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Produits en couronne
de groupes et de groupes ordonnés

par Patrick SIMONETTA
(Université de Paris VII)

Introduction
Les produits en couronne ont de trés nombreuses applications dans 1’étude des

groupes et des groupes de permutations. D’une part ils servent 4 construire des exemples
de groupes ayant des propriétés particulicres. D’autre part, ils ont parmi les groupes de
permutations un certain caractére universel comparable 2 celui des produits de Hahn pour
les groupes ordonnés. Nous n’exposerons pas ici ces applications, bien que nous en
citions quelques unes, et nous nous permettrons de renvoyer le lecteur & la bibliographie
pour plus d’informations. Aprés avoir rappelé quelques définitions générales, nous
montrerons que certains types de produits en couronne permettent de construire de
nouveaux exemples de groupes non abéliens décidables. Pour terminer nous compléterons
ces résultats par la preuve de I’indécidabilité des produits en couronne classiques (res-
treint et complet) d’un groupe par un groupe coatenant un élément d’ordre infini.

Notations et définitions:

Soit A un groupe, et E et F deux ensembles.
., €4, X!, désigneront respectivement la loi de A, son élément neutre, et I’inverse

d'un élément xE A,

Si x,yEA, X'=y'xy et [x;¥] =xy'xy sont respectivement le conjugué de x par y
et le commutateur de x et de y.

Si H est un sous-groupe de A, C,(H)={a&A|VhEH h.a=a.h} est le centralisa-

teur de H dans A.

Si xEA, <x>, et Cux)={aEA|x.a=a.x} sont respectivement le sous-groupe de
A engendré par x et le centralisateur de x dans A.

AE désigne le groupe des applications de E dans A; si f€ AE, le support de f est

I’ensemble supp(f)={ xEE | f(x)#e, };

AE est le sous-groupe de A®, formé par les applications de E dans A & support
fini,
Dans le cas ot E est un ensemble totalement ordonné, on peut considérer le sous-groupe

AL de AE, formé des applications de E dans A & support bien ordonné.

Si E et F sont des ensembles totalement ordonnés, nous noterons E X F le produit EXF

muni de P’ordre antilexicographique:
pour (x,y) et (z,t) dans EXF, (x,y)=(z,t) siy=tou (y=tet X22z).



1/ Produits en couronne de groupes de permutations

Un groupe de permutations est un couple (A,{1), ou {1 est un ensemble et A est un
groupe agissant fidélement sur  (i.e. la seule action triviale est celle de I’élément
neutre).

Soient (A,Q) et (B,T) deux groupes de permutations. Si fE AT et bEB, 'application
6(f,b) de A XT dans lui-méme définie par:

Y(ie,HENXT (o,B).0(f,b)=(c.f(3),8.b),
est une permutation de X T. II est aisé de vérifier que nous obtenons ainsi un groupe de
permutations sur cet ensemble. Ce groupe, noté (A,{)7 (B,T), est appelé produit en
couronne de (A, par (B,T).

Un exemple important d’application de ces produits en couronne, est leur utilisa-
tion pour la construction de sous-groupes de Sylow des groupes de permutations sur un
ensemble fini et pour en déterminer des générateurs (voir par exemple [H1] § 5.9).

Re marques: Les 6(e,.,b) ol bEB forment un sous-groupe de (A,(1)Q (B,T) isomorphe 4
B. Les 8(f,e;) o0 f€ AT forment un sous-groupe normal de (A, (B,T) isomorphe a AT,
et le quotient de (A, 2(B,T) par ce sous-groupe est isomorphe a B. Les (e, .,b) ou
bEB forment un sous-groupe de (A,2)2(B,T) isomorphe & B. B se plonge ainsi naturelle-
ment dans (A,)1(B,T), qui est donc le produit semi-direct de AT par B, I'action d'un
élément bEB sur fE€ AT étant définie par: VxET f(x)=f(x.b™).

Pour a€A et 7€T, on note a, 1'élément de AT défini par:
a () =e, si t#7,
a_(r)=a.

Pour chaque 7€ T, P’application qui 3 aE€ A associe a_ plonge A dans A" et donc dans
(A, (D7 (B,T) (mais il existe bien sdr beaucoup d’autres plongements).

Le pr oduit en couronne restreint de (A,1) par (B,T), noté (A, ﬂ)i (B, T), est le

sous-groupe de (A,2)2(B,T) dont les éléments sont les &(f,b) oi fE AT et bEB. Lorsque
(B,T) est transitif (i.e. vt;,t, €T 3IbEB tel que t,.b=t,), (A, ﬂ)l(B T) peut aussi étre vu

comme le sous-groupe de (A,2)1(B,T) engendré par B et les a_ ol 7 est fixé et a€ A, (ce
groupe ne dépend pas alors de 7€ T).

(A, D1 (B,T) est le produit semi-direct de AT par B.

Ies produits en couronne (restreints ou non) de groupes de permutations sont
associatifs: si (A,Q), (B,T) et (C,U) sont trois groupes de permutations, et si I’on identifie
(QXT)XU avec Qx(TxU), alors (A, D 1LB, THUC,U) et (A, D) UB, TYLC,U)) sont
isomorphes (méme chose pour les produits en couronne restreints). On peut done, pour
tout entier n, définir sans ambiguité le produit en couronne de n groupes de permutations.
En fait, les produits en couronnes peuvent se généraliser a des familles quelconques de
groupes de permutations. Nous ne rappellerons pas ici ces constructions et leurs nombreu-
ses applications 3 I’étude des groupes de permutations transitifs; nous renvoyons a {H1],
[H2} et [Ho].
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Le produit en couronne est également un outil important dans I'étude des groupes
de permutations de chaine. Il s’agit des groupes de permutations (A, ) ou {1 est une
chaine, ¢’est a dire un ensemble totalement ordonné, et ol 'action de A préserve l'ordre
de . (A,) admet un ordre défini par les images des éléments de Q:

pour a,,a,E A, a,<a, si pour tout €1, a.a; Sy
Cet ordre n’est pas en général un ordre total; il est compatible avec la loi du groupe A:
pour x,y,zE€ A, x<y implique x.zSy.Z et ZXSZ.Y.
Si (A,Q) et (B,T) sont des groupes de permutations de chaines, les produits en couronne
(A,0)7(B,T) et (A, D)2 (B,T) sont alors des groupes de permutations préservant I’ordre de

1 X T. Nous renvoyons par exemple 2 [G] ch. 5 pour I'utilisation des produits en

couronne dans ce contexte.

Si (B,T) est un groupe de permutation de chaine, il n’est pas trop difficile de voir

que les 6(f,b) ou f& AT et bEB forment un sous-groupe de (A, MYB,T). Nous appelons
ce groupe le produit en couronne "bien ordonné” de (A,Q) par (B,T), et nous le notons
(A, DB, T))*; il dépend de P'ordre fixé sur T.

I/ Produits en couronne de deux groupes.

Nous donnons maintenant une autre version des produit en couronne, qui est en
fait un cas particulier de la précédente, mais qui est celle qui nous intéresse spécialement.
Tout groupe A agit sur lui méme par translation a droite, et peut donc étre vu comme un
groupe de permutations transitif que nous noterons (A,A). Si A et B sont deux groupes, le
produit en couronne de A par B est le groupe AWB=(A,A)1(B,B). C’est le produit
semi-direct de A® par B, I'action d’un élément bEB sur € AP étant définie par:

vXEB °(x)=f(xb?).

Les éléments de AWB s’écrivent donc sous la forme b.f ol bEB et f€ AR,

On définit également les sous-groupes suivants de AWB: N
- le produit en couronne restreint de A par B: AwB=(A,A)1(B,B), quiest le

produit semi-direct de A par B, et,
lorsque B est un groupe totalement ordonné, c’est & dire un groupe muni d’un ordre total

compatible avec la structure de groupe,
-le produit en coureonne "bien ordonné" de A par B: (AWB)* =((A,A)1(B,B))"

qui est le produit semi-direct de A® par B.

Chacun de ces groupes peut étre considéré comme un groupe de permutations de
'ensemble A xB. II faut bien faire attention cependant, au fait que les produits en
couronne de groupes que nous venons de définir ne se manipulent pas commne les produits
en couronne de groupes de permutations, et ils n’ont pas les mémes propriétés. En
particulier, ils ne sont pas associatifs: si A, B et C sont trois groupes, alors (AWB)WC et
AW(BWC) sont en général trivialement différents, ne serait-ce que pour des raisons de



cardinalité. Il faut comprendre que dans le produit (A,A)? ((B,B)2 (C,C)), (B,BYXC,C) est
considéré comme un groupe de permutations sur BXC alors que dans la définition de
AW(BWC), BWC est considéré comme un groupe de permutations agissant sur lui-
méme,

L’une des principales propriétés du groupe AWB est celle de contenir toutes les
extensions du groupe A par le groupe B, comme le précise le théoréme suivant du a L.
Kaloujnine et M. Krasner (voir par exemple [Sc] th. IT1.5.k)

Théoréme: Si G est une extension du groupe A par le groupe B, alors il existe un
plongement w:A — AWB tel que r(A)S A® et (x(G).A®)/AP=B.

Les produits en couronne de deux groupes A et B conservent certaines des
propriétés des groupes A et B: il n’est pas trop difficile de voir, par exemple, que si A et
B sont des growe s résolubles, alors AWB est lui méme résoluble; si p est un nombre
premier et si A et B sont des p-groupes, alors le produit en couronne restreint AwB est
également un p-groupe; st A et B sont des groupes de torsion, alors AwB est lui aussi un
groupe de torsion.

Toutes ces propriétés font des produits en couronne un outil trés utile comme
source d’exemples et 3 ’heure d’étudier certaines classes de groupes. Ils peuvent
suppléer, par exemple dans ’étude de modgles existentiellement clos ou dans des
problémes de plongement, & I'usage du produit libre avec amalgamation ou des extensions
H.N.N. lorsque ceux-ci ne peuvent servir. Le produit en couronne est I'outil essentiel qui
a permis a D. Saracino de montrer que la théorie des groupes résolubles de classe de
résolubilité au plus n, n étantun nombre entier donné, n’a pas de modéle-compagne (voir
[S] th. 1). G. Baumslag a redémontré, en utilisant le produit en couronne restreint, que
tout groupe se plonge dans un groupe divisible. La preuve originale de ce résultat, due a
B.H. Neumann utilise le produit libre avec amalgamation. Mais la preuve de G. Baums-
lag a I"avantage de pouvoir s’adapter pour montrer que tout p-groupe se plonge dans un
p-groupe divisible et que tout groupe de torsion se plonge dans un groupe de torsion
divisible (voir {B] th. 4.3, 4.4 et 4.5).

Supposons maintenant que A et B sont des groupes totalement ordonnés. On peut
alors munir les produits en couronne AwB et (AWB)® (défini pour ’ordre de B) d’une
structure de groupe totalement ordonné en les munissant de 1’ordre défini par: pour beB
et f€ A® 2 support fini (resp. a support bien ordonné),

b.f=e ssi b>eg ou (b=e, et f(min(supp(f))) =e,)
ol ¢ désigne I'élément neutre de AwB (resp. de (AWB)"). Nous noterons respectivement

AwB et (AWB)“ les groupes ordonnés ainsi définis, Remarquons que le produit en

couronne CWD de deux groupes C et D ne peut étre muni d’un ordre total compatible
avec la structure de groupe que si C ou D est réduit a son élément neutre (voir [N]
lemma 2.1).

Nous nous sommes intéressés aux produits en couronne parce qu’ils semblaient
aussi pouvoir fournir de nouvecaux exemples de groupes et de groupes ordonnés décida-
bles. Sans trop entrer dans les détails, disons que I'idée de départ était I"analogie entre les
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produits en couronne bien ordonnés et les corps de séries formelles k((B)) & exposants
dans un groupe ordonné B et & coefficients dans un corps k. Les éléments de k((B)) ne
sont rien d’autre que des applications de B vers k dont le support, c’est & dire 1'ensemble
des éléments de B dont I’image est non nulle, est bien ordonné; la multiplication dans le
corps k((B)) induit une action du groupe B sur le groupe additif k((B)),, et le produit
semi-direct correspondant n’est autre que le produit en couronne bien ordonné (k,WB)".
Les théorémes d’Ax-Kochen et Ershov sur les corps valués, permettent dans certains cas
de déduire la théorie d'un corps de séries formelles k((B)) de la théorie du groupe
ordonné B et de celle du corps k, de sorte que k((B)) est décidable lorsque k et B le sont.
Nous nous somumes posé les questions analogues pour les produits en couronne bien
ordonnés et avons trouvé les résultats suivants:

Proposition 1: Si A est un groupe abélien qui est somme directe d’un groupe divisible et
sans torsion et d’un nombre fini de groupes d’exposant premier et si B est un groupe
totalement ordonné résoluble alors
1) pour tout groupe A’ et tout groupe totalement ordonné B':

a. A=A et B =B impligue (AWB)' = (A'WB')",

b.A <A' et B <B' impligue (AWB)® < (A'WB')" pour le plongement naturel.
2) Si B est en plus décidable, alors le groupe (AWB)" est décidable.

SiA S A'et B € B', le plongement naturel de (AWB)* dans (A'WB')* est celui qui
identifie (AWB) " avec le sous-groupe de (A'WB')" dont les €léments s’écrivent sous la
forme b.f ol bEB et fEA'® avec f(B') S A et supp(f) & B.

Proposition 2: Si A est un groupe abélien totalement ordonné divisible, et B est un
groupe totalement ordonné résoluble alors
1) Pour tout groupe totalement ordonné divisible A" et tout groupe totalement
ordonné B’,
a) B = B' ssi (AWB)” = (A'WB')”
b)A S A" et B <B' ssi (AWB)™ x (A'WB')" .
2) B est décidable ssi (AWB)"™ est décidable.

Les preuves de ces deux propositions, que nous ne donnons pas ici, se trouvent
dans [Si] ch. IV prop. 7.1.7 et 7.1.19. Elles sont 'une des applications d’une étude plus
générale, que nous avons conduite avec Frangoise Delon, concernant des structures
constituées par un groupe totalement ordonné B agissant sur un groupe abélien G avec
une valuation de G dans B. Nous avons montré pour certaines de ces structures un
priocipe d’Ax-Kochen-Ershov, analogue a celui qui concerne les corps valués.

Si A est un groupe totalement ordonné abélien non trivial et B est un groupe
totalement ordonné résoluble de classe n, nous pouvons voir que le produit en couronne
(AWB)" est résoluble de classe n+1. La proposition 2 nous donne la possibilité de
construire des groupes totalement ordonnés résolubles décidables, de classe de résoiubilité
arbitrairement grande. Si par exemple A est un groupe abélien ordonné divisible, et C, est
le groupe ordonné défini par récurrence:C,=A, et pour n>1 C,=(AWC,_,)",
alors chaque C, est résoluble de classe n, et décidable grace a la proposition 2. Pour
n>2, les C, ne sont pas des groupes linéaires sur un corps commutatif (voir par exemple

5



[W] th. 10.21) et ne font donc pas pariie des exemples classiques de groupes non abéliens
décidables.

Les produits en couronne AWB et AwB d’un groupe A par un groupe ordonnable
B sont en revanche toujours indécidables lorsque A et B ne sont pas réduits 2 leur élément
neutre. Nous avons en effet montré dans [Si] ch. 4 section 8, la proposition suivante:

Proposition 3: Si A et B sont deux groupes, si A# {e,}, et si B contient un élément
d’ordre infini, alors les produits en couronne AWB et AwB sont indécidables.

La preuve de cette proposition, que nous donnons ci-dessous, consiste 4 interpréter
la structure {Z,0,1,+,-, | ) des entiers relatifs avec I'addition, I'opposé et la relation de
divisibilité, dans les groupes AWB et AwB, ce qui suffit 4 en démontrer I'indécidabilité
(voir [T]). L’indécidabilité des produits en couronne restreints, sous les hypothéses de la
proposition 3, n’est pas surprenante: si les produits en couronne bien ordonnés présentent
certaines analogies avec les corps de séries formelles, les produits en couronne restreints
ressemblent d'une certaine fagon aux anneaux de polyndmes; or il s’avére que ces
derniéres structures sont en général indécidables (voir [R] et [D] cor. 1.63)

Dans la preuve de la proposition 3 nous emploierons les notations suivantes:

Nous notons €, € et € les éléments neutres respectivement de A, B et AWB.

Si fE AP, soit | supp(f) | €NU {0} le cardinal de son support.

Si bEB, soit ord(b) ENU {0} 'ordre de b.

Soit d,={ fEA® | pour tout xEB, f(xb)=f(x) }; il s’agit de I'ensemble des
fonctions périodiques de période b. On voit que ®,=C,wz(b) VAP, et est donc un sous-
groupe de A%, Si f€®,, supp(f) est stable par translation a droite par b; la réciproque est
évidemment fausse.

Soient a€ A et b€ B. Nous définissons les éléments a, 4 et f,, de A® par:

.a(eg)=a et a(X)=e, pouUr X #%eg,

.4(x)=a pour tout XEB,

f,u(x)=a si XE <b> et f (x)=¢, sinon.
On vérifie que 4 et f,, appartiennenta &,; d’autre part,

Lemme 1: 1) Si f€®,, alors ord(b) divise | supp(f) | . En particulier, si b# ey alors
| supp() | #1, et si ord(b)= oo, alors soit f=e soit supp(f) est infini.
2) Pour tout f et tout f' de A%, supp (f™'ff") =supp(f).
3) Si | supp(p | =1, alors CiaulN S AP En particulier, 5i a€ C,(A)\{e,}, alors
CAWB(E) =A°.
4) Soient a€A\fe,}, b,b'EB et fEA. [f, ,bf]=€ ssi b'E <b> et [f, , fl=e.

Preuve: 1) Si fE®,, <b> opére simplement sur supp{(f) par translation & droite;
il s’agit donc d’un résultat classique en théorie des groupes.

2) Pour bEB, f'ff'(b) =f"" (L)L) (b) =e, ssi f(b)=e,.

3) Soit b.f' EAWB, o bEDB et f € AP; b.f’ commute avec f ss b'fb={"ff"", ce
qui implique, d’aprés 2), supp(f) -=supp(b'fb)=supp(f).b; ceci n’est possible que si b=e.
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En particulier, comme il est clair que a commute avec tout élément de A® et
supp(a)={e;} on obtient C, yx(a)=A"

4) [fab,b fl=e ssi ff_,f'=b"1f,,b'. Si b’ & <b>, (ff,,F)(d)=¢, et
(''f, b )b") =f, (es) =a=e,. D'autre part, si b’E <b>, f,;, commute avec b’. Nous
voyons donc que si [f,,;b'f]=e alors b’€ <b> et [f,,;f]=e. La réciproque est triviale. ]

Lemme 2: Soient b,cEB et fEA®. Alors
1) f € Cppth) ssi cE€E Cy(b) et fED,,

2) ¢f € Comp(Cons(P)) 551 CE <b> et fE(C,ADN () &). En particulier, si
XEC,B)

C,(A)={e,}, alors pour tout bE B, Cpp(Capsd)) = <b>.

Preuve: 1) Pour tout cEB et f€ A3, blcfb=cf ssi b'cb=c et b'fb=f, puisque
BN A®={e}. b commute donc avec cf ssi cECy(b) et f€ C,wz(®)NAB=d,.
2)Soit g€ Cowa(Caws(D)); g s’écrit g=cf avec c&EB et fEA®P. Ona

Cawr () & Caun(g).
- Pour tout a€ A, A€ C,uz(d)NCrws(c), et donc 4 commute avec f. Par consé-

quent, pour tout XE B, et tout a€ A, f(x)a=af(x) et fEC,(A)*=C,.(A®).
- Pour tout a€A, f,, commute avec b et donc avec g. Nous en déduisons grice au

Iemme 1 4), que c€ <b>, et il existe un entier relatif o tel que c=b"
- Comme c et g commutent avec tous les éléments de C,ua(b), f fait de méme, et

par conséquent fE€ P, pour tout x € Cy(b).

Réciproquement, si n€EZ et f€ (C,(A®N [] &,), on vérifie aisément que bf
2EC, )

commute avec tous les éléments de Cowa(b). O

Lemume 3: Supposons C,(4) # {e,}. Soit Div(x,y) la relation binaire sur AWB, définie

par:
Div(g,g’) ssi il existe RE A® tel que Cpp(8) S Caupl@'h).

Alors Div est deﬁmsvable dans AWB (avec un paramétre) et pour tout b,b’EB, ff' €A,
Div(df.b'f') ssi il existe n€Z tel que b'=b"

Preuve: Pour voir que Div est définissable il suffit de vérifier que A® Pest; si
a€ C,(AMe,}, le centralisateur de a dans AWB est A® d’aprés le lemme 1 3), ce qui
prouve que

Div(g,g’) < 3u ([u;al=e A (¥v [vig]=e —> [v;g'u]=e)).
Si aE€EC,(A)\{e,} alors f,, &€ C,(A"); d’aprés le lemme 1 4), £, &€ Cyrup(bf), et §°il existe
hE AP tel que Cowa(bf) S Cams(d'F'h), alors f,, € Cawg(®'F'h). Ceci implique b'€ <b>,
toujours d’aprés le lemme 1 4).

n-1

Réciproquement, si n€Z, f,f' € A®, et h'=(bf)™" alors h'= II (f1)*' € AB, et,

b°f’ =(bf)"h'f’; si on pose h=(h’'f’)", alors hE A® et b°f’ h*"(bf)" 11 est clair que
Caws(bf) S Camp((007. [



Preu ve de 'indécidabilité de AWB:

Soit b un élément d’ordre infini de B. Nous distinguerons deux cas:
Cas 1: C,(A)={e,}. Soit div(x,y} la relation binaire

div (x,y) =—> ¥z ( Xxz=zx —» yz=zy ).

<b> est définissable: d’aprés le lemme 2 2), pour tout gEAWB, g€ <b> ssi
AWB = div(b,g).
Sin,mEZ, AWB = div (b", b") ssi m | n. Nous en déduisons que {<b>e,b,.," div)
est isomorphe & (Z,0,1,+,-, | ), cette structure est définissable dans (AWB,b), et la
théorie de AWB est donc indécidable.
Cas 2: C,(A)#{e,}. Soit a€EC,(A)\{e,}. D’aprés le lemme 3, A® et Div sont définissa-
bles dans {(AWB, a) et Div est compatible avec la relation d’équivalence associée au sous-
groupe normal A®. Soit div la relation quotient de Div définie sur (AWB)/A®, et § la

classe d’un élément g& AWB dans ce groupe. (AWB)/ AP = div(§,8") ssi g'€E<g>. b
est d’ordre infini, et comme dans le premier cas, on montre que (< b > ,e,b,.,",div) est

isomorphe 4 (Z,0,1,+,-, | ), et cette structure est interprétable dans {AWB, a,b). La
théorie de AWB est donc indécidable. (J

Lemme 4+ Si{ b€ B est d’ordre infini, alors C,»(b)=Cy(b).

Preu ve: I suffit de remarquer que, d’aprés le lemme 1 1), $,N AT ={e}; le
résultat découle alors immédiatement du lemme 2. O

Lemme S: Soit ¢(x,y,2) la formule

pxy,2):  [d=e A (Qulxul=e AN [x;2]=[u;y])
Soient aC€ A\{e,} et bE B d’ordre infini. Pour tout g€ AwB, AWB = ¢(a,b,g) ssi
gE <h>,

Preuve: Soit n€Z et g=b". [g;b]=e, et il nous faut trouver v, € A® tel que
[a;g]=[u,;b]. Si n=0, il suffit de prendre u,=e.
Si n>0, définissons u, par:  w (dbH=a si i€{0,..,n-1}
u,(x)=e, sinon.
Si n<0. u(b)=a' si i€ {n,..,-1}
u (x)=e, sinon.
Dans tous les cas, u, est un éément de A Y et [u;a]=e.
Si n#0, pour tout x €B, [u,;b](x)=u,"(x).u,(xb?)
=at si x=e,
=3 si x=b"=g
On a donc {u,;b]=a'b"ab"={a;g].
Réciproquement, soit g tel que AwWB = ¢(a,b,g). [b;g]=e, et donc gEB d’aprés le
lemme 4. Nous pouvons supposer que g=e. Soit u&€ AwB tel que [a;u]=e et

[a;g]=[u;b]. u€ A® d’aprés le lemme 1 3), et peur tout X €B, [u;b](x)=(u(x))u(xb™);
d’autre part,
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[a;gl(x)=a" si x=ey

=3 §i X=g
=g, Sinomn.
Nous en déduisons:
u(b’) =u(ep)a’ (1)
u(gb'y=u(g)a (2)

u(x) =u({xb’') pour x¢ {es.g} (3)
Si g& <b>, alors pour tout entier n non nul, b*¢& {e;,g}, et (3) implique u(b®) =u(d™").
On en déduit par récurrence que, si n>0, u(b”)=u(ey), et si n<0, u(b®)=u(d'). b étant
d’ordre infini et u ayant un support fini, il est nécessaire que u(eg) =ud=e,. (1) .
implique alors a=e,, ce qui est contraire aux hypoth&ses. Nous avons donc g€ <b>. [

Preuve de I'indécidabilité de AwB:
D’aprés le lemme 5, si b est un élément d’ordre infini de B et a un €lément de

A\{e,}, <b> est définissable dans (AwB, a,b). Soit div la relation binaire définie par

div(y,z) < «(3.y,2).
On constate que {<b>,e,b,., ,div} est isomorphe 4 (Z,0,1,+,-, | ), et cette structure est
interprétable dans (AwB,2,b). La théorie de AwB est donc indécidable. [

Corollaire : Pour tout groupe A non trivial, et tout groupe ordonnable B non trivial, les
théories des groupes AWB et AwB sont indécidables.

Preuve: Un groupe ordonnable n’a, a part I’élément neutre, que des éléments
d’ordre infini. (]
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Le model-compagnon de la théorie des corps de différence
Zoé Chatzidakis, CNRS/Paris 7

Résultats algébriques

Rappelons qu'un anneau de différence est un anneau A, muni d’un monomorphisme
o: A — A Le langage dans lequel nous travaillons est celui des anneaux, augmenté d'un
prédicat de fonction unaire pour . Les résultats que nous citons dans ce chapitre peuvent
étre trouvés dans le livre de Richard Cohn [C].

Si I’anneau A est intéegre, o se prolonge de fagon unique au corps des fractions de A.
Si A est un corps on parle de corps de différence.

Le monomorphisme ¢ n’est pas nécéssairement surjectif; cependant, tout anneau de
différence a une extension dans laquelle o est un automorphisme; de plus il y a une plus
petite telle extension, dont nous donnons maintenant la construction.

Soit A_; = {@& | a« € A} une copie isomorphe de (4,0); on plonge A dans A.; par
a > o(a); alors (A, 0(A),0) ~ (A1, A, o). De cette facon on construit un systeme inductif
(A_p,0)}nen d'anneaux de différence avec A_pt1 =0(A_,). Si B est la limite inductive
des A_,, alors o est un automorphisme de B.

