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Groups and Fields Interpretable in
Separably Closed Fields

by Margit :Messmer

The following two theorems are part of the author’s Ph.D. thesis, written un-
der the supervision of Prof.D.Marker at the University of Illinois at Chicago,
1992, and will appear in the Transactions of the American Society ([9]).

Theorem A Let F be a separablv closed feld offnite Ergou-invariant (degree

of imperfection), and let G be an infInite group interpmtable in F . Then G
is deFnab IV isomorphic to an F-algebraic group.

Theorem B Let F be a separab ly closed $eId, and let K be an infnite fIeld
interpretable in F . Then K is separably closed, char(K) = char(F) and
K has the same ETgov-invariant as F . Moteouer, if F has Fxite Ergo th
invariant, then K is dejrnably isomorphic to a BrIde (purely insepaTable)
erte&sion of F .

Both theorems generalize analogous results for algebraically closed fields,
see [8, 4, 12, 2, 13]. The proofs make use of model theoretic results like
stability, quantifier elimination and elirrrination of imaginaries, developed in
[6, 14, 3, 11, 5]. Furthermore, techniques from stable group theory (see [10])
and linear algebraic group theory (see [1, 7]) are needed.
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Abstract
First, following the representation theorem of Rieger we prove that if a
cyclically ordered group C is given by C=G/<z> where G is a totally ordered
group and z a central and cofinal element, the first order theory of C is
determined by the first order theory of the ordered group G with
distinguished element z,
After that we look at orderability and give an axiom system for the
elementary class of cyclically orderable groups
Finaljy we remark that there are different universal theories of abelian
cyclically ordered groups and prove that all the abelian cyclically ordered
groups containing elements of order n for each n, have the same universal
theory

1 Introduction

Rappellons les d6finitions introduites dans tRI et [F 1:
Si A est un ensemble et R une relation ternaire
cycLtque sur A ssi

1)Vx,y,z (RCx,y,z)+x+y+z+x)
2)Vx,y,z, (x+y+z+x +( RCx,y,z) or R(z,y,x))
3)Vx,y,z, ( RCx,y,z) + R(y,z,x))
4)Vx,y,z,u, (( RCx,y,z) & R(y,u,z)) + RCx,u,z))

Si maintenant G est un groupe et R une relation ternaire sur G, (G,R) est un
groupe cycLtquement ordortnd si R est un ordre cyclique compatible avec Ia loi
de groupe:

5)Vx,y,z.u,v, ( RCx,y,z) + R(uxv,uyv,uzv))
On petIt d6ja remarquer que la th6orie des groupes cycliquement ordonn6s est
finiment axiomatisable et universelle si I'on choisit de manidre ad6quate le
langage de groupe

R est ordre

Exemples

1) Un grolrpe totalement ordonn6 est cycliquement ordonn6 par la relation :
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RCx,y,z) ssi ( x<y<z or y<z<x or z':x’'v
2) Le groupe des nombres complexes de module 1 : k=<x'::, Ix :=1}={e:ixO
O SO<271} muni de la relation R(e2tnO,e21nO’,e21xO ) ssi O'.O' 'O", ': st ':I. P,' 'IJ; ''-‘
cycliquement ordonn6 qui a des e16ments de torsion et des 616montc d’ordrc
inf ini. On note IU les 616mcnts de torsion de tK: ce sont les racincs dc
l’unit6 de C
3) Produtt Lextcographtque . Un des moyens de construire ou de d6crire des
grollpes cycliquement ordonn6s est le suivant : Si (C, R) est un groupe
cycliquement ordonn6 et (L,s) un groupe totalement ordonn6, on d6f init un
ordre cyclique R’ sur LxC par
R’((c,r),(c’,r’),(c"r'’)) ssi (c#c’#c"+c & RCc,c’,c")) ou (c=c’+c" & r<r’ ) ou
(c#c’=c" & r’<r") ou (c=c"#c’ & r<r") ou (c=c’=c" & r<r’<r")

On note L?C Ie groupe cycliquement ordonn6 obtenu,on l’appelle produit
lexicographique de L et de C

4) EnrouL6 de Rieger: Si (G, s) est un groupe cycliquement ordonn6 et z un de
ses 616ments positif , central et cofinal, la relation R d6finie ci–dessous
fait de G/<z> un groupe cycliquement ordonn6,

R(g,h,k) ssi 3 g’ ,h’ ,k’/ i=&’ , h=h’, k=E’ &
(egg’<h’<k’<2 ou esh’<k’<g’<z ou esk’<g’<h’<z)

Rieger a montr6 que (Th6ordme de Rieger) que tout groupe cycliquement ordonn6
peut 6tre obtenu de cette manidre, la d6monstration donne la construction de
ce que nous appellerons le d6rouL6 de Rteger (uw(C)) du groupe cycliquement
ordonn6 (C,R): uw(G) a pour ensemble de base le produit cartesien iFC, pour
ordre total I'ordre lexicographiqlle ??G, la loi de grtlupe 6tant donn6e par
les formules suivantes: (On utilise ici la notation mu ltiplicat ive aus si
1’616ment m de Z est ici repr6sent6 par z"')
(zk,e).(zm,h)=(zk*m,h), (zk,g).(zm,e)=(zIc*m,g) ( e est 1'616rnent rleutrc do G )
if RCe,g,gh): (zk,g).(zm,h)=(zk'rn,gh)
if g+e and gh=e then (zk,g).(zm,h)=(zk+m'1,e)
If RCe,gh,g): (zk,g).(zm,h)=(zk'rT"I,gh).
On note Zn l’d16ment (z,e), il est positif , central et cofinal. On mont:re qlje
UW(C )/<za>~G

Un sous groupe H d’un grotlpe cvclir;ljPment ordonne (g.c.o. ) (G,R ) est dit
c-conve xe si Vh€H,pcG (h:+t’ & RCtl-1,e.hI & RCe,g,h) i+HeH.
Remarque 1.1: Un sous grc)upn c–convexe n’est pas to\rjol,rs pur dans G: Dans le

sous groupe G de (=Z/3:)?: eng-ndrf_’ par ( 1, 1). 1'_ so'ls grotipe ll .~:lgt11tii'e iI,
(O,3) est c-convexe, mais l’element (O,3) n’est pas drvisible par 3 dans H el
iI est divisible par 3 dans C: 3:' ( 1,1)=(O,3)

Un g.c.o. G est c–archi rnddien si Vg+ecG, Vh 8ecG, ]n€N faR fe,gn.hI ).
G est archim6dien ssi iI n'a pas de sous groupe convexe propre; si G n’est
pas totalement ordonn6, G est archimedien ssi son d4rou16 de Rieger l’est

II Equivalence 616mentaire

On prouve ici un th6ordme de transfert de l’dquivalence 616mentaire entre un
g.c.o. et son d6rolr16

Theorem 2.1: Soient G et G’ deux g.r.o. : G=G’ ssi (uw(G),Zn)=(uw(C’ ),Zr,)
(on a aussi le transfert de 1’ inclusion 616mentaire).

La preuve est donn6e par les lemmes suivant OIl 1’on utilise trois sortes
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de structures:
-(G,R) dans le langage de g.c.o.,loi de groupe et ordre cyclique.
-(uw(G),<zcr>) dans le langage des paires de groupe totalement ordonn6, a’.'ec
un pr6dicat P pour le petit de la paire.
–ZxG avec Ia loi de groupe,deux pr6dicats, 1’un pour Z, l’autre pour G,
l’ordre sur Z et l’ordre cyclique sur G.

Lemme 2.2: On peut interpr6ter (C,R) dans (uw(C),<z>) et (uw(G),<zc>) dans
ZxG

Lemme 2.3: G=G’ iff (uw(G),<2(J>)=(uw(C' ),<z(J,>), et la m6me chose pour
1’inclusion 616mentaire.

Lemme 2.4: (uw(G),zG)=(uw(G’),zclt ) ssi (uw(C),<zc>)=(uw(G’),<zc,>) , (idem
pour 1’inclusion 616mentaire)
(L’id6e de la preuve est de prendre deux structures satur6es isomorphes de
(uw(G),zc) et (uw(G’),zG,), dans ces structures ZaP et zc,t ne sont plus des
616ments cofinaux, mais on petIt se restreindre aux sous-groupes convexes
engendr6s.

En utilisant ceci on peut montrer un r6sultat sur le produit lexicographique:
Corollaire 2.5: Si G et C’ sont deux c.o.g., et H et H’ deux groupes
cycliquement ordonn6s:

(C=G’ & H=H’ )+G?H=G’?H’ et la m6me chose pour 1’inclusion 616mentaire,

III Groupes cycliquement ordonnables.

On utilise ici et par la suite le th6ordme de plongement de Swirczkowski

Th6ordme (Swirczkowski) [Sw]: Pour chaque g.c.o. G iI existe un groupe
totalement ordonn6 (g.t.o. ) H et un plongement f de G dans le produit
lexicographique K?H, (on dit que f est une repr6sentation de G)
Jakubik [ JP] a montr6 que la premidre projection est ind6pendante (a
isomorphisme prds) de la repr6sentation, on la note K(G).

En utilisant ce r6sultat Zheleva a caract6ris6 les groupes cycliquement
ordonnables

Th6or6me (Zheleva) [Z]: Un groupe G admet un ordre cyclique ssi Ie sous
groupe de ses torsions UCC) est central, locallement cyclique et (-,/U(C) est
ordonnable.
(Dans Ie cas ab61ien ce r6sultat est a relier a celui de (J.Sabbagh [S] qui
donne la m6me caract6risation pour les groupes qui se plongent dans Ie groupe
multiplicatif d’un corps)

La preuve utilise le fait que toute extension centrale d’un groupe
totalernent ordonn6 par un groupe cycliquement ordonn6 peut 6tre muni d’un
ordre cyclique.

