf’r
Ilerc rk is the function which sends a llonzcro llatural nlimber to the greatest
power of I dividirl}, it,3. ’FIle first-order structure < /X, +, I'I > will be called
BiLrhi Arithmetic of hci hr k. Thr importance of Biichi Arlthmetics come from
t.he followillg first.--order v(’rsion of 13iiclli’s th('oreIIr

Tlreorerrr B A stlbsct, of 1 N " is [-rrcogrlizablo if and c)IIly if it is first-order
definable in the structure < /,V. +, I} >

It has an ilnnrediat,c corollary

Corollary B < /X, +. Il > is d(’cidable

The reader will mIld a cl('ar exposition of the nrethod of proof of Corollary
B ill [Hod 83]

Biiclri’s tht'orrnr is originally stat.o<1 in t.ornrs of drfinabilit.y in II’S 1,q. t.he weak
lrlonadic sc'cond-order theory of Ollc’ successor. but only in the case 1 = 2 (see
also [NlrN tr 63]) . A gcnrral statelllrllt of Biiclli-s tIlt'orrnl ill trrrlls of dr6nahilit}

3 For example th (72) = 36

3



in PKb'lS can ht: find in [Tho 90] and [Vil 92c] for example. However the first-
order vrrsion presented here was already present in Bachi}s paper [Bu 60] (but
only in the case 1 = 2 and with some flaw). The reader will find informations
and a proof of this version in [B,H,M,V 94, pages 202, 207-211]

In the sequel deftnablc will be intended for frrsL-ordct de£nable. We will also
say k-drFnable instead of definable in the structure < IN, +, uk >

In the following lemma we summarize some basic features of < IN ,+, % >
which are the keys for a proof of theorem B as in [B,H,M,V 94]: these facts
allow to code the behaviour of an automaton by a first-order formula of the
language < +, LI >
\Ve include it here because it gives the flavour of the relationship between BE
automata and Biichi Arithmetic of base k. It is also the prototype of the gen-
eralization investigated in section 6.

Lemma B
(1) The set of powers of k (denoted by Pb in the sequel) is k-definable (by the
formula h(r) = =)

(2) Let be the relations €jl£(r, y), for o S ) < k, meaning that y is a power
of k, and the coeffIcient of y in the l-ary expansion of z is equal to J, i.e.,
a = F j- y. For powers g strictly greater than r, we consider eo,h(r, y) to

C,.k(fly )

be satisfied (leading zeros)

The relations ejlk(r, y), 0 g J < k, are definable in < IN, +, % > by the
forrnula

a(y) A [ (1;)(I1)(' ='+J'y+t) A (, < y) A ( (y < uk(t)) V (1 = 0) ) ]

Roughly this formula says that the powers of A of the A-ary expansion of a are
shared into three groups : one group consists of V only (or equivalently the
integer j- y ), the powers less than y are the second group (the integer z) and the
powers greater than g are the third group (the integer f ). So, it is possible to
express in < IN , +,vh > the different letters Ao, . . . , At of the A-ary expansion
[n]k = Ao . . . Al of any integer n, as well as leading zeros

Proof of lemma B is easy (see [B,H,hI,V 94] )

4
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The other (lirection of t,heor(’Ill 13 (whicll clairl-IS that. all k-definable relations
is t-recognizable) is a consequence that addition (Elle ternary relation) is k-
rccognizablc (sec [Ilod 83] anc] [B,ll,M, V 94])

Originally Cobham ’s and Senrt’nov ’s theorems were stated iII terms of k-recogniza-
bility of sets of natural numbers (scc [co 69] and [Scrlr TTI)

Using t,Ireorern B we can state thcnr in an equivalellt, first-order version

Theorem C (Cobhain’s Theor•cim) Lot I all(I / br nlultiplic,rtivcly inclcpcn-
dent;4. If L q IN is I- and /-definable, then L is definable in Presburger Arith.
mctic (i.c. in the structure < IN , + >)

In the original Torsion [Co 69],“definablr in Prcsburgcr Arithmetic"
placed by “ultinrately periodic'’s

Theorem S (Semenov’s Theorem) 1,et k and / he multiplicatively indo
pcndent. If L E IN " is k- aIr(I /-dofillablc, tIlen /, is dpnlrable in Prf'sbrlrg('r
/\rithrnctic6

Semenov’s t,heoreIn is the natllral gelleralizat ion of Cob traIn’s theorcnr to higher
clilrlcIlsioIls

\Ve will discuss around tlrcorolrrs ( ' and S and t,}reir proofs in scctiolls 3, 4, 5
'tlld 6 of t.his slrrv('y

Fheorcrn S recently recrivecl a countr'rpart (see [ViI S>2a],[Vil gL:b] .[\ril 92c] )

Theorem V 1.ct I and / be IrlUltiplicat,ivcly indepenL]cIlt. ’I'Ire structures
< //V, +, I1, 1'} > and < /.V, +, . > are intordeHnable7

Corollary V < /X, +. I } . I } > is llndcci(labl('

4 T\vt) reals k and / a,f. said „„,Itiplic„ti„fly i„depend,nt if th, only ,oluti,n in int,g,r, of
the equation k": = 11: is the trivial f)ne nI = n = t},

3 A subset .V of thc nonnegative integers is said ultimately periodic if there exist d and
p in IN such that ft Ir all i- > d, / li€'jr)IIgs tcl .V if and only if / + p belongs to .X . The
equivalence between rrltimatt'ly periodic antI definable ill I)rcsburger Arithrrrctic gc)t•s bat I< to
[Prcsb 29](sl'€: [End 72, chapter 3] for a nrtIre accessible reference)

6Similarjy to thr t'£L'iC cif s11bsl't s tIf N. subs+t•ts of IN Fn which are definable in <’ IN, + >
t:an be characterized in terms of some pt'rit)dicity (see [G ,S 66] )

T\vo st rrlctlrre sl are saicl interdt'fin,rt)ll' if the c-1,uses t+f defirrablc rI’I,it ions are the 5,ime in
1)1)th st rtrcturt's,

Sect ic)n 7 is concl'rllpd with sollle opf'n (Ill('stiolls related to theorern \



The results S and V are summaNzed by the following picture (k and / multi-
plicatively independcnt)8

/
< IN , + >

\

< IN , +, uk >
\

/
< IN ,+, Il >

< av, +, vI, A >

Figure 1. Theorems S and \’

\Ve can now end this section with our first question
I,From a logical point of view Semenov’s theorem says that : for A and I multi-
plicatively independent , let PI be a formula in the language <' +, % > and PI a
formula in the language < +, Il >, if Pk +, PJ in the theory of <’ IN ,+, YE , V} >
(which is the theory of < IN , +, ' >), then pk and pr are equiva]ent to a formula
so in the language < + >=< +, % > n < +, II >. This raises the following
questIon

Question 1 is it true that the follouiing interpolation holds whenever k and I
are multiplicatively independent?

Let pk be a formnla of < +, vh > and pl a formula of < +, vI >, if pk –+ PI
in the theor I of < IN ,+, vI„ VI ) , then thCTe e£ists a fOTmuln p in the language
< + > sqct\ that pk –* p –+ VI (in the theoT I of < IN ,+, vh , vI > of covrse).

3. Around the proofs of Cobham’s and Semenov’s
theorems.

In [Eil 74, page 118], S. Eilenber}, challenged people to find a more reason-
able proof of Cobham’s theorem. The original proof was combinatorial and
quite technical. In 1977 A. Semenov extended Cobhanl’s theorem to higher di-
mensions (theorem S). Thc proof in [Sem 77] was complicated
Eilenberg’s challenge stimulated work about Cobham’s theorem. In 1982 G
Hansel pointed out an intermediate result already present in Cobham’s proof
(called below theorem CH) . By using it in a clever way (see [Han 82] and also
[Per 90] ), he succeeded in giving a more reasonable proof of Cobham’s theorem
In 1991, A. Muchnik (see [Much 91]) gave a comprehensible proof of Cobham’s

gIt is easy to show (see for example [B,H,NI,V 94, pages 213-214]) that <’ IN, +, II > and
< IN, +, I'’I > are intcrdefinable whenever k and I are rnultiplicatively dependent
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Sc'rnclrov’s t,ll('ororlls. TII(' proof is I>ik'red OII his pow('rnII definabilit,y crit.e-
rion (see section 5) and on a fine study of combinatorial properties of equivalence
relations associated to =k-autorrtata (src also [13,H,M, V 94] for an exposition of
this result). It is much simpler than Semenov’s proof and also gives a new proof
of (Joblranr’s tht'orcnr. In [XII, ViI 93] antI [MI, ViI 94] \vc formulate ( 'obham’s
and Scmenov’s theorems as stated in sect,ion 2 by using Buchi’s theorern. Then
\ye succeed to prove thorll as corollaries of new result,s on Prosburger Arithmetic
(theorem E and theorem M\’ below)
For additional details about the different proofs of(:ot)hanl ’s an(I Semenov’s t,hp-
orems, the readrr can rc’ad the bibliobraphic notes of the survey [B,H,M,V 94.
pages 219-220]

In the refer:lining of this section we Liv(' t.lle architect.rrrc of our proof of Cob-
ham’s ,md Scmc:nov’s thcorcnrs as it dpjlr'ars ill [NII, ViI 94]

\\’e need tIle next dcfillitiorls

Definition Let /, = {/„ ; n e /,V} be a subset of IN listed in increasing order.
Let DL bc tIle lllaxinrulii of t,llc srt {/. + 1 / n; n e IN \ if it rxibits and infinity
other wise

Definition \Ve say tllat, a subset 1, of /,V is t rprul ding if DL = x,

R,ernark DL < oc if and only if tllere is a I)oulld on the distance between con
s('clrt,ive c'lcIlrrnts of /,

\Vr first. prove t.llr' nt'xt, r€'stIlt, al)OIII dcnllability in brest)llrger Aritlrlrrrt.ic

Theorem E Lt’t /. C /X. If 1, is not. (Irfinablt' iII < //\', + > , then there is
a L’ C IN dcfi11able ill < /.V, +. E > . wtlicll is expanding. ( Actually we give
t \vo oxplicit sets one of which can be chc>son to be 1.1 . see scrtion 4)

\Ve also tlst' thc followillg thcorent tIlle to ('obllarn and TIansel

Theorem CH 1,et L and / I)e nrllltiplicativ('ly in(lf'prn(lf'nt. If T' g IN is I
and /-definable, tIle’n it is noll-exl)alldillg

\Ve call now gi\’t’ tIle 1)roof of tIleoreIn ( I

Theorem C (Cobharn's Tlr( 30rcini) I,I't I alld I I)(’ lrrultil)licat iv(’Iy ill(lol)OII
dent . If /, C IN is I- and /-definable. t holt /, is (]t’flnablo ill Prost)urg('r Arith
Irretic (i.e. iII tIl(' structure < /,\', + > )



Proof Let E C IN be k- and I-definable and not definable in <, IN , + >
By CH, L is not expanding. Applying E we get an L1 C IN which is expand-
ing. Still by CH, L1 is definable in < IN ,+, L > , so it is A- and I-definable
This contradicts CH

Now we turn to our proof of Semenov’s theorem Let us recall it

Theorem S (Semenov’s Theorem) Let I and / he multiplicatively indo
pen(lent. If Lg IN " is k- and /-definable, then Z is definable in Presburger
Arithmetic

Proof Immediate from Cobhanr’s theorem and from the following result on
Presburger Arithmetic

Theorem MV 1, q IN" is definable in < IN , + > if and only if every subset
of JN which is definable in < IN ,+, L > is definable in <, IN , + >

The proof of theorem NIV uses A’luchnik’s definability criterion (see section 5)
Theorem NIV allows us to lift definability results from dimension 1 to higher
dimensions

Each of the next three sections is devoted to the discussion of a single step
of our proof of Cobham’s and Semenov’s theorems: theorem E in section 4
theorem MV in section 5 and theorem CII in section 6

4. Around Theorem E.

In this section we make the statement E more precise and formulate some open
questions about it
We will need the following notation

Notation For L C IN and n, m e IN let

L[n, In] = {r e IN -, n + re L and n + r $ m}

We will say that L[n, m] is a factor of L of length9 m – n

Remark Often in language theory one identifies I, C IN with the infinite word
ItIL on {0, 1}, having a 1 in position i if and only if i e L. With this point of
vie IV L[n, m] is the analog of the factor trl/[n, In] (formed of the n-th to m-th

git would be more natural to say of “length m – n + I" , by choosing "m + n" we avoid
superfluous technicalities in the following computations.

8
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syrnbol of III) of the infinitc word III/
and only if mt jn, m] = uu. [n/, rn’] .

Hence we have that /,jn , nI] = /,[n/, rnII if

For n, in, k c IN such that n < rn and m – n = [. \ye have that [[nIm] g
{0, 1, . . . , k} . llcllce for a fixed I there are only finitrjy many possibilities For
L[n, m]. Thereforr for any k there is some factor of lcngth k which is repeated
\Ve will nrakc use of this fact

\’Ve will first define two functions dl. and dr. and then 1110dify then1 slightly
in order to obtain two nondecreasing functions dl and at

Definition Let. L C IN . Define dr, : IN –} IN to be the function which sends
It C IX to the slllallcst n,it ural nurnbcr it + 0 such that there exists an a e IN
\vit, 11

/.[a , a + n] = L[a + d, a + d + n]

As said before, t.llerc are only fillit.ely Ilrany factors of length n, hellce there
is at least one of thel11 which is repeated. Therefore dl is defined over all of
/iV. Actllall}’ d J.(n) is t,llc snlallest. distance t)y which y011 can shift, a factor of
length n iII order to recover alrotller copy of it.
The followirlg fact, will be llseftll

Proposition 4.1 dr. is an 110nderreasing function

Proof Trivial. if one thinks in terms of factors (see the remark after t.he dchni-
lion of L[n , nl] )

Definition Let /, C IN . I)t'littt' t\ 1, : 1\ –. IN to t)f' tIlt' fllnction which sf:nds
n e /,\’ to the snlallost llatllral lllllnbpr rl sllcll that

L[a, a + n] = f.[a + Ill.( I1) . a + d[ ( n) + n]

R.enrark Ilt'nce dl( n ) is the smallest position ilt. wllicll starts a factor of lellgth
71 repeating itst'lf at dist,a11ct' dl(I1)

It, wc)II1(1 Ii(’ collvcnicnt (for tf'chllical rP;rsons only apparent in the proofs) to
have that al is lrondecreasillg. Sillcc t.llis is not always t.he case, we will lleed
t,llc following (lf'finitioIIS.



Definition Let U g IN be defined as follows. There are two cases

1. If lin& L is finite, thcn take U = dil(s), for the smallest s e llnFIL such
that dj1(s) is infinite. (wc denote by ima the range of a.)

2. If Im&z is infinite, then let U = { r e IN -, al(y) < al.(r), for all y < =}

In both cases U is infinite. Furthermore the restriction of al to U is nonde-
creaslng

Definition Define dl : IN –' IN to be the function which sends n c IN to
dl(m), where rn is the smallest element of U which is greater or equal to n

Definition Define at : IN –+ IN to be the function which sends n c IN to
at(m), where in is the smallest element, of U which is greater or equal to n

Hence it is clear that

Proposition 4.2 The functions dl and at are nondecreasing and also

I[at(n), al(n) + n] = L[al(n) + dl(n), at(n) + dl(n) + n]

Nloreover we have

Proposition 4.3 The functions dl and al are definable in the structure
< IN .+,L>

The proof of proposition 4.3 is straightforward by tracing trough all the previ-
ous defInitions

We can now state a constructivelo version of theorem E.