A partir de maintenant, dans tous les corps de différence, ¢ est un automor-
phisme.

Soit I un corps de différence. On définit anneau de polynémes de différence sur K
dans les variables X1, ..., Xn, comme étant 1'anneau de polynomes
K[X,...,Xn.0(Xh),... ,o(Xn),0%(X1),...]; Vaction de o étend celle sur A" et envoie
o™ (X;) sur ¢*F1(X;). On dénote cet anneau de polynomes par K{X).

1l y a une notion naturelle de o-idéal: I C K(X) est un o-idéal si c’est un idéal clos
par o et 07!, Un o-idéal correspond au noyau d’un homomorphisme de K (X) dans un
anneau de différence.

Attention: & (X) n’est pas noethérien: soit I le o-idéal engendré par Xo(X), Xo*(X),

. Xo™(X),.... Uno-idéal I est parfait si tout élément a donf un produit de transformés
est dans I, appartient lui-méme a I; notons qu'un tel idéal est en particulier radiciel. Nous
avons alors la condition de chaine ascendante pour les o-ideanx parfaits. Notons aussl que
tout o-idéal premier est parfait. Nous avons aussi que tout o-idéal parfait cst l'intersection

des o-1déaux premiers le contenant.

Soient (F,o) C (I.o) des corps de différence, et a un uplet d’éléments de K. On
dénote par F(a), lo plus petit corps de différence contenant a, c’est & dire le coprs
F{...,07(a),a,0(a),...). A a nous assoclons un g-idéal I(a/F) C F{X) de la maniére
naturelle, en défimssant

I{a/F)={f € F{X) | f(a) =0}.

Clairement, [{a/F) est un o-idéal premier.

It se peut que tr.deg{Fla)s/F) soit fini. Dans ce cas, pour n suffisamment grand,
F(a), cst une extension algébrique de Fla, o(a),. .., o™(a)); pour m > n les entiers dm =ai
[F(a,ola),... o™t a)) « Fla,ola),... ,o™(a))] forment une suite décroissante, qui se

1



stabilise en un entier appelé le degré limite de F(a), sur F; ce degré limite est un invariant
de 'extension F(a),/F, i.c., il ne dépend pas des générateurs choisis.

De plus en caractéristique 0, une telle extension est en fait engendrée par un seul
dlément; en caractéristique positive, il faut faire attention aux extensions inséparables,
cependant un résultat analogue existe.

Résultats de théorie des modeles
Les résultats de ce chapitre sont en partie dis & L. van den Dries, A. Macintyre et C.
Wood, mais n'ont jamais été publi¢s; les résultats concernant ’équivalence élémentaire et
les types sout des traductions de démonstrations pour les corps PAC a notre contexte.
Nous voulons donner une axiomatisation de la théorie AC'F'A, modeéle-compagnon de
la théorie des corps de différence. 11 s’agit d’expoimer que tout systéme d'équations of
d'inéquations qui a une solution dans une extension a une solution.

Proposition 1. Soit ACF A la théorie Jdont les modeles sont des structures (. o) satis
faisant:
(1) & est un automorphisme de fy.
(i1} I est algébriquement clos,
(111} Si I7 est une varieté définie sur i, et 17 C U x o(U7) une varieté définie sur v clle
que les projections de Vosur U et a{07) sont denses dans U7 ot a(U7). Alors 1l existe

a € U(I) tel que (a.ova)) & 17,

Alors ACF A est le model-compagnon de la théorie des corps de différence.
Démonstration. Quelques mots d’abord sur les termes employés; une varieté est pour
nous un ensemble algébrigue (défing sur A) irréductible; la varieté o(U7) est celle dont les
points sont {a(a) | @ € U}; UK} denote I'ensemble des points A'-rationnels de U. Notons
que ces proprietés sont expressibles dans notre langage, puisqu’elles sont essentiellement
algébriques.

Nous allons d’abord montrer que les modeéles de la théorie ACF A sont existentielle-
ment clos. Pour celd, notons d’abord que 'on peut éliminer les inéquations par 1'astuce
habituelle, et done se ramener & la résolutions d'équations de la forme

f]_(.l‘,... ,O'k(;l')) = ... :fm(xa-'- ~Jk($)) e 07

olt & = (#1,....74), les polyndmes f; sont des polynomes a coefficients dans I, avec
variables r,.... 0‘"'(.1').

Soit L une extension de ' dans laquelle ce systeme d’équations a une solution, a.
Solent {7 ¢ AF"® la varieté définie sur K dont (¢, ..., " 1(a)) est un point générique, et ¥V’
celle dont (a,....c* Ha),ala).....c%a)) est un point générique. Alors I” et V7 satisfont
les hypotheéses de {iii), et donc il existe b € UL IV) tel que (b, o(h)) € V: écrivons b comme
(e.. ... a*=1(e)): alors ¢ est 'élément cherehé.

Montrons maintenant que tout corps de différence & se plonge dans un modele de
ACFA: les axiomes (1) et (i1) ne posent aucun probléme. ear tout automorphisme d’un
corps s'étend en un automorphisme de sa cloture algébrique. Solent donc U et 17 comme
dans (iii), avee IV algébriquement clos, et @ un point générique de U, b , et F la clo-
ture algébrique de K(a); puisque F est algébriquement clos et tr.deg( F/RK) = dim(U) =

9
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dim(a(U)), nous pouvons trouver dans F' un point b génerique de o(U) tel que (a,b) € V;
'isomorphisme ¢ entre K(a) et K(b) (qui prolonge o et envoie a sur b) s’étend alors & F.

Proposition 2. Soit K = ACFA, F le sous-corps de K fixé par 0. Alors F' est pseudo-fini.

Démonstration. 1l est clair que I est parfait; de plus il est PAC: si la varieté U est
définie sur F, alors U = o(U) et nous pouvons prendre pour V la varieté diagonale. 1l
reste maintenant 4 montrer que F' a exactement une extension algébrique de chaque degre.
Notons F%9 la cléture algébrique de F; alors o(F*9) = F™9, et donc Gal((F*'9/F) est
engendré par ¢; F' a donc au plus une extension de chaque degré; pour montrer qu’il en a
une, notons que le systeme

cMx)==a, x#o(z), ... .o F " ()

a une solution dans une extension de A, et donc dans K.

Proposition 3. Soient (K, 01), (L,02) deux modeles de ACF A, contenant un sous-corps
de différence (E, o) qui est algébriquement clos. Alors

(K,01) =g (L, 02).

Démonstration. On peut supposer K et L |E|T-saturés de méme cardinalité. Par un
argument de va-et-vient il suffit de montrer que pour tout (élément) a € K il existe be L
et un E-isomorphisme v : E(a)‘;‘;g — E(b)gig qui envoie g sur b.

Soit A le diagramme sans quantificateurs de E(a)?!?, avec les variables x4, o €
E(a)gﬁg . Remplacant L par une copic E-isomorphe sl le faut, nous pouvons supposer
que L et K sont linéairement disjoints au-dessus de E. Soit M le corps composite de L
et E(a)gig: c’est le corps de fractions de E(a)ﬁig @ L. Définissons 7 sur L' en posant
(e d) = o1(c) & oz2(d); 7 prolonge 7y, o3, et s’é¢tend en un automorphisme de M®%.

Puisque AC'FA est modele compleéte, cela implique que Th(L,02,¢)ccr U A est con-
sistent; par saturation, A est réalisé dans L, par (b, ); définissons ¢ : E(a)iig par « +— bg.

Ce résultat a bicn sir plusieurs corollaires:

Corollaire 1. Soient (A, 01), (L,0,) deux modeles de ACFA de méme caractéristique,
et & la cloture algébrique du sous-corps premier. Alors

(W,o0)=(L,oy) &= (ko )= (koy)

Corollaire 2. Soit & = ACFA, E un sous-corps de It et a, b des uplets. Alors tp(a/E) =
tp(h/E) si et seulement s'il existe un E-isomorphisme ¢ : E(a)¥9 — E(b)%9 qui envoie a
sur b.

Corollaire 3. Les notions algébrique et modéle-théorique de cléture algébrique dun corps
de différence coincident.

Démonstration. Soit E un sous-corps de différence de K = ACFA, et supposons le £
algébriquement clos en tant que corps. Il nous faut monirer que si a € K\ FE alors

3



tp(a/E) a une infinité de réalisations. Soit F' = E(a)'9, et soit (F',o') une copie de
(F, o), linéairement disjointe de K au-dessus de E. Procédant de méme que dans la
démonstration de la Proposition 3, on étend ¢ et ¢’ en un automorphime 7 de la cléture
algébrique M du corps composite de K et F'. Puis lon plonge M dans un modéle L de
ACFA. On a alors K < L, et L\ K contient une réalisation de ¢p(a/E). Ce qui montre
bien que tp(a/E) peut étre réalisé une infinité de fois dans un modeéle suffisamment saturé.

Bibliographie
[C] R.M. Cohn, Difference algebra, Tracts in Mathematics 17, Interscience Pub. 1965,

CNRS, URA 753 )
Cniversité de Paris 7

2, Place Jussieu, Case 7012
75251 Paris Cedex 05

Adresse électronique : zoe@logique.jussieu.fr



Le groupe des automorphismes du corps des
complexes laissant les nombres algebriques
fixes est simple.

Daniel Lascar

Janvier 1994

1 Introduction

(et exposé reprend certains résultats de Tarticle “les automorphismes d'un en-
semble fortement minimal™ [1]. Dans cet article, on démontre, entre autres,
que le groupe d’automorphismes d’une structure forternent minimale, saturée
et dénombrable est “presque” simple (on verra plus loin le sens exact de ce
“presque” ). Le cas des corps algébriquement clos de caractéristique 0 est parti-
culidrement intéressant. Le résultat peut se généraliser au cas non dénombrable,
ce qui permet d'obtenir le théoréme suivant :

Théoreme 1 Le qroupe dis automorphismes de C laissant fires tous les nombres

algebriques e st simple.

{TIei ' désigne le corps des nombres complexes.)

Dans larticle mentionné plus hant, on annonce ce résultat a Vaide de 'hy-
pothese du comtinu. Un des buts de cet exposé est de montrer que, en fait,
Ihypothese du continu est inutile. 1n antre but est d’en présenter la preuve
sans jamais faire référence a des notions de théorie des modeles, afin qu’'elle soit
immediatemnt compréhensible ponr quiconque connait nn peu d’algebre. Cepen-
dant. cette prenve sera éerite de fagon & ponvorr aussi étre lue comme une preuve
du théoreme 10 (voir plus loin) qui affirme que le gronpe des automorphismes
dune structure fortement. minimale of saturée (quelque soit sa cardinalité) est
“presque simple”.

On commence par introduire guelgues notations :

o » désigne la cardinalité de @' (& = 2%0) ;

o (/ désigne le groupe des antomorphismes de € laissant fixes les nombres
algéhrigues ;

e O ddésigne 'ensemble des sous-corps algébriquement clos de @ qui sont de

cardinalité strictement inféricure a » :



e si A € O (/i désipne le groupe des antomorphismes de A laissant les
nombres algébrigues fixes, et Aut;(Q') désigne le groupe des antfomorphismes de
(" laissant les points de K lixes.

Définition 2 Seit ¢ € (1. On dit que g csi borné 5%l eriste K € Q tel que pour
tout @ €@ gla) est algébrique sur K U {a}.

On remarque que les awtomorphisines bornés forment un sous-groupe normal
de (£ et si g est borné et que le corps A est comme dans la définition 2. alors le
corps A est laissé globalement fixe par g ce qui s'éerit g/|K1 = I{).

Le théoreme 1 découle immédiatement des deux propositions suivantes :

Proposition 3 Seif ¢ un dment non bornd dans (. Alors -

1](1’

(F =Y ofy N0y og"

(4 disigue Densomble {htgh  h e (7}

Proposition 4 L identit¢ cst le scul {lément borne dans (5.

2 Preuve de la proposition 3

On va montrer la proposition 3. Pour toute cette preuve, on fixe un auto-
morphisme g de ¢ non horné, On a besoin maintenant de quelques notations
supplementaires.

o 1\ désigne Iapplication de (7 x ( dans (7 qui a (h, k) fait correspondre
hlogokog-iokoh Onvoit que y(h.g) € g7 o (y=")".

o si A C O,k désigne Papplication de (fy x (e qui & (B &) fait correspondre
h'ogoklogokoh (autrement dit. \y est la restriction de y a (i x G

[ essenticl de la démonstration est contenn dans le lemme suivant :

Lemme 5 Soil i € Q. h b appartenanta G, K€ Q et f € Gy On suppose
que N C K o que | oprolonge \w(h k). Alors il eriste h' «t k' dans (7 tcl que
VAR prolonge f

On aura hesoin des denx sous-lemmes suivants. Iei et plus loin, mdépendants
veut dire algébriquement indépendants et la dimension est la cardinalité dune
base de transcendance.

Sous-lemme 6 Supposons que Ky . Ky i Ky soient trois fléments de 1. que
No C Ri.oque Ky © Ry of que Kot Ky sont inddpendants au dessus de Iy, On
suppose de plus que Iy € Gy oque by € Gg,.oque hy | Ko =hy| Ko =h . Alors
i oeriste wn wmtomorphisme b dans (¢ prolongeant @ la fois hy f hy.

I
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Preuve : Soit & le corps engendré par KUK, Considérons 'application b de K
dans it définie de la facon suivante : tout élément b de K peul s’écrire R(bg, by, by),
oft B est une fraction rationnelle & cocfficients entiers, by une suite d’éléments de
No. by une suite d'éléments de K7 — Ky | et by une suite d'éléments de Ky — K.
On pose : h(b) = Rlho(by), h1(by), hr2{B2)). On vérifie alors que lapplication h est
bien définie (h({b) ne dépend pas de la représentation R(bo, by, by) choisie) et que
¢est un antomorphisme de A qui se laisse prolonger sans peine a{’ tout entier.
o

v

Sous-lemme 7 Soit K € Q tel que g[K] = K «f A un cardinal inféricur ou ¢gal
a . Alors il cxiste K1 € Q. N C Ky tel que Ky et g[K,] soient indépendants
au dessus de K oof dim(K/K) = A,

Preuve : Ou construit par induction nne suite (a; : ¢ € A) de points deC de telle
sotte que, pour tout 7 € A, gla;) ne soit pas algébrigne sur K ({g{a;); J < 1} U
{a, 1 j <1}). Cecl est possible parce que g n'est pas horné.

@

Nous attaquons maintenant la démonstration du lemme 5.

Preuve : On peut trouver by € (7 étendant £ et laissant K’ globalement fixe.
Posons by = hy | K’. Plutét que de construire A et &' prolongeant respectivement
i et ket appartenant a (¢ tels que :

(1) hlogok og 'okoh prolonge f
on constriira a € Auti (') et k' prolongeant £ tels que :

(2) alogok™log ol oa prolonge hyo fohy!.

(1l suffira alors de prendre &' = « o hy). D'aprés le sous-lemme 7. il existe
Ky € O tel que dim(Ao/R) = dim(A'/K) ot tel que Ko et A1 = ¢ [ K]
soient indépendants au dessus de K. On choisit @ € Autg () de sorte que
alK') = K. Soit fi € (i, Vapplication a o /iy o fohy' o™t (il faudrait plutot
Gerive fi = t{a | K" o hyo fohy'ofa | B7)71 ).

[1 nous faut done maintenant trouver &' € (7 prolongeant & tel que

{3) gok=bo gt ok prolonge fi.

Soit ky € (g, prolongeant k et kg € (i, prolongeant g~ o fiokilog (ou, plus
exactement prolongeant (¢ | k)™t o fiok o{y | Ao) }. de sorte que gokgo g !
ost égal & fL o k7' On remarque alors que by | K = k (parce que fi prolonge
gok tog ok ). On utilise alors le sous-lemme 6 qui nous dit qu’il existe
e (¢ prolongeant simmutanément by et ky. Alors g o F=vo g™t ok prolonge
gokylog™ ok = fi.

Modifions [égerement le lemme 5

Lemme 8 Soit A € O, h ot b appartenant @ Gr. K'€ Q. f € G et h € Gk
On suppose que K C K’ ¢t que b prolonge \ (b k). Alors il eriste Ky € Q, hy
e ky dans G, tels que KD C Ky, g (K] = Ky = [[Ky] card(By) = card( '} ol
\ i (A k) prolonge b,



Preuve : On construil d’abord des automorphismes A’ et & comme dans le
lemme précédent, puis. & aide d'un raisonnement dn type Léwenheim-Skolem,
on trouve un sous corps Ay de € tel que K' C Ky, g[Ki] = Ky, fIK] = K et
card(Ky) = card( R’} et il sutfit alors de poser hy = b' | Ky el by = &' | K.
9

Soit f < (7. On va montrer qu'il existe k., ko, AL, et kL tels que y (T, k) 0
(AL KDY = f. Le lemme qui suit constitue nn premier pas.

Lemme 9 Soilt K € Q0 h k.4 .k appartenant & (g . a €07 ¢t on suppose
que [ prolonge \ (b k) o (N(W. AN Alors il existe Ky € Q et by ki, By, K
appartenant & (e, prolongeant b, k. I k' respectivemont tels que g [i0] = K.
cardl ) = card(K) of [ profonge \ i, (i k) o (xw, (REDTT

Preuve : Ou commence par choisir A1 € 9 tel que card(K'} = card(K).
a e KU g[K = K" et fIRY] = AL Soit AT et & appartenant a (Jgs pro-
longeant tespectivement A et &, On voit alors que (f | KMoy (A7 k'Y prolonge
Vi Bk, Grace an lemime 80 on trouve K72 € Q tel que card( K*) = card(K),
q[K? = K fIR?] = K% et h? et k% appartenant a (Vg2 prolongeant respective-
ment et k tels que \ 2 (A2 k2) prolonge (f | K1) oy (A F1). Autrement dit
(f 1 K2y Vo (A2 k?) prolonge \ s {1 &), On ntilise encore le lemme, et on
fronve K3 € Q tel que card(K?) = card(K), g [K?*] = K3, f[K?] = K* et A? et
3 apparienant & (s prolongeant respectivement A et ! tels que v (B k)
prolonge { f | K)oy x2(h% k*). Maintenant, cest (f | A7) o xgs(R°, k') qui pro-
fonge \ w2 A% k%) ot on construit ainsi une suite croissante { K7 ;4 € w) d’éléments
de Q et des suites croissantes (A* © 1 € Q.7 pair). (k' 7 € Q.7 pair). (A 2 € Q0
impair). (A" 1§ € .7 impair) de sorte qu'en posant Ky = Use, A7 A1 = Uiew fost,
b= Usew 220 00 = Usen BP0 KD = Usew A7, on obtienne bien ce que l'on
voulait.

2

On peut maintenant terminer la preuve de la proposition 3. On énumere € :
(' = {«, : & € x}, on construit par induction des suites croissantes (K, 1 o € &)
déléments de Q. (h, s o € wh (ks a €r) (R, e k), (K, ov € k) d'éléments
de G L telles que, pour tout o € s, IR, = K., ¢ ,] = K., e € K, et f
prolonge e, (R, k) o (VY. EOY=L
nombres algéhrigques et by, koo i, k) égaux a Uidentité sur Ky les autres étapes

On démarre avee Ky égal an corps des

sont résolues erdce an lenune 9. et il suffit de poser he = Usen Ao be = User R
L — i i g
o= Mok = U=, M

v

v

3 Preuve de la proposition 4

Une prenve de la proposition t est donnée dans [1]. M. Zicgler a en a donne
nne autre qui fonctionne aussi si la caractéristique n'est pas nulle. On va en
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donner une troisieme, compldtement élémentaire et qui se généralise facilement a
la caractéristique non nulle.

Soit ¢ un automorphizme borné, soit A appartenant a {1 tel que, pour tout
a €4, g(u) est algébrique sur K (a).

Supposons momentanément que, pour un point @ € U — K, gla) = a. On va
monirer que cela entraine que g est Pidentité, Soit b un autre point de € non
algébrique sur K (a). Alors g(h) est algébrique sur A'(b). et il eu est de méme de
g(b) — b, Par ailleurs, gla + b) = a + g(b), et donc, a + g(b) est algébrique sur
K{a+b). de méme que a+g(by—(a+b) = g(b) —b. On voit donc que g(h) — b doit
dtre alegdbrique sar A () ot sur A(a -+ ), done doit appartenir a K. puisque b et
a-+b sont algébriquement indépendants au dessus de K. Posons ¢ = g(b)—"0b. Pour
la méme raison, glab) — ab doit apparteniv a K. Or g(ab) = gla)g(b) = ab+ ac.
On en déduit que ac appartient & A, cc qui n'est possible que st ¢ = 0. I en
découle que g est ¢gal a identiieé sur le complémentaire de A, done sur € tout
entier,

Revenons au cas géncral. Soit « n’apparienant pas a K. Posons ' = gla),
Soit P(X.X") un polvnéme & cocflicients dans A" tel que Pla.a’} =0 et de degré
minimum: on voit anssi que Pla. X'} est le polyndéme a coeflicient dans A'(a) de
degré minimum annulé par . On remarque que si ¢ n'appartient pas a R et si
¢ ost tel que Ple.e’) = 00 alors il existe un I -antomorphisme de € qui envoie a
en e ot o en ¢, Nous allons montrer que Pla, X} = 0 n’a qu'nne seule solution
dans €.

Fn effet. soit b un autre point de @, non algéhrique sur K{a) et Ay la cloture
algébrique de K (D). Le polynome Pla, X') reste de degré minimum parmi tous
les polynomes & coofficients dans i qui sont annulés par «'. Done si pour o €4
on a anssi Pla.a’) = 0. alors il existe un A —automorphisme [ de € laissant a
fixe ot envoyant «f en a”. On voit alors que Tautomorphisme h=glofogof!
laisse b ixe el envoic « on «” et est tel que, pour tont ¢ €€, h(c) est algébrique
sur K{e). ce qui nest possible, dCapres ce qui vient d’étre dit. que si ="

Cela montre que le degré de P en X7 est ¢gal a 1 {en caractéristique non
nulle, il faudrait {aire preave dun peu plus de finesse). Pour la méme raison,
son degré en X doit étre aussi 1 Autrement dite gla) = o -+ 4. pour des points
a ot 3 de K. En appliquant fe méme raisonnement a a? et & a + 1, on voit
quil existe 5.0 of ¢ dans K tels gue gla?) = ya® + 6 = ala? + 2c0ad + 3% et
gla + 1) = au 4+ 1 = cla+ 1): coci nest possible que si o et 4 =0, Hlen
déconle facilement que g est identité,

W

4 Le coin des théoriciens des modeles.

La proposition que Fon vient de montrer n'est quun cas particulier d'un théoreme
plis géndral portant sur le groupe d"automorphismes d'une structure fortement



minimale non dénombrable. Le cas dénombrable est traité dans [1]. Supposons
maintenant que (7 soit une structure fortement minimale de cardinalité & non
dénombrable. Soit £ la classe des sons-ensembles de (77, algébriquement clos el
de cardinalite inférienre & £, Pour ces structures, il existe des notions d’algebriciteé.
Qindépendance et de dimension. La définition 2 a done un sens. On notera (¥
le groupe des automorphismes forts de (7. La proposition 4 n'est plus vraie en
pénéral : appelons B le sons-groupe normal de 7 constitné des automorphismes
[orts et hornés de (' (en fait. si (7 est localement modulaire. B u’est pas trivial.
voir [1'). La proposition 3 donne

Théoréme 10 : Le groupe quotient (7] B est simple.

Il ne faut que pen de changements a la démonstration que nowus avons donnée
de la proposition 3 pour en faire une démonstration du théoreme 10. Posons
encore & = card((). Le senl point qu'il faille modifier est la preuve du sous-
lemme 6. Mais ce lenmumne est précisément la propriété d’amalgamation pour les
autormorphismes qui est démontrée pour les structures stables dans [2].
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Présentation de la Méthode de Décomposition Cylindrique de
Collins

Pierre Jumpertz

La méthode de Collins [Col] wouert Ta vore i Fétude calculatorre des corps réels clos. De nombreuses
méthades de caleuls effectits ont 616 proposées, arrnant aux bornes de la complenité théorique, mais qui
ne changent pas la structure de deciston des Tormules gut resie eefle de Collins. Cet article se propose
d'analyser la méthode de Collins plutdt d'un point de vue logique, en montrant Putihisation d'cnsembles,

déiinissables dans fu théone, gus ont v is-a-v1s d'une classe de formules un comportement "unilorme”, ¢t
)

en analy sant Faspect eviindiique de la décompositon.

1. langage et formule

Sott L te langage des anncauy ordonnes : L= {1.0, +.-. >, =}

Les Jormules sans quantil icateur sont des combinaisons booléennes d'égquations ou d'indquations
polynomiales dans Z [X] 0 ou = ).

On considere Ta théorie 7 des corps réels clos, corps commutatls. ordonngés, avee Ie schéma d'axiome de

Ly aleur intermédiaire

(P - 0)a {0 Py ey 0
pour chague polyndme Pde ZjX}, ona Ya¥h3e et} ) - [ (Itgh=i) ]

a{u-h) a{a<cyalceh)

IR cst un modele de cette théone...De nombreuses stttatons geomélngues sont exprimables ct des

problémcs de nature topologique peus ent étre traitds [S&S]. [BCR].

Celic théorie 7 st complete (pour chayue lormule ciose, soit elle-méme, o1l sa négation est
prouvable). La théorie 7 est déerdabic (1l exisie des méthodes elfectinves pour détermimer st une formuie
close st vraie oo non) ; elle admet une éhimmaton cliectye des guantdicatcurs, ¢'est-a-dire gue wule

formule est équivalente modulo 2 i ane formule sans quantificateur avee les mémes varables Iibres

[Tar], [Coil.
défintion ; un ensemble semi-al gébrnque est un ensemble S (de IR™) detim par une tormule < de L.

e "X+ 2< 1 déhinit le disque de eentre O el rayon 1
"3 X g XY-1=0" délinit fa projection des branches d'hy perbole...

Le semt-algebrigue associc i une equation est I'ensemble de ses solutons. & une inéguation, l'ensemble

de ses solutions dans [R” [.es ensembles semi-algebriques sont hies par les operations ensemblistes



usuelles gur correspondent auy connecleurs, amst A oL 71, v el U, = et comp, {le complémentare), sc
correspondent-ils. On obuient. dans les seni-algébrigues. une structure d'algebre de Boole qui correspond
{ia structure des formules,

Les quanuticateurs sont hies i des opérations de projection. La quanuiication existentelle st une
projection (3x : pry), on obuent la quanufication uniserselle d'une lormule & par complémentaire de da

projection de la négation de 4.
Jdetinon : une celiule est un ensemble semi-atgebrique non vide et conpene!
2. décisions de formules et décompositions

On v eut pous oir décider st des tormules sont prousables dans ks theorie, ou trous or des expressions sans

guante reateun equnalentes aces formules,

défmition : une decomposiion d'un cspace= IR pour un ensemble $ de lormules de L avant au plus o
variables fibresy est un ensemble de tommales A de Ll

- sans yuanttweateus. ayee conme variables ibres uniquement celles qui apparaissent dans S,

- qui deétinssent des semu-al gebrigues non vides.