On peut par cette m6me m6thode montrer.
Th6or6me 3.1: C est cycliquement ordonnable ssi son centre Z(C) est
cycliquement ordonnable et le quotient C/Z(C) est ordonnable.
(R6sultat bien sar a relier avec celui de Kokorin et Kopitov [KK]: un groupe
G est ordonnable ssi son centre Z(G) et Ie quotient (J/Z(G) sont ordonnables)

Nous donnons enf in un systdme d’axiomes pour la th6orie des
cycliquement ordonnables en ut ilisant la caract6risat ion des
ordonnables donn6e par Onishi et Los [O], [L]:

gr oupes

groupes
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Un groupe G est ordonnable ssi po'Ir tO’It n-uple '1’etenl-nts IItin rltITs
X1,. . . ,Xn de C, il existe ec(1,-1}n telque e n’appartient pas au t-ienri-groupe
engendr6 par les conjugu6s de xl£(1),. . . . ,x„C(n>

Theorem 3.2: C est cycliquement ordonnable ssi
suivant
-pour chaque n: Vx (xn=e + Vy xy=yx)
–pour chaRLIe n

Ixl,... ,x.((M(1,j)c(1 ... n} xi#xj A xlrl=e)AVx(xn=e + VVi€(19...1n)x=xi)
-pour chaque n,k, 8haque mot a- kn variables m(t1)J l=i5n, l£j sk) et chaque
ec(-1,1}n

x’xttXliLi:.’.):JJ’I’yili: IF’: (VVC€,_1.1)n m(yi,kxl£(i)yi.k-1)+x)).

satisfait les axiomes

IV Quelques remarques sur le cas ab61ien en particulier sur les th6ories
universelles de g.c.o. ab61iens

Un r6sultat utile pour 1’6tllde tIes groupes ab61iens totalement ordonn6s est
que pour tout sous groupe call\'exe C, G est 616mentairement 6quivalent a
(G/C)?C; la preuve de ce r6sllltat est bas6e sur les fait suivants: tout sous

groupe convexe est pur et si 1; est ol–satur6 Gz(C/C)?C.
Dans le cas des g.c.o. un soils groupe c-convexe n’est pas toujours pur
on 1’a vu en 1

Nous avons prouv6 les r6sultats 3uivants
Lemme 4.1: Si USC, toljt soils groupe c–convexe de f 3 est pur dans G.
Lemme 4.2: Si uga et rl .’st a,–';at'rr4 al'Irs I;/’fl.=FK

Th6ordme 4.3: Si C est IIn SOIIS grolipe c–convexe et pur de G alors G=(G/C)?C

Gurevich et Kokorin ( [( IK 1, [CII) IInT montr6 que tous les groupes ab61iens
totalement ordonn6s nnt la m4mf, theorle universelle
II est clair q tIe le resltltat n’esl pas valable pour les g. c. o. ab61iens en
effet l’existencr' d ' 41 ' '(IIt-' n is d ’t?rrlrf-s f' ini ', d iff6rent s donne des th6or ies

universelles diff'erentcs. NICole dans Ie cas de g.c.o. abeliens sans torsions
on peut avoir des theories ljnivcI-ct:IIes flit'r.lrcnte5, par exclnple la formule
Ix RCx,4x,2x,O,3x) (abr'’yjatil3il rnllr unc con.jonct_ion} est satisfaite dans le
sous groupe de K engendr'i par un 61dment e2ia8 avec O irrationnel teI que
x/3<2aO<It ( 1/3<O<1/2 ) , rnais n’est pas sat jgf ait c dans l’exemple de la
remarque 1.1

En tolrte g4ndra lilo bn p' IIIt a Arlantrpr IIn rdsllltat dII type du th6ordme
de transfert 2.1
Theordme 4.5: Si G et c;’ sont des g.c.o
C=vG’ ssi (uw(G),zCJ}=V(u\v(tl’).zc,, )

Dans Ie cas ab61ien nolrs montrons
Th6ordme 4.6: Tous Ies g.c.o. abeliens qui contiennent U ont la m6me th6orie
universelle
Th6ordme 4.7: Soient G et C' deux g.c.o. ab61iens tels que uw(G) et uw(G’ )
sont des g.t.o. ab61iens reguliers (i.e. 616mentairement 6quivalent a des
archim6diens) et GnU=t:’nU, alors C=vG
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QUELQUES PRECISIONS SUR LA THEORIE DES MODELES DES GROUPES
CYCLIQUEMENT ORDONNES ABELIENS DIVISIBLES. (R6sum6)

F. Lucas

Abstract: We use a transfert result between cyclically ordered groups and associated
structures of ordered groups, proved by M.Giraudet and the author ICL], and model
theory of totally ordered abelian groups as developped by A.Robinson and E.Zakon tRZ],
M.I.Kargapolov [KI, Y.Gurevich [G] and P.Smitt ISc]. We remark in 1) that the theorY of
divisible cyclically ordered groups is not complete and study its completions. One of
these completions, we call the theory of super-divisible is proved in 2) to be the
model completion of cyclically ordered groups. Following an idea of D.Macpherson IMI we
prove in 3) that the abelian super-divisible are exactly the circle-minimal models
(i.e. those in which the only parametricaly definable subsets are the finite unions of
intervals). In 4) we give a description of the different cyclically ordering of the
additive group of the rationals tQ

Les d6finitions et notions de base concernant les groupes cycliquement ordonn6s ont 6t6
rappe16s dans un r6sum6 pr6c6dent (M.Giraudet & F.lucas Quelques resultats sur la
th6orie des moddles des groupes cycliquement ordonn6s).

1) Theories de groupes cycliquement ordonn6s ab61ien divisibles.(g.c.o.a.d. )

On remarque tout d’abord que la th6orie des g.c.o.a.d. n’est pas compldte, un tel
groupe peut 6tre totalement ordonn6 ou non, il peut avoir des 616ments d’ordre fini ou
ne pas en avoir. ..On petIt donc d6velopper une classification de ces th6ories, on en
donne ici quelques 616ments. On utilisera le th6ordme de transfert pr6sent6 dans [GL]:

Th6ordme: [GL] Si G et G’sont deux g.c.o. on a G=C’ ssi (uw(G),Ze/)=(uw(G’ ),Za.)

Parmi les diff6rences entre Ie cas totalement ordonn6 et Ie cas cycliquement ordonn6,
on peut dds le d6part noter:
1) Le fait que G soit divisible n’implique pas que uw(C) le soit. (Si G=CD(a)/<a> et
c’=a[a]/<a>, G,G’ et uw(C) sont divisibles mais uw(G’ ) ne 1’est pas

2) un g.c.o.a.d. n’est pas toujours dense ( soit G=O=Z/<(a,1)>, le sous groupe engendr6
dans G par (0,1) est c–convexe et discret, et chaque 616ment de G est divisible
puisque (O,1)=(a,1)–(a,O))
On montre que cependant si un g.c.o.a.d. G a un 616ment d'ordre f ini iI est dense

Dans le cadre des ab61iens totalement ordonn6s, la th6orie des divisibles joue un r61e
fondamental, aussi est-iI naturel de d6finir:
C est super-divisibLe si uw(C) est divisible

Lemme: C is super–divisible ssi iI est divisible et pour tout n iI existe g telque ng=O
ou encore iI est divisible et contient CU

La th6orie des super–divisibles sera 6tudi6e dans le paragraphe 2)

En utilisant le th6or&me de transfert cit6 ci-dessus on sait que la th6orie de G est
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donn6e par celle de uw(C) et Ie tYpe sur le vide de zt, et on peut utiliset les
r6sultats de th6orie des moddles sur les totalement ordonn6s. On va commence[ pat Ie
cas r6gulier avant de donner une id6e du cas g6n6ral:
Suivant [RZ], si n est un nombre premier on dira que C est n-regular si
Vx1,...,x„(O<xl<. . .<xn +ly( xl<nygx„) )
cette condition 6quivaut au fait que tout quotient par un sous-groupe convexe propre
est n–divisible
On dit que G est r6gulier si iI est n-r6gulier pour tout premier n. Si G est divisible
ou archim6dien iI est r6gulier

Si maintenant G est un g.c.o.a. on dira qu’iI est n–re gutter si iI est totalement
ordonn6 et r6gulier ou si uw(C) is n–regular; on dira qu’iI est re gutter si iI est n–
r6gulier pour tout premier n
Une diff6rence est qu’un g.c.o.a.divisible n’est pas toujours r6gulier; par exemple

G=(Q(n)?CD)/<a>, est divisible mais uw(G)=Q(x)an n’est pas r6gulier

Dans le cas dense la propri6t6 d’etre n-r6gulier s’exprime par les formules suivantes
1) Ix+O/nx=O
2) Vy(R(–y,O,y)+]xR((x,2x, . . . ,(n-1)x,O,nx)&R(O,nx,y)))
et on a le r65ultat suivant:

Th6ordme: Deux g.c.o.a.divisibles denses et r6guliers sont 616mentairement 6quivalents
ssi ils le sont dans le langage des groupes c’est a dire s’ils ont les m6mes 616ments
de torsion

Dans Ie cas ordonn6 non r6gulier on utilise les r6sultats de [GI et ISc]
si g€G, BCg) est le plus petit sous groupe convexe contenant g, A,(g) Ie plus grand
sous groupe convexe teI que BCg)/A,(g) soit n-regular, and B„(g) Ie Plus grand sous
groupe convexe teI que B„(g)/A„(g) soit n-regular, F„(g) Ie Plus grand sous groupe
convexe dont aucun 616ment n’est congru a g modulo n. S,(G)=(A,(g), F„(g), gcC>. La
famille des chaines S„(G) color6es de pr6dicats (pr6cisant par exemple la th6orie de
Bn(g)/An(g) ) d6termine la th6orie de G

On a ici:
Lemme: Si 6 est divisible, pour tout premier p, uw(G)/puw(G) est un espace vectoriel
sur Z/pZ de dimension O ou 1

Th6ordme: Si G est divisible, pour tout premier P, Sp(uw(C)) a au Plus deux 616ments

2) Super-divisibles

On a d6cid6 dans le paragraphe I) d’appeler super-divisible un g.c.o.a.d. G tel que
uw(C) est divisible. On a vu que ceci 6tait 6quivalent au fait d’etre divisible et de
contenir CU

On peut encore remarquer que si G est super-divisible iI est isomorphe a K(G)xGo

Comme un corollaire de 1.1 on obtient:
Th6ordme 2.1: La th6orie des super-divisibles est compldte et moddle complete

On montre que:
Th6ordme 2.2: La th6orie des super-divisibles a la propri6t6 d’ amalgamation

On en d6duit:
Corollaire 2.3: La th6orie des super–divisibles a 1’61imination des quantificateurs.