Theorem E Let E C IN . If 1, is not definable in <' IN , + > , then either
IITtd L or Ima 1. is expanding,

The proof follows from the following combinatorial lemmas

Lemma 4.4 if / in(fl, and Ima L are non-expanding, then dr. is eventually
constant.

loin the sense that if L is Ek-recognizable, then Imd 1. and Ima L are EA-recognizable

10
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Lemma 4.5 if /7rzrr L is non-expanding and dI is eventually constant, then I
is ultimately periodic, hence it is definable in < IN , + >

The reader will find the proofs in [MI, ViI 93] and [MI. ViI 94, section 3]

In [MI,VH 94], \ve give two subsets Ll, L2 of iN with the following properties.

1) ITndl, is non-expanding and Ima L, is expanding

2) Imdl_, is expanding and Inral, is expanding

LI is the set of powers of 2. One can easily show that dl, = 1 and cib, (0) = 1
and at, (n) = 2Fl'’g2(n+3)1 for n > 0

Lz is the Tllue-Morse set, i.e. tIIt' set of lratural numbers which have an even
number of 1 in their representations in base 2,
In t,llis casr’ wt' ttavr

r//. , (O) = 1 , rtl ,(1) ) = 1

{

2jlng-'1 r1 - 1 )J . ii if n is oven and n + 0
dI. ,( n ) = 21IDg'’[“+ 1 ’*J if n is o(Id

f 21l'~£-1 ’' – 1 )J . II if II is t'vr’n all(1 rl Z 0

' IL’(n ) = i 2[l'’F.' „+1 )J if n is odd

1-Ijl' rf'acl('r \viII fillcl all fIt c' r]ct.;tils! of t}tt' ronrpIItiltiorI of d I. all( I (\ 1, in 1)ot. Il
rasrs ill [ III.\'iI 9 +]

Fllt'rc is IIO\V a llatrlral t{licstiolr

Question 2 Doc.\ th crt crlsts cr snll.';ft L of IN such that Imdr.Ln) is e=panding
and IInt\ I. is Iron-cTP(lbdinq ?

RcrnnTk \ etc Ihnt both of the srts, f,1 abd LI an '2-rrcognrzable srts. These
tTamples nba thc frcllng that a srt saslrfyrng thc conditions rcquircd zn question
I should hr strnnqt mntrrntr thc fOllOu'Ing ron]tcturt by G. tlansrl

Question 3 if L is k-rrroqni=ablr for sr/m c k . thcn Imdr. IS c=pandrng implies
that IIn( IL is (Tpan,dIng.

1



5. Around Theorem MV.

Up to now there is no good notion of expanding subsets of IN" for n > 2
in the sense that we cannot extend theorem E and theorem CH to higher di.
nrensions in a direct waY.
This difficulty is turned by theorem MV which yields an extension of theorem
E to higher dimensions
In the sequel we will use the following definition and notation

Definition Let R C IN" . We say that R does not eTtend < IN, + > , if every
subset of IN which is definable in < IN , +, R > is defInable in < IN , + >11, i.e
is ultimately periodic

Remark We consider functions as relations, so the above concept applies also
to functions

Notation Let r e /,V" , f = (rr , rn ). We will write (f),' for ri

Let us recall the nontrivial part of theorem N'IV

Theorem MV Let I be a subset of INn . If 1, does not extend < IN , + >
then E is definable in < /Ar, + >

Ill the remaining of the section we discuss it
First we will give the proof of a very simple case of theorem MV which is ap-
pealing. Then the proof of the theorem consists in a reduction of the general
case to this special one by using Muchnik’s definability criterion. In the sec-
ond half of this section we examine sonre conjectural extensions of theorem MV

We begin by the simple case of theorem MV

Proposition 5.1 Let i be a function from F to IN" , where Y is an infinite
subset of av. Let us assume that (/){ is nondecrcasing for all i = 1, . . . , n and
increasing for SOme f C { 1, - . . , n}
If I does not extend < IN, + > , then f is definable in < IN, + >

Before to go through the proof we need some definitions

Definition We will say that Euro sets u and to are equal almost eur lu)here (no-
t.ation u =,.,. lo) if the symmetric difference of u and u' is finite
In the sequel we will also write u ='„. u,' for functions. In this case the notation
is intended to mean that the graph CIf I’ arId the graptl of t'' are equal almost

il.r\

11 Tl tIll? 'r ]lrel wc \yjII t-orlbidcr' this rllrtitlll rf'lativt'ly tl) other structures i )n IN

12
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Definition Let L g INT\ and i c zz " . We denote by E + L the set { R + ie
INn -,t e L}

Remark Remember that L g IN is definable in <, IN , + > if and only if
L ='.,. = + /, for some non-zero = e IN

Definition We will call a subset Z of IN" a line if there exist two elements a
and b in IN" such that I = {d + J . b; je iN \ . The lines are ultimately periodic
sets of IN"

Remark Note that for 8 c IN" the family of lincs F(i) = {i + j . i; je IN} is
definable in < IN ,+ > , i.e. there is a formula pCe, g) equivalent to g e F(#)

Definition Let It’ g U x H and let u : [F –p lt' . For a e F we denote by
lulu( n, .) the set {u(a, y); y e F}
For u : F –+ IV, Imu(.) denotes {u( g); y e F}

Let i be the function associated to the line {d +j -b; je IN \ , i.e. /(j) = d+j -b
it is clear that I is definable in < IN, + >
Moreover I satisfies the conclusions of the following lemma which is the key to
a proof of proposition 5.1

Lemma 5.1 Let, f : F –> INTI , Under the assumptions of proposition 5.1 \ve
have that

a) there exists a c INn , i + 0, such that Imf[-) =, .,' i+Im/(.)

b) G = {E c ;z ” ; Imf(-) =,.,. i + /m/(.)} is a non-trivial additive group
generated by one element of IN n

Proof of lemma 5.1 and proposition 5.1
Since for all f = 1, - - - , n (Im/(-))i is a subset of 1,V definable in < IN , +, f )
it follows from thc fact that i does not extend < //v, + > that (Im/( -)),- is
ultimately periodic for all i = 1, . . . , n. Therefore since (/)i is nondecreasing
(i = 1, . . . , n) there exists a finite set, S C fAr” such that for all u e V /(u+) –
/(u) e S, where u+ is the successor of u in Y. Let Ai be {o C A; J(u+ ) –
/(r) = i}, i e s. Note that Ui€s Ai = L’. Since the sets Ai are definable in
< IN ,+. i > they are ultimately periodic (Hl = F c /IV), hence there exists
ai + 0, bi e IN such that for u = b., II e Ai if and only if u + a, C Ai. Let
h be the maximum of the bl for i e ,S and a be the 1.c.m.12 of the al, i e ,S
Obviously we have that for all i e S and for all u > 6, ?1 e A, if and only if
tI + a C /Ii

121.c.m is a shorthand for least common multiple

13



Let us now show by induction on u th,it /(u + a) = /(u) + [/(h + a) – /(b)],
for all u ? b. Note that since (/m/(- )),' is increasing for at least one i1 we
have that. llb + a) – /(b) + o. Taking ILb + a) – /(b) ,b the value of d1 Ive
will have that Im/(-) = e+lrn/(-) (e.f.m.p), Let us remark that i is in IN"
since the (J),- (f = 1, - - - , n) are nondecreasing. For u = b there is nothing
to show. Suppose it holds for u. If u e Ai we have that u + aC ,4g and
/((u + a)+ ) = fLu + a) + s and f(r+ ) = /(u) + s. But (u + a)+ = u+ + a. So Ive
have that J(u+ +a) = f((1,+ a)+ ) = /(t, +a)+i and using induction hypotheses
we h-v' that It-+ + '1) = /(-) + J + [f(b + -) – /(b) I = /(“) + [/(b+a) – /(b)]
So part (a) of the lemma is proved

Since every llatural number u ? 6 can be written as I'o + j . a with b < yo <’
b + a and j c IN tye have from the precedinb paragraph that /(u) = /(Vo) + j . e
(for u ? b and I = /(b + a) – /(b)). Thus the graph of i is an union of a finite
set of points and of finitely lnany parallel lines (there is at least, one line since
V is infinite). From the remark about lines preceding the proof it is now clear
that (b) holds ,ind that J is definable in < //v, + >

The next step towards a proof of theorem MV is a uniform version of part (b)
of lemma 5.1

Lemma 5.2 Let to : IV –' IN1\ . where iT is a subset of IN2 . Let fr be the
set of u such tllat tu(u, r) is defined for an infinite number of r. Suppose that
ul does not extend < IN , + > and that for all u C IV, (m(u, .))i 13 satisfy the
asumptions of proposition 5.1. Let a„ e ]NTI be the generator of G(u) = {i c
Z " ; lulu1(u, -) ='.,. i + Imu1(u. -)} given by Lemma 5.1 applied to to(u, -) (for
u C W/). Then there exists a bound c e IN such that II d„ II< c for all a e @.14

Proof it is clear that IT is definable in < IN ,+, tu ,> . We want to show that
there exists a bound c e IN such that for all u e LP II in IF< c . Now in
order to show this, it is sufficient to sIlo\v that. for all i = 1, . . - , n there exists a
bound c,' e IN such that for all n e it (a„ ),- < ci. Let I„ = {t/ e W; u' < a}
Let IF,' : tV . IN be the function which sends u to the smallest non-zero
element of n,,cru(G’(u’)),- (which clearly exists since it is well known that
n,,c/ < (f„ ),' >=1.c.in.({(?„f),-; a’ e /„}). The function ui is definable in
< IN , +, tu > , therefore Imui(') is ultimately periodic (note that Imui g IN )
Now from the fact that ui(u) is given by the 1.c.In.({(d„1){ ; 111 e /„ } ) it is
easy to see that there exists a bound to the set of (d„),' (u e W). Indeed
take a1, u2 e IT with a1 < 112. Now' r,'(ill ) =1.c.m.({(i„bi; a’ c r„, }) and

13ut(u, .) denotes the function that sends j to IL.(u, j)
14 DefInition Let = = (T1, . . . , r„ ) be an element of INn . Here the norm llill of t is the

maximum of {r, ; f = 1, . . . . n }. It is clear that for n fixed, the norm is definable in Presburger
Arithmetic
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u,-(a2 ) =1.c.m.({(cHi),- ; u[ C /H, }). Thus u,-(u2) is a multiple of u,-(ul ) (at lchst
2oi(al ) if thcy are different). But this argument can be applied to any pair of
consecutive clemcrrt,s of Imu£(.). So since there is a bound to the distance be-
tween consecutive elements of Imr,','( -) (/mu i( -) is ultimately periodic), we have
that there exists a bound to the set of (r„ ),- (a e +V)

The last step of the proof of theorem MV uses Muchnik’s definability crite-
rion. This beautiful characterization of definable relations in Presburgcr Arith-
metic generalizes in higher dimensions the fact that subsets of IN definable in
< IN , + > are ultimately periodic
Before to state it we need some dCfinitioIIS

Definition Let t C IN" . A section of Z is a set of the form
{(r1, . . . A,r,'+2,,..,r„);(r1, . . . ri, r, ri+=, . . . , rn) e L}, for a some element of

/A

Remark if I C INn , tllen its sections are subsets of IN"–\ , which are definable
in < IN ,+, 1, >

Definition Let L C INn . i e INn and m e IN . The J,-ctrbe at i of size m is
the set al(E, m) = {# c INn-, i + ie L and IIiII $ m}. Here f + g represents
tIle component-wise addition

Remark Cry(E, in) is drfinable in < FN, + >

Definition Let L E iNn and F e TN'1 . If CL(E, m) = cl(i + f , m), Ive will say
that Ct (i, m) can be shrFtt d by r

Theorem M (Mrrchnik’s defirrability criterion) A set 1, g IN11 is clcfinablc
in < IN ,+ > if and only if the following conditions are satisfied.

M. I Every section of /, is d('finablc in < /,V, + >

M.2 Thrrc exists an s C /,V such that for any size k there is a bound / for
which every E-cube of size k at some = with TB r T !> 1 can be shifted by
f1 , for some f/ C IN" of norm less than s.15

Our staterrlent of Nluchllik's definability criterion is slightly difFerent from the
original one but it is easily seen equivalent,

15This second condition is a first-order statement of < IV, +, L > . In fact the whole
criterion can bc exprt'ssed us a first-ortler statement of < /N, +, /, > . This is trivial in
dimension 1 since condition \I.1 is empty and condition M.2 is equivalent to 'L is ultimately
periodic’. The general case is proved in [Nluch 91] and [B,H,M, V 94, proposition 8.2].
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The reader will find proofs of theorem M in [Much 91],[MI, ViI 94, section 5] and
[B,H,M, V 94, pages 221-222 and appendix]

Now the remaining of the proof of theorem MV is reminiscent of the proof
of the constructive version of theorem E : we build two functions fl and hr.
which are definable in < IN ,+, L > . And we prove that they have “non ez-
pansion” behaviour if and only if conditions M.2 is satisfied by L. Then we end
by induction on n (L g /Af-) to show that condition M.1 holds

In the next lines we give the flavour of this quite technical construction and
of the final step in the proof of theorem MV without giving explicit definitions
for the functions fl and hl. For a complete proof the reader is advised to look
at [MI, ViI 94, section 5]

Let us remark that the negation of Muchnik’s second condition is

For all s there erists a size k such that above any distance I of the origin
uteTe is a L-cube of sfze k which cannot be sttijted by a vectoT of norm smaller
Ihcin 5

sketch of the proof of theorem MV
Let us assume that L (a subset of IN" ) does not extend < /N, + >
Let Ml/ = {s C IN ; there exists a k for which above any distance I of the origin
there is a E-cube of size k, which cannot be shifted by a vector of norm smaller
than 5}
The set ME is definable in < IN , +, Z > . Obviously Muchnik’s second condition
is equivalent to MI. being finite.
Then we build functions hI : LU/ –> /iVn and il : M£ –+ IN where IPI is a
infinite subset of M L x IN such that each section { r; (s, r) e PVI } is infinite
for all s in M L . These functions are definable in < IN, +, L > (hence their
domains are also definable in < IN , +, I > ) with the following properties

C.1 (hr(s, -))i is nondecre using for i = 1, . . . , n (as long as it is defined) and
increasing for some i

C.2 (;r. (hr/(s, r), fl.(s)) cannot be shifted by a vector of norm smaller than s
for all (s, r) C +vIz

C.3 Cl. (hl(s, z), /I.(s)) = cl(hl(s,a. a (s)) for all (s, r), (s, y) e tFt

Condition C.2 is clearly related to the negation of condition M.2
On the other hand L does not extend < IN, + > , so the function hE does
not too. Thus by condition C. 1 the function hl verifies all the assumptions of
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lemma 5.2 and so thrEe exists b. E INn and b e IN such that Itnhl_(s, .) =, ,
b, + Imhl(s, -) with II b, II< b. Let fix s, then for all but nniLely many = in the
domain of hb(s, - ) wc can find ty in this domain such that IIbt(s, I/) – ht (s, z)Il =
16,II < b . No\v from conditIon c.3 \vc deduce that for such a = the L-cube

6'r.(h/J(s, =), /IJ( s)) can be shift,cd by a vector of norm sin,rllcr than b, So by
condition C.2, ifs > b, (s, r) cannot be in it’b, except for finitely many a in
IN . Hence s cannot be ill A/L (since the sections of [VIa above elements of ME
are infinite). Thus A/L contains only elements s smaller than b, i.e. A/L is finite
and condition II.2 holds
No tv let IIS remark that the sections of L are subsets of INn–\ . which are de-
fillable in < IN , +, L > . So they satisfy the assumption of theorem MV. By
indtrct.ion on n we can conclude that sectioIls are definable in < IN , + > , so
condition Al.I llolds and finally I is definable in < IN ,+ >

III the remaining of t his section \ve explore possible extensions of theorem MY
Let us say that t,heorcnl NIV Ilolcls for a structure A =< IN , ... > if every
R C IN" which does not extend .A, is definable in J
First, 1(’t, us remark t.llat tlleore111 XIV dot.s not. llold for Congrtlcnce Arithmetic
i.e. for the structure < /A’,=(nrod n) >ne IN16 . Indeed the tcrnary relation
'= + y = =" docs not extend < IN . = (iliad n) >„EIN and is not rIc hnnble in
< IN, = (mod n) >„c/,v. The proof of this folk fact is left to the reader (see
also [End 72, ctraptcr 3])
Theorem MV holds for Peano Arithmetic, i.e. for < /IV, +, . > but for a sonre-
what trivial ramon : it is a consequence of thc existence of a definable (in
< IN ,+ .- >) pairing function
It is also a folk fact that there is no pairing function which is definable in
< IN .+ >
Ul) to Ilo tv we callnot. prov(’ or (lisl)rc)vt’ t.lleort:Ill At\’ For Biichi Arit}rlnetics

Question 4 Docs thcorenr i/ \' hold for Birhi Arithnrctics?