- 1eltes que pour toute Tormule <0 de S . s b est satslarsable modulo 7 alors i exaste une formule
& de la décompositon A telfe gu'un pomnt satistasant cette lormule & satisfasse” auss .

- gui sant “unformes” :rous les points qua satislont une méme foermule de A satistont™ les mémes
formules de 5.
On dira, de plus, gue ta deconiposiion ostevimdrigue pour un certiin ordre des variables vy sl

- clle induit une suite de decomposiiions Ag de IR0 A de IR I elle que
pour chague 121 ¢t pour chaque ensemble semt-algebrique D de la décomposiion A de IR ! Pensemble

pry (D) et pr feomp.Dd) soient des ensembles de fu décompositnen A{ | de IR

rematgue . une décomposition de IR est oy hindrgue.

cxemple 1+ une decomposttion de R pour S v (v D3m0 e A= d- Ly s a=-1 0 ley A<l
=10 T o w3 =3 Ay )

On sat etablir upe decompostion pour un enseimble d'equations ou d'inequations poly nomuales ¢n une
seule vartabte, st lon sait etabin une décompaosition pour chacun des polyndmes, et w1 T'on san

détermuner les racines communes {pan le caleui du pgodi de lout couple de polynomes.

I a ddhimon ditfére de celle de ©otlins ot Sattachern b ce gui fonde fes résaltats (en particibier pour b
determuanon des sagies

O se place dans le cas le plas semple. mizans Tuen st on peut ne décomposer quiune parbe sem-algebrigue
de Tespuee IR des Lopmubes de s sont alors mterprétées d'une lagon restnctine

Yon peut dite gue la déeomposition cory re tottes les stuations © e g pent se bare par parimon de
Fespace {C olf ou par e chors judicieus de pouits aleéhngues 8RR | ou par La projection des points extrémes
Je toutes les conmposantes vonneses | RS ke

F Pow toue tormule d de I décomposition A8 délmissant un ensemble semr alg¢hnigue 1, el poar teute

lotmube b de s ona tots les pomts de T2 satishont Do tous s pormts de 1) satslont
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cxemple 2 1 une décomposition de 1IR? pour S:{\:_\'l} cst A= \<y: ; \:}‘2 . \>§.‘3 h
exemple 3 1 unc décomposition de IR pour § ={(\-11=Hin-531=0 1 (- 13 -2)=0} est abtenue par produit

g

cartesien des deun décomposiions de IR § s<li =1 by a v v=di oy A nSi=5 5av et { y<ly

v=lodey Ayl v=l 2y )

P(x)?

g

Aztxelavel vt ayad, v avsda v ovsday Ldevanad ad-bov S ayal S<n Al
wboavbovh A b van-day boaday LdvavSav b s ay LSay 1,
vlalyay-2on balyay Zobvavdabyas2ondalbyay2Zidn anaSaleyanal
NS Ay A2 A A Ty Al

wlavZovdlayZobananday2ovday 2ody anda

()
12
-~
i
>
-~
b
ol
-
=
-
ts

ClAaZaa v b Ay levanda v da v Ay AanSa oS a s

S
-
==
T
\
-
-

Celle décomposiuon est ey bindngue queigue soit l'ordre sur {3,y .
Si I'on a deun décompostuons poar deus ensembles de lormules 4 ¢l B g détinissent deu ensembles

de polyndmes gui n'ont pas de varables communes, on obtient une décomposition pour A U 3 par lc

produit cartesien des deus decomposinons.

exemple 4 ¢ une décompasition ¢y hindrigue de IR pour S={x=y -} sefon ['ordre des vanables 1y est:
R I N ) PN (T T CNE U PN (T X AN T PN (TS N (VRO P IR P S §

(O a0 1) a(s 30 Aty a0 A G0 A 30 NP aG ) Ak 37}

la décomposiuon de IR pour {yv<th: s=t O<x ) delimit des "oy lindres" de IR? - {n<txIR  {\=0}xIR :
{0 3XIR

£

Pour tatre une decomposition oy lindrique pout S, un ensembic de tormules, sf sullit de pownvorr delinir
des eyvlhindres ou e nombre de racines est constant pour chaque polyndéme appararssant dans S, et ou e
nombre de racines communes pour chague couple de polyndmes est atsst constant. (n se ramene 4 une
siwauon “analogue” au produn carlesien, mais la decomposttion depend du cylindre et fes fanctions qui

dclimssent fes "tranches” ne sant plus constantes.

L ne décomposstion el interessante pour dectder ssmultanement out un ensemble de tormules.

Pour S un ensemble i de tormules de L. sans quanuiwaicu. on cherche une decompuosilion pour S,

{'ensemble des formules obrenues de L Tagon swvante @ (1 B =4, pour chaque partition en deus
1

- 3 -



classes (1. 1Y de l'ensemble de formule S.

Proposiion ;

st A ¢st une décompositen pour (S, alors A est une décomposttion pour (S) ¢l méme une
décomposition de (8, Fensemble de wutes les combinatsons booléennes des formules de S.

De plus st l'on [1xe un certam ordre des variables ol que La déeompesition pour (Sg) est eylindrique alors

on obtient une décompaosition eyvhindrique selon le méme ordre des variables pour 8 ¢l S'.

Une décompostiion permet de déterminer Uensemble des formules satistares (qui sont satsfailes pour
tous les ensembles semi-algébrigues délims par la décomposttion) o de délerminer les ensembles semi-
algébrigues ol les tormules sont yrates. 81 la décompostiion est cylindnque, on vérifie la vahidité des
quantiiications d'unc tormule. en regardant Pagencement ¢y hndrigue des semi-ulgébrnigues ou cette formule
cstyvrare. On peut winst ous o uine expression sans quantifcateur équi alente a la formule de départ.

exemple: "In Vb e=0" dquivaut it bzl

La complextté cticctive de la méthode de Collins est doublement exponentielle dans le nombre des
variables puisqu'on caleule une décomposttion valable pour un ensemble de lormules gur peuvent avoir
une alternance” quelconque des quantificateurs exystentiel et universel ('ordre des variables restant

e,

3. cylindre et projection

Pans Ja méthode de Collins, pour trous er une lormule suns quanulicateur équivalente & une formule @,
on cherche une décomposition celiulaire telle que chague polyndme gui apparait daps @ ail un signe
déterminé sur chague cellule : on dit quiune telle décomposition est "signe-invariaic”. On prend done
comme casemble des formules pour lesquelles on cherche la décomposition, Pensemble des distnbutions
de signes sur I'ensemble ty, des polyndmes apparaissant dans &

Co= U {PD) =0, PX)> 0. P < 0}

1) ETU

3.1 suite de projections

On construit la décomposition ¢n deus phases
1) On recherche par réeurrence un eosermble de condittons qui assurent que la décomposiison est

cylindrigue.

5. . ’ e
“Comme cetie formule @ de taille poly nonoaie en o, avee deas nalternances des quantiicateurs, défame

par recurrence. Dol ="V = pus Dane s =3 Yo [usnay sy elusy av=s)] )
il

~ = ~
en lapphiquant &y et Len @, on trouve . X- =1 Lo wentilant lensemble des nombres complexes 3 1R?, on
trous ¢ des racines de Pamté, Or Pobtention de ioutes kes racines de Funité donne une cypression sans

quantiftcateur dont la tinlle est proportonnelle au nombre de mcines

- 4 -
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Si des polyndmes P{xg,\ ...\ ) , incluent dans ¢y, ,vénticat l'ensemble, noté C(ty), des conditions
suivantes sur un cnsemble ¢ duns IRP. alors on peut retrows er une décomposition de Collins de JRn+1
pour C, = U {P(T) =0, P(X) >0, P(X) < ()} sur chacune des parlics connexes de €.

P =
Les conditions sont, en distinguant unc variable v el en travaillant dans Z[ v g lingl e

- que le degré ellectit (en v()) de chaque P soll constant, ce gui peut s'exprimer en disant que le

cociticient princepal n'est pas nul :

m m
8T P(Xg v N F z a{N1,..ova kb alors la formuic "(;u(\l‘...,\n) # ()) AloA {0 -—-())", qui
k0 K=r+1

indique gue le degré effectil de Pestr, est Slément de Cxy),

- que ke nombre de racines distinetes soil constant pour chaque polyndme : s1 pour tout Pde g, Q

m
est la dénvée de P par rapport it vy, ct(pscudo-lpged(P.Q)= 5 bilxi....oxnd b o0 les by s'obticnnent a
k=0
m
aide des sous-résultantes”, alars ta tormule ”(b.{\.,...,\,,) # ())A A bini....xp) = ())“ , qui ndigue
K=r+1

uc le deerd effectt du (pseudo-ypged(P.O) est r, est élément de Clxy)),
q g P pg 0
- que le nombre de racines communes de chague couple de polyndmes soit aussi conslant, ¢c gqul

s'exprime sous la forme de conditions sur les sous-résultantes :

m
si pour tout couple P.Q de 1 (pseudo-pgediP.Q)1= 5 bily ... Nn)xh alors la formule
m k=)
"(bdviand 2O Al A By = (}}" . qui indigue gue e degré ellectit du (pscudo-)pged(P,Q) est
K=r+!

r. cst élément de Clrg).

L'ensemble. C(tq). de ces conditions ne dépend que de 1) Les formules de Cry) sont des formules de
L. oit les termes sont des potyndmes de Z[x|.....x, |- On appelle T 'ensembie des polyndmes qu
apparaissent dans les formuies de C(tyy ). Puis on cherche les conditions d'une décomposition de

Collins” pour c=U {P(x)=0. P(3) > 0, P(X) < 0},
])ET[

Ainst, pour | un enticr compris entre 0 et n-1, pour un ensemble de polyndmes T, dans Z[\,,...,\nl. on

cherche les polyndomes de T (nclus dans Z]xg ... ] ) intenvenant dans C(t,). On nolc
Cjp (= U {PR)=0, PX)> 0, PX) < 0},
PET‘H

On obtient finalement C, o les polyndmes de T, sont dans Zix, |,

On a trow ¢ pour lout entier j compns cntre O et n, des ensembles de lormules Si=(‘iU... S ep
On construit une décomposiion A : de I'espace IR0 11 pour chaque S'-. La smite de décomposittons Ap

de R A, de R st une décomposiuon ¢ylindrque selon 'ordre des vanables vg..... v,
n p( b q (i ]

2) On recompose la décomposition selon les varables récursiy ement.

O] e« sous résultantes donnent les coeffictents des pseude peed de deus polyadmes P et Q. 4 Taide de caleuls
de déterminants de matnces composées des coctficients de P et Q, voir fCol]

b7 - . s .
L ne décomposition pour Uy sera une décomposiion pour €4t

-5 -



On conslruil un casemble "des pomts moins” de us les semi-algébriques d'une décompasition
evlindnigue. Chague cellule est représentée par un point iémaoin®. On trouve des points témaoins
effectivement” (comme umgue racine d'un polyndme dans un intervalie ratonnel) grice aus suites de
Sturm.

Puis pour des polyndmes POy, ). avant trousé les pornts Iémoins {a;} des bases des cylindres, on caleule
des suites de Sturm pour les polynomes Py, ), el on trous ¢ Yes racines de ces poly nomes bi,j .on
recomposc les points [@moins (b . a) de cette décomposition (on a "releyvé” la décomposition). On peut

poOUTSIN Ic lc Processus,

I
A

P(xy)

La décomposition Imale satislast wules jes distributions de signes. Les conjoncetions non-satistaisables
sont élimindées au tur et a mesure que P'on caleule les stutes de Sturm gw ne donnent gue les formules

satisfasables.

3.2 cylindre et vérification de formules

Une fors cet ensembie ablenu, on s érilie la saustuction de fa formule @ sur Fensemble dey points
iémoins. On determine Pensemble des signes que chaque polynome P de < prend sur chague pomnt
témotn (e par sue, sur chaqgue cellules.

Cn vérthie st les comonctions ou les disjonctions de conditions de signes de La formule > sont s érilices
sur chague pont Wmotn g, on obtient un ensemble de poinis (€maomns ot 4O est vraie,

IR" —»{Vrui Fanux}

N Blwy)
On cherche ensuire & say o1 si une quantfication ost satistatle en observant a disposiiion des points
troun &s dans fes ey hindres de L decomposttiion. Par exemple st une sarrable st guanulice unn erscllement
on véulie sur la conjonetion des parnts wmotns dans le méme evlindre, st clic est quantitice

existentictiement. sur ka disjoncuon.

8 J.a recherche des poants Wnwnns quit permettent Lo mampuiatuoon des cetlubes ost e partcalarté de la
meéthode de Collins Tes cellules ne som pius données explicitement par des Lormuies

i}, N .
sl sagit d'un pomt aleebrique racine d'un polvnome . alers Tes calends se feront modolo ce polynome
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P(x,y) ——

1

Vi POy

La décomposition a la forme d'un arbre...on elumine les quantficateurs sclon celte structure d'arbre.

4, développements : Méthodes en paralléle

La mise en ceun re de ees dermiers caleuts aun coiit, et Fon peut souhaiter ne pas U'elfectuer de {agon auss
uniforme. On uvtlise conjointement aux caleuts des "stacks” tarbres des points émoins) la forme des

formules pour rédurre ke caleul [Hon]...

Une autre approche peut étre de construire une représentation algcbrigue du probleme [BKR]. On
transforme la Formule & prow et sous la lorme d'une cnn_]nnclmnl“ d'une équation P(x)=0 ¢t de plusicurs
1néqualions R|(\)>(l dont les polynomes sont dans Z[X] (une seuic variable) et P et des R-l sont sans
racine commune. On yérthiera, alors, la satuslacton de cette conjoncuon. On commence par lrouver par
un algorithme parallele, P et les R], puis Pon caleule les distributions de signes des Ry sur les racines de
P en résolvant des systémes d'équations hncatres. On peut simplifier les matrices qui représentent les
¢yuations (s1 une formule st contradictorre) el combiner les matrices sous la lorme d'un produnt
lensoriel.

On lixe a prion P'ensemble sur legucl on déctde des Jormules. I'ensemble des racines du potyndme P, sans

chercher les putnts ([émorms pour loutes les distributions de signes comme dans Collins.

Ceile méthode a ¢ éiendue au cas de polynomes a plusicurs variables. par Renegar |[Ren] et ausst par
M.F. Rov jHRS]. On travaille par bloc de gquanulcateurs : apres unc transtormation topologique du
probleme. on determine Uensemble "des pornts iémoins”. sur equel on déewde les formules. par
projection orthogonale sur une droite des pomnts exteémes de chagque composanie connese des semi-
algébrigques definrs par les formuies. 1ans la methode |HRS], tes suites de Strm-Habicht permetient de
caleuler seton une forme indépendante des degres el lecut s des poly ndmes (fes caleuls par sous-résullantes

de la méthode de Collins demandent a ce que le poly nome soit d'un degré efiecul détinn.

Mais ces améliorations des méthodes de caleut ne changent pas londamentalement approche de la
méthode de Collins telle guelle a cle exposee wn. L'explicttation des Tformudes permet de donner une
forme ol une decomposiion pourrail élre recomposee at ec dautres, el d'wvorr moins unc methode de

décision gu'un systeme de prevve fJumij, prenanl on compte les connectleurs,

BPans fe cas dune mégalitd laree Rl(\) A on trate les cas selon Ja dsjenctiion Ky 0y Ril\} 0
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Priestley duality and distributive lattices with
operators

Roberto Cignoli

In this talk T will try to summarize some recent work done in Buenos
Aires on Priestley duality for bounded distributive lattices. In the first part,
I will recall the main facts about Priestley duality, and in the secon one I
will concentrate on the ext ensions of this duality obtained in Buenos Aires.

1 Priestley duality

The letters L, M will always denote bounded distributive lattices, i.e., dis-
tributive lattices with smallest element 0 and greatest element 1. By a
homomorphism I shall understand a lattice homomorphism that preserves
0 and 1. I will den ote by P the category of bounded distributive Jattices
and homomorphisms, and by Dy, the full subcategory of D whose objects
are the finite distributive lattices. Furthermore, the category B of Boolean
algebras an d Boolean homomorphisms will be treated as a full subcategory
of D.

Recall that an element p € L is sald to be join irreducible if p # 0
and whenever p < aV b, then p < a or p < b. 1 denote the set of all
join-irreducible elements of L, with the order inherited from L, by J{L).

Let X be a poset (= partially ordered set) and ¥ C X. I shall denote
by (Y] the set of all z in X such that z <y for somey € Y. The set [Y)
is defined dually. Y is increasing (decreasing) if Y = [Y) (¥ = (Y]). For
z € X, I write (z] and [r) instead of ({z}] and [{z}), respectively.

A totally order-disconnected topological space 1s a triple (X, <,7) such
that (X, <) isa poset, (X, 7} is a topological space, and given 2,y in X such
that r £ y, there is a clopen (= closed and open) increasing set I/ such that
zelU andy & U. A Priestley space 1s a compact totally order-disconnected
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topological space. I denote by P the category of Priestley spaces and orde
r-preserving continuous functions, and by Pr;, the full subcategory whose
objects are the (inite Priestley spaces.

For each Priestley space X . define D{X) as the lattice of increasing open
subsets of X, and for cach order-preserving continuous function f from X
into a Priestley space Y. define D(f): D(Y) — D{X) by the prescription
DM(V) = h~Y(V), for each V' & D(Y). It is easy to check that D is a
contravariant functor from P into D, i.e. a functor from P into D, where
C°? denotes the opposite of a category C.

As a first example. note that the familiar totally disconected topological
spaces are the totally order-disconnected spaces such that the order relation
is the equality. Therefore the Stone spaces, i.c.. the compact totally discon-
nected topological spa ces. are particular cases of Priestley spaces. If X is a
Stone space. then D(X) becomes the Boolean algebra of all clopen subsets
of X. Thercfore, by taking into account that all functions between Stone
spaces are trivially order preserving. we have that the category S of Stone
spaces and continuous functions is a full subcategory of the category P, and
the restriction of D to S gives the well known Stone functor from & into
5o

As a second example, suppose that X is a finite Priestley space. Since
X is a Hausdorff space, all its points are closed, and then the topology is
discrete. Hence D(X) is the set of all increasing subsets of X. Therefore
Prin is the category of finite posets and order-preserving functions, and the
restriction of D to Ppy, is a functor from Py, into D,

The most important examples of Priestley spaces are obtained as follows.

Let T denote the two-element chain 0 < 1 endowed with the discrete
topology. Then for each set I # §, the set T!, equipped with the product
topology and the pointwise order, is a Priestley space.

Since the set X (L) of all homomorphisms from L into T is a closed
subset of TE, it is also a Priestley space, that is called the Priestley space of
L. Alternatively, X (L) can be described as the set of all prime filters of L,
ordered by inclusion and with the topology having as a sub-basis the sets of
the form op(a) = {P € X(L)|a € P} and X(L)\ or(a), for each a € L.

For each homormorphism h: L — M, define X{h): X(M) — X(L) as the
composition X(h)(p) = @ o h, for each homomorphism w: M — T'. Alter-
natively, we can define X(h)(Q) = A~1(Q) for each prime filter ¢} of the
lattice M.
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It is easy to check that X defines a functor from the D into P.

When L is a Boolean algebra, the prime filters of L coincide with the
maximal filters (= ultrafilters), then it follows that the order relation in X(L)
reduces to the equality, and for each @ € L, X(L)\or(e) = or(—a), where —a
denotes the complement of a. Therefore X{L) becomes the set of ultrafilters
of L, with the topology having as basis the sets of the form or(a), for e € L.
Consequently, X restr icted to B gives the familiar functor from B into 8"
defined by Stone in 1936 [42].

If I, is a finite distributive lattice, then the prime ideals of L are of the
form [p), for p € J(L). Therefore X(L) can be identified with the order
dual of the poset J(L), and then D(X(L)) can in tu rn be identified with the
lattice of all decreasing subsets of the poset of join-irreducible elements in
L. Moreover, it is plain that the restriction of X to Dpin is a contravariant
functor into Pgin.

Tt was proved by Priestley [33, 34](see also [37, 19] that o7: L — D(X(L))
is an isomorphism, and that ex: X — X(D(X)), defined by the prescription
ex(z) = {U inD(X)|z € U} is both a homeomorphism and an order
isomorphism for each Priestley space X. In other words, she proved the
following;:

Theorem 1 (Priestley [33]) The functors D:P — D and X:D — P
define a natural duality between the categories D and P. The unit and counit
of the corresponding adjunclion are € and o respectively.

At the light of the above remarks on Boolean algebras and finite distribu-
tive lattices, we see that as particular cases of Priestley’s results we obtain
the well known duality between Boolean algebras and Stone spaces devel-
oped by Stone in 1936 [7], as well as a celebrated theorem of Birkhoff, first
published in 1933 [2, 3], asserting that each finite distributive lattice L is
isomorphic to the lattice of all decreasing subsets of J(L). As a matter of
fact, the restri ctions of the functors D and X establish a duality between
the categories Dpin and Prin.

A closed subset F of a topological space X is called irreducible if it is a
join-irreducible element in the lattice of closed subsets of X. A spectral space
is a compact Tp topological space such that its compact open subs ets form a
multiplicative basis and each irreducible closed set is the closure of a point.

Every spectral space X becomes a Priestley space P(X) when equipped

with the specialization order: ¥ <y if and only if y € {z} and the patch
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topology, i.e., the topology generated by the compact open subse ts of X
and their complements. Moreover {7 C X is compact open if and only if
U/ ¢ D(P(X)). Conversely. every Priestley space X becomes a spectral space
S(X) if one forgets the order relation and considers the topology generated
by the compact open subsets of X. Furthermore, for each spectral space
X, S(P(X)) = X and for each Priestley space X, P(S(X)) = X (see, for
instance [13]). '

C'onsequently Priestley’s theorem is a reformulation of a classical theorem
of Stone [43], asserting that each bounded distributive lattice is isomorphic
to the lattice of compact open subsets of a spectral space.

One advantage of Priestley spaces over spectral spaces is that the natu-
ral morphisms are the order preserving continuous functions, instead of the
awkward “continuous functions such that ihe inverse image of each compact
open subset is compact open.” How ever, the main advantage of shifting from
spectral to Priestley spaces is that one oblains a very nice characterization
of the congruences of bounded distributive laffices.

Recall that a congruence © on L is an equivalence relation such that
(a,b) € © and (¢,d) € O imply that (aVe.bVd) € © and (aAc,bAd) € O.
The congruences on L, orde red by inclusion, forms a complete lattice, that is
denoted by Con(L). Givena, b in L, ©(a,b) denotes the principal congruence
generated by a and b, i.e., the intersection of all congruences containing the
pair {a,b).

A. Monteiro [31] observed that for each set ¥ of prime filters of L, the
relation

O(Y) = {(a,b)€ L x L|YP€Y,a€ P« b€ P}

is a congruence on L. Moreover, given O € Con(L), if X denotes the
set of prime filters of the quotient lattice L/©, h: L — L/© is the natural
projection and Z = {h~}(P)| P € X}, then © = Thela(Z).

The correspondence ¥ +— O(Y) is not one-to-one. Indeed, one can
characterize the congruence @(Y) in terms of the Priestley space of L as
follows:

O(Y)={(a.b) € L x L|ogla)NY =or(b)NY}.

and it follows that for each ¥, Z C X(L), ©(Y) = O(Y), and that O(Y) =
©(Z) if and only if Y = Z (see [9]). From these results one can easily derive
the follow ing:
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Theorem 2 (Priestley [36, 37]) Let L be a bounded disiributive lattice
and X = X(L). Then the correspondence V' +— wr(V) = O(X \ V) defines
an isomorphism wr from Con(L) onto the lattice Op(X) of all open subs
ets of X.

Corollary 1 For each finite distributive latiice L, Con(L) is isomorphic to
the Boolean algebra of all subsets of J(L). :

The following characterization of principal congruences is an interesting
consequence of the above theorem.

Corollary 2 For a,b € L, ©1(0(a,b)) = or(a)Aor(b), where A means
symmetric difference.

For instance, from the above corollaries one can infer that the number
of congruences of an n-clement chain 1s 971 while the number of principal
congruences is 7 + L“—'Z)i(”—'ll

Priestley’s theorems 1 and 2 have been applied by several anthors to
develop dualities for several classes of algebras having a bounded distributive
lattice reduct and to characterize the corresponding subdirectly irreducibl e
algebras. See, for instance, 6, 7,8, 11, 14, 15, 16, 17, 21, 28, 29, 30, 35, 36,
40, 41, 44, 45] as well as the books [4] and [5]. For further developments on
this line, consult the excellent surveys [38] and [18].

2 Distributive lattices with operators

In a classical paper, Jénsson and Tarski [26] showed that a Boolean algebra
endowed with a family of join-preserving operations can be represented as a
subalgebra of the Boolean algebra of all subsets of a set X, in such a way that
the oper ations are in correspondence with certain relations defined on the
set X. Later on, Halmos [22, 24] characterized the relations between Stone
spaces which correspond to 0-preserving join-homomorphisms between the
corresponding Boolean alg ebras of clopen sets. These relation were called
Boolean relations. Wright [46] completed these results by showing that the
classical Stone duality between the categories B and § can be extended to
a duality between the categorics of Boolean algebras and 0-preserving join-
homomorphisms and Stone sp aces and Boolean relations.
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On the other hand, there is a duality between the subalgebras of a Boolean
algebra B and certain equivalence relations on the Stone space X(B) (see,
for instance, [27]).

The connection between the duality for join-homomorphisms and that for
subalgebras is given by the quaniifiers. A guantifier on a Boolean algebra
B is a closure operator on B such that its range is a subalgebra of B. The
dual of a quantifier @ considered as a 0-preserving join-homomorphism is
an equivalence relation which is also the dual of the range of ().

In the last few years, with my students at Buenos Aires, we extended the
Halmos-Wright duality to distributive lattices [8, 10, 12, 32].

In this section I, M will continue to denote bounded distributive lattices.
By a join-homomorphism from L into M we understand a mapping j: L — M
such that j(0) = 0 and j{a V b) = j(a) V j(b). The meet-homomorphisms
are defined dually. Note that a mapping h:L — M 1s a homomorphism if
and only if it is both a join-homomorphism and a meet-homomorphism. The
category of bounded distributive lattices and join-(meet-)homomorphisms
will be denoted by J (M). Obviously, D is a subcategory of both J and
M. Note that the isomorphisms in these three categories are the same: the
one-to-one and onto homomorphisms.