Th6ordme 2.4: La th6orie des super-divisibles a un moddle premier tJ
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F. Lucas
Enfin:
Th6ordme 2.5: Tou g.c.o.a. admet une c16ture super-divisible.

Donc
Corollaire 2.6: La th6orie des super-divisibles est la moddle–comp16tion de la th6orie
des groupes cycliquement ordonn6s ab61iens.

3) Groupes cycliquement ordonn6s K-minimaux.

On sait que dans le corps IR tout sous ensemble d6finissable est r6union finie
d’intervalles, c’est a dire est d6finissable par une formule sans quantificateurs du
langage d’ordre. L’6tude g6n6rale des structures alg6briques totalement ordonn6es ayant
une telle propri6t6 a 6t6 men6e par A.Pillay et C.Steinhorn puis D.Macpherson,
M.Dickmann etc. sous Ie nom de structures o-minimales.
Je remercie D.Macpherson de m’avoir de m’avoir par16 de ses premiers r6sultats, obtenus
dans un contexte trds g6n6ral [MS], concernant une notion analogue adapt6e au cas des
structures cycliquement ordonn6es

Soit (G,+,R) un g.c.o. et 1 un de ses sous ensembles: I est un tntervaLLe si I est
r6duit a un point ou si I={ieC/R(g,i,g’ )) pour des g,g’cC; I est convexe si iI est
r6duit a un point ou si pour tout gcC et tous i,i’cI si R(i,g,i’ ) alors g€1

On dira que C est:
-K–minimal si iI est inf ini et que tout sous ensemble d6finissable est union

finie d’intervalles,
-fortement- K–minimal si pour tout G’ 616mentairement 6quivalent a G, G’ est

J<-minimal
-fatbLernent– K–minimal si iI est inf ini et que tout sous ensemble d6finissable

est union finie de convexes

Remarques:
1) Ces trois notions correspondent respectivement aux notions de o-minimal, fortement-
o-minimal et faiblement-o-minimal dans Ie cas ordonn6
2) Dans Ie cas des groupes ab61iens ordonn6s ces trois notions coTncident et sont
r6alis6es exactement par les ab61iens divisibles
3) Clairement si G est fortement-K-minimal iI est K-minimal et si iI est K-minimal iI
est faiblement-K-minimal

On va caract6riser ici les faiblement-K-minimaux et montrer que G est K-minimal ssi iI
est fortement-K-minimaux ssi iI est super-divisible

Si H est un sous groupe de G soit C(h,H) Ie plus grand sous ensemble convexe
contenant h et contenu dans H; on l’appellera composante convexe en h de H.
On remarque que
1) C(O,H) est sym6trique: si hcC(O,H) alors -hcC(O,H)
2) C(O,H)={heH Vg€G (R(O,g,h)or R(O,g,-h))+g€H}.

de G

Lemme: Si G est faiblement–K-minimal et H un sous groupe infini d6finissable:
1) C(O,H) est d6finissable dans G et H n’a qu’un nombre fini de composantes convexes
2) si HgC;o alors H est un sous groupe convexe de Go,

Lemme: Si G est faiblement-K-minimal
1) Go est divisible
2) G est ab61ien
3) si G n’est pas divisible K(C)gU.
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Lemme: Soit G faiblement–K–minimal:
- ou bien G est divisible et il est alors super-divisible,

- ou bien iI n'est pas divisible et iI est de la forme (Z/nZ)?Go avec Go divisible

Lemme: Si G est K-minimal iI est super-divisible

Lemme: 1) Pour tout D divisible totalement ordonn6 C=(Z/nZ)?D est faiblement–K-minimal
2) Tout super-divisible est K-minimal

On en d6duit:
Th6ordme: Soit G un g.c.o.
1) G est K-minimal ssi iI est ab61ien et super-divisible.
2) G est faiblement-K-minimal ssi iI est ab61ien super-divisible , ou bien de la forme
(Z/nZ)?D avec D ab61ien divisible

Remarque: si G’ est 616mentairement 6quivalent a G et G est faiblement-K-minimal C’
1’est aussi

4) Ordres cycliques sur 'D.

On montre d’abord que deux sous groupes cycliquement ordonn6s de K, isomorphes sont
6gaux

Soit G=(CD,R) un ordre cyclique sur CD. a muni de cet ordre peut se plonger dans un
produit lexicographique K(G)?L avec L totalement ordonn6 divisible, et iI y est
engendr6 comme CII–espace vectoriel par un 616ment que 1’on notera (a,b)

a) Si a=O on a un groupe totalement ordonn6, et 1’on sait qu’iI existe deux manidres de
munir a1 d’un ordre total

b) Si b=O, G est contenu dans K:
on a alors a d6crire Ies sous O-espaces vectoriels de K de dimension 1
En utilisant la notation multiplicative complexe dans IK, on remarque d’abord que pour
tout g=eiO€G, 8/271 est irrationnel. Soient O une base de tR sur a , (p1)ic[N la suite des

::F{:iT:}f€qiN ; Li II)(i)!iaj£i;Jl:1)ISjftnies par ql=njsi Pj) ’ q’i=(nj=lPj)(Pbl)" et
Pour chaque OcO et chaque-f€F on d6f init un a-espace vectoriel de dimension 1 engendr6
par g=elO de la mani dre suivante: (iI suff it de d6finir g/qi pour tout i€N ) on
:6firlfE/qJ pear :ecT:rn::::, EFI;}:j=:loLlaI;Ps :/qJ+:=ei(efiITa))%T . P
c) if a+O and b+O:

- si a n’est pas un 616ment de torsion on a un isomorphisme de groupe cycliquement
ordonn6 entre Ie al-espace vectoriel engendr6 par (a,b) et le a-espace vectoriel
engendr6 par (a,O)
- si na=O, alors nCa,b)=(O,nb), et Ie sous groupe engendr6 par (0,nb) et les (o,nb/m)
pour m€ntN est c-convexe et divisible par m pour chaque m€niN. On peut alors d6terminer
les diviseurs manquant d’une manidre analogue a celle du b)

On voit par la qu’iI y a 2X. ordres cyclique compatibles non isomorphes
certains d’entre eux n’6tant pas archim6diens

(Q,=),
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Abstract Real Spectra
by Ludwig Br6cker, Miinster

In this abstract we are going to present an axiomatic approach for the
problem of the describing real constructible sets by few inequalities. In
all situations, as semialgebraic geometry, semianalytic geometry, real spec-
tra of rings, for the description of constructible sets one does not need
the precise values of the de6ning functions but just their signs. This leads
immediately to the very general notion, which we introduce by the following

Definition 1.1. A real space (X, a) consists of a set X and a multiplicative
monoid G of maps G : X > IF3 such that the following conditions hold;
Sl: G contains the unit map 1 : X –a IF3 ; z >> +1.
S2: G contains the map ––1 : X b> IF3 ; a F> –1.

S3: G separates points, that is, for any two points z, y e X there is an
i c C „',ith /(-) + /(y).
Clearly, not very much can be done in this general setting. However, one
has already a lot of notions, which can be 6xed in the usual way: basic open
sets, basic closed sets, constructible sets, Harrison topology on X and also
constructible topology and Zariski topology on X. One may even imitate
weak equivalence classes of quadratic forms. For this consider n-tuples
(a1, . . . , a„ ) , a, e G and write (a1, . . . , a„ ) = (bl, . . . , b„) if

f a,(r\ = V b,( =\ for all reX
t : 1

Here, of course, the summation is done in Z. Then a form e over X is just
an equivalence class under the relation I. Also, write aCr) := L==1 al(z)
for r e X. In the sequel, we write, for a e G, {a > 0} instead of
{z C Xa(z) = 1}. Similarly, we write {a = 0}, {a < 0} and also

{a > 0, b :, 0} for {a > 0} n {b ) 0} and so on.