Ill order to go furth('r in our (liscussion, \vc look at tIlt' following binary predi-
cate dijl(= , g), meaning that. a divides y. This example illunrinates the scope of
th('orerlr NIV and t.heorerII NI (in tllo case of < IN , + > )
First it is easY to sho\t that conditiolr XI. 1 of \Iuchnik's theorem holds, i.e. the

sections of dir(r, y) are drfin,tble in < IN . + \- . It is obvious that di?l( r, I/)
is the llnion of all t,ht' lines17 of eqrlat,ion .y = irlr , III C IN . Hence the section
above = = t is hf'rr tIlt! uniolr (for all liz ill IN) of tht’ intersections of lines g = in r
and r = f , t.hIIS it, is tile set. of nItlltiples off a.tld so it is llltiInatcly periodic. The
section above u = t is tIlt’ lllrioll of the intersect iolrs of liIIes y = mr and u = f

lc The symbol = (mod n ) r(•presents thr binary relation nlodltlt) n
17By thc line of cquatitin y = ar + b, \ve nrcan the sol {(o, b) + J( 1, a); j e /N}

defInition agrees \tit h thI? previous (lne mr a line in the cine of 1\’2
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Since these intersections are empty except for finitely many m, the section is
finite (it consists of the divisors of f). in fact the same argument shows that the
intersection of a line y = ar + b with cHu(r, y) is always finite
But condition M.2 does not hold for L = dill(=, g). indeed when we look at an
L-cube of size k, sufficient,]y far away of the origin (0, 0), two cases happen
the E-cube is empty or it is a finite part of a line of slope m for some m (more
precisely a set of the form {(r, y) c INI -,y = mr + b and y $ b}). In the first
case there is no condition on the vectors by which the E-cube can be shifted; in
the second one the L-cube can be shifted by only multiple of the vector (1, m)
It is clear that this prevents us to find a bound on the norm of the vectors by
which the E-cube can be shifted, as required by condition M.2
This shows that cHu(=. y) is not definable in Presburger Arithmetic dnd answers
by the negative the following natural question

Question 5 Let L be a subset of IN2 , of which all the intersections with lines
of INI are de$nnble tn < IN , + > . Is L de$nuble in < IN ,+ > ?

By theorem MV, we have that div(= , y) extend < IN , + > . This can be directly
shown. Hereafter we sketch a folk argument which proves that < IN , +, div >
and < IN, +, . > are interdefinable
It is obvious that the function a2 + z is definable in < IN, +, div > by a for-
rnula which says “y is the smallest natural number divisible both by z and
r + 1” . So it is clear that the function a2 and the set of squares are definable
in < IN, +, div >. Thus divjr . y) extend < IN , + >
Now by using (r + y)2 = r2 + 2=y + gZ , it is easy to define multiplication in
< IN , +, div >
Conversely definability of div in < IN ,+, ' > is obvious
By using (z+l)2–z2 = 2r, it is easy to define the function z2 in < IN, +, SQ >
where SO is the set of squares. This finally shows that < IN , +, cliu > and
< IN ,+, SO > are interdefinable
This leads to the following question

Question 6 is it trIte that for all L C INn ,(n k 2) , there crisis P g IN such
that the stractzre s < iN , +, L ) and < IN ,+, p > are interde Pnab le

There are some trivial results in this direction. We begin by a lemma

Lemma 5.3 Let L\,. . . , L, be subsets of IN. Then there exists L a subset of
IN such that <, IN , + , L\, . . . , r, > and < IN ,+, L > are interdefinable,

Proof We give it for $ = 2, but the generalization is easy. We define Z as the
union of 2£1 and 2/,2 + 1. It is obvious that L is definable in < IV, +, Ll , £2 >
conversely r e £1 (respectively a C £2) is definable in < EV, +, E > by the
formula 1;(z = = + r A : e L) (respectively Ii(z = = + r + 1 A : C L))

8
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It is now trivial to show that questioll 6 has a positive answer for all <’ IN ,+, I, >
in which the nrultiplicatioll is definable. In this case there is a pairing function
which is definable in <’ IN ,+, L > . So there exists L’ such that ,' IN \\\ L )
and < IN.+,-.L1 > are intcrdcnnat)Ie. No\v we can replace - by SQ (see the
argument above). We bet the result by applying lemma 5.3
An easy argument proves that question 6 has a positive answer when L is the
graph of the function /(r) = 2;. It suffices to remark that i is definable by
adding the range of I and the set {r + /(r); re /N} to Prcsburger Arithmetic

A. Semenov gave a subset, P of IN such that <, /IV, +, Hz > and <' IN ,+, P \>
are interdefinable (see [Sem 84, page 173])

We end this section with a remark by R. Solovay

4 positive answer to question 6 implies a positive anstver to question 4

In fact a positive answer to question 6 implies that theorem MV holds for any
structure < IN ,+. L'' > (F g //v” ). Indeed Let 1. be a subset of INF which
does not, extend < IN , +, I“ > . A positive answer to question 6 implies that.
there exist.s P C IN such that < JAr, +, P > and <’ IN .+. /, > are interdefrn-
able. So P is definable in <' /IV, +, I'’ > (since £ does not extend <' IN ,+, r />
) and thus L is drfin,ll}ie ill < IN , + , V’ /

6. Theorem CH and Further results.

Clearly the statements of theorem C, theorem S, t}leorem E, theorem MV and
thcorcrrl V as stat,t’d IIt’rt? art: frcl(' of autolllata flavolrr. The santo is true for their
proofs. The link with automata theory is only via theorem B. Theorem CH has
a particular st,atlls. Its st,atenront is free of alltorrlata theory but the proofs of
CH in [Co 69], [11an 82] and [Per 90] are combinatorial and use automata the-
ory. Even Olrr proof of it, although written iII our logical framework, strongly
uses theorem B and a basic fact, of automata theory : the pumping lemma (see
[MI,ViI 94, section 4])L8. Theorem (;II has also a particular status with respect
to the other ingredients of our proof of Cobham’s and Semenov’s theorems: it
is the only ingredient which is specific to < IN ,+, }} > and < DV, +, A >
All of the remaining of ingredients are abollt Presbur},Pr Arithmetic. So if we
are able to prove a t,ht''orem CII about two extensions of Prcburger Arithmetic
say < /Ar, +, /\' ) all(I < /N, +, /, > , we immediately have a theorem S for
< /N, +, A- > alld < /,\’, +, Z > , ib the proofs in section 3 show it

18 And, as in all the prt)t)fs c)f CII. \TO llse thc fo11r,wing cquivalent form of the essentia1

dssumptictn “k and / are multiplicdtivcly indepl'ndent" : { M; m, m e &V} is dense in IR+

1 S)



In fact the proofs in section 3 show that for a pair of structures <' /N, +, K >
and < IN ,+, L > the following three statements are equivalent

Theorem CH holds ++ Theorem C holds +, Theorem S holds

So we can ask the following

Question 7 For which pairs of e:tensions of Presburger Arithmetic, < IN . +, K )
and < IN ,+, L > , does theorem CH hold?

Clearly Cobham’s theorem gives a list of such pairs of extensions of Presburger
Arithmetic. From some years, there are attempts to extend Cobham’s theorem
to Bertrand numeration systems (SPe [Fab 92] , [Po 94]) . These attempts extend
the list of pairs of structures < /N, +, A’ > and < IN ,+, L > for which theo-
rem CH holds (and hence theorem C and theorem S too)
Fabre’s thesis ([Fab 92]) is written on the viewpoint of automata theory. But
again there is a “Bachi theorem” for these numeration system (see [Br,Han 94])
This result allows us to explain the state of the art in our logical frame.

We first give some definitions for an arbitrary numeration system

Let U = (1.f.)„eIN be a strictly increasing sequence of integers with Un = 1
Any integer a > 0 has one alrd Olrly one representation

r = noUn + al Ul + - . . + am Um

with respect to U, using the so called greedy algorithm (see [Fra 85]) ;
let m such that U„, $ = < Um+ I and to = =. We compute by induction on i,
i = m, . . . , 1, 0

ai = r,' div (4 , zi+r = r,' nrod £4

We only consider sequences IJ where ratios Un+\ IUn are uniformly bounded by
an integer constant c (with c minimal). In this case we have a,' < c for all i

Definition With the previous notations, we say that U is a numerat ion sys-
lem and A = {0, 1, . . . , c – 1 } is the alphabe I &ssociat,ed with U. We call U-
representation of r the word aoa1 . . . am of .4' obtained by the above process.
By definition, the U-representation of 0 is the empty word
in the sequel we will denote the U-representation of = by k]u. Any word
u = C)#[r]u, with k = 0, is called normaIIzed. We denote by N the set of
normalized words. Conversely, for any word u = anal . . . am e ,4* , we call ualue
of u the integer K(u) = E:’:o ai hI
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Let us remark that if IT = (k")ncIN with k : 2, the previous algorithm corn-
putes the usual k-a.ry representation of r

Given a numeration systenr U, the set Af may have an unexpected behaviour
for some u, r e x* and k > o, u e j\- but ut)# e V, uu e X but u ( N
In [Bert 86], BcrtTand numeration syslrms are characterized such that this be-
haviour is forbidden. They are related to a-expansions of real numbers

Let a > 1 be a real number. For any = C IR , denote by [r] its integer part
and by {r} its fractional part. Any real number = C [0, 1] satisfies the equality

(t)

rIn = [ Orn], IIlith z1 = = and rn+1 = {arm }, for any n : 1

TIle infinite sequence cCr) = (an )„> 1 = a1 - ' - a„ . - - is called the C)-ctpansiob
of r. A particular case is the 0-expansion e(1) of the number 1. In the case it
ends with all infinite sequence of 0’s, i.e. c( 1 ) = at . . . at_laLo'’ , ak > 0, then
we put instead

c(1) = (al . . . at–1(ak – 1))"
This new sequence also satisfies equality (t)

where

With this convention, one can show that, for all n E IN \ {0} , an < g, The
alphabcl O associated with 0 is then defined as {0, 1, , , . , [0]} if Pe IR\ IN , and
as {0, 1, . . . , a – 1 } if ac /N

The set So of a-expansions of an r e [0, 1] is a suFishift of An’, called the
n-shiFt. We denote by /,(a) the set of finite factors of the sequences in so
The form of r( 1 ) implies some proprrtics for the a-shift : for example
c(1) is ultimately periodic if and only if the language L(g) is O-recognizable

Examples
1) Let a be the goldrn number cb = it,W. Then c(1) = (10)'’, the initial form
of e(1) being 110“'
2) L,t 0 = d2 = 3tP, th,„ ,(1) = 21“

Theorem 6.1 Let IT 1)c a nrlmerat.ion system and .V its set of normalized
words. The following are equivalent

1) Let u, u e ,4* , let X’ > If ?r C ,V, then nOt e .\- ', if ut; e N, then u, o e N

2) There exists a real nurllber P > 1 such that .\- = Lta:

21



A numeration system which satisfies (2) will be called BerITand numera££on
SBstem associated to the 0-shift.

The reader will find more information on nurneration systenls and 0-expansions
of rcals in [Bert 86] , [Rert 89] , [Fra 85] and [Pa 60]

Assumption 1 in the sequel me always assume IAaf U is a Bertrand n&meru-
tion system associated to a o-shift such that L(0)=N is Ci-recognizable

In this case, one can show that the numeration system IF is defined by a linear
recurrence of order k, for some k ? 0 (defined with respect to e(1)). More
precisely, there exist integers 71 , . . . , 7t , such that for any n ? k

U n = 71 Un – 1 + l2Un –2 + • • • + lk Un – k

Let P(X) = Xk – 71,\-k– 1 – - . ' – -1 b. bc the chaTucltTtbLrr polynomial of the
linear recurrence Then a is root of /’(X) and the other roots have absolute
value less th;in 2 (scc IPa 60])

IIere we wi]] nIiIke an extra &sslrmption
Assurnption 2 fAr roots a2. , , . . Pk of P(X) noI egBal to 0, are simple and hat;e
absolute value less than 1

In particular, assumption (2) hold if P(X) is the rninimal polynomial of a Pisot19
nurnber P

Examples
1) if a = h e iN , t.IIen I in = 1 and Un = k Un_ I , n ? 1

2) if g = d, then (h = 1, tfl = 2 and (L = F. _1 + II „_r for all n : 2. This is
the Fibonacci numerat.ion system. In this case ff will be denoted by F ib

3) if a = #2, then bro = r = 3 and ( fn = 3[Fn _ 1 – Un_2 for all n > 2

Definition We will sav that a subset ,\- of IN is / --rfcnqnt=nbjr if L = 0*r(X)
is (-)-recognizable

Now we introduce the structure < IN , + , I’(r > where HJ is the function de
fined similarly to uk by
for all = + 0 with [=]u = aa . . . am , it is the smallest tO such that aj # 0

19 A Pisot number is an algebraic real a whose all the conjugates difTerent from 0 ha\’c
bsolrrt .1 1 th
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Theorem 6.2 Under the assumptions ( 1) arid (2) of this section, a set X C IN"
is U-recognizable if and only if X is definable in < IN ,+, Vu >

This extension of Biichi’s theorem is due to V. Bruy bre and G, Hansel (see
[Br,Han 94]). The proof follows the same way that the one given for theorem B
in [B,H,M,V 94, p 207] for k-recognizable sets, but new difficuIties appear: one
is the use of normalized words, instead of any word of {0, . . . , p – 1}*; another
one is the C/-recognizability of the addition which is no longer a trivial fact
(in contrast with the proof of k-recognizability of the addition which is almost
trivial)

Proposition 6.1 Under the msumptions (1) and (2) of this section, the set
X = {( r, y, i) e INa-, = + y = =} is U-recognizable

Proposition 6.1 is proved in [Br,Han 94] in a simple way.
The r/-recognizability of the addition is proved tlnder the alone assumption that
the numeration system U is given by a finite linear recurrence the polynomial
of which is the minimal polynomial of a Pisot nurnber20 in the paper [Fr,So 94] ,
but in a more complicated way

An appropriate version of Lemma 13 (section 2) still holds for these numera
tron systems

As in the case of theorem B, theorem 6.2 has an immediate corollary

Corollary Under the hssumpt.ions (1) and (2) of this section, < /N, +, % >
is decidable

In particular we get that < IN,+,Fib > is decidablc (since U is definable
in < /Ar , +, L“u > ), a result already proved by A. Semenov in [Sem 80]

S. Fabre (soe [Fab 92]) shows that theorem C holds for < /N, +, Fk > and
< IN ,+, L'’u > where I is an integer ? 2 and U is given by a finite linear
recurrence the polynomial of which is the minimal polynomial of a Pisot num-
ber P with an extra assumption. F. Point proves ttleorem S for < IN ,+,Vt >
and < IN , +. Lb > where U satisfies assumptions (1) and (2) and some ex-
tra conditions (different of Fabre’s extra ,LSSurnption). 21 Her proof follows
the general scheme of Nluchnik’s proof of Cobham’s and Semenov’s theorems
and uses [/-rccognizability of addition. Fabre’s proof is based on the notion
of C'’-substitution (the reader will find a clear exposition of the results on U-
substitutions in [Br,Han 94])

20There are numcration systems which satisfy this assumption but not &qumption (1)
21 in particular from Fabrc’s and Point’s results, theorem S seems proved for < IN, +, ll >

and < IN, +, I’F,b '->
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We conjecture that theoTcm CH (and so theorems c antI s) holds for pairs of
structures < IN , +, Vr/, > and < IN ,+, Yu, > where tfl and U2 are n&mera££on
systems respectiucly associated to a 0l-shift and to a 02-shift luRE 01 and 02 lino
maltiplicativety independent Pisot numbers

7. Around the indecidability of < /N, +, %, U > .

In [Vil 92a], [ViI 92b],[Vil 92c] , the second author proves the following results

Theorem V Let t and / be multiplicativcly independent. The structures
< IN ,+, h, A > and <’ IN , +, . > are interdefinable.