Cliven a relation R C X x Y, for each Z C X, R(Z) will denote the image
of Z by R, 1.e.,

RZ)={yeY|IzeZ(z,y)€ R}
and for cach Z C Y, R™1(Z) will denote the inverse image of Z by R, i.e.,
RY(Z)={ze X|R({z})nZ # 0}

Note that the domain of R is B~1(Y), in symbols, dom(R) = R™'(Y). When
z € X (y €Y), I write R(z) (R™(y)) instead of R({z}) (R~1({y})-

Let X and Y be Priestley spaces. A relation R C X x Y is said to be a
Priestley relation provided the following conditions are satisfied:

i) For each z € X, R(z) is a closed and decreasing subset of Y, and
ii) For each V € D(Y), R™'(V) € D(X).

A Priestley relation is said to be functional in case dom(R) = X and R{z)
has a greatest element for each z € X.

6
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For Priestley spaces X and Y, PR(X,Y) will denote the set of all Priest-
ley relations R C X x Y, and PF(X,Y), the subset of functional Priestley
relations.

When X and ¥ are Stone spaces, Priestley relations coincide with the
Boolean relations defined by Halmos [22]. A Boolean relation is functional
if and only if R(z) is a singleton for each z € X, i.e., if and only if Ris a
function from X into Y. ‘

In what follow, X, ¥ will denote Priestley spaces.

Since the composition of Priestley relations is a Priestley relation (see
[12]), one can define the category PR whose objects are the Priestley spaces
and the morphisms are the Priestley relations.

It is proved in [12] that for each continuous and monotonic function
X =Y, R = {(z,y) € X xY|y < f(x)} € PF(X,Y). Conversely,
if R € PF(X,Y) then the function fr: X =Y obtained by defining fr(z)
as the greatest element of R(x), is continuous and monotonic. It is plain
that R = Ry, and f = fa,. In particular, the dual order >C X x X is
the functional Priestley relation associated with the identity function on X.
Therefore, one can identify P with the subcategory of PR having the same
objects but having the functional Priestley relations as morphisms.

For each j € J(L, M), 5* = {(@,P) € X(M) x X(L)|P € 77'Q)} is
a Priestley relation, and dom(j*) = {Q € X(M)|j(1) € Q}. Moreover,
j € J(L,M) is a homomorphism if and only if j* € PF(X(M),X(L)).

Therefore one can consider the functor X as a functor from PR into J°°
by defining X(j) = j* for each join-homomorphism j (see [12] for details).

For each R € PR(X,Y), the correspondence U/ — R~} (U) defines a join-
homomorphism R*: D(Y) — D(X), and RYY) = dom(R). Moreover, if
R € PR(X,Y), then for each z € X andeachy €Y, (z,y) € R if and
only if (ex(z),ev(y) € R*™. Therefore one can also consider the functor D
as a functor from J into PR, by defining D(R) = R* fo r each Priestley
relation R. Since ex: X -+ X(D(X)) is both a homeomorphism and an order
isomorphism, px = Re, is an isomorphism in PR.

The following theorem, established in [12], generalizes Priestley duality
as well as Halmos-Wright duality.

Theorem 3 { The functors D:PR — JP and X:J — PR® define a
natural duality between the categories J and PR. The unit and counit of
the corresponding adjunction ar e p and o respectively.
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For each €' C L define M* = {(P,Q) € X(L) x X(L)|PnC C @},
and for each R C X x X define R* = {U € D(X)| R~ (U) = U}. A lattice
preorder on a Priestley space X is a reflexive and transitive relation R that
satisfies the condition:

(¢) Given z,y in X such that (z,y) € R, there is U € R#* such that z € U
andy g U. :

The next theorem, also proved in [12], establish a duality between 0-1-
sublattices of L and lattice preorders on X(L).

Theorem 4 The correspondence M +— M¥* defines an antiisomorphism
from the lattice of all 0-1-sublattices of L onto the lattice of all lattice pre-
orders defined on X(L).

As particular cases of lattice preorders one can consider lattice orders and
lattice equivalences.

Theorem 5 ([12]) The following propositions hold true for each 0-1-sub-
lattice M of L:

i) M# is an order iff for each prime filler P of M there is exactly one prime
filter Q of L such that P =Q N M.

1) M*# is an equivalence if and only if all the elements of M are comple-
mented.

From (ii) in the above theorem, one obtains the well-known correspon-
dence between subalgebras of a Boolean algebra B and equivalences on the
Stone space X (B) satisfying condition (£) (see [27, §8.2]).

For each join-homomorphism j: L — L, let M; = {a € L|a < j(a)}. It is
ecasy to check that M; is a 0-1-sublattice of L, and then # = MJ# is a lattice
preorder associated with j. It follows that j* C J¥.

Recall that an additive closure on L is a join-homomorphism such that
a < j(a) and j(j(a)) = a for cach a € L. The image of j, j(L) is a 0-
1-sublattice of L, and for each a € L, j(a) is the smallest element in the
se t (a] N j(L) (see [1, IL4, Theorem 11]). Let C(L) denote the set of all
additive closure operators on L. A quantifier on L is a j € Nj(L) such that
7(j(a) Ab) = j(a) A j(b) for all a, bin L.

8
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One have the following characterization of closure operators among join-
homomorphisms: j* = j# iff j € C(L) iff j* is a preorder. Analogously, a
0-1-sublattice M of L is the range of a closure operator iff M# is a Priestley
relation (see [12]).

A J-distributive lattice is an algebra (L, V, A, 4,0, 1) such that (L, V, A, 0, 1)
is a bounded distributive lattice and j: L — L is a join-homomorphism. The
particular case when j is a quantifier is consider in (8] under the name of’

()-distributive lattices.
A J-Priestley space is a Priestley space X endowed with a Priestley rela-

tion R. If (X, R) and (Y, 8) are J-Priestley spaces, a J-function from (X, R)
into (¥,S5) is an order preserving continuous function f: X — Y such that
FHSYV)) = RTY(fHV)) for each V € D(Y).

i From Theorem 3 Petrovich [32] derived a duality between the categories
of J-distributive lattices and homomorphisms and J-Priestley spaces and

J-functions.
Let (X, R) be a J-Priestley space. A subset Z C X is called R-saturated

provided & € Z implies max R(z) C Z for each z € X. The set of all
R-saturated subsets of X is denoted by Satr(X).
Petrovich [32] proved the following generalization of Theorem 2:

Theorem 6 (Petrovich) The congruence latiice of a J-distributive lattice
(L,j) is antiisomorphic to the lattice of all closed j*-saturated subsets of

X(L).

;From this theorem Petrovich obtained characterizations of the simple
and the subdirectly irreducible J-distributive lattices.
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A SIMPLIFIED DUALITY FOR
IMPLICATIVE LATTICES AND [-GROUPS.

NESTOR G. MARTINEZ.

ABSTRACT. A topological dualily is presented for a wide class of lattice-ordered
structures including latiice-ordered groups. In this new approach, which simplifies
considerably previous results of the author, the dual space is obtained by endowing
the Priestley space of the underlying lattice with two binary functions, linked by set-
theoretical complement and acting as symmetrical partners. In the particular case of
{-groups, one of these functions is the usual product of sets and the axiomatization
of the dual space is given by very simple first-order sentences, saying essentially that
both functions are associative and that the space is a residuated semigroup with
respect to each of them.

This talk summarizes the main results of a paper with the same title that will
appear in a special issue of Studia Logica devoted to the Priestley duality.

Introduction.

This work can be seen as a refinement and a simplification of our previous duality
developed in [11]. In that first approach, having in mind the topological represen-
tation of M. H. Stone for distributive lattices {16] and the duality theory of H.
Priestley [14], [15], we developed a topological duality for a wide class of lattice-
ordered algebraic structures, which we called implicative lattices. Also, we showed
that lattice-ordered groups can be characterized as implicative lattices with some
extra conditions, and we could derive a topological duality for these groups.

The main idea in that approach was to introduce in the dual space of the under-
lying lattice one suitable binary and continuous function, as the translation of the
binary operation of the algebraic structure. However, when trying to axiomatize
the properties of this function in the dual space, some of the conditions we got were
quite complicated and obscure. Also, the morphisms of the dual space were rather
unnatural and difficult to describe.

The key idea in this new approach is to consider a second binary function in the
dual space, which is naturally defined from the first one by using set-theoretical
complement and which acts as a symmetrical partner, simplifying all the proofs.
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2 NESTOR G. MARTINEZ.

The conditions we get to axiomatize the dual space are now all simple and
natural; the morphisms are also described in a nice way. Moreover, when applying
the general schema to the case of lattice-ordered groups, we obtain very simple
first-order conditions for the dual space, improving considerably our first version.

§1. The general setting: implicative lattices.

1.1. DEFINITION. A = (A;V,A,—) is an implicative lattice iff (A;V,A) 1s
a distributive lattice and — is a binary operation (called the implication of A)
satisfying the following equations:

IL) z = (yAY)=(z =2 y) Az = ¥);
IL2) (zvz)—=sy=(z =y A = y);
IL3) 2 = (yVy)=(z =2 y)Viz =y
4) (zAz') 2 y=(z—2y)V(z' =y

Implicative lattices provide the most general setting in which our duality can be
carried on. Well-known algebras coming from Logic, such as Boolean algebras, de
Morgan algebras, MV-algebras, ([7], [13]), or linear Heyting algebras [12], can be
characterized as implicative lattices with additional operations and thus, fall within
the scope of our approach (see the examples of [11] and also [10], as the first source
of the theory).

Implicative lattices are also closely related with lattice-ordered groups, as we
now show:

1.2. Example: Recall that a lattice-ordered group {I-group, for short) is a partially
ordered group such that the underlying order is a lattice. Alternatively, an l-group
G can be defined as an structure G = (G;V,A,-,”,e) such that (G;-,71,¢)
is a group, (G;V,A) is a lattice and the following equations are satisfied for all
a,b,c € G-

1) a{b A c) = ab A ac; 3) a(bVe) = acVag

2) (e Ab)c = ac A be; 4) (a Vb)c = acV be.

Two elementary facts about l-groups that will be important in the sequel are:
¢ The underlying {unbounded) lattice of an lgroup is distributive.

e The inverse operation ~! is a Kleene negation, which means that:

(a1 =a; (eAb) P =alvbland aAa™! < bvbdlforall a,bed.
(For the last condition, see, for example, [3], Chapter III, §4.)

From these facts and the equations 1)-4) above, it can be easily checked that if
G = (G;V,A,-,71,e) is an Lgroup and we define a — b = a~'b, then (G;V,A,—)
is an implicative lattice, which we call the implicative lattice of G.

We will prove that in fact [-groups can be characterized as implicative lattices
with a Kleene negation and an additional constant and that the general theory
developed below, strengthened in a very simple way, yields a duality theory for
these groups.

Given an implicative lattice A, our starting point is to introduce two binary
functions on the set of prime lattice filters of A. To ensure good definition in every
pair of points, we consider a slight variant of this spectrum, allowing @ and A to
be admissible points.
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Let’s define then S(A4):= {P C A: P is a prime lattice filter of A} U {&, A}.
QOur first binary function is given by the formula

PQ = U{y: z—ye@} forall P,Qe S(A).
z€eP
An easy computation, using only the rules IL1)-IL3) shows that effectively PQ €
S(A) provided P, ¢} € S(A).
Consider now the family

S(A4)° ={P C A: P is a prime lattice ideal of A} U {@, A}.

It is equally easy to show that if P,Q € S(A)° and (with a little abuse of notation)

we denote again by PQ = |J {y:z =y € Q}, then PQ € 5(A)°.
z&P
Since P € S(A)° if and only if its complement P belongs to 5{A), we can define

a second binary function * in S(A4) by the formula:
PxQ = (P°Q°)° for all P,Q € S(A).

1.3. Observation. Coming back to Example 1.2. note that if A is the implicative
lattice of an lgroup G, PQ = {zy: z € P and y € @}, (i.e., the usual product of
sets). In a similar way, P*Q is the complement of the usual product of sets P¢, Q°.

Since implicative lattices are a juxtaposition of an algebraic structure and an
order structure, it is natural to expect that the algebraic structure given by the
implication yields some special features in the underlying lattice of A, and thus in
S(A). A crucial fact about S(A) is the existence of some distinguished elements,
which we introduce in the following:

1.4. Lemma. For each P € S(A) and for each a € A, let’s define the set
Poi={x€A:x2 —+ad¢ P} Then:

a) P, € S(A).

b) P, is the greatest @ € S(A) such that o ¢ QP.

¢) P, is the smallest Q € S(A) such that a € Q+P.

d) For alla,be A, Py € Py or P C P,.

Our next task is to prove that the implication of an implicative lattice A can be
reconstructed from the spectrum S(A4) by using either one of the binary functions
defined before plus set-theoretical operations.

1.5. Lemma. Let A be an implicative lattice and let - and * be the binary functions
on S(A) defined above. For each a € A let’s denote by o{a) = {P € S(A):a € P}.

Then:
i) o{a — b) can be obtained from a(a), o(b), and - by the formula

() ala—=b)= [] {Q:PQead)}

Pce(a)
i) o(a — b) can be also obtained from o(a), o(b) and * by the formula

(%4) ola-+Dd)= U {@Q: PxQ € o(b)}.

Pea(a)*
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lattice A, S(A) s the implicative space of A and for each homomorphism of tm-
plicative lattices h: A — A’, S(h): S(A’) — S(A) is defined by S(h)(P) = h™1[P]
for all P € S(A').

Then S is a contravariant functor establishing a duality between IL and LS.

§3. The duality for lattice-ordered groups.

In order to apply the general schema developed in the previous sections to the
theory of lattice-ordered groups, our first step is to characterize l-groups in terms of
implicative lattices. To do this, we consider implicative lattices with an additional
Kleene negation (standing for the inverse operation) and a constant, standing for
the unit of the group:

3.1. Proposition. Let G = (G;V,A,~, !, ¢) be an l-group and define a =+ b =
a'b. Then I(G) := (G;V,A,—,71 ,€) is an implicative lattice with a distinguished
element e and an unary operation —x = z~ ' satisfying:

i) ~—a=a;

ii) a +a=¢;

i) a +e="a;

iv)a—=(-b—¢)=-(a—=b)—>ec

Conversely, let A = (A;V,A,—,—,¢e) be an implicative lattice with a distin-

guished element ¢ and an additional unary operation — fulfilling conditions i)-iv)
above. Then, defining zy = -~z —y and z71 = =z, G(A) 1= (4;V,A,-, 71 e) is
an l-group such that I{G(A)) = A .

Let’s denote now by ZL* the category whose objects are implicative lattices
with a distinguished element e and an additional unary operation — satisfying the
equations i)-iv) of Proposition 3.1. and whose morphisms are the homomorphisms
of implicative lattices preserving e and —. Let’s denote by G the category of lattice-
ordered groups.

From Proposition 3.1, we have that for each object A of ZL* there is an Lgroup,
(namely G{A)) such that A = I(G(A)). Note also that a function h: G —- G’ is
an homomorphism of l-groups if and only if h: I{G) — I{G’) is an homomeorphism
of implicative lattices preserving — and e. Thus, [G,G'l¢ = [I(G), [{G'}]z¢- and
we have the following:

3.2. Theorem. The map I from G to IL* defined in each {-group G as I{G) and
in each l-groups homomorphism h simply as h establishes a categorical equivalence
between the category of l-groups and the category IL*.

At this point, we have converted -groups into implicative lattices with an extra
constant and an additional Kleene negation satisfying the four equations of Propo-
sition 3.1. Our next step is to give appropriate translations in our topological spaces
for the new operations and these four equations.

Recall first that a function g from an ordered topological space (X;7,<) to
(X; 7,<) is said an involution iff g is an homeomorphism, ¢* = Id, and z < y
implies g(y) < g(z) for all z € X.
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all the proper clopen and increasing subsets, with the lattice operations given by
union and intersection.

In many of the examples coming from logic the underlying distributive lattice is
bounded; as we pointed out before, even in this case we are not allowed to use the
usual Priestley spaces, because our binary functions may be not defined in some
pair of points (see [11], Observation 2.3). However, we can use the following spaces:

2.3. DEFINITION. Bounded Priestley spaces of type 01.
A bounded Priestley space X is of type 01 iff {po} and {p1} are open subsets.
If X and X' are bounded Priestley spaces of type 01, f: X = X' is a 01-
morphism iff f is @ morphism of bounded Priestley spaces satisfying:
0) f(p)=p) implies p=pr;
1) f(p) =py implies p = po.

Since o(0) = {A} and (1) = S(A) \ {@}, from Theorem 2.1 the following can
also be derived:

2.4. Theorem: Duality theorem for bounded distributive lattices.
The map F of Theorem 2.1. establishes a duality between the category of bounded
distributive lattices and the category of bounded Priestley spaces of type (1.

We are ready now to introduce the dual spaces of implicative lattices {compare

with our previous version [11}, Definition 4.1).

2.5. DEFINITION. Implicative spaces.
) X =(X;7,<,,%,po,p1) s an implicative space iff:
a) (X;7,<,po,p1) @8 a bounded Priestley space.
b) - and * are binary functions, order-preserving in each variable and such that
. is continuous in the upper topology 71 and * is continuous in the lower
topology 7.
c) ppr=p1 i PF Po; Popr = Pi1Po = Po-
prpo =po i PF P Po*p1 = P1¥po = P1s
d) p £ p' implies p'xq < pq for all p.p'.q€ X.
e) If U is a proper clopen and increasing subset of X and g € X, there exists an
element p € X such that prg € U and pq ¢ U.

i) If X,X' are implicative spaces, then f: X — X’ is a morphism of implica-
tive spaces iff it is a morphism of bounded Priestley spaces which satisfies the
following two conditions:

1) f(p)flq) < f(pg) for all p,q € X;
2) f(prq) < f(p)*f(q) for allp,g € X.

The main and last result of this seetion establishes the categorical duality be-
tween implicative lattices and implicative spaces:

2.6. Theorem. Duality theorem for implicative lattices.
Let’s denote by ZL the category of implicative lattices and by IS the category of
implicative spaces. Consider the map S: TL — IS such that for cach implicative
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1.6. Corollary: Representation theorem for implicative lattices.

Let A be an implicative lattice and consider the family of sets T(S(A)) = {o(a) :
a € A}, equipped with union, intersection, and with the binary operation o(a) =
a(b) given by any of the formulas (%) or (»x) of Lemma 1.5 above.

Then (L(S(A));U,N,=>) is an implicative lattice and the map a = ofa) is an
1somorphism of implicative lattices.

§2. The general setting: the duality for implicative lattices.

Recall that a contravariant functor F from a category A to a category B estab-
lishes a categorical duality between A and B provided:

i) For each object B of B there is an object A of A such that F(A) and B are
isomorphic.

ii) For each pair of objects A4, A’ of A, the function from [A, A'] 4 to [F(A4'), F(A)]s
induced by F is one-one and onto.

Also recall that an ordered topological space (X;7, <) is a Priestley space iff it
is compact and totally order-disconnected (which means that for = £ y € X, there
exists a clopen and increasing subset of X containing = but not y)

In a Priestley space (X; 7, <), the family of all the clopen and increasing subsets
is the basis of a topology 71, called the upper topology. (This topology coincides
with the Stone topology that we used in [11]). Also, the family of clopen and
decreasing subsets is the basis of a second topology 7., called the lower topology.

Priestley spaces are the dual spaces of bounded distributive lattices; but since we
are dealing with distributive lattices not necessarily bounded, we have to consider
a slight modification of the usual duality theory. Following Davey and Werner ([8].
Section 2.8) we will say that a Priestley space (X; 7, <) is bounded iff there are two
points pg, py € X such that po <z < py forall z € X.

Let’s denote by BP the category whose objects are bounded Priestley spaces
and whose morphisms are those continuous and monotone functions preserving
both bounds. Let’s denote by D the category of distributive lattices with all the
lattice-homomorphisms. Imitating the usual Priestley duality the following can be
derived:

2.1. Theorem. Duality theorem for (unbounded) distributive lattices.
Consider the map F from D to BP such that:

a) For each distributive lattice A, F(A) = (S(A4);74,C,@,A) , where T4 is the
topology having as a subbasis the famaly

B ={c(a):a€ A} U {o(a) : a € A}
b) For each lattice-homomorphism h from A to A', F(h): F(A") = F(A) s defined
by F(R)(P) = h™Y[P] for all P € S(A').

Then F' is a contravariant functor establishing a duality between D and BP.

2.2. Observation. In particular, by the isomorphism a — ¢(a) of Corollary 1.6,
the lattice A can be recaptured from it’s bounded Priestley space as the lattice of
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3.3. Proposition. Let A be an implicative lattice with a distinguished element
e € A and an additional operation — satisfying the equations i)-1v) of Proposition
9.1. Let S(A) be the implicative space of A and let’s define g: S{A) = S(A) by
g(P)=P. ={x:—-z ¢ P}. Then:
1) g is an involution such that P C g(P) or g(P) C P for all P € S(A) (Kleene
condition).
2) o(e) = {P € S(A4): g(P)C P}
3) The functions - and * are both associative and satisfy:
Pg(g(@P)CQ; Q< Prg(g(Q)+P).
4) g(P)P C g(g(P)P);  slg(P)+P) C g(P)*P.
5) g(Q) C Q implies PC PQ forallPe S(A);
Q C g(Q) implies PxQ C P for all P € S(A).

3.4. Observation: Recall that a partially ordered semigroup H = (H; <) is
right-residuated iff for all a,b € H, there exists an element (a/b) € H such that
z < {a/b) iff zb < a. H is a left-residuated semigroup iff for all a,b € H there exists
an elernent (a\b) € H such that z < (a\b) iff bz < a. H is called restduated iff
it is both right and left-residuated. Any partially ordered group is residuated, the
residual being precisely £ = y = 1y

It is not difficult to show that (S(A);C,-) is a residuated semigroup, with
right-residual (Q/P) = g(Pg(Q)) and left-residual (Q\P) = g(g(@)P). Also,
(5(A); 2, *) is residuated, with right-residual (Q/P) = g(P+g(Q)) and left-residual
(Q\P) = g(g(@)*F)-

Let’s introduce now the dual spaces of l-groups (compare again with our previous

version [11], Definition 5.7):
3.5. DEFINITION: Let X be an implicative space. We say that X is an [-space
iff:
a) There is an involution g: X — X such that g(p) < porp<g(p) forall pe X.
b) The set U, := {p € X : g(p) < p} is a closed subset.
¢) - and * are both associative and satisfy:
pg(g(a)p) < ¢ ¢ < prg(g(g)*p)-
d) g(p)p < glg(p)p) and g(g(p)*p) < g(p)+p for all p € X.
e) g(q) < g implies p < pg for all p € X;

g < g(q) implies pxg < p forall p € X.

Condition a) says that (X;7,<,g) is a Kleene space; condition b) stands for
the existence of the unit. Note that all the remaining conditions are first-order
sentences of the language £ = {<, -, *,g}.

If (X; g) and (X; ¢') are Lspaces, a function f: X — X' is a morphism of
I-spaces iff f is a morphism of implicative spaces and flg(p)) = ¢'(f(p)) for all
peX.

We are ready to stace the main theorem of the section:

3.6. Theorem. The duality theorem for l-groups. Let S be the map sending

each object A of TL* to (S(A):g) and each morphism h: A — A’ to S(h): S(A") -1
S(A), given as before by S(h){(P) = h™![P] for all P ¢ S(A".
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Then S establishes a duality between the category IL* and the category IS* of

I-spaces. Thus, by Theorem 3.2, the contravariant functor IoS establishes a duality
between the category of l-groups and the category of l-spaces.

Let’s call abelian l-spaces those [-spaces in which - and * are conmutative. From
Observation 1.3 and Theorem 3.6 also the following can be derived:

3.7. Theorem. Duality for abelian -groups. The map S of Theorem 3.6 es-
tablishes a duality between the category of abelian l-groups and the (full) subcategory
of abelian I-spaces.

[14]
[15]

[15)
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Abstract

During the last three years several researchs on Cobham’s and Semenov’s the-
orems lead to results about Biichi Arithmetics and Presburger Arithmetic. The
reader will find some of these results in [Br,Han 94],{B,11,M,V 94],[Fab 92], [Mi, Vil 93],
[Mi, Vil 94],[Much 91],[Po 94].[Vil 92a] [Vil 92b],[Vil 92¢] ...

In this survey we investigate around two classes of guestions related to these results.
One is concerned with definability questions, the other one with decidability questions.

At our knowledge, most of them are open.
We will also discuss extensions of Cobham’s and Semenov’s theorems to numeration

systems associated with a #-shift,

1. Preliminaries.

In this section we give some basic definitions about automata theory and k-

recognizability of sets of natural numbers.
We will use them in the sequel without reference. The reader will find more

informations in Eilenberg's book [Eil 74, chapter 5].
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Let & be an alphabet, i.e. a finite set. We denote by I* the set of words of finite
length on ¥ containing the empty word A formed of no symbol. Any subset L
of B* is called a language on the alphabet .

Definition Let T be an alphabet. A T-eutomaton is a finite labelled directed
graph A whose vertices are called stafes and which satisfies the following prop-
erties.

a) There is a distingnished state called the initial state.
b) Some of the states are said to be final states.

¢) For any state ¢ and any element o of the alphabet X, there is one and
only one arrow labelled by & leaving g.

Furthermore we have the following definitions.

Definition A word & € £* is said to be accepfed by the X-automaton A if
starting at the initial state of A and reading e from left to right taking arrows
labelled by the letters of «, one reaches a final state.

Definition A language L on T is said to be X-recognizable if there exists a
Y-automaton such that the set of words accepted by this automaton is exactly
L.

Remark Our definition of automaton is what is usually called a complete deter-
ministic automaton. A non-deterministic automaton is one in which there can
be many arrows with the same label leaving some state. It is well-known (see
[Eil 74]) that the sets recognizable by non-deterministic automata are the same
as the ones recognizable by deterministic automata; so there is no restriction in
considering deterministic automata.

We here choose to read words from left to right. Reading from right to left
would not change the notion of recognizability, but it would be unnatural with
our definition of recognizability for subsets of IN™ (see below).

Let £ be the alphabet {0,1,...,&—1}. For n a positive integer, let [n]k be the
word on ¥, which is the inverse of the k-ary expansion of n, i.e. if n = Et?:[,)\,-ki
with X; € {0,...,k—1}, A; # 0, then [n]g = Ag-- - A;. By convention we define
[0]x as the empty word.

Definition For & € IN, we say that a subset L of IN is k-recognizable if
{[n]x:n € L} is Ei-recognizable.

It is quite useful to have a notion of k-recognizability for subsets of IN™ for all
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positive natural number n. For this,we follow the approach of [Hod 83] which is
different from the definition generally used in language theory (for instance in
[Be,Re 88]). Nevertheless it is a natural point of view since it will allow Biichi’s
theorem to work in full generality (see section 2). It is also the point of view
adopted by {Sal 87] and [Sem 77].