2. Axioms for abstract real spectra

Definition 2.1. Let (X, G) be a real space. If X is compact with respect
to the constructible topology, ( X, G) is called an abstract real prespectrum.
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Now let (X, G ) be an abstract real prespectrum. We are going to define
abstract real spectra by imposing three supplementary axioms. The notion
we get generanzes real spectra of rings in [BCR, Chap. 71 in a similar way
as Marshall’s spaces of orderings [M] generalize real spectra of fields. Now
the axioms:

PE: For any two a, b e G there exists c ( G such that {a = 0 , b = 0} =
{' = 0}.
HL: Let O C X be constructible and closed. Let f , g e G such that
Cf n if = 0} C {9 = 0}. Then there exists j' e G such that
a) f' = f on C', f' = g on { / = 0}.
b) < fIg >=< f’ -f' fg >-
MM: Let p =< a1, . . . , a„ >, r =< bl, . . . , bm > be forms over X, and let

h e G such that a + r =< h, c2, . . . , c„+„, >, with c2, . . . c„+„, e G. Let

a C X be a point such that

hI FI / 0 > al ( fr ) / 01 bl ( iF ) + 01 CL ( z ) + 0

for all i, j, k. then there exist forms p’ =< j , d„ . . . , dn > and r’ =

< g, b:, . . . , bt111. >, an element c e G and a Zariski neighbourhood U of
z such that, for all y C tIl

i) a ICy 1 + 0, b’,(g) + 0, i tuI + 0, g(y) + 0, c(y) + 0 for all i\i '

ii) g('/) = a’('/), ,(y) = ,’(y).

iii) < f.q > (y) =<. h, ' > (y)-

Definition 2.2. An abstract rea,1 prespectrum (X, G) is called abstract real
spectrum, if PE and HL hold for (X, G) and MM holds for any Zariski
closed subset of (X, a).

Remark 2.3. Let (X, G) be an abstract real spectrum. If G is a group,
then (X, G) is a space of orderings (see [M] )
Finally > we have

Proposition 2.3. Let ,4 be a commutative ring with unit. Let X :=
Spec,(A) be the real spectrum of A and set a := \ signI : X b> IF3 f e
A}. Then (X, G) is an abstract real spectrum.
Proof: [ABR, III 5]
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3. Statement of a main result

The theory of abstract real spectra is surprisingly rich. We are able to
develop, in this abstract setting, the whole theory of describing real con-
structible sets by few inequalities FBI and related problems, as far as it was
known for real spectra of rings and beyond that.
Before we state a result we need

Definition 3.1. Let (X, G) be an abstract real spectrum, and let Y C X
be a set of the form

Y = (n/ex{/ = 0}) n (n,c8{9 > 0}) with A 7 Bc G-

Then (Y, CY) is called a subspace of (X, G).

Proposition 3.2. A subspace of an abstract real spectrum is again an
abstract real spectrum
Proof: [ABR, III 41.
Next consider an IF2-vectorspace JT of dimension n + 1 which we write
multiplicativcly, and fix an element –-1 e if with – 1 + 1. Let i be the

it::sgi:"F :I g .'"ii) f =h:T ; FT /Ir:(II1);iIi 1+hIT,hreF. di isa, q::= :i
orderings, where #(F) = 2". Such a space is called a fan and denoted by
F.

Now let (X, G) be an abstract real spectrum and let (Y, G f) be a subspace.
In general, G'Y will contain the zero-function 0. However, it may happen,
that (GIF )\{0} is a group and even, that (Y, (GIF)\{0}) is a fan. Then Ive
say, that Y is a fan in X
Now we are able to state one of the central results for the theory of real
spectra in our abstract setting.

Theorem 3.3. (generation formula). Let (X, G) be an abstract real spec-
trum and let (' C X be constructible such that a does not intersect the
Zariski closure of its boundary. If for all fans F in X one has

#(F) = 0 mod #( C: n F)
and

2k#( C’ n F) mod #(F),
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then there are g,, . . . , gh e G such that C = {g, > 0, . . . , gk > 0}.
Proof: [ABR, Th, 3,1,4] ,
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The algebras of Lukasiewicz many-valued logics

Roberto Cignoli

MV-algebras n’ere introduced by Chang in 1958 as the algebraic counterparts of
the infinite-valued Lukasiewicz logic. These algebras have appeared in the litterature
under different names and presentations. Recently it was discovered that they are
naturally related to the Murray-von Neumann order of projections in C+-algebras
alld tllat MV-algebras are also useful for the study of Ulam’s searching games with
lies

TIle ainr of this paper is to present a brief account of the theory of these al'
gebras and their relations with Lukasiewicz many-valued logics. The forthcoming
nronograph [16] contains a rather detailed and self-contained account of the theory
of hIV-algebras.

For the applications of MV-algebras to AF C+-algebras and Ulam’s games, we
refer the reader to Nlundici’s papers [32, 35, 33]. For the connections with Moisil’s
Lukasiewicz algebras we refer to the survey article [11] and to the book [5]

1 Lukasiewicz many-valued systems of propositional
calculi.

As in the classical case, the propositional formulas of Lukasiewicz propositional
calculi are obtained from a denumerable set of propositional variables , Var =
{pu, pl, . . ,}, by means of the connectives of negation a and of implication –}
and the parentheses

X’lore precisely, the set Form of propositional formulas is given inductively as
follows

Fl) Each variable is a forlllula

F2) if P is a formula, thell nP is a formula

F3) if P and Q are formulas, then ( P –' Q) is a formula.

The “trutll tables” of the connectives –+ and a are given by the following two
functions defined on the segment [0, 1] = { r e R 1 0 $ 2 $ 1}, where R denotes the
set of real nunrbers

( I > --z = d,j 1 – z
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and

(2) z –F U =d,f min{1, 1– z + y}

A Lukasicuiic; sabalgebra of [0, 1] is a subset S of [0, 1] such that 1 e S and S is
closed under the operations T and –,
For each Lukasiewicz subalgebra S define an S-ualuation as a function u which
assigns to each proposition P a truth-value u(P) e S satisfying the conditions:

(3) „(.P) = -„(P)
and

(4) ,(p - Q) = „(p) - „(Q)

An S-tautology is a propositional formula P such that w(P) = 1 for each S-valuation
V

TIle rrext result is obtairled as in the case of classical propositional calculus:

Theorem 1.1 Let S be a Luknsietric= subalgebra of [0, 1]. For each function j :
Var –> S there is a unique valuation KJ : Form S such that #/(Pn) = /(p„)
/or n = 0, 1, . . . .

For each n : 2, the following n-element sets are Lukasiewicz subalgebras of [0, 1]:

L,t = {0, 1/(„ – 1),.-.,(„ – 2)/(„ – 1),1}

Note that L2 = {0, 1}, and that the L2- tautologies are the classical tautolagies,
provided we identify, as usual, 0 \nth false and 1 with true

If A and Q denote the set of algebraic and rational numbers respectively, then
A n [0, 1] and Q n [0, 1] are examples of denumerable Lukasiewicz subalgebra s of
[0, 1]

If for each n ? 2, Taut„ denotes the set of Ln-tautogies, then it was proved by
Lukasiewicz and Lindenbaum (see [28])that

(3) Taut„ g Taut,n if aILd only if m – \ divides n – 1

It follows from (3) that Taut,„ + Taut,„ for m + n. The set Taut. is called in
[28] f/ ie Ti-tUIUtd sysLtm of propositional calculus, for each n : 2.

On the other hand. Lindenbaum [28] proved that all the infinite Lukasiewicz
subalgebras of [0, 1] have the same tautologles. The set of these tautologies, that \ve
denote by Tautre,. is called in [28] the No-ralued system of propositional calculus.

The foIIo\ring relations among the n-valued systems of propositional calculi, for
n = 2, 3, . . . , No are given in [28]:

Theorem 1.2 For each it ? 3. Taut}qQ c Tautn c Taut2
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and

Theorem 1.3 (Tarski) if I S nr < a2 < . . . is an increasing sequence of natural
numbers, then TautrI, = n?:1 Taut„x

It follows from (2) that for every = and y in [0, 1

(6) = $ V if and only if I –' y = 1

Xloreover

(7) a V y =d,/ max{#, y} = (= –F g) –+ y

and then, from (1)

(8) = A y =d,/ min{ r. y} = =( Tr V =y)

Thus the order structure of the segment [0, 1] can be recovered from the Lukasiewicz
operations T and –.. If we restrict these operations to L2. (7) gives the following
\veII known relation between lnaterial implication and conjunction in classical logic

(P or Q) is cquiralcnl fo ((P –P Q) –t Q)

while (8) gives the De Morgan law. Therefore the operations V and A can be
regarded as nrany-valued generalizations of the classical truth tables of disjunction
and conjunction, respectively.

In classical propositional calculus \ye also have that

( aP –' Q) is equiraient Io ( P or (2)

but from ( 1 ) and (2) u-e obtain:

(9) = O P =d,I min{1, = + y} = == –> y

It is not hard to see that L2 is the only Lukasiewicz subalgebra of [0, 1] on which
the equation a V y = z 3 y holds. Hence u’e can consider the binary operation a
as another rnany-valued generalization of the classical truth table for disjunction.
Accordingly, the operation 3 defined in the next formula, generalizes the truth table
for conjunction

( 10) = O y =d,I A(n= 8 ny) = max{0, 1 + y – 1}

XIoreover, we have that for each r, g in [0, 1

3 –' y = nZ 8 g

This shows tllat. as in the classical case, the operation –. can be recovered from the
operations 8 and a. On the other hand, if S g [0, 1] is a Lukasiewicz subalgebra
and S + L2, then there are proper subsets of S which contain 0 and 1 and are closed
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under the operations V and T. Therefore the operation –} on S cannot be defined
in tcrIns of V, T and the constants 0 and I

It is well known that Boolean algebras are the algebraic counterparts of the
classical propositional calculus. They are often defined in terms of operations that
correspond to the logical connectives of conjuction, disjunction and negation. Ac-
cordingly, Chang [9] introduced the ll(any)V(alued)-algebras as the algebraic coun-
terparts of !_ukasiewicz propositional calculi by taking the operations 8, G) and a
as prlnrlt.Ive

Before given tile formal deflnition of hIV-algebras, we want to say a few words
about the sintactical aspects of I.ukasiewicz calculi

Lukasiewicz conjectured that all LN,-tautologies could be deduced from all in
stances of the schemes Ll )--Lq) listed below, by means of the rule of detachment (or
modus ponens): From P –+ (2 and P, infere C2

L1) p - (Q – p)

1.2) (p - Q) – ((Q - R) - (p – R))

L3) (( p - Q) – Q) – ((Q + p) – p)
L4) t-P - -Q) - (Q - p)

Actuallv, Lukasiewicz considered one more scheme, bu it can be derived from
LI )L4), as \vas proved independently by Chang [8] and hI ,redith [31]

It is easy to check that the formulas obtained by the schemes Ll)–L4) are S-
tautologies for each I,ukasiewicz subalgebra of [0, 1], and that the rule of modus
ponens preserve tautologies. Therefore all the propositional formulas that can be
derived from the schemes Ll)L4) by modus ponens are S-tautologies. There-
fore, Lukasiewicz conjecture asserts that all Lu,-tautologies are deritable Fom the
schemes Ll)–L4) by the rule of modus ponens.