Corollary V < IN ,+, uk, tl > is undecidable

These results answer by the negative a question by A. Joyal
for k and I multiplicatively independent, does it exist some subclass of Tur-
ing machines which recognize exactly the sets which are in the smallest class
containing all k-recognizable sets, all I-recognizable sets and closed under inter-
section, complementat,ion, and projection? This is equivalent to ask for a type
of machine which recognizes exactly the sets definable in < IN ,+, %, U >

The proof of theorem V is based on a first-order translation of the following
theorem which is a slight generalization of a result by W. Thomas ([Tho 75,
theorem 13])

Theorem T Let h’ : IN –> IN be a strictly increasing function such that
h'(S( a)) > S(h*( r))?? for infinitely many r e IN . Suppose furthermore that
there exists a d e IN such that for any consecutive natural numbers #, y satis-
fying the above ineqr]alit.y = – y S d. Then t.he addition of natural nrlmbers is
definable in IVSIS

The technique of proof of theorem T is essentially due to C.C. Elgot and M.O
Rabin (see [EI,Ra 66])

Theorem T hm the following consequence

Corollary T Let be a strictly increasing function h : kIN –' kIN definable in
<' IN ,+, II, II > such that the following condition holds
(+) h(k . r) > k - (h(r)) for tnFnrttly many r C klb
and fBrthermore there casts a d c IN such that for any consecutive power of k ,
k" .k’n satisfying the above inequality we have m – uSd
Then the multiplication of powers of k is definable in < IV, +, YI , A > 

22The symbol S denotes the function sucessor S( r) = r +
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Lemma 7.1 Under the assumptions of corollary T, the concatenation in base
A is definable in < IN , +, h, A >

The proof is a easy consequence of corollary T

By the following result of J .W. Thatcher (see [Tha 66]) it follows that any
recursive function is definable in < IN , +, Vt, A >

Lemma 7.2 Any recursive function is definable in < IN , +, A > where A is the
concatenation in base k

The last step in the proof of V is the construction of a function h which verifies
the assumptions of corollary T, whenever k and / are multiplicatively indepen-
dent. This part of the proof is quite technical
The reader will find complete proof of theorem V in [ViI 921)] and [Vil 92c]. A
simple case is handled in [Vil 92a]

The proof of lemma 7.2 is by encoding Turing machines. This raises the follow'
Ing quest,lorI

Question 8 DcFnt nrultipliraLron fn < //v, +, Fk, H > WIthOUt encoding a
Tilting machine (for k, I multiphcatiuety independent).

Let us end this paper with a few additional questions. zFrom decidability
of < IN ,+,vh > , we trivially get decidability of < /IV,+,P2 > 23. A few
years ago, G. Cherlin asked about the decidability of < /Ar,+,p2,p3 > . This
problem is still open. More generally we can ask

Question 9 For k, I multiplicatiuely independent is < IN , +, Pk, PI > decid-
able, decidable by avtomatn or if it is anciecidabte, is multiplication de$nable in
it ?

In this direct,ion we can easily show that < IN ,+,V2,P3 > is undecidable
(multiplication can be defined in it). But we are not able to generalize the
proof to solve the following questions?

Question 10 is < IN , +, uk, PI > undecidable IIIbeTte ver I and I are multi-
plicatit,ely independent?

Question it is < IN , +, vk , L > undccidable for every L which is l-recognizable
but not definable in < IN , + > tvhenerlcr k and I are multiplicatiuely indepen-
dent ?

23 Let us recall that Pk denotes the set of nonnegative powers of A.
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1. The p-Galois group of a field. Given a Held A- inld a prIme number p, let K (p) be the

compositum of all finite C;alois extcllsions of A- of /All power order and Ict (7/((p) = Gal(A’(p)//f).

We report here on some conjectures and results on the structure of G' x(p) and its relation to the

arithmetic of A’.

When char it = p ale structure of (;x(p) is quite dull: it is a free pro-p group of rank

(K : p(it)), where p(X) = XP – X [Sc, 11-5]. We therefore restrict ourselves to the case where

char it + p. We n’iII henceforth also assume that K contains the roots of unity of order p. In

this case, K(p) is the closure of I< with respect to repeatedly adjoining all possible pth roots, by

Kummer theory.

It is often useful to consider Gx(p) togcL}Icr with its natural action on the group Ppm of all

roots of unity ofpth power order (over the prinle field of A-). Note that in our situation Ppm g if(p).

Since Zi a Aut(Ppa? ) (where a e Zi corresponds to the automorphism ( b> (a) the restriction

Gx(p) –> Aut(ppc.D ) induces a continuous llolnolllorpllisnl xx .p-. Gx(p) –+ Z i . Since A- contains by

assulnption tIle roots of ulliLy of OI'clc[' p. Ollc llns ill fil('I liII(.\ /,-1/,) ; 1 t pZp

2. Torsion in aN(p) and orderings. \\'ilcll p is t]tIll. ( ; 1{( I1) is LorsioIL-free [B]. As for a'K(2),

its torsion consists solely uf illVOIUtioIIS, iI,IId is closely relate(1 to tllc or(lcrings on it . In fact, as

proved by Becker [B], Gx(2) = Z/2Z if and only if A- is our/ fr/can (i.c,, it is an intersection of A-(2)

with a real closed field; equivalently, A-2 is an ordering on A’), Furthermore, for every ordering P

on A- \ye may associate a rlic/idcarl closure, i.c., a euclidean sllbextcllsion it of it(2)//f such that

P = /t’2 n I< ', this closure is urlique up to a urlique A'-isolllorpllisIn. Therefore the orderings on /C

may be identified with the conjugacy classes of the involutions in aN(2).

3+ Valuations. Let u be a 1<ruE v:\lljation on it . A p-Ilt'llscliznLinn of ( A-, u) is the decomposition

fLeld of an extension of u to A-(p), One says tllat ( K, u) is p-llcrlSCliiLrl if it is a p-henst,lization of

itself; equivalently, u has a unique prolongat.ion u(p) to A-(p).

Suppose that ( A’, u) is p-hensclian, Ict k be its residue field and let T be the inertia group of

u(p)/u in A-(p). There is it sp]it short ex;Ict sequence

I –' ’l' – (;K (p) – f;k( I1) – 1



There are two essentially different cases:

CASE (1): char k + P. Then T = Z;" where m = dirnFp u( A-X )/P. The action of at(p) on T is

given by ra = rIX-'P('> for a e ch(p) and r C T. Furthermore, T acts trivially on Ppm

CAS£ (11): char k = p. In this case IF coIncides with the ramification group of o(p)/u, When u

is discrete and k is perfect, T is a free pro-p group

In contrast to the case of euclidean fields, it is not clear to what extent is p-hensehanity a

Galois-theoretic property. For example, I do not know whether Gx(p) = Z;1, with m : 2, implies

that if is p-hensclian wIth respect to a valuation whose inertia group in A (p) is non-trivial.

4. Fields with finitely generated p-Galois groups. Sllpposc now that Gx(p) is finitely

generated (as a topological group); equivalently (A- x : (A- x )/') < cx/. III Ellis case it is conjectured

that Gx(p) decompobes as a free product in the category of pro-p groups

G x(/J) = G,i.,(P) *, ' ' ' *, G ,?„ (?J) >

where each if i is a subextension of it(p) 1 K of one of the following types

(1) ki is p-henselia.n with respect to a valuation with inertia group in X ( p)

(I1) p = 2 and Ni is euclidean; or

(II1) CA,(P) = Z?

Recall that a non-trivial valuation has ran k 1 if it llas no non-trivial proper coarsenings.

The following second conjecture may coIrrplcnlent tlle pictllre: Suppose tIl at I< is p-henselian with

respect to a valuation of rank 1 with residue characteristic p, and suppose that rank Gx(p) < oo.

Then either Gx(p) is a free pro,p group or A- is a finite extension of Qp. In the latter case Gx(p)

is a Poincar6 group of dimension 2 ISc. I1-30, TII. =1],

Now let Cp be the class of all !>ait n ( (;, 0). \rllc'i't' (; is a pro-// group and a; (; –> 1 + liZ;7

is a continuous honrornorpllisIlr. \\h \vill llot diStiIlgUiSll I)(:t \\'(!cII pairs that are isomorphic in the

natural sense. Let Ci be the subclass of Cp consisting of all pairs (Gx(p), xx,?) where if is a

field satisfying our constant assulnptiolls and such that rank (','/,’(P) < m. Let C: be the minimal

subclass of C such tllat

(') (1, 1) ( C::

(b) (Z1„ 0) e C; for every continuous holnomorphisnr P= Z? –} 1 + PZ p',

(c) (GI_(p), XL,p) e C; for every fInite extension Z of Qp containing the roots of unity of order p;

(d) When p = 2, (Z/2Z, – 1) ( CH '.

2



I. Efrat

(e) if (C1, al), . . . , (Gn, Bn) C C: then (C1 + r ' ' ' +p G„, P1 +p ' ' - +1, P„) e C: , where 01 +p ' ' ' t?

O„'. al +l, ' ' ' #1, an –' 1 + pZ;, is tIle colltilluolls llolllolllorl>Jlislll irldtlccd by 01, . . . , an by tIle

universal property of the free prodtlct

(f) if (C, O) e C; and m C N then (Z;- xO, g) C C:, where a acts on Z;- according to ra = roCal

for a C G and r e Z;", and wllere a: Z;nxo –i 1 + pZp is the composition of the projection

Z:“ xG –} o with d.

\Vithout proof we mention the following

PROPOSITION: Cg g Cl. Assuming the above- mentioned conjectures, C; = C g .

5. Witt rings of elementary type. These conjectures originate in the attempts to axiomatize

the theory of quadratic forms, by irlcalls of tIle purely colrlbill iII,oria.1 notion of abstract VVitt rings

[M]. Marshall asked in [M] whether every nnitcly generated abstract Witt ring can be constructed

from certain “building blocks” (the \Vitt rings of real closed fields, dyadic fields, and fields if with

an(2) = Z2 ) by means of two opol'atiolls (called clircct product all(I extension). This statement

bc:caIne known as tIle “elelllell t ar.V ty be ct Jlljt'ct, 11 re“ all( I \vas brc)vcd ill nullrerous cases; e.g., Carson

and Marshall [CMI verified it wiLll Ltte aid of a co111puLclr for iII)str;Ict Will rings with a.t most 32

square classes. The conIlection witll Galois theory llas t)cell ftrlly revealed by Jacob and \Vare

([J\TrI], [JWr2 1); they showed that if C; = C; then the clcnlcntary type conjecturc holds. Fur-
theIrmore, their results sIlo\v that tIle collverse is also trlle, provided that whenever I is a 6nite

extension of Qp and if(A’) a it’(L) then (GK(2), XK.?) = (Gt(2), XI212) in the natural sense,

The elementary type conjecture has far-reaching consequences in the theory of quadratic

forms. For instance it implies the followillg long-standing coIljectures:

(1) DefIne the level of a field A- of characteristic + 2 as the nrinimal number of squares in A

whose sum is –1 (oo if A- is forrnaII)’ real). By classical r(,suIt!, of Pfistcr [S, Ch. II, Th, 10.8 and

Ch. IV, Th. 4.3], the possible values of tIlis invariallt arc 2", lz e N, and co. The “level conjecture"

asserts however that if ( A- x : ( A-X )! ) < XJ then the ]r\-el of A- is either 1, 2, 4 or oo. By induction

on the complexity of the construction one call sIlo\v fIInt lllis 1lolds wIL('never (G/,'(2)lxKl2) e Cf

Therefore the level conjcctllrc' u'oll1(1 roll{ ;\\’ froIII tIle c(III illity (’4 = C!!

(2) Given a field I'i of cllaractcrisLic + 2, Ict a( A-) = sup cli111 f , wllcrc p ranges over all a11isotropic

quadratic forms over K - An old colljcct urc of KapJilllsky StiLl ('cl LInt if u(A-) is finite then it is a

power of 2. XIcrkurjcv ([bIc]; [L2]) constructed coulltcrcxilllljllcs of HcIcIs with any given even u.

invariant. Yet, Kaplansky’s conjecture hotcls whrllcvc Ir ( r//,'(2)1 v,'l2) c (;.’,’ . Thercforc1 thc equality
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C; = C;1 will imply that Kaplansky’s conjecture is true whenever ( II-X : ( A’X )2) < w.

(3) Let A’ be again a field of characteristic + 2, let /(A) be the fundamental ideal of the Witt

ring of A’, and for each 1 ? 0 let //I( A’) = //1(G/,-(2), Z/27) be the Galois cohomology group.

For any a e K x Ict (a) be the element of //1( A’) corresponding to a( A-X )2 via the Kummer

isomorphism A'X /( A-X )? = //1 ( A'). A conjecture of XIilnor stiites that there is an isomorphism

/(A’)I//(A•)1+1 a //I( A-) mapping any I)nstcr foi-ill < 1, –a1 > (-) ' ' . a <1, –a„>, al, . . . , an e I< x .

into (a1 ) U . - - U (an ). This is kIIO\VII to llold for / S : I ([ XIcl]. [ lieS], [R.]). One can show that this

conjecture is true when (Gx(2), \n,2) e C:: . So agai II it \you]cI follow frc)in C; = C;’ that it holds

when ( A-X : ( A’X )2 ) < m. See [AE,Jl], [AEJ2] for Inc)re details and references.

6. A decomposition theorem. A partial result to\yards a I)ossible proof of the elementary type

conjecture is given in [E3] (where proofs of the announcements in this section can be found)

THEOREM : Suppose that A’ = R 1 n . . .nA'„ where k\, . . . , A„ satisfy (1) or (I1) of B4 and suppose

that n is the minimal positive integer such that A’ has this Fur m . Tllcn Gx(p) = G R\ (P) +? ' - - +p

G ,',.CPl.

In particular, this proves the first conjecture of G. I when A’ is an intersection of an arbitrary

collection of fields of the form (1) or (I1)

For algebraic extensions of Q a similar dccomposiLioII theorem \vas proved by Eriov [Er] and

Neukirch [N]. Jacob [J], leaning on prc:vii>IIS results oF hlarsll;III, IIrow Irl ttlc tllcorcln (with p = 2)

for fields A’ with tHX : ( A- x )2 ) < ,x wllic II are real-pF Lllagl>rt' IIII (i.c., I< is an intersection of a

non-empty collection of its euclidean closures). See a.lso [XIi] and [B2] for somewhat nu)re precise

results in the real,pythagorean case. Jacob and \\'aclswortll [J\V, Th. 4.3] treated the case where

K is an intersection of two fields of type (1) with residue characteristic + p which are immediate

over 7( and which induce distinct topologies; but altllnuglr tIle result is correct, there is a gap in

the proof. \Ve refer to [I1] for another result in this direction

The decomposition in the theorem at)oye is close to being tIle finest: with possible exceptions

when the residue characteristic in case (1) is p, or wInn p = 2 and GA (2) = (Z/2Z) #2 (Z/2Z),

the groups Gk (p) cannot be decomposed any fIIrt lk'r a', free pro'-p products. Furthermore, for

K as in the theorem (and with silnilar exceptions) and for ally free pro-p product decomposition

G x(p) = F1 +p . - . +p F„, each Fi is gcncratcd by groups of the forIll G A (P), with R- as in (1) or (I1).