It is possible to represent tuples of natural numbers by words on (23)* in the
following way. Let (my....,m,) € IN". Add on the right of each {m;] the
minimal number of 0 in order to make them all of the same length and call
these words w;. Let wy = A1+ - - Ay where Ay; € T, We represent (rmi,...,my)
by [(ml, Ceey mn)]k which is the word (A11, 421, .-+, Anl) (A12, Aoz, .- S Ana) e
(Ms.Azs, -2 Ans) € (E7)%, ie. the word formed of the tuples of first letters,
second letters etc...

Definition We say that a subset L of IN” is k-recognizable if {{(m1, ..., mn)]k;
(my,...,my) € L} is EF-recognizable.

Let us end this section with some notations. We will denote the set of non-
negative integers by IN, the set of integers by Z and the set of nonnegative
reals by IRT.

2. Definable sets in Biichi Arithmetics.

The structures < IN,+,Vi > for & = 2,3,... are central in all the paper.
Here ¥, is the function which sends a nonzero natural number to the greatest
power of k dividing it®. The first-order structure < IN,+, Vi > will be called
Biichi Arithmetic of base k. The importance of Biichi Arithmetics come from
the following first-order version of Biichi’s theorem:

Theorem B A subset of IN™ is k-recognizable if and only if it is first-order
definable in the structure < IN, 4, ¥} >.

It has an immediate corollary :
Corollary B < IN,+,V; > is decidable.

The reader will find a clear exposition of the method of proof of Corollary
B in [Hod 83)].

Biichi’s theoren is originally stated in terms of definability in WS15, the weak
monadic second-order theory of one successor, but only in the case k = 2 (see
also [McNa 63]). A general statement of Biichi’s theorem in terms of definability

3For example V5(72) = 36.



in WS1S can be find in [Tho 90] and [Vil 92¢] for example. However the first-
order version presented here was already present in Biichi’s paper [Bu 60] (but
only in the case £ = 2 and with some flaw). The reader will find informations
and a proof of this version in [B,H,M,V 94, pages 202, 207-211}.

In the sequel definable will be intended for firsi-order definable. We will also
say k-definable instead of definable in the structure < IN, +, V¢ >.

In the following lemma we summarize some basic features of < IN,+,V; >
which are the keys for a proof of theorem B as in [B,H,M,V 94]: these facts
allow to code the behaviour of an automaton by a first-order formula of the
language < +, Vi >.

We include it here because it gives the flavour of the relationship between -
automata and Biichi Arithmetic of base k. Tt is also the prototype of the gen-
eralization investigated in section 6.

Lemma B
(1) The set of powers of k& (denoted by Py in the sequel) is k-definable (by the
formula Vi(z) = )

(2) Let be the relations €;(z, y), for 0 < j < k, meaning that y is a power
of k, and the coefficient of y in the k-ary expansion of x is equal to j, i.e.,

¢= Y. j-y For powers y strictly greater than z, we consider €o,x(2,y) to
Ej.k(rly)
be satisfied (leading zeros).

The relations €; x(z,y), 0 < j < k, are definable in < IN,+, Vi > by the
formula

Pu(y) A [@)ED)e=z2+5y+t) Alz<y) A (r<Ve@)VE=0))].

Roughly this formula says that the powers of k of the k-ary expansion of z are
shared into three groups : one group consists of y only (or equivalently the
integer j-y), the powers less than y are the second group (the integer z) and the
powers greater than y are the third group (the integer t). So, it is possible to
express in < IN, 4, Vi > the different letters Aq,..., A; of the k-ary expansion
[n]r = Ao --. A of any integer n, as well as leading zeros.

Proof of lemma B is easy (see [B,JI,M,V 94]).
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The other direction of theorem B (which claims that all k-definable relations
is k-recognizable) is a consequence that addition (the ternary relation) is k-
recognizable (see [Hod 83] and [B,H,M.V 94}).

Originally Cobham’s and Semenov’s theorerns were stated in terms of k-recogniza-
bility of sets of natural numbers (see [Co 69] and {Sem 77]).

Using theorem B we can state them in an equivalent first-order version :

Theorem C (Cobham’s Theorem) Let k and [ be multiplicatively indepen-
dent®, If L C IN is k- and l-definable, then L is definable in Presburger Arith-
metic (i.e. in the structure < IN,+ >).

In the original version [Co 69], “definable in Presburger Arithmetic” was re-

placed by “ultimately periodic”®.

Theorem S (Semenov’s Theorem) Let & and { be multiplicatively inde-
pendent. If L € IN™ is k- and [-definable, then L is definable in Presburger

Arithmetie®.
Semenov’s theorem is the natural generalization of Cobham’s theorem to higher

dimensions.
We will discuss around theorems C and S and their proofs in sections 3, 4, 5

and 6 of this survey.

Theorem § recently received a counterpart (see [Vil 92al,[Vil 92b],[Vil 92¢]) :

Theorem V  Let k and { be multiplicatively independent. The structures
<IN, +, Vi, Vi > and < IN 4+, > are interdefinable’.

Corollary V < IN,+,V;, Vi > is undecidable.

Section 7 is concerned with some open questions related to theorem V.

#Two reals k and [ are said multiplicatively independent if the only solution in integers of
the equation k™ = {7 is the trivial one m = n = 0.

57 subset X of the nonnegative integers is said ultimately periodic if there exist d and
p in IV such that for all + > d, © belongs to X if and only if « + p belongs to X. The
equivalence between ultimately periodic and definable in Presburger Arithmetic goes back to
[Presb 29](see [End 72, chapter 3] for a more accessible reference}.

8Similarly to the case of subsets of IN, subsets of IN™ which are definable in < IN,+ >
can be characterized in terms of some periodicity (see [G,3 66]).

7Two structures are said interdefinable if the classes of definable relations are the same in
both structures.



The results S and V are summarized by the following picture (k and I multi-
plicatively independent)®.

<IN, +, Vi >
s N
< IN,+ > <IN+, Ve, Vi >

™ /7
<IN, +, V>

Figure 1. Theorems S and V

We can now end this section with our first question.

;From a logical point of view Semenov’s theorem says that : for & and I multi-
plicatively independent, let ). be a formula in the language < 4+, Vi > and g7 a
formula in the language < +, V; >, if ¢4 « ¢ in the theory of < IN, 4+, V;, Vi >
(which is the theory of < IN, -k, >), then ¢ and p; are equivalent to a formula
v in the language < + >=< +,V; > N < 4,V >. This raises the following
question :

Question 1 s it true that the following interpolation holds whenever k and !
are mulliplicatively independent?

Let ), be a formula of < +, Vi > and ¢ a formula of < +,Vi >, tf op — @1
in the theory of < IN, 4, Vi, Vi >, then there exists a formula ¢ in the language
< + > such thal pp — @ — @ (in the theory of < IN,+, Vi, Vi > of course)}.

3. Around the proofs of Cobham’s and Semenov’s
theorems.

In [Eil 74, page 118], 5. Eilenberg challenged people to find a more reason-
able proof of Cobham’s theorem. The original proof was combinatorial and
quite technical. In 1977 A. Semenov extended Cobham’s theorem to higher di-
mensions (theorem S). The proof in [Sem 77] was complicated.

Eilenberg’s challenge stimulated work about Cobham’s theorem. In 1982 G.
Hansel pointed out an intermediate result already present in Cobham’s proof
(called below theorem CH). By using it in a clever way (see [Han 82] and also
{Per 90]), he succeeded in giving a more reasonable proof of Cobham’s theorem.
In 1991, A. Muchnik (see [Much 91j) gave a comprehensible proof of Cobham’s

81t is easy to show (see for example [B,H,M,V 94, pages 213-214]) that < IN, 4, V; > and
< IN,+,V, > are interdefinable whenever k and ! are multiplicatively dependent.



C. Michaux et R. Villemaire

and Semenov’s theorems. The proof is based on his powerful definability crite-
rion (see section 5) and on a fine study of combinatorial properties of equivalence
relations associated to Ty-automata (see also [B,H,M,V 94] for an exposition of
this result). It is much simpler than Semenov’s proof and also gives a new proof
of Cobham’s theorern. In [Mi, Vil 93] and [Mi, Vil 94] we formulate Cobham’s
and Semenov’s theorems as stated in section 2 by using Buchi’s theorem. Then
we succeed to prove them as corollaries of new results on Presburger Arithmetic
(theorem E and theorem MV below).

For additional details about the different proofs of Cobham’s and Semenov’s the-
orems, the reader can read the bibliographic notes of the survey [B.H,M,V 94,
pages 219-220].

In the remaining of this section we give the architecture of our proof of Cob-
ham’s and Semenov’s theorems as it appears in [Mi, Vil 94].

We need the next defimtions.

Definition Let L = {l,;n € IN} be a subset of IN listed in increasing order.
Let D be the maximum of the set {lpz1 —lyn € INY if it exists and infinity
otherwise.

Definition We say that a subset L of IN is expanding if Dy, = oo,

Remark D) < oo if and only if there is a hound on the distance between con-
secutive elements of L.

We first prove the next result about definability in Preshurger Arithmetic :

Theorem E Let L C IN. If L is not definable in < IN,+ >, then there is
a I' C IN definable in < IN,+,L > , which is expanding. (Actually we give
two explicit sets one of which can be chosen to be L', see section 4).

We also use the following theorem due to Cobham and Hansel.

Theorem CH Let & and ! be multiplicatively independent. If L C IN is k-
and [-definable, then it is non-expanding.

We can now give the proof of theorem C.

Theorem C (Cobham's Theorem) Let k and [ be multiplicatively indepen-
dent. If L C IN is k- and [-definable, then I is definable in Presburger Arith-
metic (L.e. in the structure < IN, 4 > ).



Proof Let L C IN be k- and I-definable and not definable in < IN,+ > .
By CH, L is not expanding. Applying E we get an L’ C IN which 1s expand-
ing. Still by CH, L' is definable in < IN,+,L > , so it is k- and [-definable.
This contradicts CH.

Now we turn to our proof of Semenov’s theorem. Let us recall it

Theorem S (Semenov’s Theorem) Let k and ! be multiplicatively inde-
pendent. If L C IN® is k- and !-definable, then L is definable in Presburger
Arithmetic.

Proof Immediate from Cobham’s theorem and from the following result on
Presburger Arithmetic :

Theorem MV L C IN™ is definable in < IN,+ > if and only if every subset
of IN which is definable in < IN,+, L > is definable in < IN,+ > .

The proof of theorem MV uses Muchnik’s definability criterion (see section 5).
Theorem MV allows us to lift definability results from dimension 1 to higher
dimensions.

Fach of the next three sections is devoted to the discussion of a single step
of our proof of Cobham’s and Semenov’s theorems: theorem E in section 4,
theorem MV in section 5 and theorem CH in section 6.

4. Around Theorem E.

In this section we make the statement E more precise and formulate some open
questions about it.
We will need the following notation.

Notation For L C IN and n, m € IN let
Lin,ml={z €IN;n+z € Land n+ 2 <m}.
We will say that L[n,m} is a factor of L of length® m — n.
Remark Often in language theory one identifies L C IN with the infinite word

wyz, on {0,1}, having a 1 in position i if and only if 7 € L. With this point of
view L[n,m] is the analog of the factor wg [n, m] (formed of the n-th to m-th

95t would be more natural to say of “length m — n + 1", by choosing “m + n” we avoid
superfluous technicalities in the following computations.
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symbol of w) of the infinite word wr. Hence we have that Lin,m] = L[n/,m'} if
and only if wr[n, m] = wg [0/, m].

For n, m, k € IN such that n < m and m — n = k, we have that Lln,m] C
{0,1,...,k}. Hence for a fixed &k there are only finitely many possibilities for
Lin, m]. Therefore for any & there is some factor of length k which is repeated.
‘We will make use of this fact.

We will first define two functions dy and &y and then modify them slightly
in order to obtain two nondecreasing functions dr, and ar.

Definition Let L C IN. Define dr. : IN — IN to be the function which sends
n € IN to the smallest natural number d # 0 such that there exists an a € IN
with

Lla,a+nj=Lle+d a+d+n]

As said before, there are only finitely many factors of length 0, hence there
is at least one of them which is repeated. Therefore dy is defined over all of
IN. Actually dz(n) is the smallest distance by which you can shift a factor of
length n in order to recover another copy of it.

The following fact will be useful.

Proposition 4.1 dj, is an nondecreasing function.

Proof Trivial, if one thinks in terms of factors (see the remark after the defini-
tion of L[n, m]).

Definition Let [ C IN. Define ap 1 IN — IN to be the function which sends
n € IN to the smallest natural number @ such that

Lia,a+n] = Lla + dy(n).a+ di(n)+n).

Remark Hence &z, (n) is the smallest position at which starts a (actor of length
n repeating itself at distance dr(n).

It would be convenient (for technical reasons only apparent in the proofs) to
have that ¢y is nondecreasing. Since this is not always the casc, we will need

the following definitions.



Definition Let I7 € IN be defined as follows. There are two cases.

1. If Imdy, is finite, then take I/ = &7'(s), for the smallest s € Imér such
that &7 '(s) is infinite. (We denote by I'md the range of &.)

2. If Imay is infinite, then let I/ = {& € IN;&r(y) < &r(z), for all y < «}.

In both cases U is infinite. Furthermore the restriction of & to U/ is nonde-

creasing.

];)eﬁnition Define dy, : IN — IN to be the function which sends n € IN to
dy,(m), where m is the smallest element of U which is greater or equal to n.

Definition Define ay : IN — IN to be the function which sends n € IN to
&r(m), where m is the smallest element of U which is greater or equal to a.

Hence it is clear that

Proposition 4.2 The functions dy and oy are nondecreasing and also

Ller(n), ar(n) + n] = Llar(n) + dr(n), ar(n) + dr(n) +n].

Moreover we have:

Proposition 4.3 The functions dy and o are definable in the structure
<IN, +,L>.

The proof of proposition 4.3 is straightforward by tracing trough all the previ-
ous definitions.

We can now state a constructive'® version of theorem E.

Theorem E Let L C IN. If L is not definable in < IN,+ > , then either
Imdy, or I'may 1s expanding.

The proof follows from the following combinatorial lemmas.

Lemma 4.4 If Imd; and I'may are non-expanding, then dp is eventually
constant.

19iy the sense that if L is Bx-recognizable, then Imdy, and I'mog, are Ig-recognizable.

10
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Lemma 4.5 If Imay is non-expanding and dp, is eventually constant, then L
is ultimately periodic, hence it is definable in < IN,+ > .

The reader will find the proofs in [Mi, Vil 93] and [Mi, Vil 94, section 3].

In [Mi,Vil 94], we give two subsets L1, Ly of IN with the following properties.
1) Imdy,, is non-expanding and Imey, is expanding.
2) Imdy, is expanding and I'may, is expanding.

L is the set of powers of 2. One can easily show that dz, =1 and az,(0) =1
and oz, (n) = 2M°E+30 for n > 0.

L, is the Thue-Morse set, i.e. the set of natural numbers which have an even
number of 1 in their representations in base 2.
In this case we have -

dp (0) = Loag,(0)=1

d [ olesstin=1l .3 if p s even and n # 0
LAR) = glegtnt1l i nis odd

gllossin=1) .11 if it is even and n # 0
QLQ('H) = { #

gllos.n+1)) - 3f n is odd

The reader will find ali the details of the computation of dz and «y, in both
cases in [M1,Vil 94].

There is now a natural question :

Question 2 Docs there exists a subset L of IN such that Imdy(n) is expanding
and Imay, is non-expanding ?

Remark Notc that both of the sets Ly and Lo are 2-recognizable sets. These
ezamples and the feeling that a set sastifying the condilions required in question
2 should he strange motwate the following conjecture by G. Hansel

Question 3 If I is k-recognizable for some k, then Imdy s expanding implies
that I'may, 15 cxpanding.

11



5. Around Theorem MYV,

Up to now there is no good notion of expanding subsets of IV " forn > 2,
in the sense that we cannot extend theorem E and theorem CH to higher di-
mensions in a direct way.

This difficulty is turned by theorem MV which yields an extension of theorem
E to higher dimensions.

In the sequel we will use the following definition and notation.

Definition Let £ C IN". We say that R does not extend < IN,+ >, if every
subset of IN which i definable in < IN, +, R > is definable in < IN, + > e,
is ultimately periodic.

Remark We consider functions as relations, so the above concept applies also
to functions.

Notation Let 7 € IN™, 7 = (r1,...,7n). We will write (7); for r;.

Let us recall the nontrivial part of theorem MV.

Theorem MV Let L be a subset of IN®. If L does not extend < IN,+ >,
then L is definable in < IN, 4+ > .

In the remaining of the section we discuss it.

First we will give the proof of a very simple case of theorem MV which is ap-
pealing. Then the proof of the theorem consists in a reduction of the general
case to this special one by using Muchnik’s definability criterion. In the sec-
ond half of this section we examine some conjectural extensions of theorem MV.

We begin by the simple case of theorem MV.

Proposition 5.1 Let f be a function from V to IN", where V is an infinite
subset of IN. Let us assume that (f); is nondecreasing for alli =1,...,n and
increasing for some i € {1, -, n}.

If f does not extend < IN,+ >, then f is definable in < IN,+ > .

Before to go through the proof we need some definitions.

Definition We will say that two sets v and w are equal almost evrywhere {no-
tation v =4 w) if the symmetric difference of v and w 1s finite.

In the sequel we will also write v =4 .. w for functions. In this case the notation
is intended to mean that the graph of v and the graph of 2+ are equal almost
everywhere

114 {Le se el we will consider this notion relatively to other structures on ™.

12



€. Michaux et R. Villemaire

Definition Let L C IN” and Z € Z". We denote by & + L the set {Z+1¢€

Remark Remember that L C IN is definable in < IN,4+ > if and only if
L =4 @+ L for some non-zero z € IN.

Deﬁ_nition We will call a subset L of IN " a line if there exist two elements a
and b in IN™ such that L = {@+j-b;j € IN}. The lines are ultimately periodic
sets of IN™.

Remark Note that for b € IN™ the family of lines F(Z) = {£+j-b;j € IN} is
definable in < IN,+ > , i.e. there is a formula (&, ij} equivalent to y € F(&).

Definition Let W C U x V and let v : W — W' . For 2 € U we denote by
Imu(z, ) the set {v(z,y);y €V} .
For u:V — W, Imu(-) denotes {u(y);y € V}.

Let f be the function associated to the line {@+j-b; j € IN}, 1e. f(4) = a+j-b,
it is clear that f is definable in < IN,+ > .

Moreover f satisfies the conclusions of the following lemma which is the key to
a proof of proposition 5.1 .

Lemma 5.1 Let f:V — IN™. Under the assumptions of proposition 5.1 we
have that

a) there exists ¢ € IN", ¢ # 0, such that Imf(-) =q.. e+Imf(-).

by G={teZ"Imf(:) =a. =+ Imf())} is a non-trivial additive group
generated by one element of IN™.

Proof of lemma 5.1 and proposition 5.1

Since for all i = 1, -+, n (Imf(-)); is a subsect of IN definable in < IN,+,f >
it follows from the fact that f does not extend < IN,+ > that (Imf(-)): is
ultimately periodic for all i = 1,---,n. Therefore since (F); is nondecreasing
(=1,...,n) there exists a finite set 5 C IN™ such that for allv € V f(vF) —
f(v) € 8, where vt is the successor of v in V. Let Az be {v € V; f(vF) —
F(v) = 8}, § € S. Note that [J;cs As = V. Since the sets Ay are definable in
< IN,+,f > they are ultimately periodic (4; €V C IN), hence there exists
as #£ 0, by € IN such that for v > by, v € Ag if and only if v + a5 € A4, Let
b be the maximum of the b; for 5 € § and @ be the Le.m.!? of the a;, 5 € 5.
Obviously we have that for all § € S and for all v > b, v € Aj if and only if

'U+(IEA§.

12) can is a shorthand for least common multiple.

13



Let us now show by induction on v that f(v +a) = f(v) +[f(6+ a) — F(b)],
for all v > b. Note that since (Imf(-)); is increasing for at least one ¢, we
have that f(b +a) — f(b) # 0. Taking f(b + a) — f(b) as the value of &, we
will have that Imf(:) = é+Imf(-) (e.f.m.p). Let us remark that ¢ is in IN"
since the (f); (i = 1,-++,n) are nondecreasing. For v = & there is nothing
to show. Suppose it holds for v. If v € A; we have that v + @ € 47 and
F(v+a)t) = flv+a)+5and f(vF) = f(v)+5. But (v+a)* = vt +a. Sowe
have that f(vt +a) = f((v+a)*) = f(v+a)+35 and using induction hypotheses
we have that f(vt +a) = f(v)+3+{f(b+a) - f(b)] = f(v*)+[f(b+a)— F(b))-
So part (a) of the lemma is proved

Since every natural number v > b can be written as vo + 7 - a with b < wp <
b+a and j € IN we have from the preceding paragraph that f(v) = f(ve)+j-€
(for v > b and ¢ = f(b+ a) — f(b)).Thus the graph of f is an union of a finite
set of points and of finitely many parallel lines (there is at least one line since
V is infinite). From the remark about lines preceding the proof it is now clear
that (b) holds and that f is definable in < IN, 4 > .

The next step towards a proof of theorem MV is a uniform version of part (b)
of lemma 5.1.

Lemma 5.2 Let w: W — IN®, where W is a subset of IN?. Let W be the
set of u such that w(u,z) is defined for an infinite number of z. Suppose that
w does not extend < IN,+ > and that for all u € W, {w(u,-)); '* satisfy the
asumptions of proposition 5.1. Let &, € IN™ be the generator of G(u) = {z €
Z ™ Imw(u, ) =q., &+ Imw(u,-)} given by Lemma 5.1 applied to w(w, -) (for
u € W). Then there exists a bound ¢ € IN such that || & |[< cforallu € w4

Proof It is clear that W is definable in < IN, 4+, w > . We want to show that
there exists a bound e € IN such that for all u € W || & ||< ¢ . Now in
order to show this, it is sufficient to show that for all ¢ = 1, .., n there exisis a
bound ¢; € IN such that for all u € W (cu)i < ¢i. Let I, = {u' € Wi < u}.
Let v; : W — IN be the function which sends u to the smallest non-zero
element of [,y (G(¥)) (which clearly exists since it is well known that
Nurer, < (Eu)i >=Lem.({(¢y)i; v’ € Iu}). The function ; is definable in
< IN,+,w > , therefore Imu;(-) is ultimately periodic (note that Imuv; C IN).
Now from the fact that v;(u) is given by the lLemn.({(éw):; v’ € Lu}) it is
easy to see that there exists a bound to the set of (c.)i (v € W). Indeed
take ur, ug € W with wy < us. Now w(uy) =lem.({(Gu)i;u’ € Iy, }) and

133({u, -) denotes the function that sends j to w(x, ).

M Definition Let © = (&1,...,2) be an element of IN™. Here the norm [|Z[| of Z is the
maximum of {x;;7 = 1,...,n}. Tt is clear that for n fixed, the norm is definable in Presburger
Arithmetic.
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vi (1) =Lem.({{cu)i; ' € lu,}). Thus v;(us) is a multiple of vi{u1) (at least
2u;(u1) if they are different}. But this argument can be applied to any pair of
consecutive elements of Imv;(+). So since there is a bound to the distance be-
tween consecutive elements of Imu;(-) (Imuw;(-) is ultimately periodic), we have
that there exists a bound to the set of (&) (u € W).

The last step of the proof of theorem MV uses Muchnik’s definability crite-
rion. This beautiful characterization of definable relations in Presburger Arith-
metic generalizes in higher dimensions the fact that subsets of IN definable in
< IN,+ > are ultimately periodic.

Before to state it we need some definitions.

Definition Let L C IN™. A section of L is a set of the form
{(rey .o, Pigzs oo T )i (P10 T B T2y ., 7n) € L}, for z some element of
IN.

Remark If . C IN™, then its sections are subsets of IN n=1 which are definable
in< IN,+,L >

Definition Let L C IN®, # € IN" and m € IN. The L-cube at T of size m is
the set Cp(z,m) = {§ € IN*;&-+g € L and ||7l| £ m}. Here & -+ § represents
the component-wise addition.

Remark Cy(#,m) is definable in < IN,+ > .

Definition Let L C IN” and 7 € IN™. If Cr.(z,m) = Cr(z +7,m), we will say
that Cy(z,m) can be shifted by r.

Theorem M (Muchnik’s definability criterion)} A set L C IN™ is definable
in < IN,+ > if and only if the following conditions are satisfied.

M.1 Every section of L is definable in < IN,+ > .

M.2 There exists an s € IN such that for any size k there is a bound [ for
which every L-cube of size k at some & with ||  |[> I can be shifted by
#, for some ¥ € IN™ of norm less than 5.18

Our statement of Muchnik’s definability criterion is slightly different from the
original one but it is easily seen equivalent.

15This second condition is a first-order statement of < N, +,L > . In fact the whole
criterion can be expressed as a first-order statement of < IN,+,L > . This is trivial in
dimension 1 since condition M.1 is empty and condition M.2 is equivalent to ‘L is ultimately
periodic’. The general case is proved in {Much 91] and [B,H,M,V 94, proposition 8.2].
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The reader will find proofs of theoremn M in [Much 91],[Mi, Vil 94, section 5] and
[B,H,M,V 94, pages 221-222 and appendix].

Now the remaining of the proof of theorem MV is reminiscent of the proof
of the constructive version of theorem E : we build two functions fy and hy
which are definable in < IN,+ L > . And we prove that they have “non ez-
pansion” behaviour if and only if conditions M.2 is satisfied by L. Then we end
by induction on n {L C IN™) to show that condition M.1 holds.

In the next lines we give the flavour of this quite technical construction and
of the final step in the proof of theorem MV without giving explicit definitions
for the functions fr, and hy. For a complete proof the reader is advised to look
at [Mi,Vil 94, section 5).

Let us remark that the negation of Muchnik’s second condition is :

For all 5 there exisls a size k such thal above any distance | of the origin
there is a L-cube of size b which cannot be shified by a vector of norm smaller
than s.

sketch of the proof of theorem MV

Let us assume that L (a subset of IN™) does not extend < IN,+ > .

Let My = {s € IN ; there exists a k for which above any distance ! of the origin
there is a L-cube of size &, which cannot be shifted by a vector of norm smaller
than s}.

The set My, is definable in < IN,+, L > . Obvicusly Muchnik’s second condition
is equivalent to My being finite.

Then we build functions hy : Wi — IN™ and fr, : My — IN where Wg is a
infinite subset of My x IN such that each section {z;(s,z) € Wy} is infinite
for all 5 in Mj,. These functions are definable in < IN,+,L > (hence their
domains are also definable in < IN,+, L > ) with the following properties.