In an article of 1935, Wajsberg [45, p.240] announced that he had verified
Lukasiewicz conjecture, but his proof was never published. A proof of this con-
jecture was published in 1958 by Rose and Rosser [40], and in 1959, Chang [10]
published another proof, based on the properties of MV-algebras.

2 MV-algebras.

As \ve already mentioned. Chang [9] defined MV-algebras by axiomatizing the oper-
anon$ 6, 3 and n on [0, 1] considered in the previous section. The definition that
\ve are given below, simpler than the original, is essentially due to X4angani [29] (see
[34, 171 18]

Definition 2.1 in XIV-algebra is an algebra ( A, e, –I, 0) with a birrury operation
S . a unary operation n and a constant a fuIBlling the foUou'ing equations,
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MVI) = O (gBa) = (ray) Oz

IVIV2) = a y = y $ 3

MV3) = 30 = =

MV4) aTZ = =

MV5) = P =o = =0

MV6) -( '= 9 y) 8 # = -(„ O -y) O ,

As usual, we are going to denote an MV-algebra ( A, a, n, 0) by its universe A, and
the NIV-algebra whose universe is the singleton {0} is said to be trivial.

Note that axiolns NIV 1)--MV3) imply that (A, O, 0) is an abelian monoid.
It is not hard to check that ([0, 1], 9, a, 0), where the operations a and O

defined by ( 1 ) and (9) respectiveIy, is an MV-algebra.
This example can be generalized as follows.
Let G be a lattice-ordered abelian group (1-group for short). For each a C G,

u > 0, set [0, u] =d,I {a ( G 1 0 S z $ u}, and for each =, y in [0, 1], define

r B y =It! H A ( 3 + y)

and

nZ =def U – 1

It is not hard to see that ( [0, a], 8, a, 0) is an MV-algebra (see [26, 32]), which \viII
be denoted by FCC, u),

Observe that the Lukasiewicz subalgebras of [0, 1] considered in the previous sec-
tion are subalgebras of the MV-algebra F(R, 1), and consequently, are MV-algebras

On each XI\'’-algebra ,4 \ve define the constant 1 and the binary operations O,
O, V and A as follows:

1 = d, j To

' O y =aLl -(-- e -y>

CE e y =d, j = Q nU

= v y =d, I n(== 9 g) B y = (= B y) D y

a A Y =del A( nZ a Y) a Y = (= O =Y) O Y = =(n= V nY)

With these operations. the axioms MTS) and NI\F6) can be written as

5



MV5’) =© 1 = 1

NIV6’) = V y = y V 7

Note that in the MV-algebras F(G', u) we have that:

1 = u

ray = ( r + y – u) Vu

rOy = (= – y) V 0

For each XI\--algebra A, L( A) = (X, V, A, 0, 1) is a distributive lattice with small-
est element 0 and greatest element 1. The corresponding order relation, which \ve
call the natural order of A, is given by = $ y if and only if arOy = 1 (or equivalently,
r e g = 0), and the following relations hold in A:

\ \ \ I by < Thy < IVy < 1 $ 1

An XIV-algebra such that its natural order is total, is called an Il\’-clraiTt,
Note that L(FCC, u)) coincides with the underlying lattice of the 1- group G,
Since : A y = =(== V ny), the system < A, V, A, a, 0, 1 > is a De MorTon algebra

As a matter of fact, it is a Klcerre algebra, i.e. it satisfies the condition : A nz $ VV ny
(see [1] for details on De Morgan and Kleene algebras)

Let A be an MV-algebra. The Boolean algebra formed by the complemented
elements of the lattice L( A) will be denoted by B( A). If r e B( A), then the
complement of z is a3. hlore precise11y, we have:

Theorem 2.2 The foLtou’ing are equitalent conditions for each element = of an
J/ \'’-algebra A :

I. I e BCA)

e. r V =z = 1
3. aA nZ = 0

{. For each y e X, rV y = ray
5. For each y e A, r N ] = r \By

The above theorem implies that B( A ) is a subalgebra of the MV-algebra A. In
particular, it follows that Boolean algebras can be characterized as the I/Y- algebras
which satisfy the equation : Q = = =

MV-algebras have been considered by several authors under different presenta-
tions. \Ve are going to describe a few of thern

A Tt'’ajsberg algebra (Rodrfguez [37, 20]), or an NC-algebra (Kamori [23, 25]) is an
algebra ( X, –, n. 1) with a binary operation –P, a unarv operation = and a constant
1 fulfilling the following equations:

6
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\VI) a –> (y –F 2) = 1

W2) (, + y) A ((g A z) - (, A ;)) = 1

W3) (, A y) - y = (y d ,) A ,

W4) (-£ + -y) A (y + £) = 1

Theorem 2.3 ([20]) //( A, O, a, 0) is an ,VF-algebra and ue deAne the binary op-
cration –+ by r –' g =d,j n= O y, then Lhc system ( A, –r, a, 1) is a lt’ajsberg
algebra, and na –, y = = O g. Conversely, if (A, –+, H, 1) is a WajsbeTU algebra, and
if we deBne 0 =d,I n1 and P O y =d,I == –+ y, then the system ( A, a, a, 0) is an
ITV-algebra, and r = =r O g –, y,

A bounded commutrrtiue BCN-algcbra [47, 22] is an algebra (A, +, 0, 1) with a
binary operation + and t\vo constants 0 and 1 fulfilling the following equations:

Yl) ( 3 + y) + z = (= + z) + y

Y2) r + (a + y) = y + (y + z)

Y3) = + z = 0

Y4) = + 0 = =

Y5) : + 1 = 0

Bounded commutative BCK-algebras were considered by several authors, (see [44,
3 S, 39, 46]. Bobbash [7] considered them under the name of bricks, We refer the
reader to [4] for an interesting account of the relations between BCK-algebras and
partially ordered grupoids (see also [46]).

Theorem 2.4 ([20, 34]) For each if\;-nlgebrn ( A. q, a, 0), the system ( A, a, 0, 1)
is a bounded commutatiue BCK-algebra. XIoreoter, n= = 1 92 and : a y = 16
(( 1 e 1) 8 y)). C'ontersely, i/ ( A, +, 0, 1) is a bounded cornmufatiue BC;K-algebra
and if ve deBne == =d,j 1 + = and Iau =d, j 1 + ((1 + =) + y), then (,4, O, a, 0) is an
,\I\’-algcbra, and I e y = r + y.

3 MV-algebras and lattice ordered abelian groups.

An ideal of an XIV-algebra ,4 is a subset I of a fulfilling the following conditions

Il) ocr

12) if = C /, y e X and y S r, then y e /



13) if I, y are in 1, then # 8 y e I

By ( 11) it foLlows that each ideal of A is an ideal of the lattice L( A). An ideal / of
A is called prime provided that it is prime as an ideal of L( A): 1 / /1 and I A gC /
implies a c I or g c I. If C is either a distributive lattice or an MV-algebra, then
Spec(C) will denote the set of prime ideals of C.

Let A be an XIV-algebra. The set of ideals of A, ordered by inclusion, is an
algebraic lattice, which \ve denote by 1( A). Let Can(A) be the algebraic lattice of all
congruence relations on A. Chang [9] proved that the correspondence a b, J(O) =
0/O = {a C A 1 ( 1, 0) e O} establishes an isomorphism J from Con( A) onto !(A)
Thp illver se of J is given by: J–1 (1) = {( 7, y) e X x X 1 (= 8 y) 8 (y e 3) C /}, for
each ideal / of A. As usuqll, we are goIng to write A// in place of A/J–1 (/)

Chang [9] proved that an ideal / of an hIV-algebra A is prime if and only if the
quotient Ajl is an hIV-chain, and that the intersection of all prime ideals of A is the
trivial ideal {0}. From thes, results, by standard techniques of universal algebra, he
obtained :

Theorem 3.1 (('ltang) LIII a IIon-triuial 11 V-algebra A is a sllbdirect product oj
hIV-chains.

Let A be a tot.III\- or,!t'rLd hIV-algebra. On the set Z >< A \ {1} define the bh.a
operation +, tIle UIlary onpration – and the binary relation s as follow.

(n r1b ) = ) + ( r/• + y ) = { } = =: 1 : 1 : 1T: : EcII y ) i F : : : : i

–(m„)= { }:aoJ 1),-„) :::: < 1

(m, a) $ (n, y) if and only if in < n or m = h and a $ 9

The following is a fundamental result of Chang [10]:

Theorem 3.2 (Chang) For each totally ordered A/V-algebra A, the $ystet rl Gi =
( Zx A\{1}, +, –, (0, 0), $ ) is a totally ordered abelian groILP. and F(Gx, (1, 0)) a A

By taking into account that the direct product of a family of totally ordered
groups is a lattice ordered group, Lacava [26] observed that from theorems 3.1 and
3.2 it follows that each MV-algebra is of the form F(G, u) for a suitable lattice
ordered abelian group G and a suitable 0 < a e G. This result was perfectioned b)
XIundici [32] as follows

Recall that an element u in an l-group G is called a unit provided that for each
r in G there is a natural number n such that i=! < nu. Let g be the category whose

8
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objects are the pairs (G, a) such that G is an 1-group and u is a unit of a, and whose
morphisms are the 1-groups homomorphisms which preserve the corresponding units,
Let 'VI be the category of MV-algebras and homomorphisIns.