Using this theorem and [EI, Cor. .I'll we get

COROLLARY: Let p = 2 and let K , it I. . . . , if „ bc its iII tIlt' TIt(~(Jrcttt. I'llell a quadratic form over

K which is isotropic in each it i is illso isot rt)1)ic ill 1\
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This is a partial generalization of a local-global principle for (weak) isotropy of quadratic

forms due (independently) to Brdcker and Prcstel [LI, 518]; in one of its equivalent forms, this

principle says that a quadratic form over a real-pythagorean field A’ is isotropic if and only if it is

isotropic in all subcxtensions of X(2)//f of types (1) and (I1).
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D('fina,tile Valuations

Jljchc'n l\( Jen igsmann

A bstract

\\-e prove that any non-tri\'iall\' hensclian valued field which is
neither separably closed nor real closed admits a first-order definable
valuation inducing the henselian topology. A general account ofdefin-
ability tJf\'aluat ions from mutt iplicative or additive subgroups of flelds
is developed

Introduction

1’he properties of henseJian valued fields are. as \\-e Iino\\' from the u'ork of
.\x-I<ochen and T':rshf )\' , Lit a great c\tent determined b\' the data going along
with a henselian \aluation. not abjy its residue fIeld and its \'aluc group. In
this paper. \ve in\-estigate sf,me liind ofa convcrse uf this insight , narnel}-, that
for a Held which adrlrits a henseJian valuation. \vc can describe a canonical
valuation on that field in pure J.\ field theIJretic terrns. e\'en in a first-order
manner: \ve defIne that valuation in a similar fashit)n as. sav. the ordering
of a real closed field is defined in terms tIf the quadratic elements of the
field, or. indeed. the p-ddic \-at ual it)n on the Hold Qi, of p-adie numbers is
defined. c.g. by describing the valuat iI+n ring. the ring Zr, of p-adic integers
by Z1, = {r c QI. 1 lg : y2 – V = pr2}. IL is in this sense that the field
dctcrnrines' thc \’aluat ion

L-nforturlat el\-. there are In'(I fact(irs which ctJrnplicat e nlatters u'it h henseI-
ian valued fields. One is that \vc can unI\' expect the en\'isagcd result, that a
henselian va Jued field carries a Held that>rcticaIl\' first-order defInable (non-
trivial) valuation, if the field in question is neither separably closed nc)r real
closed. I:(Jr an\' non-tri\ ial donna bIo \'aluat ion tJn a separabl\- closed fIeld
is definable with finite 1\' nran\- paranrcters frc)in that field and. therefore, in-
duccs a non-Lri\'ial \'aluati(in 1)n a nnitcl\' gclrcratcd subflcld c(Jlrtaining those



paranreters; but there are no finitel\' generated henselian fields, so the \'al-
IIation on the small field extends in different, though conjugate \rays to its
separable closure, and thus to the separably closed fIeld \\'c started ofF with

hence the valuation ct)uld not have been definable after all. And for a
real closed field, an\' ntJn-trivial definable \'aluati(>n ring would have to be
definable without quantificrs, i.e. a finite union of inter\-aIs and p(Jints, \\:hich
u-e kno\\' to be inlpcJSsiblc' tIll L }IC I'cal ntl mbcrs. and hence. t)n an.\- real closed
fleld

I'lrc other ct)in plicaLitJn arises from the fact that there are nelds u'hich are
11111 $cpara bl.\- or real citJsed and v-hich do not admit any ntln-tri\'ial henselian
valuati( Jn. but \',hich are elementari ly equi\'alent to some field WIth a non-
tri'.'ia! henscllan vaILlat i(Jn (such fields ha\-e been ct_instructed by .\.Englcr, cf.
the example in jI’/ i. p 3331. In particular. the canonical henselian \'aluation
ring attached to each hcnseli,in ra]ned fieid (cf.[1:[]) will, in genera], not be
definable

\'ct in the light (Jf these '.)bstructif)ns \\’c shall pro\'c the best possible
result. the Formulat ic in tIf which alrcad\' renccts the topological character of
its pr(tof. One has t(I rccail that on a ReId \\-hich is not separably closed,
any t\ui non-trivia: hensciidn ralllalitlns are dependent (jEE] ). i .e. have a
ntJn-tri\-ial common ct>arsenilrg. t'r cqtlivalcntl\'. induce the same topology,
which \\-c ma.\' Therefore call th€: henselian topolog}

Nlain ’l'heorc'nI -1 ny field u:i th ??o- -tri1.'-,it her, sclian tutu at ton I.ChI ch is not
sepurably £iosed or rcui closed. adIruts a definable ualuat ian inducing the
h.cnstlian topolnay.

F( Jr hengelian \'a:ued Holds \\'it h real ctIJsed residue field ( so-called almost
real ct(>sed fields) such definable valuations Ira\'e already been found in special
cases in [J I j and jJ2.F. and STsrcnratlcally in jI)t-1 ( cf. also j}}13Gj), Other
instances arose in the cclntext ,if half-ordered fIelds (cf. [I':IJ')

\\'e shall prcl\ e the main theIJrctn . I Jr. rather. a more general result ab( iut
fields \\'ith a non-trivial 't-hcnselian' \'aluati,in (cf. section ,+), by finding
tI) an\' such field a finite \'alued ficid extension \\-here for some prime pa
p-hensclian valuation inducing the {t-)houselian tt)po logy can be defined es-
sentiall.\' in terms tif the mu]tiplicati\'e grtJllp t,f p-th pclv'ers of that field. or,
if the characteristic is p. the additi'.'c analogue tt J this group ':section 3)

I'll is leads nat tIt-all\ Lu the task tif donning \-aiuations from a given (mIll-



J . Koenigsmann

tiplicati\-e ur additive) subgroup of a fIeld (section 2), a problem that has
been dealt u'it h in lnan}- special situations and has to our knowledge so far
received its must extensive treatment in 1.4EJ] (though only for the multi-
plicati\-e case). The crucial notion here has always been that of icompatibil-
ity’ bet\\'een a valuation and a subgrc;up (Jf a field. It turned out in the course
of our investigations that this notion needs to be both generalized and refined
(secticJn I ) in order to gain the survey necessar\' for the dcfinabilit}' results
of section 2. \\’ith this at hand \ve can then not onIy provide precise criteria
for the (fIrst-order} definabilit}- of valuations in terms of a given subgroup
(thm.2.3), but actually give explicit fIrst-urdcr formulas \there\'er they exist
and second-order formulas in all other cases (thm,2.11 ).

Readers !)nl\' interested in the proof of the main theorem may omit the
discussion of general definability of valuations from subgroups b)- consult-
ing, instead, the direct argument in !1<2] for the definabilit}- of p-henselian
valuations. and then proceed to section 4 of the present paper,

Notation: For a valued Held ( F. r), \vc denote by O,, , VI. , F, and I'. the
corresponding \’aluation ring, maximal ideal, residue Held and value group
the latter being written additivel}-, (For background in valuation theor}
cf.e.g, IE] or [R] .)

1 Compatibility between Valuations and Sub-
monoids of Fields

In this section \re consider a field f together \'.'ith an additive resp. mul-
tiplicati\'e submonoid 7, that is, 7 C f resp. r E FX is additi\’ely resp
multiplicativel\- cIosed and contains 0 resp. J . \\'e \\'ant to study the coJlec-
tion of all va]uati,->ns of F th,it are in some sense compatible with F. This
\Till enable us to and a distinguished \'aluation ring C17- of f carlonicall\' as-
sociatcd with F. In order to obtain the full picture. \to have to introduce
three notions of compatibilit}

DefInition 1.1 Let r be a r,riuatton of F . F an addItIve rcsp_ rltultrplrcattTe
submonoid of F

1 r is compatible WIth 7 IB ,\4 , C F resp, i t , U, C f

3



2. r is weakly conrpaLible with r IFF /1 C T resp
CI, -1.deal ,A wIth v.A = . VI.

1 + /1 C F for some

3. r is coarsely cornpatiblc with r if r is weakly compatible wIth F
and there is no proper coarsentng u of t such that Oi C T

The first notion of compatibility is - – at least \Then r is a multiplicati\'e
subgroup of F - widely used. and stands in no need of justification (cf, e,g.
[AEJ j). The notiun of weak compatibility is required to cover situations where
a valuation is related to T n-ithout being (fully) compatible. e.g. when f is
itself a non-maximal valuation ideal, or \then ( F, 7) = (Qp, (Q; )p), where
for the p-adie valuation 7.' on Q,. on the one hand 1 + .Vt. g f. on the
other hand I + . VI: E f. I'he additional condition for coarse compatibilit}
becomes only relevant in case Of g 7 (\\'hen T is additive. this is equivalent
to C.I, C F). In this case an\’ refInement of r has this propert\', and there
is no u'a.\- tt) distinguish bet\Teen those refinements in terms of 7. On the
other side, each \’atuatiun t' \\'ith OJ C :r allo\vs a maximal coarsening n'ith
the same propert\'. which \Till then be coarsel\' c(>mpatible; so the notion of
coarse cumpatibilit\’ is onI\- designed to ignore unnecessaril\' nIle valuations.
I'he same is true for the radical condition 'v.A = .U.’ in the defInition of
n'eak compatibiiit\': without the condItion, an\’ refinement would be weald)
cornpatible without being further distinguishable in terms of 7; yet , again,
the condition can easily be brought about b.v passing to a suitable coarsening:
if ,A C T resp. 1 + '4 C r for s€ Jmc C)'-ideal .A. localizing modulo the
maximal prime ideal of O, ct/ntaining ,A leads EcJ a \'aJuation u \There the
radical condition is fulfilled ft>r some O,, -ideal contained in ,A, e.g. for O,;,42,

\\'ith the distinction bet\Teen full and \Teak c,)mpatibility being justified,
one finds, nevertheless. irnportant situations u'here the t\vo notions coincide

Lemma 1.2 Let r be a raluatron on F. If eIther 7 is rnultiplicative such
that for some n C N ; { f ' )n g F and (-n. char F, ) = L , or T IS additive,
char F = p and {£p – = \ = e F) C T , then t is (fully) compatible with T if
t is weakly compatIble WIth T

Proof: Suppose T sarisfrcs the a$sumptiun. and is n-caLI)-. but not full.\' com-
patible \\'ith t'. 1,et .+ be the C1.-ideal which is maximal u'ith the pr(Jpert}
J C T resp. 1 + ,4 C T. I'hen Jl # .LI, . and, by the radical condition for

I
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\\’eak compatibiliL\'. \ye can FInd an O.-ideal 6 with 62 C /1 Ct IS (choose
a e ,U . \ I, so ab q /I. ah '1 C J for some k e N. and let B := akO.). Then,
ifF is additive. for all b c 8: iF e r and l–b-)p + b e 7, so b c 7, and ifF
is nrultiplicati\'e ,

li: J . I. since ,I . t 1
I

(1+C£))- =n+ ( ; ) (;)= +... e kl +b)C1 +.4>J ' T,

so I + b e F. because fI + /1) 1 = ( 1 + /1) C 7. but then I; C f resp,
1 + B C T. contradicting the maximalit\' CJf A. O

lta\-ing introduced the ctJrrect trIJt;lprls c)f compatibilit}-, the main result
of this sectit)n is based tin the &JIll Ju-Ing simple

Observation 1.3 Let c1, tb bc raz> non -cornparablc taluattons rz. e. C)„ g
O., and O., I O, ). and Ict u Icr,ItC the Fnest common coarscning of t\
and r2. Then, for any cl.. -1,dca,1 )1 WIth .b4 u C+ /11 and any O,, -ideal /12
with .Vt,' <_ * /{2. one has

CI„ = Al. 4 d2 and C), = t 1 + /11 1( 1 + /12)

Proof: The t\vo valuations C. a induced by rl. tb on the residue field Fu
of u are independent. S(J R)r each r c O, one fInds. by the approximation
theorem, that (F–Hi)n,4: + 0. so F e Al n/12 and. hence, as , Law g /IIn/12,
also r C A1 + .12

Similarly, one fInds for r € Oi that fF + FA1) n ( 1 + /12) + 0, so

rc ll 4 X) 11, 1 + A) = ( 1 + ,1,)( 1 + ,1,).

and hence

r e ( J + /l1 )( 1 + ,42 Jt ,bI , C ( 1 + /11 Jr : 4 /12 )( 1 + .U. ) = ( 1 + /11 )( J + A2)

using that + /I, $ o: $ o;. o
Proposition 1.4 For an addrtrue resp. multtplicattte $ubrnonoid 7 of a $etd
F , any tu'o coarsely compatible taluations arc comparable. and there is a
unique fnest coarsely compatIble ualuatzon ring oT of F . Moreover, oT is
non-trittat, whenever T IS non-trittal ( i.c. T +. F resp. F- ) and admits
some non-trtttal tceakly compatible raluatton



Proof: Our observation tei is us that for any t\to \\-eal.tlr compatible valuations
tI, t'2 which are not conrparable, the finest common coarsening u’ satisfies
OJ g O„. g /Ll + /l2 ; T resp. OJ ; (1 + /11 )(-1 + /12) E F, where A,-

is an O,,- idc,II with A, g r rcsp, 1 + ,A, E r and vX = ,VI.; ( i = 1, 2)
note that the radical condition makes sure that ,vf ,. c-_.- _A,. Sci t'1 and t'2 are
both not c(larsel}’ compatible and C):', C Cl : C r. In particular. it a>IIon:s b)
contraposition. that an.\- LU I) coarsel.\ cc)mpatible \'aluati(;ns are comparable

Therefore. the ring

', := n .
t' cnarseiy c'lmpatlble \\-it.h 7

IS a valuation ring
ll' T admits some \'aluaticJn i.' u'ith O,' C T. then Or is the unique coarsely

ctJmpatible valuation ring u'ith that prc)party : c)n the one hand. the valuatIon
rIng

Cl

is a ct)arscly ctJmpatlble va]IIation ring v'ith C)' C r: on the other hand
no proper suI)ring of Ll is ciJarsely ctJmpatibIe. so O = Or. and the coarsel}
compatible \'aluation rings are just the su brings of F containing Or. The\
are all fully compatible. as for Or E Lau: .LI.' C ,Vtr ; Or resp. I + ,U„. g
I + . Ur g CI; g F: in that case all \real iIy ct)mpatible \aluations are full)
cornpa L i bIc

If. h(;u-e\'er, T aclnlits a \\-eal\I.'. c(>mpatible valuation ring, which is not
fully compatible. then Or is the unIque such valuation ring (an\- smaller ring
would violate the radical condition ), and all u'eakl\’ compatible \'aluations
are c'Jarsel.\' corn patiblc

If. nnall.'.-, all \real<1)- ct)nrpatibte \-all it ions are fully compatible and no
\’aluatitJn has all its units contained in r. then Or is the smallest compatible
\'al'lat ion ring

Vtr

L47 = 7 resp. I + .\.dr C f
I IIe ' tII JrctJ\'er' ftJllt JU-S rcadiJ\ in caci1 t)f these cases. O

6
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\\'e are no\T in a position to surve.\’ all possibilities for n'eakl.\' compat-
iblc valuations with the classification given in the proof. \\'e rephrase this
classification. also for further reference, in the foIIo\ring

Corollary 1.5 For any addrttrc or mutttplrcatite submonotd T of a $eId f
one of the three following cases holds.