C.1 (hi(s,)): is nondecreasing for ¢ = 1,---,n (as long as it is defined) and
increasing for some i.

C.2 Cr{hr(s,z), fr(s)) cannot be shifted by a vector of norm smaller than s,
for all (s,z) € Wr.

C.3 Cr(hr(s,2), frls)) = Co(hp(s,9). fr(s)) for all (s, z), (s,y) € Wr.

Condition C.2 is clearly related to the negation of condition M.2 .
On the other hand L does not extend < IN,+ > , so the function hy does
not too. Thus by condition C.1 the funciion hy verifies all the assumptions of
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lemma 5.2 and so there exists b, € IN™ and b € IN such that Imhp(s, ) =ae.
b, -+ Imhyp(s, ) with || by [|< b. Let fix s, then for all but finitely many z in the
domain of hz(s, -) we can find y in this domain such that ||hr(s, y)—hz (s, )| =
|[bs]| < & . Now from condition C.3 we deduce that for such a z the L-cube
Cr(hy(s,2), fo(s)) can be shifted by a vector of norm smaller than &. So by
condition C.2, if s > b, (s,z) cannot be in Wy, except for finitely many = in
IN. Hence s cannot be in My (since the sections of Wy, above elements of My
are infinite). Thus Mg contains only elements s smaller than b, i.e. M7 is finite
and condition M.2 holds.

Now let us remark that the sections of L are subsets of IN"! which are de-
finable in < IN,+4,L > . So they satisfy the assumption of theorem MV. By
induction on n we can conclude that sections are definable in < IN,+ > , so
condition M.1 holds and finally L is definable in < IN,+ > .

In the remaining of this section we explore possible extensions of theorem MV.
Let ns say that theorem MV holds for a structure A =< IN,.. > if every
R C IN™ which does not extend A, is definable in A.

First let us remark that theorem MV does not hold for Congruence Arithmetic,
ie. for the structure < IN,= (mod n) >,emn'®. Indeed the ternary relation
“r + y = z” does not extend < IN,=(mod n) >pemv and is not definable i
< IN,=(mod n) >nein- The proof of this folk fact is left to the reader (see
also [End 72, chapter 3]).

Theorem MV holds for Peano Arithmetic, i.e. for < IN,+,- > but for a some-
what trivial reason : it is a consequence of the existence of a definable (in
< IN,+,- >) pairing function.

It is also a folk fact that there is no pairing function which is definable in
< IN,+> .

Up to now we cannot prove or disprove theorem MV for Biichi Arithmetics.

Question 4 Does theorem MV hold for Bichi Arithmetics?

In order to go further in our discussion, we look at the following binary predi-
cate div(z,y), meaning that x divides y. This example illuminates the scope of
theorem MV and theorem M (in the case of < IN,+ > ).

First it is easy to show that condition M.1 of Muchnik’s theorem holds, i.e. the
sections of div(z,y) are definable in < IN.+ > . It is obvious that div(z,y)
is the union of all the lines!” of equation y = mz, m € IN. Hence the section
above = ¢ is here the union (for all m in IN) of the intersections of lines y = mz
and x = f, thus it is the set of multiples of t and so it is ultimately periodic. The
section above y = t is the union of the intersections of lines y = mz and y = 1.

18 The symbol =(mod n) represents the binary relation modulo n.
17By the line of equation y = ax + b, we mean the set {(o,8) + j(1,a);7 € IN}. This
definition agrees with the previous one for a line in the case of IN“.
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Since these intersections are empty except for finitely many m, the section is
finite (it consists of the divisors of ¢). In fact the same argument shows that the
intersection of a line y = ax + & with div(z, y) is always finite.

But condition M.2 does not hold for L = div(z,y). Indeed when we look at an
L-cube of size k, sufficiently far away of the origin (0,0), two cases happen :
the L-cube is empty or it is a finite part of a line of slope m for some m (more
precisely a set of the form {(x,y) € IN*;y = mz 4+ b and y < k}). In the first
case there is no condition on the vectors by which the L-cube can be shifted; in
the second one the L-cube can be shifted by only multiple of the vector (1, m).
It is clear that this prevents us to find a bound on the norm of the vectors by
which the L-cube can be shifted, as required by condition M.2.

This shows that div(z, y) is not definable in Presburger Arithmetic and answers
by the negative the following natural question.

Question 5 Let L be a subset of IN?, of which all the inersections with lines
of IN? are definable in < IN,+ > . Is L definable in < IN, + > ¢

By theorem MV, we have that div(z,y) extend < IN,+ > . This can be directly
shown. Hereafter we sketch a folk argument which proves that < IN, +, div >
and < IN,+,- > are interdefinable.

It is obvious that the function z? + z is definable in < IN,+,div > by a for-
mula which says “y is the smallest natural number divisible both by z and
x4+ 17. So it is clear that the function z? and the set of squares are definable
in < IN,+,div >. Thus div(z,y) extend < IN, 4+ > .

Now by using (z 4+ y)? = 22 + 2zy + 3%, it is easy to define multiplication in
<IN, +,div >.

Conversely definability of div in < IN,+,. > is cbvious.

By using (2+1)? —2? = 2z, it is easy to define the function 2% in < IN, +,5Q >
where 5@ is the set of squares. This finally shows that < IN,+,div > and
< IN,+,5@Q > are interdefinable.

This leads to the following question.

Question 6 Is it true that for all L C IN" (n > 2), there exists P C IN such
that the structures < IN,+,L > and < IN,+,P > are interdefinable.

There are some trivial results in this direction. We begin by a lemma.

Lemma 5.3 Let Ly,..., L, be subsets of IN. Then there exists L a subset of
IN such that < IN,+, L+, ..., L, > and < IN,+, L > are interdefinable.

Proof We give it for s = 2, but the generalization is easy. We define L as the
union of 21 and 2L, + 1. It is obvious that L is definable in < IN, 4+, Ly, La >;
conversely & € L (respectively z € Ly) is definable in < IN,+,L > by the
formula Jz(z = 2+ z Az € L) (respectively Jz(z =z +z+ 1Az € L))
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1t is now trivial to show that question 6 has a positive answer for all < IN, +, L>
in which the multiplication is definable. In this case there is a pairing function
which ig definable in < IN,+, L > . So there exists L' such that < IN,+, L >
and < IN,+,., I' > are interdefinable. Now we can replace - by 5¢ (see the
argument above). We get the result by applying lemma 5.3.

An easy argument proves that question 6 has a positive answer when L is the
graph of the function f(x) = 2°. It suffices to remark that f is definable by
adding the range of f and the set {z + f(z); z € IN} to Presburger Arithmetic.

A. Semenov gave a subset P of IN such that <IN, +, Ve> and < IN,+,P >
are interdefinable (see [Sem 84, page 173}).

We end this section with a remark by R. Solovay :
A positive answer to guestion § implies a postlive answer to guesiton 4.

In fact a positive answer to question § implies that theorem MYV holds for any
structure < IN,+,V > (V C IN"). Indeed Let L be a subset of IN” which
does not extend < IN,+,V > . A positive answer to question 6 imphies that
there exists P C IN such that < IN,+,P > and < IN,+,L > are interdefin-
able. So P is definable in < IN,+,V > (since L does not extend < IN,+,V >
) and thus L is definable in < IN,+,V > .

6. Theorem CH and Further results.

Clearly the statements of theorem C, theorem S, theorem E, theorem MV and
theorem V as stated here are free of automata flavour. The same is true for their
proofs. The link with automata theory is only via theorem B. Theorem CH has
a particular status. Its statement is free of automata theory but the proofs of
CH in [Co 69], [Han 82] and {Per 90] are combinatorial and use automata the-
ory. Even our proof of it, although written in our logical framework, strongly
uses theoremn B and a basic fact of automata theory : the pumping lemma (see
[Mi,Vil 94, section 4])*®. Theorem CH has also a particular status with respect
to the other ingredients of our proof of Cobham’s and Semenov’s theorems: it
is the only ingredient which is specific to < IN,+,V; > and < IN,+,VI > .
All of the remaining of ingredients are about Presburger Arithmetic. So if we
are able to prove a theorem CH about two extensions of Preburger Arithmetic,
say < IN,+,K > and < IN, +,L > , we immediately have a theorem S for
<IN, K> and < IN,+,L >, as the proofs in section 3 show it.

1BAnd, as in all the proofs of CH, we use the followin%nequivalent. form of the essential
assumption “k and ! are multiplicatively independent” : {z7;n,m € IN} is dense in. nt,
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In fact the proofs in section 3 show that for a pair of structures < IN, 4, K >
and < IN,+, L > the following three statements are equivalent :

Theorem CH holds < Theorem C holds <> Theorem S holds

So we can ask the following :

Question 7 For which pairs of extensions of Presburger Arithmetic, < IN. 4+, K >
and < IN,+, L > , does theorern CH hold?

Clearly Cobham’s theorem gives a list of such pairs of extensions of Presburger
Arithmetic. From some years, there are attempts to extend Cobham’s theorem
to Bertrand numeration systems (see [Fab 92], [Po 94]). These attempts extend
the list of pairs of structures < IN,+, K > and < IN,+, L. > for which theo-
rem CH holds (and hence theorem C and theorem S too).

Fabre’s thesis ([Fab 92]) is written on the viewpoint of automata theory. But
again there is a “Biichi theorem” for these numeration system (see [Br,Han 94]).
This result allows us to explain the state of the art in our logical frame.

We first give some definitions for an arbitrary numeration system.

Let U7 = (Up)nemv be a strictly increasing sequence of integers with Uy = 1.
Any integer £ > 0 has one and only one representation

z=agllp+a U1+ -+ amlnm

with respect to U/, using the so called greedy algorithm (see [Fra 85]) :
let m such that U/, < & < Upy41 and zyp = z. We compute by induction on ¢,
t=m,...,1,0,

a; = & div Uy,  zp41 = 2 mod U

We only consider sequences U where ratios U, 1y /U, are uniformly bounded by
an integer constant ¢ (with ¢ minimal). In this case we have a; < ¢ for all 4.

Definition With the previous notations, we say that {/ is a numeration sys-
tem and 4 = {0,1,...,¢ — 1} is the elphabel associated with U. We call U-
representation of x the word aga; ... a,, of A* obtained by the above process.
By definition, the {*representation of 0 is the empty word.

In the sequel we will denote the {Frepresentation of z by [z]y. Any word
u = 0¥[z]y, with & > 0, is called normalized. We denote by A the set of
normalized words. Conversely, for any word v = aga; ... a,, € A*, we call value
of u the integer v(u) = Y 1nqaili.
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Let us remark that if 7 = (k™)ngmv with k > 2, the previcus algorithm com-
putes the usual k-ary representation of &.

Given a numeration system U, the set A" may have an unexpected behaviour :
for some u,v € A* and k > 0, u € N but u0* ¢ N, uv € N but u ¢ N.
In [Bert 86], Bertrand numeration sysiems are characterized such that this be-
haviour is forbidden. They are related to #-expansions of real numbers.

Let # > 1 be a real number. For any z € IR, denote by [z] its integer part
and by {z} its fractional part. Any real number z € [0, 1] satisfies the equality

= Z a, 0" (%)
nzl
where
an = [0z,], withz; =z and Loy = {6z,}, for anyn > 1.

The infinite sequence e(z) = {(@n)np1 = @1~ Gn - is called the #-ezpansion
of #. A particular case is the f-expansion e(1) of the number 1. In the case it
ends with an infinite sequence of 0’s, i.e. e(1) = a1 .. .ar_1050%, ax > 0, then
we put instead

e(1) = (a1 ... ap_1{ar — 1})*.

This new sequence also satisfies equality (x).

With this convention, one can show that, for all n € IN \ {0}, an < 8. The
alphabet © associated with 8 is then defined as {0,1,...,[6]}if 6 € IR\ IN, and
as {0,1,...,0 -1} if 8 € IN.

The set Sy of f-expansions of all z € {0,1] is a subshift of ATV, called the
f-shift. We denote by L(f) the set of finite factors of the sequences in Sp.

The form of e(1) implies some properties for the #-shift : for example,

e(1) is ultimately periodic if and only if the language L(f) is ©-recognizable.

Examples

1) Let @ be the golden number ¢ = 1—‘%@ Then e(1) = (10)*, the initial form
of (1) being 110%.

2) Let § = ¢? = 25 then e(1) = 21¥.

Theorem 6.1 Let I/ be a numeration system and A its set of normalized
words. The following are equivalent.

1) Let uw,v € A", let k> 1. If u c N, then u0* € N if uv € N, then u,v €N.

2) There exists a real number 6 > 1 such that N = L(8).
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A numeration system which satisfies (2) will be called Berirand numeration
system associaied to the 8-shift.

The reader will find more information on numeration systems and #-expansions
of reals in [Bert 86], [Bert 89], [Fra 85] and [Pa 60].

Assumption 1 In the sequel we always assume that U is a Berirand numera-
tion system associaled lo a 0-shift such that L(8)=N is O-recognizable.

In this case, one can show that the numeration system U is defined by a finear
recurrence of order k, for some k > 0 (defined with respect to e(1)). More
precisely, there exist integers 7y, ..., v#, such that for any n > &,

Un —_= '}’lUn—l + "}’2Un_2 + -+ 'TkUn—k'

Let P(X) = X* — 11 X*¥=2 — ... — 9; be the characteristic polynomial of the
linear recurrence Then 8 is root of P(X) and the other roots have absolute
value less than 2 (see [Pa 60]).

Here we will make an extra assumption :
Assumption 2 the roots 02, ...,0; of P(X) not equal {0 8, are stmple and have
absolute value less than 1.

In particular, assumption (2) hold if P(X) is the minimal polynomialof a Pisot'®
nurnber 4.

Examples
DNIfé=keIN, then Uy =1and U, = kU,_1, n > 1.

DIff=¢, thenllg =1, Uy =2and U, =Upoi + Ups_g for all n > 2. This is
the Fibonaceci numeration system. In this case U will be denoted by Fib.

NHO=¢> then Uy =1, U, =3and U,, =30, —[ln_s forall n > 2,

Definition We will say that a subset X of IN is U-rreognizable if L = 0*r(X)
is O-recognizable.

Now we introduce the structure < IN,+,Vy > where YV is the function de-
fined similarly te V; by :
for all 2 # 0 with [2]r = @o...am, Vir is the smallest {7; such that a; # 0.

19A Pisot number is an algebraic real # whose all the conjugates different from & have
absolute value less than 1
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Theorem 6.2 Under the assumptions (1) and (2) of this section, a set X CIN®
is U-recognizable if and only if X is definable in < IN,+, Vi >.

This extension of Biichi’s theorem is due to V. Bruyére and G. Hansel (see
(Br,Han 94]). The proof follows the same way that the one given for theorem B
in [B,H,M,V 94, p 207] for k-recognizable sets, but new difficulties appear: one
is the use of normalized words, instead of any word of {0,...,p — 1}*; another
one is the U-recognizability of the addition which is no longer a trivial fact
(in contrast with the proof of k-recognizability of the addition which is almost
trivial).

Proposition 6.1 Under the assumptions {1) and (2} of this section, the set
X ={(z,y,2) €N}z +y=2z}is [~-recognizable.

Proposition 6.1 is proved in [Br,Han 94] in a simple way.

The {/-recognizability of the addition is proved under the alone assumption that
the numeration system U is given by a finite linear recurrence the polynomial
of which is the minimal polynomial of a Pisot number2? in the paper [Fr,So 94],
but in & more complicated way.

An appropriate version of Lemma B (section 2) still holds for these numera-
tion systems.

As in the case of theorem B, theorem 6.2 has an immediate corollary.

Corollary Under the assumptions (1) and (2) of this section, < IN,+,Vu >
is decidable.

In particular we get that < IN,+, Fib > is decidable (since U Is definable
in < IN,+, Vi > ), aresult already proved by A. Semenov in {Sem 80].

S. Fabre (see [Fab 92]) shows that theorem C holds for < IN,+, Vi > and
< IN,+,Vir > where k is an integer > 2 and U is given by a finite linear
recurrence the polynomial of which is the minimal polynomial of a Pisot num-
ber # with an extra assumption. F. Point proves theorem S for < IN,+, Vi >
and < IN.+, Vi > where U satisfies assumptions (1) and (2) and some ex-
tra conditions (different of Fabre’s extra assumption). 21 Her proof follows
the general scheme of Muchnik’s proof of Cobham’s and Semenov’s theorems
and uses U-recognizability of addition. Fabre’s proof is based on the notion
of U-substitution (the reader will find a clear exposition of the results on U-
substitutions in [Br,Han 94]).

20 here are numeration systems which satisfy this assumption but not asumption (1).
211n particular from Fabre's and Point’s results, theorem S seems proved for < IN,+, Vi >

and < IN, 4+, VFu >.
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We conjecture that theorem CH (and so theorems C and S} holds for pairs of
structures < IN -, Vir, > and < IN,+, Vi, > where Uy and U/, are numeration
systems respectively associated fo a 0, -shift and to a 02-shift with 6, and 85 {wo
multiplicatively independent Pisol numbers,

7. Around the indecidability of < IN, 4+, Vi,V > .

In [Vil 92a)], [Vil 92b],[Vil 92¢], the second author proves the following results.

Theorem V  Let k and ! be multiplicatively independent. The structures
< IN,+, Vi, Vi > and < IN, +, - > are interdefinable.

Corollary V < IN,+, Vi, Vi > is undecidable.

These results answer by the negative a question by A. Joyal :

for £ and ! multiplicatively independent, does it exist some subclass of Tur-
ing machines which recognize exactly the sets which are in the smallest class
containing all k-recognizable sets, all I-recognizable sets and closed under inter-
section, complementation, and projection? This is equivalent to ask for a type
of machine which recognizes exactly the sets definable in < IN,+, Vi, V) >.

The proof of theorem V is based on a first-order translation of the following
theorem which is a slight generalization of a result by W. Thomas ([Tho 75,
theorem 13)).

Theorem T Let h* : IN — IN be a strictly increasing function such that
h*(S(z)) > S(h*(z))** for infinitely many = € IN. Suppose furthermore that
there exists a d € IN such that for any consecutive natural numbers x, y satis-
fying the above inequality 2 — y < d. Then the addition of natural numbers is
definable in WS185.

The technique of proof of theorem T is essentially due to C.C. Elgot and M.O.
Rabin (see [EL,Ra 66]).

Theorem T has the following consequence.

Corollary T Let be a strictly increasing function A : £ — kv definable in
< IN,+, V¥, V) > such that the following condition holds :

(*) h(k -2} > k - (h(z)) for infinitely many = € k™

and furthermore there exisis ¢ d € IN such that for any conseculive power of k,
k"™ k™ satisfying the above inequality we have m —n < d.

Then the multiplication of powers of k is definable in < IV, +, Vi, h >.

22The symbol S denotes the function sucessor : S(x) = x + 1.
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Lemma 7.1 Under the assumptions of corollary T, the concatenation in base
k is definable in < IN,+, Vi, b >,

The proof is a easy consequence of corollary T.

By the following result of J.W. Thatcher (see [Tha 66]) it follows that any
recursive function is definable in < IN,+, Vi, Vi >.

Lemma 7.2 Any recursive function is definable in < IN, +,* > where * is the
concatenation in base &.

The last step in the proof of V is the construction of a function A which verifies
the assumptions of corollary T, whenever & and { are multiplicatively indepen-
dent. This part of the proof is quite technical.

The reader will find complete proof of theorem V in [Vil 92b] and [Vil 92¢]. A
simple case is handled in {Vil 92a].

The proof of lemma 7.2 is by encoding Turing machines. This raises the follow-
ing question.

Question 8 Define multiplication in < IN,+, Vi, Vi > without encoding a
Turing machine (for k,1 multiplicatively independent ).

Let us end this paper with a few additional questions. ;From decidability
of < IN,+,V; >, we trivially get decidability of < IN,+, P2 > 23 A few
years ago, G. Cherlin asked about the decidability of < IN,+, P2, Ps > . This
problem is still open. More generally we can ask :

Question 9 For k, | multiplicatively independent is < IN,+, Py, P > decid-
able, decidable by automata or if it 1s undecidable, is multiplication definable in
i ?

In this direction we can easily show that < IN,+, Ve, P > is undecidable
(multiplication can be defined in it). But we are not able to generalize the
proof to solve the following questions?

Question 10 Is < IN,+, Vi, P > undecidable whenever k and I are multi-
plicatively independent?

Question 11 Is < IN, 4+, Vi, L > undecidable for every L which s {-recognizable
but not definable in < IN,+ > whenever k and 1 are multiplicatively indepen-
dent?

23] et us recall that P, denotes the set of nonnegative powers of k.
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ORDERINGS, VALUATIONS AND FREE PRODUCTS OF GALOIS GROUPS
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1. The p-Galois group of a field. Given a field I and a prime number p, let K(p) be the
compositum of all finite Galois extensions of K of pth power order and let Gr(p) = Gal(K(p)/K).
We report here on some conjectures and results on the structure of G (p) and its relation to the
arithmetic of K.

When char X = p the structure of Gg(p) is quite dull: it is a free pro-p group of rank
(K : p(K)), where p(X) = X? — X [Se, I1-5]. We thercfore restrict ourselves to the case where
char K # p. We will henceforth also assume that & contains the roots of unity of order p. In
this case, I{(p) is the closure of K with respect to repeatedly adjoining all possible pth roots, by
Kummer theory.

It is often useful to consider G (p) together with its natural action on the group fipe of all
roots of unity of pth power order (over the prime field of K). Note that in our situation gpe & K(p).
Since ZX = Aut(jipe ) (where a € Z¥% corresponds to the automorphism ¢ — (%) the restriction
G x(p) = Aut(py~ ) induces a continuous homomorphism xx ,: Gr(p) — Z5. Since K contains by

assumption the roots of unity of order p, oue has in fact Im(xwp) © 1+ plyp.

2. Torsion in Gg(p) and orderings. When pis odd, G (p) is torsion-free iB]. As for Gx(2),
its torsion consists solely of involutions, and is closcly related to the orderings on K. In fact, as
proved by Becker [B], Gg(2) = Z/2Z if and only if K is cuclidean (i.e., it is an intersection of K(2)
with a real closed field; equivalently, K is an ordering on K'). Furthermore, for every ordering P
on K we may associate a cuclidean closure, i.e., a euclidean subextension K of K(2)/K such that
P = K?nK; this closure is unique up to a unique I -isomorphism. Therefore the orderings on X
may be identified with the conjugacy classes of the involutions in Gr(2).

3. Valuations. Let v be a Krull valuation on K. A p-lenselization of (I, v) is the decomposition
field of an extension of v to K (p). One says that (A, v) is p-henselian if it is a p-hensclization of

itself; equivalently, v has a unique prolongation v(p) to K(p).

Suppose that (K, v) is p-henselian, let & be its residue field and let T be the inertia group of

v(p)/v in K(p). There is a split short exact sequence
1 =T —Gr(p)— Gilp)—1

1



There are two essentially different cases:

CASE (1): chark # p. Then T'= Z7 where m = dimg, v(K *}/p. The action of Gi(p) on T is

given by 77 = 7Xx.r(0) for g € Gi(p) and T € T. Furthermore, T acts trivially on pipe.

Casg (11): chark = p.  In this case T coincides with the ramification group of v(p)/v. When v

is discrete and k is perfect, T is a free pro-p group.

In contrast to the case of euclidean fields, it is not clear to what extent is p-henselianity a
Galois-theoretic property. For example, [ do not know whether G (p) Z7, with m > 2, implies

that K is p-henselian with respect to a valuation whose inertia group in K(p) is non-trivial.

4. Fields with finitely generated p-Galois groups. Suppose now that Gg(p) is finitely
generated {as a topological group); cquivalently (A% : (K *)?) < co. In this case it is conjectured

that Gx(p) decomposes as a {free product in the category of pro-p groups

Gr(p)= G;’{I(P) *p ot kp G,F{“(P) ;

where each K; is a subextension of K (p)/ K of one of the following types:
(1) K; is p-henselian with respect to a valuation with inertia group in K(p);
(I1) p =2 and K; is euclidean; or

(D) G () 2 Z,.

Recall that a non-trivial valuation has rank 1 if it has no non-trivial proper coarsenings.
The following second conjecture may complement the picture: Suppose that K is p-henselian with
respect to a valuation of rank 1 with residue characteristic p, and suppose that rank Gx(p) < oc.
Then either G(p) is a free pro-p group or K is a finite extension of Q. In the latter case Gx(p)

is a Poincaré group of dimension 2 [Se, I1-30, Th. 4].

Now let € be the class of all pairs ((,0), where & is a pro-p group and 6: G — 1 + pZ,
is a continuous homomorphism. We will not distinguish between pairs that are isomorphic in the
natural sense. Let €, be the subclass of C, consisting of all pairs (Gx(p), xx,p) where K is a
ficld satisfying our constant assuinptions and such that rank G (p) < co. Let C?’,’ be the minimal
subclass of C such that:

(a) (L,1) el
(b) (Z,0) € C, for every continuous homomorphism 8:Z, — 1 + pZ,;

(€) (Gr(p),xL,p) € C) for every finite extension L of Q, containing the roots of unity of order p:
(d) When p=2,(Z/2Z,-1)€e CY;
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(e) I (G1,6h),...,(Gn,0,) € C)) then (G *p - #p Gyl %y o+ #p 0n) € C), where By 45 -+ %y
1 G *p -+ *p Gn — 1+ pZ, is the continuous liomomorphism induced by &1,...,68; by the
universal property of the free product;

(f) H (G,8) € C) and m € N then (Z} %G, 8) € Cj, where (G acts on Z7* according to 77 = r6()
forceGandr € 27, and where AL XG — 1+ pZ, is the composition of the projection
21 %G — G with 8.

Without proof we mention the following

PropPoSITION: Clf G C}. Assuming the above-mentioned conjectures, C, = Cy-

5. Witt rings of elementary type. These conjectures originate in the attempts to axiomatize
the theory of quadratic forms, by means of the purely combinatorial notion of abstract Witt rings
[M]. Marshall asked in [M] whether every finitely gencrated abstract Witt ring can be constructed
from certain “building blocks” (the Witt rings of real closed fields, dyadic fields, and fields K with
Gr(2) = Z,) by means of two operations (called direct product and extension). This statement
became known as the “clementary type conjecture” and was proved in numerous cases; €.g., Carson
and Marshall [CM] verified it with the aid of a computer for abstract Witt rings with at most 32
square classes. The connection with Galois theory has been fully revealed by Jacob and Ware
([TWr1], [JWr2]): they showed that if C, = Cy then the elementary type conjecture holds. Fur-
thermore, their results show that the converse is also true, provided that whenever L is a finite

extension of @, and W{K) = W(L) then (Gk(2), xxz2) = (GL(2),x1,2) in the natural sense.