We already noted that for each object (G, u) in g, F(G, u) is an object in /U
Let (G, w) and ( X, u) be objects in g and h : G –' fT an 1-group homomorphis
such that h( u) = o. It is easy to check that h maps [0, u] into [0, u]. Hence, if \re
denote by F(h) the restriction of h to [0, u}, we have that F(h) : FCC, u) –} T(H , c)
is an hIV-algebra homomorphism. It is plain that F is a functor from g into ,Vf
\lundici [32] proved that F is invertible:

Theorem 3.3 (Mundici) The furrctor F establishes a natural equit'alence between
tIle categories G and M

The following theorem is proved in [2, Corollaire A,1,7];

Theorem 3.4 Each 1-group is a homomorphic image of a sub 1-group of a direct
product of copies of Z , the additite group of the integers,

By using this result and Theorem 3.3, it is proved in [14] that each MV-algebra
is an homomorphic image of a subalgebra of a product of hIV-algebras of the form
F( Z, n), whith o < n C Z

Since for each n : 2. F( Z, n – 1) = L„, it follows that the equational cIass of
XIV-algebras is generated by the algebras L,, for a $ 2. On the other hand, it is
easy to check that an equation holds in the MV-algebras Ln, for all a $ 2 if and
only it holds in the algebra F(Q, 1 ) (cf 1.3). Then we have the following theorem,
that was originally proved by Chang [10] by using theorems 3.1 and 3.2 and the
following result from model theory: a UTriutrsal sentence of the fIrst order language
of totally ordered abelian groups holds in a totally ordereded abelian group if and
only if it holds in Q

Theorem 3.5 (Chang) The cqllnlional class of ,\l\'-algebras is generated by the
U V-algebra F(Q, 1 ), i.e. an equation holds in all My-algebras if and only if it holds
:-- r(Q, 1)

Chang used Theorem 3.5 to prove the Lukasiewicz conjecture mentioned at the
end of gl. \Ye are going to sketch this proof.

On the set Form of propositional formulas, define the relation = as follows:
P = Q if and only if (P – (2 ) and (e –+ P) are both derivable from Lukasiewicz
axioms Ll)–L4) by the rule of modus ponens. Chang [9] (see also [32, §4]) proved
that = is an equivalence relation on Form, and that the quotient Form/ = becomes
an XIV-algebra with the following defiIlition of the operations

PI= qQI = =d., hP – Q\t =

-LPI =1 =dei hP\! =

9



0 =del n( Po + Po)/ =

lloreover Chang showed that for each P e Form, P/ = = 1 if and only if P is
derivable from LI )LI) by modus ponens

Hence to prove Lukasiewicz conjecture \ye have to prove that if a propositional
formula P is an LE,-tautology, then the equivalence class P/ = = 1

Suppose that pi, ,...pik are the propositional variables which occur in a formula
P. If we replace each occurrence of p,-1/ = in Pl = by the symbol zI, j = 1, . . . k,
\ve obtain an expresion P(#1, . . . , =k) that can be evaluated in any MV- algebra.
Suppose P/ =+ 1. Then the k-variable equation P = 1 does not hold in the MV-
algebra Form/ =, and by Theorem 3.5, it does not hold in F(Q, 1). Therefore there
are rational numbers r\. . . . , rk such that P(rl, . . . , rh) + 1. If j : Var 1 [0, 1]

is any function such that /(p,1 ) = r j , for j = 1, . . . k, then it is easy to check that
u/(P) = P(r1, . . . , rb) (see Theorem 1.1). Consequently, the propositional formula
P is not an LHo-tautology. This completes the proof of Lukasiewicz conjecture.

The MV-algebra Form/ = is called I/ie Lindenlbaurrt algebra of the iTljmiLe-valued
Lukasi€u'icz propositional calculus, alrd will be denoted by L. As a matter of fact,
L is the free XIV-algebra on a denumerable set of generators. More precisely, the
equivalence classes of the propositional variables form a set of free generators of L

By Theorem 3.3 there is an 1-group M and a unit u e M such that L B F(M, u),
and the pair (M, a) is unique up to isomorphisms in the category g.

The following description of the 1-group M is due to Mundici [32]
A function 1 : [0, 1]" R is called a XfcNaughton function ouer [0, 1]'1 pro-

vided it satisfIes the following conditions:

1. 1 is continuous.

2. There is a finite number of distinct polynomials of degree one and integral
coefficients A1, . . . , Ak such that for each (31, . . . , Zn) ( [0, 1]n, there is i C
{ 1, . . . , A} such that /(31, . . . , z„) = Ai(=1, . . . , =n)

A function g : [0, 1]" –+ R is called a XtcNaughton function over [0, 1]w if for
some integer n : 1, there is a \lcNaughton function i over [0, 1]’' such that for
each sequence x = (=o, rl, . . .) C [0, 1]w, g(x) = j( la, . . . , rn_1)

Theorem 3.6 (Mundici) The Il \--algebra L 3 F(M, u), where M is the l- group
formed by the \fcNuugtrt orr fulrcLiolrs ot:er [0, 1]w IIlith point Irise operations, and %
is the constant function I

The proof of the above theorem given in [32, Theorem 4.5] depends on a classi-
cal theorem of XlcNaughton [30] which relates propositional formulas on n-variables
with \lcNaughton functions over [0, IF'. The original proof of this theorem is not
constructive. Recently, Xlundici [36] gave a constructive proof of McNaughton the-
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4 Equational classes of MV-algebras.

An l-ideal of an 1-group G' is a subgroup I such that if # e T, y C C; and jyl $ 1rl,
then y c I. The set of 1-ideals of an 1-group G, ordered by inclusion, is an algebraic
lattice, that \ve \viII denote by J(C). It is well known that Z(G) is isomorphic to
the congruence lattice of the 1-group G.

The next theorem is proved in [18](see also [26]):

Theorem 4.1 Let (I be a lattice-ordered abelian group and u a unit of G . The
correspondence J h+ +( J) = {z e G : F=1 A u C /} deButs an isomorphism from the
posc£ I( A) of ideals of the MV-algebra A = F(G , u) onto the poset KC) of 1-ideals of
G. The interse isomorphism is given by the correspondence H A, $(H) = H n [0, u]

A totally ordered group is called arcltintcd€an if for each pair of elements 3, y in
G such taht O < = <, g. there is a natural number n such that P < nz. A theorem
of Header ( see [3] or [2]) asserts that a toally ordered group is archimedean if and
only if it is isomorphic to a subgroup of R

Recall that an algebra is called sintple in case it has exactly two congruence
relations. In particular, if C denotes either an MV-algebra or an 1-group, then \ye
have that C is simple if and only if KC) = {{0}, C}.

It is \yell known (and easy to check) than an 1-group is simple if and only if it
is totalIY ordered and archimedean. Then from theorems 3.3 and 4.1 and H61der’s
theorem \ve obtain

Theorem 4.2 (Chang) /in if \'-algebra ,4 is simple if and only if there is a sub
group S of R such thaI I = FCS. 1).

The above theorem asserts that, essentially, the simple MV-algebras are the
$ubalgebras of F(R, 1 ), i.e, the MV-algebras that we considered in §l. In particular,
the algebras L„ 3 F( ( 1/n – 1)Z, 1) are simple for each n = 2.

An algebra is called semisimple if it is a subdirect product of simple algebras.
Since F(Q, 1 ) is a simple hIV-algebra, Theorem 3.5 implies that the cquational class
of XIV-algebras is generated by a simple algebra. Despite this fact, there are MV-
algebras which are not semisimple. Indeed, u’e are going to produce a family of
subdirectly irreducible but not simple MV-algebras

Given an 1-group G. let A(G) be the lexicographic product Z 8 A. It is \\-ell
known that ACC) is an 1-group (see, for instance, [3, Chapter XIII, §2, Lemma 3])
For each 1-group homomorphism h : G –F A, define ACh) : ACC) –, A(# ) by the
prescription A(b)((m, a ) ) = (m, hCa)) for each (m, a) e Z 8 G. It is easy to verify
that A is a functor from the category 1-groups into itself.

For each integer n : 1 and each = of an 1-group G, (n, z) is a unit of ACC), and
hence F( A(G), (n, #)) is an hIV-algebra,

1



The algebra F( ACC), (n, r )) can be described as the set
2

{(0, f) 1 0 S [ C C} U U {(i, Z) I t e C} U {(n – 1, t) I t e G, t S a}

with the operations

(; + j, s + f) if I + j < n – 1
( n – 1, min{r, s + I}) if I + j = n – 1
(n – 1, z) if I + j > n – 1

a( i, t) = (n – 1 – i, r – t)

arId

O = (0,0)

( see [38, 39, 25] ). It is easy to check that the correspondence J Ft {(0, f ) 1 0 S t e /}

establishes an order isomorphism from Z(G) onto the set of proper ideals of the MV.
algebra A = F( A(G), (n, 7 )). In particular, {(0, t) ! ! C G} is the only maximal ideal
of A

For the above remarks \ve get that when G is a subgroup of R, F( ACC), (n, 0))
is a subdirectly irreducible but noll simple MV- algebra.