+ group case; there is a valuation t' with Of C 7
In this case. Or is the only coarsely compatible valuation ring with
this property; the valuations with this property are exactly the refine-
ments of Or; all weakly compatible \’aluations are fuljy compatible;
the submonoid induced on the residue field of Or is trivial; if F is
muitipllcati\'e, it is determined by its values: T = r 1(cCT))

• weak case.' thcre is a weakly, but not fuILy compatible ualuation
In this case. Or is the onI)’ \'aluati(nI ring with this property: the u'eakl}
compatible \'aluations are the coarsenings of Or; there is no valuation
L' \\'ith C);- C T

• residue case; all weakly compatibtc valuatIons are fuILy compatible and
there is no valuation T: uith CO_Y CT
In this case. Or is the finest compatib]e valuation ring and the sub-
nronoid induced on the residue field is non-trivial

Corollary 1.6 Or is frIed under T-automorphisms, that is, under automor-
phrsms of the fieLd F mappIng T to T

Flroof: Pick a e . tuff F-) with a( T) = F. Then a(Or) is coarsely compatible
with aCF) = f. So. by the theorem. C?r C a(Or). But, similarjy, Or E
al (Or), i.e. a(Or) ; Or. D

Remark 1.7 Eltending earlier work of B, Jacob ( [J I j) and R. U’are fjlll )
in [AE Jf . the question of compattbiILty of a uaiuat£on with a multipticat£ue
subgroup T of a Feld F has already been erplored in great detail. In order
to $nd some canonIcal ualuatton associated to T . the authors IntrodUce for a
T-compatible valuatIon t Dj f the property of beIng T-course which is that
r(F) (-= rT - O: ) ) contaIns no non-trutial con t.'c£ subgroup. They prove
that any tu'o T-compatible, T-coarse valuations are comparable (Cor.3.7),
and that there is a unIque smallest T -compatIble. T -coarse valuation ring



Or(F) of f [Thm .3.8 ). it'c shall call Or( r) the Jacob-ring assocIated
to the muttipltcatit’c group T . Since any T-compatible, T-coarse tatuation
25 coarsely compat{bte in our sense. these results are Immediate from our
prop. 1.4 . One always has oT S OF(T-}, uith equaIIty in the group casey

strIct InclUsion in the local; case and both possibilities in the resIdue case.

Or(T) is also canonIcal in the sense of beIng Fred under T-automorphtsrns.
\’et Or(7) may become trivIal even though there do ertst non-trivial 'T-
relevant' valuations. Thu can happen for tIVO reasons: one IS that T admits
u’eaRly compatIble valuatIons, but no non-trIvial fully compatible ones ( cf.
thc remarks fOllOWIng the defnIt tonI. 1 ). The other is that elements of T
may attaIn any value undtr a compatIble valuatIon. For eIample, if T is an
ordering, Clr[\T') = F , uh,-reas CIT is the canonIcal valuatIon ring attached to
each orderIng, i,e. the conte: hull of Q in F v. r. t. T . so Or IS non-trivIal
if T is non-archimede.an.

2 Valuations Definable from Subgroups
From no\\- on , T *\'ill be an additive or multiplicati\’e subgroup of the Held F
In the preceding secLi"-,n. \re ga\-c an ertern al deflnit ion for the \'aluation ring
Or caniJnical!)' ass..Jciated tII. T: Clr \\-as the flncst valuation ring coarsel\'
conrpatible \\'ith T. \\t’ shall non- tr\- cti g'i \-c an Internal characterisation tJf

C)7 . that is, a characterisation \'.'hich does not require that \ve know about
all ( or an.r / other coarselv compatible valuations, a characterisation onI\- in
tcrlns of T. Stronger c\'en, and nl(>re preciscl}-, u-e are looking for a 6rst-
order formula in the language C := (+. –, .. 0, 1. 1) , the language of fIelds
augmented by a single (one-place) predicate for the subgroup T

If n'e can find such a formula for Or in terms of r. j.e. if Or is (first-
order) definable in C, then, in particular, the property, that ( r, r) admits
some non-tri\'ial \\-eakl.\’ compatible \-a]uation. becomes a first-order prop.
erty, since this is, by proposition 1.4. equi\'alent to oT being non-trivial. In
fact, \ve shall see that, whenever r is a proper subgroup of F resp. fx
u'hich is not (the strictly positive cone „f ) an f)rdering. weak compatibil-
it.\' \\’itIl some non-tri\'ial \-aluation zs a first-urder propert.\' ( in case r is an
ordering, this call, in general, nt)t be expected because archinledeanit}’ or
non-archilnedeanit.v is nut a n rst-t,rder property) . Full compatibility \nth
sol:ne non-tri\'ial valuation. in contrast , cannt>t be described b\' a first-order

R



J . Koenigsmann

fornrula

Example 2.1 Let F := Qp, T := (Q; )? and Ict r denote the p-attic taZua
tIon on Qp. Then t IS weakly. but not fully compatIble with T , and there is
no non-triuial fully compatIble taluatron on Qp ( as we are in the 'meal case
it would haue to be a coarscntng oj oT = O, ). Passing to an d-saturated
elementary ertensron ( F1 , t') ! (f. r), with T’ := (Ff x )? eztending T, one
does, however. And non-fr it'za/ raluattons fully compatIble with T’ ; take, for
clamp Ie, the ,-oars£n ing tr qf t-' u'rth marlmal ideal , VI w := n=_1 pr1,U .f : it
IS fuLly compattblc . since it , L4 ,. C I + p2.U,' C f’, and it is non-trIVIal:
sincc, by saturatIon. n= , b4, - HE { 0}

I'hc reason u-hy the existence (Jf a non-trivial \\’ea k ly corn patible valuation
can be a\pressed in a FIrst-tlrdci' ft)rnlula (unless r is tri\'ial or an ordering) is
of a topological nat urc. \\-c shall ass(Jciate to each subgroup r of F a topoIog}
induced b.\' T tin F. It \\ iII then turn c JUL that :r is \\-cal< Iv compatible with
some non-tri\'ial \'aluatitJn iff T induces a t--topt JIOgy tJn F. and that this
can be said in fIrst-t>rdcr terms. L'sing this fact, \ve shall see that Or is in
most cases fIrst-order defInable (a precise criterion u-iII be given). Fina]Iv
\ve shall present an explicit forrnu Ja for Or which works for all definable
cases sinrultaneously. 1;or the non-definable cases. an intrinsic, though not
first-order, construction \till be gi \-en

Definition 2.2 Let T he an acldttrre resp . multrplicatrte subgroup of a fIeld
F . \Ye shall denote the coarsest topology on F for which T is open and for
WhICh I't6btus transfOrmatIons resp. IInear transformations are continuous,
by 77; we call rr the topology induced by r on F

So if T is addltIre , the sets {% { r C T, r + –i } for a. b. c, de F WIth
ad – bc + 0 form a suE>base of rr : if T IS rnultipli,_atiue. a subbase is giuen by
sets of the form. aT + b VIth a C F - .b e F

\\'e shall not investigate thIs top,]log.\- any further here (in general, rr
\viII not make r a LtJpological ring. nf>t even a topological group). but onI\
pro\'c the foIIo'.ring fact. \\-hich is \Tell l<nou'n for the SDecial case that :r is
an ordering (-then rr IS the urder-topctlr,g)- of f):

Proposition 2.3 Let T bc a prI}per addttluc resp, multrp[icatiuc subgroup
of F . and let u be a non-trtl_'tat raiuation oj F . inducIng an F the topology

9



Then rT = r, if T ts weakly compatib ie with some non-trIVIal coarsentng
of L
In thIS case, sets of the form {:: IS 1 r C T. a + –{} altA ad – bc + 0

resp. of the form (aT + b) n (cT + d) WIth a,c7£ O form a base of the topology
TT

Proof: if rr = =., F must be open \v.r.t. 7„ so for some non-zero O,-ideal
J one has /t C T resp. 1 + /t C 7. Therefore. the coarsening a' of u with
, L4„. = va (# {0}) is non-trivial and weakly compatible with F

For the converse. u-e may assume that a' = t' is weak])' compatible with r.
as comparable non-trivial valuations induce the same topology. \\-e fix some
non-zero O,-ideal /1 \\'ith /1 ; T resp. J + A E T. Since f = U=_r(r + /1)
resp. F = Ur, rr( 1 + A) T C r.. and so rr ; r, , as 7. is a field topolog}
and hence \If;bills or linear transformations are continuous

In order to see that alsc) 7, C rr. it sufTices to check that , VI, c 77,

because the sets a.VI, + b \\-ith a c F " .b c F form a base for 7,. .\nd
again, to check this. it sufTices tu find an tJpen rr-neighbourhood L’ of 0 with
L' C .Vt., as then .b4, = U_ \ 1. r + C ', \\c shall treat the additive and the
nlultiplicati\'e case scparatcl\

If T is additive. \vc can pick some d e F \ T \\-it h d ' e X, -1-his is possible
because IF is a proper subgroup of F. \\'hile n additivel}- generates the
whole group f. Now choose a e d \ . .I, bc a. A. Ihen 0 e (’ := {a= +y
a C T} E ,Vt , : bE a - /1 : a ' -f i Inr)lies 0 C L’; and for a e T

= rCa) > 0. if r(r) < t(d). as tCb) > rCa) > r(ad) > r(aa)
> 0. if r(r) = r (d-) . as r + deF \ T CF \ A. but a# + b C /1
> rCa) > 0, if r(r) ,> tld). as t tbd -1 ) \ tCb) > rCa)

[f T is multiplicati\’c, \ve can pick c. I e F ' with cf HE aT and /I noT 7£
$ + AladF-. for other\rise /1 E cTU {0} for some c C F " . say 0 74 a = c' r e A
for some r C r. so a2 = c2=2 e cF, i.c. c e T. and, thus, a \ {0} C f
but then F' = {a \ {0}} ; T. contradicting the assumption that T is
a proper subgroup of F~ . \-o\\' choose a C ,An cr. b € ,4 n dT. ’rhen
0 C C' := (a – cr) nr b – dTI C ,b4 , : if not. we could find some r = a – cal =
b – dr2 g .VI, with .r, C T. so –cr I = r – a = =( 1 – ar - 1) c r( 1 + X) ; rT.
and. similarly, –d=2 C aT: but then –a e cr n dr. which is impossible,
because distinct cosets of 7 are disjoint
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I'he statement about the base of 7T f(>Ilo\\'s immediatejy from the defini-
tion of C' and the observation that, because the sets r, U. for = C FX f')rm
a base of neighbourhoods of 0, the same holds for the sets IL’ . a

Corollary 2.4 Let F be a fIeld WIth a proper additive resp . multtpltcatiue
subgroup T WhICh is not an orderIng_ Then weak compatIbility ofT with some
non-trivial valuation is an elementary property (-in the language of $elds dah
m ertra pTe(iicate for T )

Proof: The first-ordcr sentence expressing this property is that rr is a \’-
topology. For \'-tupologies arIse either from valuations or from archimedean
absolute values. In the first case. :r is weakly compatible with some non-
tri\'ial valuation, by the proptJsition . The second case, however, cannot occur,
because other\rise r would contain sonic neighbourhood t ’ of 0 resp. I u'hich
is open u’.r.t. an archimecllean absolute \'alue. \’et, b)' archimedeanity. C-
additi\'cly generates F. so F C 7 in the adllitt\’e case, and C- multiplicati\'ely
generates the positi\'e cone I) of an ordering for a real archimedean absolute
value, or all of r > ft Jr a ccJlnplex archimcdcan absolute \’aILIe, so P C 7
or F* C r in the multiplicative case. cuntrar\' to the assumptions of the
corollarv

That the propert.\' that rr is a \’-topolt)gr, is, indeed, first-order ex-
pressib Ie, foIlo\\'s, again. from the proposition which provides a uniforml}
parametrized base of the top(>log.\' rr , \\-hene\'er r is u'eakly compatible u'ith
sorne non-tri\'ial valuation; and. clearl\'. 'to be a ring topology of type \-’ can
be expressed in terms of a base of the topology (cf. e.g. IPZ]). D

The next theorem prt,rides exact criteria For the de6nability of the val-
uation ring Or canonicallv associated to a subgroup r in each of the three
cases described in cc)roJlar\' 1 .5

'I-hec)rem 2.5 Let F be a feld with an additIve resp . multipticatiue subgroup

T. Then oT zs $rst-order definable an the language C := {+. –. ., 0. 1 ; I} fn
the fOllOWIng cases

T=

group case LI if

iT:• S Jj \:t : i ?

T $ (F, +) I
elth ir dIr is d;giret c I
or 'V.r C ,bI r : a 1 Or g 7

T < F"

yes

IS dIScrete

zs no orderIng



Here. _L4T denotes the mar?ma/ ideal of oT . and T denotes the subgroup
induced by T on the residue fIeld of oT

Proof: By corollaryl '6. Or is fixed under T-automorphisms of F. It thus
follows from Beth's dcfinabiiit\' theorem. that Or is definable, whenever \ve
can elementarily express its defining propert'\'. namely that Or is the finest
valuation ring coarsely compatible with :F.

In the group case this is equi\-alent to sa'\'ing that Or is a valuation
ring with O; E F (this can, obviously. be expressed in fIrst-order terms) and
with the property that no proper coarsening O,' of Or satisfies Oi g r,

If F is multiplicatit’e . this property is expressed bv the formula

Vr C , Vtr ,\dr \ r.\dr g f

For. given r C , t47. \ve have

,Ur ’\ r.VIr .i I' <,Vtr \r.L4r} gT
'I )' Cl: = (. VIr \ r. Vtr> g r

\there CI, = $ 1 Or ft>r the muIE lpiicati\'e cir,sure i C oT of . t47 \ r,U r
C?w ts a proper coarsening tIf CIT C'iJn\'orscl) . for a proper ct-Jarsening Cla
of Or u'ith Oi g r. ( Inc coLIld hnd scJmc r c . Vtr \'io]ating thc formula:
r C ,Ld r \\ .b4, would satisfy .tlr '\ r.Vtr ; . Vtr \ . t4„ C C); C F

If T is additit:c. and Va e .tl r : ? 'Clr g r. then this formula alread}
guarantees that Clr dl)es not admit a cuarsening O, with (1: = f (or
equivalent]y, O,. C T). for if there \rare such a coarserling O,.. the formula
would not hold for r C .\47 \ ,U„: #- IOr C O, C f

If Or is discrete, sa\' .Vtr = aOr, then. for some n e N, a n CrT C F, but
r-tFl+ 1>Or g F. Together \rich 'Or C T', the existence of such an r, again
e]ementarily distinguishes Or from an\' other \'aluation ring.

On the other hand, if r is additive. Or C r, but Or is not discrete. and
for some a c .Ur: r - IOt C 7, then

Q(g) := {0 + y e ,Vtr A g qOl C r ! n ( N}

is a type (b)- non-discreteness, there a In-ars exists some y e ,Ur \ {0} with
rOT C yRoT ) . so realizing Q(g) in some ;-saturated c]ementar}- extension
(F’. r’. Of ) ! ( F, T. Or). sa.\ by y’ c ,\4'. \\'e see that O’ admits a proper

12
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coarsening Of’ := U=, g’ n(I’ with O" ' ; r’. su O' + PTr . and. therefore
oT cannot be first-(Jrdcr definable in terms of r.