The elementary type conjecture has far-reaching consequences in the theory of quadratic

forms. For instance it implies the following long-standing conjectures:

(1) Define the level of a field K of characteristic # 2 as the minimal number of squares in K
whose sum is —1 (oo if K is formally real). By classical results of Pfister (S, Ch. 11, Th. 10.8 and
Ch. IV, Th. 4.3], the possible values of this invariant are 2", n € N, and co. The “level conjecture”
asserts however that if (A% : (A*)?) < oo then the level of & is either 1, 2, 4 or cc. By induction
on the complexity of the construction one can show that this holds whenever (Gr(2),xK2) €Y.
Therefore the level conjecture wonld follow from the equality C3 = cy.

(2) Given afield K of characteristic # 2, let «(/') = sup dim 2, where ¢ ranges over all anisotropic
quadratic forms over K. An old conjecture of Kaplansky stated that if w(K) is finite then it is a
power of 2. Merkurjev ([Mel; [L2]) constructed counterexamples of ficlds with any given even u-

invariant. Yet, Kaplansky’s conjecture holds whenever (G (2), Xk 2) € ¢4, Therefore, the equality

3



€3 = €f will imply that Kaplansky’s conjecture is true whenever (K% : (K*)?) < oo.

(3) Let K be again a field of characteristic # 2, let [(K) be the fundamental ideal of the Witt
ring of K, and for each [ > 0 let HY(K) = H'(Gg(2),Z/2Z) be the Galois cohomology group.
For any a € K* let (a) be the element of /'(K) corresponding to a(K*)? via the Kummer
isomorphism K% /(K*)? =2 HY(K). A conjecture of Milnor states that there is an isomorphism
I(KY/I(K)F & HYK) mapping any Pfister form (1, —a;) ® --- ® (1, —an), a1,...,a, € K*,
into (@;)U---U(ag). This is known to hold for { < 3 {[Mel], [MeS], [R]). One can show that this
conjecture is true when (G'x(2),xx2) € C§. So again it would follow {from C5 = C that it holds

when (K% : (K*)?) < co. See [AEJ1], [AEJ2] for more details and references.

6. A decomposition theorem. A partial result towards a possible proof of the elementary type

conjecture is given in [E3] (where proofs of the announcements in this section can be found)

THEOREM: Suppose that K = Kyn---nN K, where K1,..., K, satisfy (I) or (I1) of §4 and suppose
that n is the minimal positive integer such that K has this form. Then G (p) = Gy (p)*p *p
G (p).

In particular, this proves the first conjecture of §4 when K is an intersection of an arbitrary
collection of fields of the form (I) or (I1).

For algebraic extensions of @ a similar decomposition thcorem was proved by Ersov [Er] and
Neukirch [N]. Jacob [J], leaning on previous results of Marshall, proved the theorem (with p = 2)
for fields A with (K : (K'*)*) < oo which are real-pythagorcan (i.c., K is an intersection of a
non-empty collection of its euclidean closures). Sce also [Mi] and [E2] for somewhat more precise
results in the real-pythagorean case. Jacob and Wadsworth [JW, Th. 4.3] treated the case where
K is an intersection of two fields of type (I) with residue characteristic # p which are immediate
over K and which induce distinct topologies; but although the result is correct, there is a gap in
the proof. We refer to [H] for another result in this direction.

The decomposition in the theorem above is close to being the finest: with possible exceptions
when the residue characteristic in case (I) is p, or when p = 2 and G (2) = (Z/22) +; (2/27),
the groups G .(p) cannot be decomposed any further as free pro-p products. Furthermore, for
K as in the theorem (and with similar exceptions) and for any free pro-p product decomposition
Gr(p) =%y <-4, [, each T is generated by groups of the form G4 (p), with & as in (I) or (II).

Using this theorem and [E1, Cor. 4.4] we get:

CorROLLARY: Let p =2 and let K, Ky,..., 1, be as in the theoren. Then a quadratic form over

K which is isotropic in each K; is also isotropic in K.

4
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This is a partial generalization of a local-global principle for (weak) isotropy of quadratic

forms due (independently) to Brocker and Prestel [L1, §18]; in one of its equivalent forms, this

principle says that a quadratic form over a real-pythagorean field X is isotropic if and ouly if it is

isotropic in all subextensions of K(2)/K of types (I) and (II).
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Definable Valuations

Jochen Koenigsmann

Abstract
We prove that any non-trivially henselian valued field which is
neither separably closed nor real closed admits a first-order definable
valuation inducing the henselian topology. A general account of defin-
abilitv of valuations from multiplicative or additive subgroups of fields

is developed.

Introduction

The properties of henselian valued fields are. as we know from the work of
Ax-Kochen and Ershov, to a great extent determined by the data going along
with a henselian valuation. notably its residue field and its value group. In
this paper, we investigate some kind of a converse of this insight, namely, that
for a field which admits a henselian valuation, we can describe a canonical
valuation on that field in purely field theoretic terms, cven in a first-order
manner: we define that valuation in a similar fashion as, sav, the ordering
of a real closed field is defined in terms of the quadratic elements of the
field, or, indeed, the p-adic valuation on the field Q, of p-adic numbers is
defined, e.g. by describing the vajuation ring, the ring Z, of p-adic integers,
by Z, = {r € Qp | 3y : y? —y = px®}. It is in this sense that the field
‘determines’ the valuation.

Unfortunately, there are two factors which complicate matters with hensel-
ian valued fields. One is that we can only expect the envisaged result, that a
henselian valued ficld carries a field theoretically first-order definable (non-
trivial) valuation, if the field in guestion is neither separably closed nor real
closed. For any non-trivial definable valuation on a separably closed field
is definable with finitelv many parameters {rom that field and, therefore, in-
duces a non-Lrivial valuation on a finitely generated subfield containing those



parameters; but there are no finitelv generated henselian fields, so the val-
uation on the small field extends in different, though conjugate ways to its
separable closure, and thus to the separably closed field we started off with
— hence the valuation could not have been definable after all. And for a
real closed field, any non-trivial definable valuation ring would have to be
definable without quantifiers, i.e. a finite union of intervals and points, which
we know to be impossibic on the real numbers, and hence. on any real closed
field.

The other complication arises from the fact that there are fields which are
not separably or real closed and which do not admit any non-trivial henselian
valuation. but which are elementarily equivalent to some field wtth a non-
trivial hensetian valuation {such fields have been constructed hy A.Engler, cf.
the example in[FZ1. p. 338\, In particular, the canonical henselian valuation
ring attached to each henselian valued field (cf. [EE]} will, in general, not be
definahble.

Yet in the light of these ohstructions we shall prove the best possible
result. the formulation of which already reflects the topological character of
its proof. One has to recall that on 2 field which is not separably closed,
anv two non-trivial henselian valuations are dependent ([EE]), i.e. have a
non-trivial commeon coarsening, or equivalently, induce the same topology,
which we mayv therefore call the henselian topology.

Main Theorem iny field vith nor-trivial henselian valuation which 18 not
separably closed or real closed. admits a definable valuation inducing the
henselian topology.

For henselian valued fields with real clused residue field (so-called almost
real closed flelds) such definable valuations have already been found in special
cases in {J1} and |J2|, and svstematically in {DF] (cf. also [BBG]). Other
instances arose in the context of halfiurdered flelds (of. |K1[).

We shall prove the main theorem, or. rather. a more general result about
fields with a non-trivial ‘t-henselian’ valuation (cf. section 4), by finding
to anv such field a finite valued fieid extension where for some prime p a
p-henselian valuation inducing the (t-}henselian topology can be defined es-
sentiallv in terms of the multiplicative group of p-th powers of that field, or,
if the characteristic is p, the additive analogue to this group (section 3).

This leads naturaliv to the task of defining valuations from a given (mul-
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tiplicative or additive) subgroup of a field (section 2), a problem that has
been dealt with in many special situations and has to our knowledge so far
received its most extensive treatment in [AEJ] (though only for the multi-
plicative case). The crucial notion here has always been that of ‘compatibil-
ity’ between a valuation and a subgroup of a field. Jt turned out in the course
of our investigations that this notion needs to be both generalized and refined
(section 1} in order to gain the survey necessary for the definability results
of section 2. With this at hand we can then not only provide precise criteria
for the (first-order) definability of valvations in terms of a given subgroup
(thm.2.3), but actually give explicit first-order formulas wherever they exist,
and second-order formulas in all other cases (thm.2.11).

Readers only interested in the proof of the main theorem may omit the
discussion of general definability of valuations from subgroups by consult-
ing, instead, the direct argument in {K2] for the definability of p-henselian
valuations, aud then proceed to section 4 of the present paper.

Notation: For a valued field (F,v), we denote by O, M., F, and ', the
corresponding valuation ring, maximal ideal, residue field and value group,
the latter being written additively. (For background in valuation theory
cf.e.g. [E] or [R].)

1 Compatibility between Valuations and Sub-
monoids of Fields

In this section we consider a feld F together with an additive resp. mul-
tiplicative submonoid T, that is, T € F resp. T C F* is additively resp.
multiplicatively closed and contains 0 resp. . Ve want to study the collec-
tion of all valuations of F that are in some sense compatible with T. This
will enable us to find a distinguished valuation ring Or of F canonicaily as-
sociated with T. In order to obtain the full picture, we have to introduce
three notions of compatibility:

Definition 1.1 Let v be a valuation of F, T an additive resp. multiphcative
submonoid of F.

1. v 1s compatible with T iff M. C T resp. 1 +. M. CT.



2. v is weakly compatible with T iff ACT resp. 1 + AC T for some
O, -1deal A with VA= M,

3. v 1s coarsely compatible with T 4ff v is weakly compatible with T
and there is no proper coarsening w of v such that O CT.

The first notion of compatibility is — at least when T is a multiplicative
subgroup of F — widely used, and stands in no need of justification (cf. e.g.
[AEJ]). The notion of weak compatibility is required to cover situations where
a valuation is related to T without being (fully) compatible, e.g. when T is
itself a non-maximal valuation ideal, or when (F,T) = (Q,,(Q, )7), where,
for the p-adic valuation v on Qg, on the one hand 1 + M. € T, on the
other hand 1 +.M3 C 7. The additional condition for coarse compatibility
becomes only relevant in case OX C T (when T is additive, this is equivalent
to ©, C T). In this case any refinement of v has this property, and there
is no way to distinguish between those refinements in terms of T. On the
other side, each valuation v with ©F C T allows a maxima] coarsening with
the same property, which will then be coarsely compatible; so the notion of
coarse compatibility is only designed to ignore unnecessarily fine valuations.
The same is true for the radical condition v/ A = .M, in the definition of
weak compatibilitv: without the condition, any refinement would be weakly
compatible without being further distinguishable in terms of T: yet, again,
the condition can easily be brought about by passing to a suitable coarsening:
if A C T resp. 1+ .4 C T for some O.-ideal A, localizing modulo the
maximal prime ideal of @, containing A leads to a vaination w where the
radical condition is fulfilled for some ), -ideal contained in 4, e.g. for Oy A%

With the distinction between full and weak compatibility being justified,
one finds, nevertheless, important situations where the two notions colncide:

Lemma 1.2 Let v be a valuation on F. If either T is multiplicative such
that for some n € N: (F*Y" C T and {n, char F.} = 1, or T 1s additwve,
char F =p and {2° -z |z € F} C T, then v is (fully) compatible with T 1ff
v 15 weakly compatible with T.

Proof: Suppose T satisfies the assumption, and is weakly, but not fully com-
patible with v. Let .4 be the O.-ideal which is maximal with the property
AC Tresp. | -ACT. Then A # .M, and, by the radical condition for
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weak compatibility, we can find an O.-ideal B with B* C A Cx B (choose
ae M\ A sod* ¢ A o*! € Aforsome k € N, and let B := a*®,). Then,
if T is additive, forallb e B: £ € T and (—b)? +beT,sobeT, and if T
is multiplicative,

c B¢ AL since ne L,
i P

=) — . .
(1+(%))”:1+b+ (;)(%)2+... e li+b(1+4)NT,

so1+b& T, because {1+ A) ' = (1 +.4) CT. But then B C T resp.
14+ B C T, contradicting the maximality of A. O

Having introduced the correct notions of compatibility, the main result
of this section is based on the following simple

Observation 1.3 Let vy, v be two non-comparable valuations fr.e. O, ¢
@y, and O, € O, J. and let w denote the finest common coarsening of vy
and vy. Then, for any Q. -1deal A, with My C. A, and any O.,-tdeal Ay
with My Cx As. one has

Oy, = Ay + As and O = (1 + A (1 + Az).

Proof: The two valuations 77,77 induced by vy, vp on the residue field Fu
of w are independent. So for each z € O, one finds, by the approximation
theoremn, that (';E—.,—-’-G)ﬂfg #,s0T € A.MA; and, hence, as My C© A1NA;,
also z € Ay + As.

Similarly, one finds for # € @ that (T

+TA) N (14 Ay) # 0, so
Te(l+A4) 1+ =1+ A1+ A2),
and hence
r e (14+AN([+Ag)+. My C A+ A1+ M) C {1+ A1+ Ar).
using that 1 + A; < O < OF. B

Proposition 1.4 For an additive resp. multiplicative submonoid T of a field
F, any two coarsely compatible valuations are comparable, and there is a
unique finest coarsely compatible valuation ring Or of F. Moreover, Or is
non-trivial, whenever T is non-trivial (i.e. T # F resp. F*) and admats
some non-trivial weakly compatible valuation.
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Proof: Our observation tells us that for any two weakly compatible valuations
vy, vo which are not comparable, the finest common coarsening w satisfies
OF COu C A+ A CT vesp. OF C (1 4+ A1+ A;) C T, where A
is an Oy~ ideal with A; C T resp. 1+ A; © T and VA= M, (1=1,2):
note that the radical condition makes sure that M, C, A So vy and v, are
both not coarsely compatible and O C OF C 7. In partic ular. it follows by
contraposition, that any two coarsely compatible valuations are comparable.
Therefore, the ring

Qr = m .

v enarseiy compatible with T

15 a valuation ring.
I T admits some valuation v with ©; € T, then Or is the unique coarsely
compatible valuation ring with that property: on the one hand, the valuation

ring
o= |J o
G, & OLCT

is a coarsely compatible valuation ring with @* C T on the other hand,
no proper subring of O is coarsely compatible. so O = Or. and the coarsely
compatible valuation rings are just the subrings of F containing Or. They
are all fully compatible, as for Or € Out My C M7z C Or resp. 14 My -
1+.M7 € OF C T:in that case all weakly compatible valuations are fully
compalible.

If. however, 7 acdmits a weakly compatible valuation ring, which is not
fully compatible, then Q7 is the unique such valuation ring (any smalier ring
would violate the radical condition), and all weakly compatible valuations
are coarselv compatible.

If, finally, all weakly compatibie valutions are fully compatible and no
valuation has all its units contained in T, then Or is the smallest compatible

valnation ring:
Mr = U M.,

v coars comp v T

so My Z T resp. 1+ M7 C T,
The ‘moreover follows readily in each of these cases. U
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We are now in a position to survey all possibilities for weakly compat-
ible valuations with the classification given in the proof. We rephrase this
classification, also for further reference, in the following

Corollary 1.5 For any additive or multiplicative submonoid T of a field F
one of the three following cases holds:

e group case: there is a valuation v with O C T.
In this case, Or is the only coarsely compatible valuation ring with
this property; the valuations with this property are exactly the refine-
ments of Or; all weakly compatible valuations are fully compatible;
the submonoid induced on the residue field of Or is trivial; if T is
multiplicative, it is determined by its values: T = v~ *(2(7T))-

e weak case: there is o weakly, but not fully compatible valuation.
In this case, 1 is the only valuation ring with this property; the weakly
compatible valuations are the coarsenings of Or; there is no valuation
v with QF CT.

¢ residue case: all weakly compatible valuations are fully compatible and
there is no valuation v with O CT.
In this case, 7 is the finest compatible valuation ring and the sub-
monoid induced on the residue field is non-trivial.

Corollary 1.6 Or is fired under T -automorphisms, that is, under automor-
phisms of the field F mapping T to T.

Proof: Pick o € Aut(F) with ¢(T) = T. Then ¢(Qr) is coarsely compatible
with ¢(T) = T. So, by the theorem, Or C o(Qr). But, similarly, Or C
o~ HOr), Le. o(Or) COr. O

Remark 1.7 Eztending earlier work of B.Jacob ([J1]) and R.Ware ([W]),
in [AEJ], the question of compatibility of a valuation with a multiplicative
subgroup T of a field F has already been explored in great detail. In order
to find some canonical valuation associated to T . the authors introduce for a
T-compatible valuation v of F the property of being T-coarse which is that
o(T) (= v(T - OF)) contains no non-trwial conver subgroup. They prove
that any two T-compatible, T-coarse valuations are comparable (Cor.8.7),
and that there is a unique smallest T-compatible, T-coarse valuation ring

T



OF(T) of F (Thm.3.8). We shall call Op(T) the Jacob-ring associated
to the multiplicative group T. Since any T-compatible, T -coarse valuation
is coarsely compatible in our sense, these results are immediate from our
prop.1.4. One always has Or C Op(T), with equalhty in the group case,
strict inclusion in the weak case and both possibilities i the residue case.
Of(T) is also canomcal in the sense of being fired under T -automorphisms.
Vet Op(T) may become trivial even though there do exist non-trivial T-
relevant’ valuations. This can happen for two reasons: one is that T admits
weakly compatible valuations. but no non-trivial fully compatible ones (cf.
the remarks following the definitionl.1). The other is that elements of T
may attain any value under a compatible valuation. For example, if T is an
ordering, Op{T) = F, whereas Or 15 the canonical valuation ring attached to
each ordering, 1.e. the conver hull of Q m F w.rt. T, so Or is non-trivial
off T is non-archimedean.

2 Valuations Definable from Subgroups

From now on, T will be an additive or multiplicative subgroup of the field F.
In the preceding section. we gave an external definition for the valuation ring
O7 canonically associated to 7@ Or was the finest valuation ring coarsely
compatible with 7. We shall now tryv to give an tnternal characterisation of
(7, that is, a characterisation which does not require that we know about
all (ur anv) other coarsely compatible valuations, a characterisation only in
terms of 7. Stronger even, and more precisely, we are looking for a first-
order formula in the language £ 1= (+,~.-,0,1.Z) , the language of fields
augmented by a single (one-place) predicate for the subgroup 7.

If we can find such a formula for Of in terms of T, i.e. if Or is (first-
order) definable in £, then, in particular, the property, that (F,T) admits
some non-trivial weakly compatible valuation, becomes a first-order prop-
erty, since this is, by propositionl .4, equivalent to Or being non-trivial. In
fact, we shall see that, whenever T is a proper subgroup of F resp. F*
which is not (the strictly positive cone of) an ordering, weak compatibil-
ity with some non-irivial valuation s a first-order property (in case T is an
ordering, this can, in gemeral, not be expected because archimedeanity or
non-archimedeanity is not a first-order property}. Full compatibility with
some non-trivial valuation, in contrast, cannot be described by a first-order
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formula:

Example 2.1 Let F :=Q,, T = {(Q; Y and let v denote the p-adic valua-
tion on Q. Then v 1s weakly, but not fully compatible with T, and there is
no non-trivial fully compatible valuation on Q, (as we are the ‘weak case’,
it would have to be a coarseming of Or = O). Passing to an w-saturated
elementary extension (F',v') = (F.v), with T' = (F™)P extending T, one
does, however, find non-trivial valuations fully compatible with T'; take, for
example, the coarsening w of v/ with mazimal ideal My = (o, p" M it
is fully compatible, since 1+ My C 1+ p? My C T, and it 13 non-trivial,
since, by saturation, (o My # {0}.

The reason why the existence of a non-trivial weakly compatible valuation
can be expressed in a first-order formula (unless T is trivial or an ordering) is
of a topological nature. e shall associate to each subgroup T of F a topology
induced by T on F. Tt wili then turn out that T is weakly compatible with
some non-trivial valuation iff T induces a | -topology on F. and that this
can be said in first-order terms. Using this fact, we shall see that Or is in
most cases first-order definable (a precise criterion will be given). Finally,
we shall present an explicit formula for Or which works for all definable
cases simultanecusly. For the non-definable cases. an intrinsic, though not
first-order, construction will be given.

Definition 2.2 Let T be an additive resp. multiplicative subgroup of a field
F. We shall denote the coarsest topology on F for which T is open and for
which M&bius transformations resp. hnear transformations are continuous,
by r7; we call rr the topology induced by T on F.

So if T is additive, the sets {iﬁg |z e€T.z# -5} forabcdel with
ad — be # 0 form a subbase of rr; if T 1 multiplicative, a subbase is given by
sets of the form aT + b with a € Fr.beF.

We shall not investigate this topelogy any further here (in general, 77
will not make F a topological ring, not even a topological group), but only
prove the following fact, which is well known for the special case that T is
an ordering (then rr s the urder-topology of T):

Proposition 2.3 Let T be a proper additive resp. multiplicative subgroup
of F. and let v be a non-trunal valuation of F. inducing on F the topology



1. Then rr = 1. ff T is weakly compatible with some non-trivial coarsening
w of v.

In this case, sets of the form {:Ti% v e Tz —-‘f} with ad — be £ 0
resp. of the form (aT +b)N(cT +d) with a,c 3 0 form a base of the topology
TT.

Proof: If 77 = 7., T must be open w.r.t. 7, so for some non-zero ,-ideal
A one has A C T resp. 1 + A C T. Therefore, the coarsening w of v with
My = /A (£ {0}) is non-trivial and weakly compatible with T

For the converse, we may assume that w = v is weakly compatible with T,
as comparable non-trivial valuations induce the same topologv. We fix some
non-zero O -ideal A with A C T resp. 1 + ACT. Since T = |, .r(z+ A)
resp. T =J r2(1+.A) T €, and so 77 7. as 7, is a fleld topology,
and hence Mobius or linear transformations are continuous.

In order to see that also 7. © 7r. it suffices to check that M, € 7,
because the sets a.M, + b with a € F*.b € F form a base for 7.. And,
again, to check this, it suffices to find an open rr-neighbourhood L of 0 with
U C .M., as then M. = [, W, T We shall treat the additive and the
multiplicative case scparately.

If T is additive, we can pick some d € F\T withd ' € A. Thisis possible,
because 7 is a proper subgroup of F, while Z'i'\_l{_oi additively generates the
whole group F. Now choosc a € d ' 4,bea - A ThenOe U = {Ei_i;
reT}C Mubea ACa T impliesOel;andforx eT,.

=v(a) > 0,i{v(z) < v(d), as v(b) > v(a) > v(ad) > v(azx)
J¢ >0 ifv(x)y=v{d) ase+de F\TCF\A butar+bec A
> v(a) > 0. il v(z) > v{d), as v(bd ') > v(b) > v(a)

ar+b

1l(:c—i—d

If T is multiplicative, we can pick c.d € F* with ¢T # dT and ANeT #
0 £ ANdT; for otherwise A C cTU{0} forsomec e F* sav0zfta=cerec A
for some # € T, so a® = ¢?2? € ¢TI, ic. ¢ € T, and, thus, A\ {0} C T;
but then F* = (A\ {0}) C T. contradicting the assumption that T is
a proper subgroup of F*. Now choose a € ANcT.b € ANdT. Then
0l :=(a—cT)N(b—dT) C .M, if not, we could find some 2 = a —cz, =
b—dr, @ M, withz; € T.so —cry =z—a=zx(l—azr D ezr(1+A) C T,
and, similarly, —dra € x7; but then —2 € ¢T N dT, which is impossible,
because distinct cosets of T are disjoint.

10
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The statement about the base of 77 follows immediately from the defini-
tion of U and the observation that, because the sets M, for r € F* form
a base of neighbourhoods of 0, the same holds for the sets zU. D

Corollary 2.4 Let F be a field with a proper additive resp. multiplicative
subgroup T which is not an ordering. Then weak compatibility of T with some
non-trivial valuation is an elementary property (in the language of fields with
an extra predicate for T ).

Proof: The first-order sentence expressing this property is that rr is a V-
topology. For \'-topologies arise either from valuations or from archimedean
absolute values. In the first case, T is weakly compatible with some non-
trivial valuation, by the propusition. The second case, however, cannot occur,
because otherwise T would contain some neighbourhood U of O resp. 1 which
is open w.r.t. an archimedean absclute value. Yet, by archimedeanity, U
additively generates F. so F C T in the additive case, and L multiplicatively
generates the positive cone F of an ordering for a real archimedean ahsolute
value, or all of F* for a complex archimedean absolute value, so P C T
or F* C T in the multiplicative case, contrary to the assumptions of the
corollary.

That the property that 77 is a V-topology, is, indeed, first-order ex-
pressible, follows, again, from the proposition which provides a untformly
parametrized base of the topology rr, whenever T is weakly compatible with
some non-trivial valuation; and. clearly, ‘to be a ring topology of type V' can
be expressed in terms of a base of the topology (cf. e.g. [PZ}). O

The next theorem provides exact criteria for the definability of the val-
uation ring Or canonically associated to a subgroup T in each of the three
cases described in corollary1.5.

Theorem 2.5 Let F be a field with an additive resp. maultiplicative subgroup
T. Then O is first-order definable in the language L = {+.—.,0.1,T} in
the following cases:

1 T <{F,+) | TLFC
_g%;u; Cas; i cither O is discrete | ;: o
I or¥YreMr: 2 'Or €T
weak case TE iff Or is discrete
residue case | ges 4 T ws no ordering

n



Here, My denotes the mazimal ideal of Or, and T denotes the subgroup
induced by T on the residue field of Or.

Proof: By corollarv1.6, Or is fixed under T-automorphisms of F. It thus
follows from Beth's definability theorem, that O is definable, whenever we
can elementarily express its defining property, namely that Or is the finest
valuation ring coarsely compatible with 7. )

In the group case this is equivalent to saying that Or is a valuation
ring with Q¥ C T (this can, obviously, be expressed in first-order terms) and
with the property that no proper coarsening O, of Or satisfles OF C T

If T is multiplicative, this property is expressed by the formula

Yere Mr: Mr\aeMr LT,
For, given r € .M, we have:

Mr\ My = (Mp\zMp) CT
= O = (‘.\/IT \‘ ;L‘.,\/!T> CT

where @, = § 'O7 for the multiplicative closure § € Or of Mz \ 2M7:
O, is a proper coarsening of Or. Conversely, for a proper coarsening Oy
of Or with ©; C T, one could find suome 2 € Mr violating the formula:
r € M7\ .M, would satisfy Mg\ zM7r C Mr\ M, CO;CT.

If T is additive. and Vo € M7 : 2 'Or € T. then this formula alreadv
guarantees that (7 does not admit a coarsening Oy with @ C T (or,
equivalently, @, C 7). for if there were such a coarsening O, the formula
would not hold for 2 € Mz \ My 2 'Or C O CT.