For each n ? 2, let K„ = F( A(Z), (n – 1, 0)). The algebra K2 was introduced by
Chang [9] as an example of a non semisimple MV-algebra. These algebras, together
with the algebras L„ play an important role in the characterization of the equational
c]asses of hIV- algebras. Indeed, we have the following:

Theorem 4.3 (Komori) For each proper and not tritial cquational subclass C oj
the equational class of MY-algebras, there are tIVO fInite sets 1, J of natural numbers

such that 1 U / # 0 and the algebras {L„1 }ie / and {K„j}j€J generate the class C

To prove the above theorem, Komori [25] uses the first order theory of a class of
totally ordered abelian groups that he had expressly introduced in [24]. In [14], it is
shown how Theorem 4.3 can be derived in an algebraic way from theorems 3.3 and
3.4

For each n ? 2, the equational class of MV-algebras generated by the algebra
Ln is denoted by Y,. The classes Y„ \vere studied by GrigogHa [21]. In particular,
he gave sets of equations to characterize each of them. These sets of equations can
be considered as axiomatizations of the corresponding n-valued Lukasiewicz systems
of propositional calcull. Observe that Y2, which coincides with the class of Boolean
algebras, is characterized by the equation z a z = z. The class Y3, the class of
L ukasieu)icz three-talIIed algebras, is characterized by the equation z©z©z = aea.
For n ? 4. more complex systems of equations are requiered to characterize the class
Y„ (see also [37]),

12
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The classes Y„ have been considered in [12, 13] as Heyting algebras with some ad.
ditional unary and binary operations, under the name of proper n- valued LukasieuJic=
alge bras

Recently Di Nola and Lettieri [19] gave equational characterizations for all equa-
tional classes of XIV-algebras

5 Order structure of MV-algebras.
For each integer n ? 2, the algebra Ln is a totally ordered MV-algebra with exactly
n elements. Aloreover, it is not hard to see that each totally ordered set C with
n ? 2 elements admits a unique structure of an MV-algebra, and that C with this
structure is isomorphic to L„ (see, for instance, [20, Theorem 19]).

Since each finite MV-algebra is a direct product of a finite number of finite
XIV-chains (see, for instance,[44] or [20] ), it follows that a finite partially ordered set
admits an hIV- algebra structure if and only if it is a direct product of a finite number
of finite chains. and in this case the XIV-algebra structure is uniquely determined.

On the other hand, there are infinite chains admitting two non isomorphic MV-
algebras structures. To give examples, we need the following well known (and easy
to prove) result

Lemma 5.1 Ltt S and T he Lu'o subgroups of R such that I C S and 1 e T. TheTe

is an ordeud-group isomorphism h from S onto T such that h( 1) = 1 if and only if
S = T , and in this case h is the identity.

Corollary 5.2 if S and T are as in the Lemma, tuc have that FCS, 1) = F(T, 1)
if and only if FCS, 1) = F(T, 1 ), i.c. law subalg£brns of the algebra F(R, 1) art
isomorphic if and only if they are equal.

By a classical result of Cantor, every two count;able dense totally ordered sets
with no first or last element are isomorphic. Therefore F(Q, 1) and F( A, 1) are
order isomorphic, but by the above corollary, they are not isomorphic MV-algebras
Therefore we have an infinite chain admitting two non isomorphic MV-algebra st;ruc-
t ures

Note that I plays an essential role in Lemma 5.1. Indeed, the correspondence
P H p/(n – 1) defines an ordered-group isomorphism from Z onto (1/n – 1)Z which
maps the unit (n – 1) to 1. Hence we have F((1/n – 1)Z, 1) = F(Z, n – 1) = L„

Another consequence of Corollary 5.2 is that the scI oj (non isomorphic) simple
algebras is non denurner(rble. Indeed, for each irrational number a such that 0 <’
a < 1, So = {m + na 1 m, nC Z and C) $ m + na $ 1} is a subalgebra of F(it, 1),
and So = Sa if and only if a = /3 or a = 1 – ,3,

Boolean algebras are simple examples of MV-algebras that are uniquely deter-
nrined by their natural orders. It is proved in [15] that the algebras in the equational
classes Y3 and Y4 are also uniquely determined by their natural orders.
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In [17] \ve consider a class of MV-algebras which are uniquely determIned by their
natural orders, and that contains all the finite MV-algebras and, more generally, all
tIle algebras in the equationa] classes Yn, for each n ? 2

An hIV-algebra /1 is called liminnt provided A/ J is finite for each prime ideal J
of .'t

Fhe main result of [17] is as follows

Theorem 5.3 Let A de a /iminar if b'-algebra. Then I = L( A) is a bounded dis-
tributite lattice which satisFes the follou'ing tIVO conditions:

i) The prime ideals of L occur in disjoint Pnite chains.

ii) For each f e L and each r e Q, there is an element be BCE) such that for each
minimal prime ideal J , be J if and only if

_ _ card{X e Spec(L) : / q if and/ g /}
card{ A’ C Spec(L) 1 J g A-}

Conuersely, if a bounded distributiue lattice L satis Aes conditions i) and ii), then
there is an XIV-algebra A, unique up to isomorphisms, such that L( . 1) = L, and
ntoreover , A is lintinar.

The class of liminary MV-algebras is in correspondence with the class of liminary
C+- algebras with Boolean spectra. See [17] for details.

It is shown in [18] that an MV-algebra is liminar if and only if it is a Boolean
product of a family of finite MV-chains

6 The prime spectra of MV-algebras.
Recall that if ( denotes either an MV-algebra or a bounded distributive lattice
Spec(C) denotes the set of prime ideals of C. Analogously, if C stands for an 1-
group, Spec(C) denotes the set of prime 1-ideals of C. In any case, Spec(C) is the set
of meet-irreducible elements of the algebraic lattice KC). We are going to consider
Sptct C) ordered by inclusion

\Ve say that an ordered set .X is XIV-represent able provided that there is an
XIV-algebra A such that X is isomorphic to Spec( A).

It is easy to see that the mappings d and @ of Theorem 4.1 define an order
isomorphism between SpccIF(G. u)) and Spec(G) for each unit u of the 1-group G.

Therefore the ordered set X is Xl\'’-representable if and only if there is an 1-group
G with an order unit u such that X is isomorphic to Spec(G).

A rotII bysterrr is an ordered set X such that for each : e X, [z) = {a e X : = ? 7}
is a totally ordered subset of X. A spectral root system is a root system X fulfilling
the following t\TO conditions:
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RSI) Each totally ordered subset of X has supremun and infimun in X.

RS2) if a, y are elements of X such that = < y, then there are s, t in X such that
a $ s <, t g g, and there is no element of X between s and t

The follow’ing theorem is proved in [18]:

Theorem 6.1 A partially ordered set X is MV-reprtsentable iJ and only iI iI is a
spcctral root systcm,
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There are 2lo existentially closed non elementary equivalent countable groups.

Anatole Khelif

Plan of the proof

I We n’ill prove that there are 2-lo models of ZFC such that their integers are the true integers and such

that their second order arithmetic ((w', p(\v)) are not elementary equivalent. We will admit the existence of an

inaccessible cardinal and \ye will obtain 2Xo countable models without forcing. The h)pothesis of the existence

of an inaccessible cardinal can be eliminated if \vc replace ZFC by a large enough finite fragment ofZFC (We

can prove in ZFC the existence of models of some finite fragment of ZFC).

IT in all these models of ZFC \vc will find "cxistcntially saturated" groups such that the second order

drithmctics of these models are intcrprctablc in thcse groups

LENnvIA I

If we admit ZFC + "There exists an inaccessible cardinal", there are 2Zo models ofZFC such that their

integers are the true integers and such that their second order arithmetic are not elementary equivalent

Proof

If we admit ZFC + "There is an inaccessible cardinal". There exists an uncountable standard model (e is well

founded) M, of ZF(: + V=L. Thus by L6u'cneihem - Sk61em there are z1 countablc standard models of ZFC +

V=L . Let A bc the set of the countablc standard models (up to isomorphism ofZFC + V=L. Let < the following



relation : if Ml and M2 c A, we have M1 < M2 if and only if every ordinal of M1 is an ordinal of M2 and M1 #

M2. Then < induce a well order on A and (A,<) is isomorphic to a1 , e). Since every element of A is

isomorphic to an element of M., we can say that in " M.E "There are uncountably many standard models of

ZFC + V=L", Since L6weneihcm Sk61em is a theorem ofZFC, M,F" There are z1 standard countable models

ofZFC + V=L". By L6weneihem Sk61em in the universe (not in M.). There is a countable standard model of

ZFC + V=L which is elementary equivalent to M.. We can conclude that the set { x e A, x F "There are 11

countable standard models of ZFC + V=L"} is non empity. Let N. be the smallest element of this set for the

relation <. Then N. L " There is not an uncountable standard model of ZFC + V=L" and N. F " There are x,1

countable standard models of ZFC + V=L"

But in ZFC + V=L, there exists a definable bijection from a)1 into the reals. Let R be such a bijection,

we can suppose that R is absolute. Then N, L "Every standard model x ofZFC + V=L contains (relatively to x)

countably many standard models (which are element of x) up to isomorphism of ZFC + V=L.

Since the set of these models, which are elements of x and A, is well ordered by < ; it is isomorphic to

an ordinal ax which is countable relativejy to x. In this case, R (ax) is a real which is an element of x,

If x + y (x and y transitive models ofZFC + V=L and elements of N.) R (ax ) + R (ay)

We know that two different reals have not the same binary development. Thus N.B'’ There are a)1

standard models ofZFC + V=L which are not elementary equivalent even if we consider only the formulas with

integers and reals.
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But if ive identify the set of the formulas to w, the set T of the second order arithmetics which are in

models (not necessary standard) ofZFC where the integers are the true integers is an analytic subset of {0, 1}'-

Thus the cardinal ofT is either $ X, or 2Xo.