For the weak cas(!. c)no essentiaJl\ repeats the argument for the nclditi\'e
group case. (IT is the ur,iqur valljar ion ring which is weakly, but not fu11}

compatible with r. If Or is discrete. this. for some n c N. is equi\'alent to

32 : , tar = rO7 /". r-Or (Z 7 A nn '1 g :f
resp .
Ir : ,Ur = .tOr \ 1 + r-Or ET A 1 + rn+ 1 CT

(note that. like in the additi\'c grt)up case \vith oT discrete, we don’t have a
unifc-trIm formula. but. rather. a ct Jur,table case distinction with a formula for
each case)

]"or CDr n(in-discrete. nt, fIrst-(Jrder f£JrlrILlla can express the radical con-
ditton required ft)r weak corn pat ibi liL:.'. Indeed . if ( F’, T' , O/) E ( F, 7, Or) is,
again. an ..'-saturated elcrncntar)- extension . then (?’ is not \real<1\- compatible
with 7’: the type

't(y) := {# e O \ c)- 4 y-cI E T resp. + y - O g r ! n e N}

}’ie Ids an element g’ G . U’ such that ftJr the non-maximal Of-prime ideal
T := n= 1 y' -O' . one has P g r resp. : + P g r; therefore, any O’-ideal A
\\-iLh /1 S T resp. I + /IC T is cuntaincd in 'P. so one never has a = , LI’

In the residue case, v.-c ha\’e to express that Clr is the flnest valuation
ring compatible \\'ith r. F_3ecause r induces a proper subgroup T on the
residue acId, this is equivalent to saying that Or is (ful]r) compatible with
T and that T is not \\'cali[r compatible with amr non-Lririal valuation (an)
such va;uation gave rise to a refinement of Or weak])- compatible with T)
Ry corol Jar)'2..t. this is ciemcntarily cxpressiblc. unless f is an ordering. If,
ho\re\'er. 7 zs all ordering. then 7 must be archimedean. \'et. once more, \re
can find some elementary extension : f’. T', O’ ) > (F. T. Or) with 7 non-
archimedean. so, again. C1/ #- CIr . E

CDrollary 2.6 Thc dIstinction between fAr three cases descrIbed in corollary
7.5, z,. e. the group case. the weak cast and the re stdu€ case . zs an elemen-
tar\' classIfication of the class of fields utth an addit tuc resp. multiplicahue
subgroup

13



Proof: Let us begin \rith the class of fields with multiplicativc subgroups
I'he group case is elerncntarily described by expressing that the denning

formula for CIT (which exists by the theorern') defines a valuation ring O \HIb
C) cr

Similarly, in the residue case. if f is ncit an ordering. \ve express that
the defIning fornrula for CIr def;nes a fully culnpat ill To \'aluation ring CI with
O-- g 7 and u-iIb f not inducing a \--Lopcrlug}' t,n the residue field of cr

If, in the residue case, T is an ordering. then (I; C r U –. T < F* . and T
induces an CJrdcring on the residue field (if Or r: nt)t;that O;, ,--r g TU–7
but g T, since O;, , r a (Ii g F, st> r induces a muitiplicati\’e subgroup

of index 2 on the residue field <)f Or . 7: this must. hou'ever. be additi\'e]y
closed, as other\\'ise C); C (I; TET +T , ct.>ntrar}- to the assumption that
T induces an ordering t)n the residue fIeld of oT. sf ) the residue case with :r
inducing an ordering on the residue Held 1 Jf car is expressed by sayjng that
the denning formula ftJr CIT r denncs a \’a]uation ring O with Cr * C TU –T
such that f induces an ordering on the residue field of C)

(One should point out. that the residue case \\-ith T an ordering is \veII
known to be elementary by the \turks of B. Jacob iJ lj dud [J 2]: this is exactly
the case \\'here T is a valuatif)n fan which has the much simpler elementar}
characterisation

–I ( T h T +T c T r\
V.reF \ +T : I + ,rE TUrf A ( I + reT –. I – rcT)

I’he ring C) T, 7- is exacti\- (IF(r). the ring introduced iII remark 1.7. for
which Jacob gives an a\p licit elcmcntar\' description.)

\\'ith the grc)up case and the residue case being thus finitel\' axiomatized
In clemcntar\' terms. the weak case can be elcmcntari]\- characterized as
cornplelrlentar}’ tO those t\tri cases.

in the class of fields with additive subgroups. it is by the same ti)-
ken as, c.g.. the multiplicati\-e group case - clear. that the residue case is
elelnent ar\'

( F. T\ belongs to the group case iF it does not belong t[> the residue case
but the fornlula

o: '-d = eFl rCT \' r \ eT
holds; for this. \\'c oniy have t(> prfl\'e that o dc)cs not hold in the \\'eaI< case
(o tlb\!uusl} holds in the group case: C)7 C T ) , in the \\'edI< case, however
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\ve have some Or-ideal /t wIth /1 C T and some = C ,b4r s,t. r e F and
ri F ,4: assuming that o holds. \vc get

+
+

1 er. rg 7
+ reT. \ – = { T

; c r' i c r' LeT
e = aT her + /1 gJ + r

q-T+ I = =

£ dr1 r _ 1
II: Ita r JC+ 4T+[ r i - - z

contradicting o

tIa\-ing finitel.\' axiolnatized the grtJup and the residue case. the \Teak case,
again. must also be elementary. a

Corollary 2.7 if oT zs defInable. all conrcr subgroups of the rattle gTOUP Fr
of c)7 tie$nabte in terms of r( T) ( where r denotes the t'aIIIation corresponding
to oT ) gttc rIse to a dejlnabtc coarsentng of oT

In particular, if T rs multtpticatire, the Jacob-rIng Or(F) (cf. remark
1.7) is dcfnp.bte both in the group case and in thc resIdue case,

Proof: if a convex subgroup I of F-r is definable in terms of rCT\. and if
Clr is definable. then the coarsening of Or u'ith value group I-r/ A is again
defInable: it is the lIJcali7ati(Jn 5 1 Or \\'ith S = t' L( A).

If T is multiplicati\'e. then Or(r) = Or. so OrI.T ) is definable br the
theorem. In the residue case. either r does not induce an ordering on the
residue field cif Or: then. again b\' the theorem. Or is definable and the
coarscning OrtT I is obtained by pdssing to the factor group Fr/Ar, where
Jr is the maximal convex subgroup [if I'r cuntained in rCT): for Ir
defInable in terms of t( T-.

Ar = {- C ['r k V6 C Fr : ( jf I$ 1 - 1–. 8 C rCT)}

If r induces an ordering on the residue field of CIT . then. as described
in the proof of the previous enroIJar\-. Or(T) = Or r which is definable in
terms of T IJ –r. and sti alstJ in terms of r. D

Remark 2.8 in !-JI j. for a raluation fan T . Clr (r) uas eIplrcitly deBned in
$rst-order terms. and. m /_-I E J j . gen£rattztng to the SItuatIon. u'here T IS any



multtplicative subgroup o.f F ' . OF(T\ u'as described constructively in terms
ofT : It;itIl the notatIon

Br(F) := {a C F jT + aT g r J aT or T – aT a TU –aT}

the set of T-basic elements of F , u'hrch generate the muttipticattue subgroup
(\Br(T-b of Ft . the constructIon IS as follows.

Or ( F ) = Or:\T') L L);- IT) . uthere
OF'T\ := {r e £ ' rg - Ii r’ T\\ and 1 + r c 7}
OFiT \ := {r C f- # ': I iF ITD and r . O rl T : E Oi(T)}

pratt'lcd T is not eICcpt IOn,Ii . T is called exceptional. If /3r(T) = tf and
either –i cT or T is uddlt t.-ely closed. In thIS case. In the construction of
Or(T) . the group (F;r '.T - rr,ay hate to bc rcplactItt by 'I subgroup FI $ FX
WIth B r\T ) q II and \II . /:rt TIPI < 2. ( Cf. I ,\ E iI. Def.2.2. . Obs.g.3.( 3.)
and Thm.3.9. y

FIa\ ing this nice construe:.tlpn I if O rr r ) ftrr arbitrar.\- lnultiplicati\'e sub-
groups :r. it is. h(J\Fever. nut clear that this c(JnstructiCJn leads to an elemen'
tar y defInition of O r t.T ) in terms of r. as the c<Jnstructif )n , as gi\'en, in\’ol\’es
quantificati(in o\'er N b\- talking abI)ut 'the group generated b.\" Br(7). So
our cory IIary about the dtfnabrltty cif Or\T-\ in the group and the residue
case is not quite redundant. in Facl. in the \veal t case. O FIT\\ \\-iII. in general
not be first-order definable. c\'cn if Clr is definable

Example 2.9 Let ( F. r) bc a l_'alutd field utth I', = Z. and let T := 1 +,U?
Then, being in the weak dIScrete case. oT = O. is de$nabie in terms of T
and Vr(Tb = F is trivIal.

llassing to an d-saturated elementary eTtenston LF' . T1) b (.F. T). u'e see,
as in elample 2.1, that the valuatIon t' corrcsponding to vT, admits a fully
compatIble non-trIual coarscntng. the fInest such being the Taiuat£on u with
,VI, = n=..1,Vf :, . But F’ = 1 + .Vt: : Of E O; , so It'(F’) = {0} does not
confazn any non-trrttat conn== subgroup. and. thus. oF 'I T1) = O. 7£ F’. .45
Or(T~1 is tricIa! and Or,iT’) is non-trttral. but LF. T\ = t F' . T’) , we cannot
hate de$nabtltty here

Explicit Formulas
The explicit fomu las \vc ha\'c f(>und ff )r \aluations definable from subgroups

6
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\\-iII not come as a surprise because they essentially describe the topological
properties of such subgroups. So even when, perhaps, they lack elegance
or brevjty, these formulas are \Fell motivated. natural in a sense. The idea
is to define, in tcrnrs of a subgroup r a zero-neighbourhood L- which is
approximately as large as Or. so that the elements r c F for which ?'C' c# C,’

are the elements of 'VIr. Such neighbourhoods will be of the form

L • a T b : = { £ Ft F; ) 7) rJ: ( 1 ? }]? )

if 7 is additi\'e
if 7 is multipJicati\’e

for some a, b c f ’ . 'l'o find a good choice for the elements a, b, \Ye have to
see hon- these neighbourhoods C . .b are bounded above and below by some
basic Or-open sets. namely fract it)naI Clr-ideals, or, if one prefers. preimages
of upper segments of F-r U {x} \r.r.t. rr. (Those fractional valuation ideals
are, of course. linearl\' ordered by inclusion. ) .\s usual. \ve denote for some
fractional Or-ideal /1 the inverse fractional ideal by /11 := {r e F 1 r ' A C
Or} (note though. that this operation is not injective, unless Or corresponds
to a discrete \'aluatic,n)

Lemma 2.Ifl Let ( F. TI be a feld WIth addltrue resp. multipticatttte sub-
group. let AT be the largest { in the addtttce group case eTentually) fractional
OT-Ideal contaIned in T resp. –1 t T. and pICk a, b e FX
( cl.) if T IS additrte and baT , thcn

and SAT is the largest fractIonal OT-Ideal contaIned in L’..b .
('b ) if T is multzplrcattue, aT + bT . and. say. rr(a) $ rr(b), then

bAr : L' . .E = al} 1.VIr

and bAT is the !arg£st fractIonal OT-Ideal contained in L-, b,

1’roof: (a) if g e Jr and b g Jr. tT( y) > a'r(b). So rr(X) = rr(y), i.e.

a := ;1 b C dr C T. Hence {y = S c L’, .b
On the other hand, L'. .b dt)cs not contain an\' fractional Or-ideal 7 with

{/Ir C, J: for either b.vl7 = Jr. but then {bC)r g 1 g c'..b. so a c L’,.b
which is Impus5ible: i>r .Hr C, b.\4 r . su one finds r e b,U r \ T such that

{r e 7, and thus in el \ L-, b

I



II) see that L- ..b C ab,A}1, VIr, first obser\'e that Clr C bail,VIr, as
rT(b) < rr(y) For all ge Jr. So nrr r C T \\-tEh rr(#) > rr(b) resp. rr(r) <
rr(b) we have tTc.s) = rr(f ) \' rT( CI ) resp. rr( pal ) = rr(f) = Ur(a),
i.e. A C yoT G ab/171.VIr. If = e F with rr(r:) = rr(b), \re still have that
rT(r – b) < rr(y ) for all y e Jr. as r – b g T, so rr( S) > rr(f) for all
U CAr. i.e. a C ab./171,L4r

(b) if g C Hr, then b – by e b( 1 tAr) E bT and a – bg = a(1 – ba–1 y) e
a( I + /Ir) E 'IT . as rr(a) 5 rr (bl. so bg C L-..b. On the other hand, an)
fractional Or-ideal ; \\'ith bAr C ._ I contains some : with b – ; ( bT
so ; q L-, b. If. SnaIly, : { aAr I,Ur, i.c. a: e /Ir, then a – = =
–=(1 – a: 1 ) e – IT and b – = = –:(1 – b: 1) c – ir, so either – iF + aF
or – =T + br. as aT + bT . and hence : e L’..b . a

If it happens that f is itself a valuation ring or some (fractional) valuation
ideal in the additive case, or the grc)up of units or of 1-units of some \'aluation
in the multiplicati\'e case, it is not difTicuTt tc) find a formula for Or. In these
cases (and in a fc\r other crceptional cases’) one a]so finds a, b C F with
L' .,b = , VIr or, in the additi\-e group case also L: '. .b = Or. \\'hene\'er this is
possible. and. mt,>reover. T is fully compatible \\'ith t'r , \ve call r valuational

Theorem 2.11 Let ( F, T) be a fIeld trrth addtttu£ resp. muttipltcatrvt- sub-
group, and let Pr g F be deBned as foIIo ics

a C ’PT +> 3a. b C FY (b q 7 resp. aT i bT ) A o,,b(.t) A tb,b(r) A \,.b(r)

u:her€ o,,b(r), c',.b(r) and \,,b(r) abbrctratc the formulas

O.,b( ,r) : =L', sC r resp, I + rl ',.b C T

c',.b(ir) : r2f c',.b : LL.b) g L',.b

\a,b(-) : \II. ; : [g - = e -* L'a.b -– (g c t-a.b V = c t-a.b)J

If T IS ualuatrorcat. oT = PT
TfT is not valuutional, but strongLy compatible WIth oT and for the additiue
group case ,17 = Or. then ,\dr = 'P T
in all other cases .Vtr = {r ( F I in e N : r- ( 'Pr) , where for dIScrete rr
a $1cd eIponent n works unIformly

ilroof: As abu\e. we denote b.',- Jr the largest fractional Or-ideal contained
in :r resp. r – 1. -rhen the theorem foIIo\\’s frI)nI the t\vo follon'ing claims

8
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C;lailrr I : ,bIT rl .AT C PI . and. if T is \’aluati(Jnal. oT C 'PT
Clailrr 2: 'F7 C C17 arId. if T is not \'aluatitJna. Pr C _bIT

I ’roof of clnrrrt / ; l>ick r e .vf r n Jr. \\b have tu Hnd rl . b C f ' with
he T rrsp. aT 4 aT such that

0/

\

rab,Arl.t/IT g ,4r resp.
a2at>,471,Vtr g ?/Ir C Or resp.

a4ab/Ir 1,Vtr g f ,A} resp.

ra/171,Vfr ; it
.r?aH+1,L4r C bAr g Or
a+a'4} 1,VIr g 62.,4}

B.\ the previous Fern nra . such a, b then guarantee the conditions o,.b(r)
th,b(r) and \,,b(r). sip then r C Pr

\\'e first rc\Trite thtISO cf>ndit it)Irs

o' ++ abC .t- 1,4}. VI+1

L'’ t> bCa ' 1 JT ’\ d e b,qr
\' + ; ep ’ A}. t4,

resp. a ,= r--1 Jt}.U}
resp. a Cr 26.A},vl7

resp. fCa 4,A}.VI}1

One Il(t\r easily verifIes that choosing b = = 1,Ar \ T and a e rO; resp
a C J} \ bT does the jf lb t note that the chtlicc for a in the multiplicative
case is possible since d} \ {0} i-nu Itiplicati\-ely generates all of F ’ ).