If Or is discrete, say My = zOr, then, for somen € N,z "Or C T, but
2~ (DO ¢ T, Together with ‘Or C 77, the existence of such an z, again,
elementarily distinguishes (7 from any other valnation ring.

On the other hand, if T is additive, Or C T, but Or is not discrete, and
for some 2 € My x 'Or C T, then

3(y) = {0Ay € Mr Ay "Or CTneN)
is a tvpe (by non-discreteness, there always exists some y € Mr \ {0} with

xO7 C y"Or), so realizing ®(y) in some w-saturated elementary extension
(FI. T 0" = (F,T,0r), sav by ¥ € M we see that O admits a proper

12
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coarsening O = |J= ¥ "0 with O"< C T', so ©' # O, and, therefore,
(7 cannot be first-order definable in terms of T.

For the weak case, one essentially repeats the argument for the additive
group case. (7 is the unique valoation ring which is weakly, but not fully
compatible with T. If Or Is discrete. this, for some n € N, is equivalent to

31‘ M .\/[T et ,‘,[‘C)T /\ Irn(:),r Q T A mn-{-l g T
resp.
HGr: Mr =207 A 142707 €T AN 1+ 2 CT

(note that, like in the additive group case with Q7 discrete, we don’t have a
uniform formula, but. rather, a countable case distinction with a formula for
each case).

For O non-discrete, no first-order formula can express the radical con-
dition required for weak compatibility. Indeed, if (F',T', 0" = (F,T,0r) is,
again, an w-saturated elementary extension. then Q' is not weakly compatible
with T': the type

B(y):={y € O\NO* AYy"O LT resp. 1 + YO T ineN}

vields an element y' € M’ such that for the non-maximal ¢¥-prime ideal
P=" ¥y onehas P L T resp. 1+ P ¢ T therefore, any ¢Y-ideal A
with A C T resp. 1 +.A C T is contained in P. s0 one never has VA=M

In the residue case, we have to express that Or is the finest valuation
ring compatible with 7. Because T induces a proper subgroup T on the
residue field, this is equivalent to saving that Or is (fully) compatible with
T and that T is not weakly compatible with any non-trivial valuation {(any
such valuation gave rise to a refinement of Or weakly compatible with T').
By corallary2.4. this is elementarily expressible. unless T is an ordering. If,
however, T is an ordering, then T must be archimedean. Yet, once more, we
can find some elementary extension (£, T, O") = (F.T.Or) with T non-
archimedean, so, again, (% # O 3

Corollary 2.6 The distinction between the three cases described in corollary
1.5, 1.e. the group case, the weak case and the residue case, 18 an elemen-
tarv classification of the class of fields with an additive Tesp. multiplicative
subgroup.



Proof: Let us begin with the class of fields with multiplicative subgroups.

The group case is elementarily described by expressing that the defining
formula for Or (which exists by the theorem) defines a valuation ring O with
axCT.

Similarly, in the residue case, if T is not an ordering, we express that
the defining formula for @7 defines a fullv comparible valuation ring O with
O* ¢ T and with T not inducing a V-topology on the residue fleld of O.

If, in the residue case, T s an ordering. then OF CTU-T < F¥, and T
induces an ordering on the residue field of @1 7: note that O . € TU-T,
but € T, since OF, 7 o OF € T, so T induces a multiplicative subgroup
of index 2 on the residue field of O7, 7 this must, however, be additively
closed, as otherwise O C 3, ¢ C T +T, contrary to the assumption that
T induces an ordering on the residue field of Or. So the residue case with T
inducing an ordering on the residue fteld of 7 is expressed by saying that
the defining formula for (r., r defines a valuation ring O with O* C TU—-T
such that T induces an ordering on the residue field of O.

(One should point out, that the residue case with T an ordering is well
known to be elementary by the works of B.Jacob [J1] and [J2]: this is exactly
the case where T is a valuation fan which has the much simpler elementary
characterisation:

-1 gT AT+TCTA
Yee F\NxT: 1+ eTUxT A (l+zeT—1-x2eT}

The ring Or .7 is exactly Op(T). the ring introduced in remark 1.7, for
which Jacob gives an explicit elementary description.)

With the group case and the residue case being thus finitely axiomatized
in elementary terms, the weak case can be elementarily characterized as
complementary to those two cases.

In the class of felds with additive subgroups, it is — by the same to-
ken as, e.g., the multiplicative group case - clear, that the residue case is
elementary.

(F.T) belongs 1o the group case iff it does not belong to the residue case,
but the formula

o:¥YreF:reTvae €T

holds: for this, we only have to prove that o does not hold in the weak case
{0 obviously holds in the group case: Or € 7). In the weal case. however,

(4
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we have some O7-ideal A with A C T and some z € Mr sit. @ T and
z? € A; assuming that o holds. we get:

leT,xgT
= l+z¢T,1-2gT
= ler el €T

Tl 1-2

= =I$f;—¢€r+zﬁl§x+1"

14z
s ]
1t ¢ T

le_ 1 _ 2 gT
= { T . z—ii ¢T contradicting o
-2

1-2 — L-a

Having finitely axiomatized the group and the residue case, the weak case,
again, must also be elementary. O

Corollary 2.7 [f Or is definable, all convez subgroups of the value group I't
of Or definable in terms of v(T) (where v denotes the valuation corresponding
to Or ) guwe rise to a definable coarsening of Or.

In particular, if T is multiplicative, the Jacob-ring Op(T) (cf. remark
1.7) is definable both in the group case and 1n the residue case.

Proof: If a convex subgroup A of ['r is definable in terms of (7). and if
Or is definable. then the coarsening of Or with value group 't/ is again
definable: it is the localization S 'OQr with S = v HA).

If T is multiplicative, then Qr(T) = Or, s0 Or(T) is definable by the
theorem. In the residue case. either T does not induce an ordering on the
residue field of O7: then. again by the theorem, Of is definable and the
coarsening O¢(T) is obtained by passing to the factor group TI'r/Ar, where
A7 is the maximal convex subgroup of ['7 contained in v(T); for Ar s
definable in terms of v(T):

Ar={-elr|¥6eTr:(18]<)- I—feu(D)

If T induces an ordering on the residue field of O, then, as described
in the proof of the previous corollary, OF(T) = Or. 7 which is definable in
terms of T U =T, and so also in terms of T'. O

Remark 2.8 In [J1], for a valuation fan T, Op(T) was explicitly defined in
first-order terms. and. in [AEJ], generalizing to the suituation, where T 1s any

13



multiplicative subgroup of F*, Op(T) was described constructively in terms
of T: With the notation

Be(Ty:={a€ F|T+al T JaT or T —aT @ TU —aT},

the set of T-basic elements of F. which generate the multiplicative subgroup
(BF(T)) of F*, the construction 1s as follows: )

Op(T) = Op(TyUOT). where
Op(Ty={zcFlx¢d "BriT)) and 1+ € T}
OHT) :={eeF |loe Be(T)) andz - Op(T)C OF(T)},

provided T 15 not exceptional: T 1s called exceptional. of Bp(T)==xT and
cither —1 € T or T' 1s additively rlosed. Tn this case. in the construction of
OF(T), the group (Br(T" may have to be replaced by a subgroup H < F*
with Bp(T) C H and [ . BpiTy| < 2. (Cf. [AEJ]. Def.2.2., 0bs.2.3.(3)
and Thm.3.9.)

Having this nice construction of Of(T) for arbitrary multiplicative sub-
groups T, it is. however. not clear that this construction leads to an elemen-
tary definition of QOp(T) in terms of T, as the construction, as given. involves
quantification over N by talking about “the group generated by’ Br(T). So
our corollary about the definability of Of(T) in the group and the residue
case is not quite redundant. In fact, in the weak case. Of{T) will, in general,
not be first-order definable. even if (O is definable:

Example 2.9 Let (F,v) be a valued field with 1, = 2, andlet T := L4+ .M2
Then, being 1 the weak discrete case. Or = O, s definable in terms of T,
and Of(T) = F 1is trivial.

Passing to an «-saturated elementary extension (F',T') = (F, T), we see,
as in example 2.1, that the valuation v’ corresponding to O admits a fully
compatible non-trivial coarsening, the finest such being the valuation w with
My =10, ML ButT' =1+ ML CO,COL, souw(T) = {0} does not
contain any non-trwial conver subgroup. and, thus, O (T') = Ou # F'. As
Or(T) 1s trivial and Op(T') 15 non-trivial. but (F.T)=(F'".T"), we cannot
have definability here.

Explicit Formulas
The explicit fomulas we have found for valuations definable from subgroups

16
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will not come as a surprise because they essentially describe the topological
properties of such subgroups. So even when, perhaps, they lack elegance
or brevity, these formulas are well motivated, natural in a sense. The idea
is to define, in terms of a subgroup T a zero-neighbourhood L° which is
approximately as large as O, so that the clements x € F forwhichz U Cx U
are the elements of .Mz, Such neighbourhoods will be of the form

¢ { {5 |z e T\{p}} i[T isadditive
ab =

‘ a(l = TYNb(1 —~T) if T is multiplicative

for some a,b € F*. To find a good choice for the elements a, b, we have to
see how these neighbourhoods L,y are bounded above and below by some
basic Or-open sets, namely fractional Or-ideals, or, if one prefers, preimages
of upper segments of I'r U {00} w.r.t. vy. (Those fractional valuation ideals
are, of course, linearly ordered by inclusion.) As usual, we denote for some
fractional Or-ideal A the inverse fractional ideal by Al ={zeFlz- AC
@1} (note though, that this operation is not injective, unless O corresponds

to a discrete valuation).

Lemma 2.10 Let (F, T} be a field with additive resp. multiplicative sub-
group, let Ar be the largest (in the additive group case eventually) fractional
Or-1deal contaned in T resp. —1 +T. and pick a, be F*.

(o) If T is additive and b & T, then

%AT C Uas C abAz’ My

and § Ar s the largest fractional Or-ideal contained m Ugp.

(b) If T s multiphcative, oT # bT, and, say, rr(a) < vr(b), then
bAr C Loy C adAr My

and bAr is the largest fractional Or-1deal contained i Uqp.

Proof: {a) 1f y € Ar and b & Ar, vr(y) > vr(b). So L'T(y—lf%) = vr{y), ie.
ro= -bi’; € Ar CT. Hence $y = 252 L.

On the other hand, [, does not contain any fractional Or-ideal 7 with
Ar . It for either bMp = A, but then £60r C I C Lqp. 50 a € Uab
which is impossible: or Ar C, b7, so one finds * € bMr \ T such that
rel, and thus 5 € T3 L.

L7



To see that L,p C abA;' .My, first observe that Or C bAF Mg, as
vr(b) < vr(y) for ally € Ar. Sofor 2 € T with vr(z) > vr(b) resp. vr{z) <
vr(b) we have vr(25) = o7 () > vr{a) resp. vr{ 25 = vr (%) = vr(a),
le. 25 € yOr C ab A Mz, If 2 € T with vr(z) = vr(b), we still have that
vr(z —b) < vr(y) forall y € Ar,as 2 —b € T, s0 vp{75) > L'T(gyé) for all
Yy e AT, l.e. :—i & abATl,\AT. S

(b)Ify € Az, then b—by € b{(1 + A7) CbT and a —by = a{l —ba"'y) €
a(l + Ar) C aT, as vr(a) < vr(b). so by € Lgp. On the other hand, any
fractional Or-ideal T with bAr C. T contains some z with b — = g bT,
so z & Uy If, finally, - ¢ aA-_rl,\/(T, ie. az! € Ay, then a — z =
~z(1—az Neg—zTand b— 2= —z(1 - bz ') € ~=T, so either —2T # aT
or —:T # bT, as al # bT. and hence = € L4p. O

If it happens that T' is itself a valuation ring or some (fractional) valuation
ideal in the additive case, or the group of units or of 1-units of some valuation
in the multiplicative case, it is not difficult to find a formula for Or. In these
cases (and in a few other exceptional cases) one also finds «,b € F with
Lap = My or, in the additive group case also L = Or. Whenever this is
possible, and, moreover. T is fullv compatible with vz, we call T valuational.

Theorem 2.11 Let (F,T) be a field with additive resp. multiplicatwe sub-
group, and let Pr C F be defined as follows:

2ePr & Jabe F*:(b@T resp. al # bT) A 0g5(2) A vap(z) A Yab(),
where 0qp(2), vasl®) and you(r) abbreviate the formaulas:

Oap(z): 2lopy T resp. 1 +2l,y CT

van(z) 1 22(Tas * L) C Lan
Yap(®): Yy, z:ly 2 €2 las— (e lapVz€Llap)

If T 15 valvational, O = Pr.

If T is not valuational, but strongly compatible with O1 and for the additive
group case Ar = Or, then Mr = Pr.

In all other cases M7 = {r € F|3n € N:z" € Pr}, where for discrete vy
a fired exponent n works uniformly.

Proof: As above, we denote by Az the largest fractional Or-ideal contained
in T resp. T — 1. Then the theorem follows from the two following claims:
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Claim 1: My N Ar € Py, and, if T is valuational, Or C Pr.
Claim 2: Pr C Or and, if T is not valuationa, Pr C Mr.

Iroof of claom 1: Pick ¢ & Mr 0 Az, We have to find a.b € F7 with
be T resp. al # bT such that

o wabA;' M1 C Ar resp. vaA;' Mr C Ar .
v 2?abA M C 2Ar C Or resp. 22a A Mr CbAr C Or
Vi rtabApi Mr C AL resp. ztad;' Mr C WAL

By the previous lemma. such a,b then guarantee the conditions Oap(),
vap{®) and \qp(x}. 5o then v € Pr.
We first rewrite those conditions:

o & abegalARMy! resp. a € r tAZ MY
L o bealAriachA, resp. a€x tbARML!
Ve ﬁ:— er tARM, resp. & € 2t AL MG

One now easily verifies that choosing b € z'A7- \ T and a € xOF resp.
a € A} \ bT does the job (note that the choice for a in the multiplicative
case is possible since A3\ {0} multiplicatively generates all of F™).

If 7" is valuational. we find a.b such that L. == Mr or in the additive

group case L,; = Or and we can even find such a.b with b ¢ T resp.
aT £ bT. But then any such (g is good for any ¢ € OF, so in this case
Or C Pr.

Proof of claim 2 Tick © € Pr ' {0} and let a,b € F* witness the
corresponding formulas. We may assume that Lyp # {0}, as otherwise Or =
Py = F, and we are done. e consider the set

Our formulas are so designed that M obviously defines the maximal ideal,
or, if T is additive. possibly the valuation ring, of some valuation compatible
with T. Passing to a saturated elementary extension (F'.\T') » (F,T), we see
that for the corresponding set one has .M’ # {0}, so T' is weakly compatible
with some non-trivial valuation, which - being an elementary property by
corollary 2.4 must also be true of T. Hence Ar #£ {0}
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We now assume that z € .M7. Then

a

a o ;
b-AT - 1'23«41‘ Calap T Uiy

resp. with, say, vri{a) < vr(b)
bAr C .1"25,47 - s C Lap-

But $Ar resp. b.Aris according to lemma 2.10 the largest Or-ideal contained
in {33, 50 r must be a unit: = € Or.

We deduce that 47 C .M C Ugpresp. bAr ©T .M C U.s, and, therefore,
we cannot be in the weak case: .M would then be an Or-ideal, hence (again
by 2.10) of the form M = $.Ar resp. M = bAr, but being non-maximal
(weak case!) and prime this is impossible. In fact. the same argument shows
that if .M is a fractional Or-ideal it must equal .Mt or, in the additive group
case, possibly (O7. But then we are only in cases where we know O7 to be
definable (in the additive group case .M = $Ar implies Ay = Or or Or
corresponds to a discrete valuation}, so we may assume to bein a saturated
model, where, however. as 7 is not valuational, we find in each 2"l {and
hence, by saturation. in ,M) elements outside My or Or.

So M is not any fractional Or-ideal, so it must belong to a fully com-
patible valuation strictly finer than vr. In particular, this brings us into the
group case. Yet Loy © O, as otherwise for some y € Uap \ Or one would
have . ;

22y 3,47 = y‘gflr C Uap resp. ybAr C Uas.

So $Ar = My resp. bAT = by = My, Le. in the additive case vr must
be discrete with vr{a) = vr{bj — minvr(Ar) + L. and in the multiplicative
case b € OF and so a € Or. But then it is not difficult to find elements in
L, » which do not belong to Or. &

3 p-Henselian Valuations
A valued field (F, v) is called p-henselian if v extends uniquely to the max-
imal Galois-p-extension F(p) of £. Equivalently, Hensel’s Lemma or New-

ton's Lemma holds for pulvnumials splitting over F(p) (cf. [Wd] or [K2]).
In particular. if F contains a primitive p-th root ¢, of unity, this implies
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that 1 + .M, C (F*)?, provided char F, # p, or 14+ pPM, C (FX)P, il
char Fy, = p # char F. 1f char F = p, it implies that .M, be contained in
the (additive) Artin-Schreler-group F® = {2 — 2 | 2 € F}. Applying the
results of the previous section to the group T = (F*Y resp. T = FP), we
can therefore prove the following

Theorem 3.1 Let F be a field which is not p-closed (i.e. F # F(p)) with
charF =p or(, € F. If F admits a non-trivial p-henselian valuation v,
then it admits a definable valuation inducing the same topology as v, unless
p=2 and F is euchdean.

Proof: Let us begin with the case char F = p. Then Lemma 1.2 tells us
that for T = F®) 7 is fully compatible with T. So we are either in the
group case or in the residue case. Following theorem 2.5, we know that
in the latter case, (1 is definable, whereas in the first case this is so, if
Vee Mr:z 'Or €T,

But luckilv this is the case: For otherwise the largest fractional (Or-ideal
Ar contained in T properly contains Or {but no larger valuation ring}. In
particular. the (non-trivial. archimedean) convex subgroup of I'r generated
by vr{ Az Or) is p-divisible, so for any o € R with a > 1 the fractional
O;r—idea.l

s .={zeF|vr(r) 2 a- vr(y) for some y € Ar}

strictly contains Ar. To get a contradiction, we now chouse a €]1,2— %] and
show that A3 C T. Pick z € AT\ Ar, say vr(2) > evr(y) for some y € Ar.
Then, as 1 < a < 2, 0 > vr(zy Y > vr(y), so zy 1 e Ar\ Or, hence
2y~ € a?PQF and ra P = b* — b for some a,be F\ Or. Now & = a?b® — aPb,
but

I

vr{aPb) vr(ey 1) + vr(b)
vr(e) — vr(y) + %z‘r(y)
(@ —1+F)erly)
I'T(y)T
so vr(ab) > vr{afh) > vr(y), i.e. abja?b € T. Thusz = (ab)? — (ab) +ab —
aPb € T, which finishes the case char F = p.

If char F = p and T := (F*)P is fully compatible with vz, then, again
by theorem 2.5, Or is definable, unless we are in the residue case and T
is an ordering; but this can only happen when p = 2, and in this case we

AVANAVA]
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have assumed F to he non-euclidean, so TU —T is still a proper subgroup
of F* for which then Oy, 7 becomes definable, being in the group case
again. So what remains is the weak case in which we better not try and
define (77, as this is, once more by theorem 2.3, impossible, if Or doesn’t
happen to be discrete, Rather, we have to observe that in this case, by
lemma 1.2, the residue characteristic of O must be p. So we may pass 10
the coarsest coarsening w of vy which still has residual characteristic p. For
this coarsening, 1 + p*.M, C( F")?, and thus. arguing as in 1.4(c) and 1.5
of [IK2]. w is p-henselian. e now consider the Artin-Schreier group P
on the residue field of w and claim. that the refinement w’ of w by the
valuation corresponding to Opeoon F, is definable, even if w is not. For »*
is elementarily determined by the following properties:

e char Fyr = pand 1 4+ p2. M C (F¥)P
this makes sure, w' is a refinement of w

o My C{af—2ir e}
this guarantees that w' is p-henselian (cf 1.3 of [N2])

o if FIP' £ F., then F{¥) induces no \V-topology on Fyu:
then u' has no p-henselian refinement

e if Fﬁf3 = F, thenVe € My 12 'Op Z {af -z |2 € F}
then ' is the coarsest valuation with p-closed residue field; the condi-
tion does hold according to the char F = P-case above, O

4 t-Henselian Fields

The adequate notion to state and prove our main theorem for is the gen-
eralisation of henselian valued fields introduced by Prestel and Ziegler in
[PZ) under the name of ‘t-henselianity™: they call a \'-topological field (F, )
(where 7 denotes the filter of neighbrouhoods of 0) t-henselian if it is locally
equivalent to sume henselian valued field. or, equivalently, if for eachne N
one finds some ({7, € 7 such that

. _ o
Yug.....up 2 €Lpdr € Fa™ + 27 Vg, ™ T+ up =0,
This obvicusly generalises henselianity, because for a henselian valuation
i} = =

v this condition is just one of the versions of Hensel's lemma if one takes
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U, = M, for all n. In this context the well-known theorem of F.K.Schmidt
on the dependence of henselian valuations has its natural setting: Any field
F which is not separably closed admits at most one t-henselian topology.
Indeed, this topology then proves to be definable; for some non-linear, ir-
reducible, separable f € F[.\] the sets z - f(F)™' U {0} (= € F*) form a
base of neighbourhoods of 0 ([PZ], p.337). We shall go beyond this result in
proving the existence of some rather well shaped definable neighbourhood of
0, namely some definable valuation ring.

Due to the uniqueness of t-henselian topologies for non-separably-closed
felds it makes sense to speak of t-henselian fields without mentioning th
topology. It then follows from the definability of the topology that a field F
which is not separahly closed is t-henselian iff F is {as a field) elementarily
equivalent to some henselian valued field. So, for example, any real closed
field is t-henselian, but as was already indicated in the introduction, there
are t-henselian fields which are neither real closed nor separably closed and
which do not admit any henselian valuation.

Our main theorem now clearly follows from the following

Theorem 4.1 Any t-henselian field which 1s neither real closed nor separably
closed admits a definable valuation inducing the t-henselian topology.

Proof: 1f F satisfies the hypothesis of the theorem then for some prime p
dividing 2Gr. where G r denotes the absolute Gialois group of F. there is a
finite separable extension L/F with L 3 L{(p), {, € L or char L = p, and, if
p = 2, L is not euclidean.

Then, because of the elementary equivalence of t-henselian fields with
henselian flelds. L is also t-henselian, as. of course, henselianity extends
to algebraic extensions, and the t-henselian topology on L induces the t-
henselian topology on F by virtue of the definability of the topology and the
corresponding fact for algebraic extensions of valued fields.

Now by the very choice of L and theorem 3.1, an elementarily equivalent
henselian (and hence p-henselian) field L' admits a definable valuation in-
ducing the (i-)henselian topology on L. Thus the same is true for L. But
definable in L means definable over F since we may consider the elements of
L as n-tuples over F for n = [L : F] {and, clearly, the operations on L are
also F-definable). The restriction of the non-trivial p-henselian F-definable
valuation on L to F now gives us what we want. &
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One should point out that for the definition of the valuation described in
the proof one may need parameters, namely the coefficients of the irreducible
polynontial of some primitive element for the extension L/F. If, however,
F # F? form some prime p 3 char F, one may choose L = F((;), and
then the valuation can be defined without parameters, because we needed no
parameters for our definable p-henselian valuation of theorem 3.1.
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Separably Closed Fields with Higher

Derivations I

Margit Messmer and Carol Wood

Abstract

We define a complete theory SHF, of separably closed fields of
finite invariant e (=degree of imperfection) which carry an infinite
stack of Hasse-derivations. This work will appear in the Journal of
Symbolic Logic. Below we indicate the main definitions and results

without proof.

This paper is motivated by the following two problems:
(1) Find a theory of differential fields of characteristic p # 0 which eliminates
imaginaries.
(2) Find a ‘natural’ language for the theory of separably closed fields of
characteristic p # 0 which eliminates imaginaries without naming a p-basis.

We work in the first-order language £ = {4+, —,- "1 0,1}U{Dp 1 i € w},

c times
A

where the D, are unary function symbols. ,D_pz‘(Dpa(- c(Dp{2)))) will be
abbreviated by D;f)(a:). Furthermore, for any v € w, D, stands for

(p!)c1(p2!)c2 e (prlye D&CU)(Di,cl)(D(?)(' - é'f,“)) <),

!

where v = o + e1p + - eup® (0 < ¢j € p— 1), the p-adic expansion of v.
Note that the coefficient @4 (pzl);f"'(png)c" is not divisible by p. Dp stands for
the identity function.




For e > 1, let w<“* Henote the set of finite tuples (co, ... ,Cn) With ¢; € w
and ¢, # 0. For ¢ € w<* we will write DE = plleoiesend) for
DENDEN (D (DS - +))), where DO = Dy = Id.

P

Definition 1 The field (F. D,;i € w) is called « Hasse field if it satisfies
the following arioms:

(H1) For all i € w: YaVyDu(x +y) = Dp(x) + Dy (y).

(H2) For all i € w: VaVyDp(z -y) =1 D) D,(y).

v4ppt

w20
(H3) For all i.j € w Yo Dp(Dy(r)) = Dy (D))
Note: Let (F, Dy;i € w) be a Hasse field. Then:

(A) Dy is an (ordinary) derivation on £ so in particular F' is a differential
field.

(B) Dpu(af:pm) =0forallz € F.

(C) Fori,j > 1, Dy(2™) = (D= (z¥7))? for all @ € F. This shows that

D, is an (ordinary derivation on the subfield F*?" of p‘th powers.

(D) Forall » > 1, D, delined as above, satisfics a product rule as in (H2).

Definition 2 Lete > 1.

(a) HF, is the theory of Hasse fields of invariant < e satisfying the follow-
ing axioms in the language L:

(F,) Azioms for fields of characteristic p.
(HF) Azioms (H1) (H3) for Hasse fields.
(H{) For alli € w: Ye DY (z) = 0.
(b} SHE, denotes the theory of separably closed, strict Hasse fields

F of invariant ¢ which in addition to the azioms tn (a) satisfy the
following azioms:
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(H5) 32D V() #0.
(H8) Strictness: Yz{Di(z) =0 — Iy = = y*).
(H7) F is separably closed.

Main Theorem 3 The theory SHF. is complete and has quantifier elimi-
nation.

Proposition 4 Let F be a separably closed field of finite invariant e. Then
F' can be expanded to a model of SHF.

Proposition 5 Let T be the theory of a stable field. Suppose that for every
n > 1 there is a (possibly infinite) set of indeterminates Xi, ¢ € J, such that
for each model F' of T' there is a one-to-one correspondence between complete
n-types over F and certain ideals in the polynomial ring F[X; + 1 € J],
such that for every automorphism o of F (as a T-structure), o fizes the type
(setwise) iff o fizes the corresponding ideal (setwise). Then T eliminales
imaginaries.

Corollary 6 The theory SHF. of separably closed strict Hasse fields of in-
variant e < w eliminates imaginaries.
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