If T is ’\'alttatil)nat. ’,\'c find a. b such tIrat L-, b = ,Vf T dr in the additi\’e
group case L’,, i = Clr and \re can even find such a. 6 \nth b ( r resp
aF =,£ bT . 1:Jul tllen an.\ such L-'.b is gt)od ft)r any r C O; , so in this case
C1 , C 'P T

?roof of c/afl?z Z; Pick r e Pr , {0} and let a. b C F ' u'itness the
ctFrrespnnding f,)rlrrulas' \\-c iI-!a.*. assulne that L-, b + {0} . as otherwise Or =
PT – F. a,'ICl \re are dI ifIe. \\'e colrsider the set

Our forrIIUlas are SCI desjgned that .LI ob\-i(J'USt\- defines the tnaximal ideal,
or. if T is additi\'e. p(;ssibl\' the \'a lu,it ion ring, tIf st)me \-aluat ion compatible
\\-itIl T. l>assing tcl a saturated elementary extension LF' . f’) > (f. T). \ye see
that Fo r the cclrresp'.lnding set one has .VI' + {0} . so T’ is weakly compatible
\vith s£Jrnc ncIn-tri\'ial \'aIuati(in, \\'hich - being an elementary property b.\
coro] tar) :'+ l'trust also be true of r, ITence Hr 7£ {0)

9



\\'e non' assume that .r g _Ur Fhen

; I, g #2{ 1, E #=£',., ; C',,,

resp. \\'ith , Sd)’, rr(a) $ 1-rr\b-,

b,Ir g #2Z>,47 C r=L ' b C c'.,b

But i,47 resp. b,47 is according to ]emma 2.10 the largest Clr-ideal contained
in L- . .b . so r must be a unit: a C Clr

\\-e deduce that ?dr E .b4 C L-..b resp. b/Ir ; , VI : L-,.b. and. therefore
\ve cannot be in the \\'oak case: .b4 u-ould then be an CJr-ideal. hence (again

by 2. JO) (if the ft)rm . VI = ?,47 resp. .LI = b,Ar, but being non-maximal
(weak case!) and prime this is impossible, in fact. the same argument sho\\-s
that if .VI is a fractional Or-ideal it must equal ,U r or, in the additi\ e group
case. possibly CIT. Hut then u'c arc onjy in cases u'here \vc kno\\' Or to be
definable t-in the additive gruup case .U = {/Ir implies /Ir = Or or Or
corresponds to a discrete \-aluation). so RVC may assume to be in a saturated
model. \There, ho\\-e\-er. as r is not \-aluatiorlal. \ve fInd in each r- L'. b (and
hence. b\' saturation. in . VI ) clements outside ,VIr or Cir

So ,\4 is not any fractional Or-ideal. so it must belong to a fully com-
patible valuation strictly fIner than rT . In particular. this brings us into the
group case. \'ct L-, t ; Or, as otherwise for some g e L-..b \ Or one would
ha\'e

J2 . g ' ;,4, = gIA, C ['.., „,p. yb.A, g L-,.,.

So fAr = , VIr resp. b'47 = b. Ur = . VIr. i.e. in the additi\'c case rT must
be discrete with rr(a ) = uri b) – min rr( Ar ) + J . and in the multiplicati\'e
case b e O; and so a g Clr . Iiut then it is not difficult to find elements in
L' . .b which du not belting to Clr. D

3 p-Henselian Valuations
\ valued field ( F. r ) is called p-hcnselian if r extends uniquejy to the max-
imal Galois-p-extcnsi(in f(p) f .f F. [qui\-a lent I.\'. }tenscl 's Lerlrma or .\-ew-
ton's Lemma holds for pol}nIJmials splitting over Ftp) (cf. l\\’dj or I1{2])
In particular. if f contains a primiti\-e p-th root (;. of unity. this implies

2()
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that 1 + .U. C (F“ )p, provided char F. + p, or 1 + p=z ,U, g (FX)?, if
char f, = p + char r. If char F = p. it implies that .\4. be contained in
the (additive) ,.\rtin-Schreier-group F\P1 := {rp – r ! r c F}. Applying the
results of the previous section to the group T = (FX )? resp. f = Ftpt , \ve
can therefore prove the foI]o\ring

'theorem 3.1 Let f be a heLd ulrich is not p-closed (i.e. f + F(p) ] -WIth

char F = p or (I, C F . If F admits a non-trivial p-hensehan valuation t,
then it admits a de$name tatuation inducing the same topology as t , unLess

p = 2 and F is euclidean

Proof: Let us begin with the case char F = p, Then Lemma 1,2 tells us
that for T = Ftp> , Or is full\' compatible with r. So ive are either in the
group case or in the residue case. Following theorem 2.5, \ve lcno\r that
in the latter case. CIr zs definable, whereas in the first case this is so, if
V= e .VIT : r loT g F

Br,t luckijy this is the case: For c)ther\rise the largest fractional Or-ideal
.It contained in T prupcrl\ contains Clr (but no larger valuation ring). In
particular. the ( n,)n-tri\'ial. archirncdean) con\'ex subgroup of FT generated
br rr(Hr \ C>r) is p-divisible. sti for ant a ( it with a b 1 the fractional
Clr-ideal

/1} := {r C F ! rr(#) : a - t'r(g) for some g C ,47}

strictly contains Jr. To get a contradiction. u-e no\r choose a CII, 2 – !] and
sho\r that A} : 7. Pick = e X} \ /Ir. say rr(r) : arr(g) for some y e Jr.
Then. as I <- a < 2, 0 > tT( =y 1 ) > rr (y ), so rg 1 e At \ Or, hence
lu C aPC); and ra -p = P – b for some a.b C F \ oT. No\r r = a?bP – aPb.
but

-T'- -y 1) + -r(b)
-r(-) – -rf g) + !:'r(y:>

2 C. – 1 + !)-r(g)
? t'Try',

so rT(ab) > tT( aPb) : rT[y ). i.e. ab. aPb C F. Thus r = jab)? – ( a b) + ab –
aPb C r, u'hich flnishes the case char F = p.

If char F 74 p and T := (F ' )p is ful])' compatible with rr. then, again
by theorem 2.3. C)7 is definable, unless \Ye are in the residue case and 7
is an ordering: but this can onIy happen n’hen p = 2. and in this case n’e

rT ( aPbl
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have assulned F to be IIon-euclidean, so r U –T is still a proper subgroup
of F- for n'hich then Or,, r bec<>nlcs definable, being in the group case
again. St J \\'hat remains is the u-oak case in which \vc better not try and
defIne C)7, as this is. t)ncc m( irc b.\' theorem 2.5, imp(lssible, if Or doesn’t
happen tI) be discrete. Rather, \\'c ha'.'e tt) obser\'e that in this case, b\
lemma 1.2. the residue characteristic of 07 mLlst be p. So \ve may pa$s t(J
the coarsest coarsening it' of r T u'ilich still has residual characteristic p. For
this coarsening. I + p2, Vt, E r f * )p. and thus. arguing as in I. Kc) and 1.3
of IK?] . ,_r is p-henselian . \\'c nt)\\- consider the .\rtin-Schreier group dPi
on the residue fIeld of it' and claim. thal the refinernent a'’ of a' b\' the
\-aluatitin corrcspt)nding Lo Clr ,, tin f* is definable. e\-en if a' is not. For a'’
is elementarily determined by {he nJII(;\ring properties

• char F,. = p and I + r>2,v4,, C (F-- 'JP

this lnal tes sure. tc’ is a refinement of a'

• .\d„' ; fr? – r ! .r C F}:
this guarantees that tr' is p-hensclian (cf 1.3 of [1<21)

e if FT) + Fu, . then F:fi induces no \'-tl-)pology on F„,
then a'’ has no p-henselian rcflnenrent

+ if f£T1 = h' , then Vr c .U„r : # 1 O„r g {rP – a } r c F}:
then a'’ is the coarsest \'a]uation \\-ith p-closed residue field; the condi-
tion docs hI>ld acccJrd Ing t(] the char f = /)-case above. D

4 t-Henselian Fields

I'he adequate n(Jti(in to state and pr(>\-e c>ur main theorem for is the gen-
eraJisation of hcnselian x'alucd fields introduccd by Preste] and Ziegler in
[PZ] under the name of 't-henselianit}- : they call a \'-topological field (f, r)
( \\-here 7 denotes the fIlter of ncigh brou hoods of 0 ) t-henselian if it is local)\'

equivalent to sonIC helrseJian \'aiued field. or. equivalent ly, if for each n c N
one fInds some C-„ C r such that

Yun, u. 2 C c’.az C F an + .rn '1 + Un_ 2.rn ' + + uu = 0

Fh.is Ob\-iI)usl\ generalises hcnselianit\ . because for a henselian valuation
r this ct>nditioII is just one ( if the \ersit)Irs of }letrsc I's lelurna if one takes
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C’„ = . VI. for all n. In this context the \veIl-know'n theorem of F.K.Schmidt
on the dependence of henselian valuations has its natural setting: Any field
F u'hich is not separably closed admits at most one t-henselian topolog\
Indeed, this topology then proves to be defInable; for sorne non-linear, ir-
reducible, separable f e F[_\'] the sets r - /(f)'1 U {0} (r c FX ) form a
base of neighbourhoods of 0 ([PZ], p.337). \\'e shall go beyond this result in
proving the existence of some rather \veII shaped definable neighbourhood of
0, namely some definable valuation ring,

Due to the uniqueness of t-hcnsclian topologics for non-separabl}=closed
fields it makes sense to speak of t-henselian fields without mentioning th
topolog.v. It then n)IIon's from the definability of the topology that a field f
which is not separabl}- closed is t-henselian iIT f is (as a field) elementarily
equivalent to some henselian valued field. So, for example, any real closed
field is t-henseJian, but as \vas already indicated in the introduction, there
are t-hensclian Held:5 u'hich are neither real closed nor separabl\’ closed and
which do not adnrit any henselian valuation

Our main theorem nI)\v c]earl.\' follow’s from the following

Theorem 4.1 .4 ny t-henselian .field WhICh is neIther real closed nor separably

closed admits a de$Ttabte raluation inducing the t-hensel£an topotogy.

Proof: if F satisfies the hypothesis of the theorem then for some prime p
di\'iding :Gr. \\-here Gf denotes the absolute Galois group of F. there is a
finite separable extension L/F u-ith L + L(p). (p c L or char L = p, and, if
p = 2, L is not euclidean

Then, because CJ!' the elementary cqui\'aJence uf t-henselian fields with
hcnselian fields. Z is also t-henseIian. as. of course. henselianit\' extends
to algebraic extensitJn s. and the t-henselian ttJPOIOgy on £ induces the t-
hensclian topoIl)g.\' on F by \-irt uc of the den nabilit\' of the topology and the
corresponding fact for algebraic extensions of valued fields

No\\' by the vcr.\' choice of L and theorem 3.1. an elernentarily equivalent
henselian (and hence p-henseiian > field L’ admits a defInable valuation in-
ducing the (t-}herrsclian topology on L' /. 'Fhus the same is true for L. But
definab]e in L means defInable over F sInce \ve ma\' consider the elements of

L as n-tuplcs over f for n = [L : f j (and. clearly. the operations on t are
also F-definab]e). The restrictIon of the ntln-trivial p-henselian F-definable
valuation on Z to F nci\\' gi\'es us u’hat IYe \rant. a
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One should point out that for the definItion of the valuation described in
the pro(>f one may need parameters, namel\' the cocfflcients of the irreducible
pol.\'110mial of s<)me primitive element for the extension C/f. If. ho ive\'er,
F 74 f? form some prime p + char F, €>ne may choose L = F(G) , and
then the \’aluation can be defined \\'it hout parameters. because \ve needed no
paran\eters for t)ur definable p-henselian \'aluat ion of theorern 3.
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Separably Closed Fields with Higher
Derivations I

h'largit Messmer and Carol Wood

Abstract

We define a complete theory S H F, of separably closed fields of
finite invariant c (=degree of imperfection ) which carry an infinite
stack of Hasse-derivations. 'Fhis work will appear in the Journal of
Symbolic Logic. Below we illdicat.e the mairr definitioIrs and results
without proof.

This paper is motivated by tIre following two problems
( 1) Find a theory of differential fields of characteristic p + 0 which eliminates
llllagJ ll titles.

(2) Find a 'natural' language for the theory of separably closed fields of
characteristic p + 0 which eliminates imaginaries without naming a p-basis.

We work in the first-order language £ = {+, –, ', –1, 0, l}U{£Jpl : i e n},

where the D # are unary function symbols. bpI (I; I,I (- ' . (IJpl (#)))) will be

abbreviated by DS>(r). Furthermore, for any K e a, D, stands for

r) I“) ( Dr’ )( DP)(. - - ( DP )) - . .))),

wllcre // = co + clp + ' - ' c'„p" (0 S q $ p – 1 ), the p-adic expansion of 1/.

Note that the coefficient <P!>-1 (?21>.::'-' CP"!)'” is not divisible by p. Do stands for
the identity function



For e = L, Ict w<w' 'lcnot,e t,he set of finite tuI>les (Ca, . . . , Cn> with ci e w
and Cn + 0. For r e n<”* \vc \viII write D(') = /)((q'CI'--f"» for
Di'o)(D£'' )( Di?)(. . . (D£:" )) . . .))), where D(g) = Do = Id

DefInition 1 Thc ficld tF. Dp’, i e w) is callrd ct Hasse fIeld if it satisFes
the following arioms

(Hl) For all i e d: V/V gDp,(r' + y ) = Dp, (.r ) + Dp,(y).

(H2) For a]1 / e D: VrvyrJi.(T '#) = E p+F=PI /)„(r) ' D „(y).
u.p>U

(H3) For all i . j e a' \J .r D1. 1 1)p, (.r ) ) = Dp, ( bp, (.ry,

Note: Let, (F, /ir, ; ; e ,,') be a IIas!•ic [i('lf I. ’l-}l''n

( A) Dl is an (ordinary) (lcrivatioll on I' -. s'> in particular I" is a (lifferential
field

(B) bpI (rF+1 ) = 0 for all ,r e f

(C) For f, J = 1, Dl,, (rn’ ) = ( Dr,-, (,rN-' ) )? fdr all / e F’. This shows that
D p is an (ordinar}\ dcrivati011 OII t he s11l}fill(i Ft\ of pith powers

(D) For all 1/ > 1, II , cl(*liIrc't1 as a.bore. satisfi['s a prodllt't rtllc as in (112)

Definition 2 Let (' > I

(a) H F, is the theory of liassr: $rids of inrariabt $ e. satisfying the foLlow-
ing a=ioms in the tcrtguaqc E

(Fp) A=ioms for fields of characteristic p,

(HF) Arit)Ins (Hl ) (11.3) for Hnsse Fetds.

(H4) For CItI i ed: Vr DTI (.r) = 0

(b) SH F, dr'notts thc theory of separubly closed, strict Hasse fIelds
F- of tnt’ari(Int e trhictt in addition to the a=i07rt.s in (CI) satisfy the
foIIo Icing a=lotus.
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(H 5) IrL>{P'–1>(#) # 0
(116) Strictness: V=(D1(=) = 0 –+ ly T = gP) .

(Hl) F is sepnrubty cLosed.

MaIn Theorem 3 The theory SHF. is complete and has quantiFer elimi-
naZ£on

Proposition 4 Let F be a separably closed $etd of $nite invariant e. Then
F can be e=panded to a model of SH F,

PropositIon 5 Let T be the theory of a stable Feld, Suppose that for every
It ? 1 tIlcre is a (possibLy in Init.e) set of indetermincrtes Xi , ie J , such that
for each model F ofT there is a one-to-one correspondence between complete
n-types over F and certain ideals in the polynomial ring FjXi : i e J\,
such th,[It fOT eueru autoTnorphisTn a of F (as a T-structrre) , a $Tes the type
(setuise) if a $=es the corresponding ideal (seturise.) . Then T eliminates
IITt. a gUI CITies .

Corollary 6 The theory S HF, of sepaTabty closed strict Hassc $elds of in-
variant e < ,v eliminates imagin(tries,
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