But in N. this cardinal is > 71 , thus it is 2;Co. By the absolutness of the cardinal of an analytic set ; we

can conclude that, in the universe, there are 2Xo countable models of ZFC + V=L such that their integers are the

true integers and such that their second order arithmetics are not elementary equivalent.

LEMMA 2

Let M be a countable model of ZFC + V=L such that the integers in M are the true integers. Then

there exists G existcntially closed group such that G e M and such that the second order arithmetic of Mis

interpretable in G without parameters

Proposition 1

If G c M, G group and M model ofZFC containing the true arithmetic then M E "G is existentiaIly

closed ifF Gis cxistcntiallv closed. "



Proof

G is existentially closed is equivalent to the fact that every existential formula which is consistant with

the non quantified formulas with parameters in G and with the group theory holds in G. But consistent means

finitely consistent. Since M contains the true arithmetic the consistentness in M and in the universe are

equivalent. Thus if G c M, G is existentially closed in ME" G is existentially closed." ( N-B- if M doesn't

contains the true arithmetic and ML - "G is cxistentially closed:" G is never existentially closed because two

elements of difFerent non standard orders are not conjugate)

Poposition 2

Let us call " cxistentiallv saturated" a group G of cardinal > z, such that

a) Every group M of cardinal < G has an injective embeddcmcnt in G

b) Let Hand H' be sub-groups of G, if card H < card G and if ,: is an isomorphisme from H to H' there is y e

G such that for every x e H 4(x) = )"1 \T

It is obviously equivalent to the fact that even existential type on a subset of G of cardinal < card G is

satisfied in G. If \vc admit the continuum h}pothesis (u'hich holds in every model of V=L) such a group exists

and it is existcntially closed. We can even say that in this case, up to isomorphism, there exists only one

existentially saturated group of cardinal 2x'’.

4



A. Kh61if

If follows from the theorem ofL6wenheimen Sk61em and the fact that every elementary sub.structure of an

cxistcntially closed group is existentially closed that an " existentially saturated" group is the union of an

increasing clain of existcntially closed sub-groups. Thus it is existentially closed.

Proportion 3

Let M be a model of ZFC and G e such that M L "G is existentially saturated", then the second order

arithmetic of Mis intcrpretable in G without parameters.

Proof

In an " existentially saturated" group. which is an existentially closed group, t\vo elements of same

order are conjugate. We can u'rite that an element u of Gis of infinite order by u + e

I v, v-1 u \’=u2 (the order of u isn't pair)

1 \v, ne#Id A u-1 uu = \\'1 (the order of u isn't impair)

An element u' of Gis a powerth of u ( u-, n ci) if and only if u' belongs to the ccntralizator of the

centralizator of u which \vc name CC(u). We can idcntil\' the conjugary classes of the couple (u. u') to relative

integers. We can already say that the first order arithmetic is interprctablc in G, the product of NO elements of

CC(n) can be assimilate to an addition and a morphism from CC(u) to it self inducted by a conjugaison is

equivalent to a multiplication.



If u has an infinite order, for evelv subset P of Z ( in M ), there is an element v and an element w

such that ifu' c CC(u), w commutes to u-1 vu' if and only if the class of (u,u') belongs to P. So, the second

order arithmetic is interpretablc in G without parameters.

Proof of lemma 2

If G belongs to M and if the integers of Mare the true integers, according to proportion 1, Gis

existentially closed. Thus. according to proposition 3, the second order arithmetic is interpretable in G without

parameters.

Conclusion:

According to lemma 1, there is 2lo countable models of ZFC + V=L countaing the true arithmetic such

that their second order arithmetics are not elementary equivalent.

But in this models and relatively to them, the "existentially saturated" groups of cardinal 2Xo are not

elementary equivalent

Since these models are countable. these groups are countable. According to propositions 1 and 2, there

are existentially closed. Thus. there exist 2Zo countable existentially closed groups which are not elementary

equivalent

6
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Case of the division rings:

Theorem

Let k be a countablc field, there are 2-lo non elementary equivalent division rings over k

Proof

We have the amalgamation property for the division rings [1]. Then we can conclude that if we assume

GCH, \ye have an "existcntially saturated" division ring over k in the same sense that the "existentially

saturated" groups. In an "cxistcntially saturated" division ring A o\'cr k, x is transcendental over k if and only if

there is u belonging to a such that u-lxu = x2 and if there exists y different from 1 such that x-lyx = y] +y. This

is also a consequence of the amalgamation property. If x is transcendental over k, x' is a power of x (there

exists n c d . such that xn = f) if and onjy ifx' belongs to the ccntralizator of the centralizator of x and if (

x“ , x'“ ) is conjugate to (x. x') with a = 2 ifcharastcristic of k # 2. a = 3 ifcharasteristic of k = 2. Then, in

the same way that for the "existentially saturated" groups u-e can interprete te first order arithmetic and the

scond order arithmetic. By using lemma 1 and proposition 1 \nth "division ring" at the place of group \vc can

conclude that there are 2'lo non elementary equivalent division rings over k

7
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Joining k– and I– recognizable sets of natural numbers

ROGERVILLEMAIR8

D6pdrtement de math6matiques et d’informatique
U.Q. A.M., C.P. 8888 sue:c. A, Montr6al (Qu6bec), CANADA H3C 3P8

Summary. We show that the first order theory of < IN, +, %, A >, where
Y, : IN\{0} –> IN is the function which sends n to K(n), the greatest power
of r which divides z and A, i are multiplicatively independent (i.e. they
have no common power) is undecidable. Actually Ive prove that multiplica-
tion is definable in < IN, +, %, R >. This shows that the theorem of Biichi
cannot be generalized to a class containing all k- and all i-recognizable sets,

Introduction. As J.R. Biichi showed (see section 3.), a subset of IN" represented
in base k is recognizable on the alphabet {0, 1, . . . , k– 1}” if and only if it is definable
in the first-order theory of < IN, +, 14 >, where %(n) is the greatest power of A
which divides r. This shows that the class of k-recognizable subsets of IN” (n e IN)
is closed under intersection, complcmcntation and projection. Hence a set is in
the smallest class containing all k-recognizable sets and closed under intersection,
conrplcnreutation and projection if and only if it is definable in < IN, +, % >

A. Jo)ral asked to which extend it could be possible to generalize the above
result joining k- and Z-alrtomata. I proved that if one takes the smallest class closed
under intersection, complenrentation and projection which contains all k- and all I-
recognizable subsets of IN" (m C IN) (hence the definable subsets of < IN, +, uk, U >
), then it contains multiplication. Therefore there is no machine specializing Turing
machines by wlri( lh exactly the sets in this class are recognized. Hence one cannot
hope to generalize Biichi’s theorem in this way.

In the first three sections \ve give definitions an results about automata, recog-
nition and logic. In section 4. ive reduce the main theorem to some technical result,
which we prove in the last section.

1. Automata. Lct EI be an nLptbabt it. i.e. a finite set. E* will denote the set of
words of finite length on E containing the eTn.pt,ly word A formed of no symbol. Any
subset L of E \viII be called a /allguage on the alphabet E

DEFINITION.Let E be an alphabet. A E-automata ,4 is a qlladrupIet (Q, go, F, T)
whern

Q is a finite set, called the set of states,
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go is an element of Q, called the initial state,
F is a sIIDset of Q called the set of final states
arId HIlt IIly :F is a flurction of (2 x E to Q, called the transition function.

The transition function T can be extended to a function T* : Q x =* –, Q in
the following way:

T' (q, a) = T(q, a) for a e El
T* Lq , aa) = T(T' (q, a), a) for a e E* and a C E

Furthcrrrrore we have the following definitions

DEFINITION. A word a e E* is said to be accepted by the El-automata (Q, go, F, T)
if T+ Lga, a) e F

DEFINITION. A language L on E is said to be E-recognizable if there exists a E-
a.utomilt tb stirh that the set of u'or(is accepted by this automata is exactly L.

2.Recognition over IN. Let Ek be the alphabet {0, 1, . . . , k – 1}. For n e IN let
[n];, be the word on El, wlri(',II is the inverse representation of n, in 1)ase k, i.e. if
m = E:=o AiA& with At e {0, . . . , k – 1}, then [n]k = Ao ' . . A,

It is also possible to repr(;sent tuples of natural numbers by words on (EE)*
in the follow,ing n,ay. Let (m,1 , . . . , m„) e IN". Add on the right of each [mi]k the
nrininral numI)cr of 0 in order to make thenr all of the same length and call these
words ui. Let ui = Air - . . Xi, where Aa C Ek. We represent (ml , . . . ,m„) by the
WOFd (All } A2 11 ' ' ' 1 Anl ) ( A 121 122 ? ' ' - 7 Ara ) • • • (AIs I A2s I ' ' ' ) Ans ) e (EE )+

DEFINITION. I'Ve say that a set X g M: is k-recognizable if it is Ej-recognizable

3.Biichi’s Theorem. Let Pk(7) be the predicate (i.e. subset ) on IN defined by
-r: is a power of k”. Let also as \ve said before % : IN \ {0} –> IN be the function
which sends :I; to %(n), the greatest power of k which divides z.

In [2,Tlreorenr 9] Biiclri states that a subset of IN" is A-recognizable if and
onjy if it is definable in the first-order structure < IN, +, Ph >, i.e. defined by
formulas built up from =, +. Pk using A ( “and” ), a (“not” ), I ( “there exists a
natural nurnber such that ...” ). Unfortunately, as remarked by McNaughton in [7] ,
the proof is incorrect. Furthermore the sti\tennnt has been disproved by Semenov
in [11, Corollary 4]. Tlr£rnks to the work of Bruy dre [1], we know that the ideas of
Bticlri can be used to show the following tlrcorcrn. (See [1] for a proof among the
lines of Biiclri’s, [8] for a different proof or also [14]).

THEOREM3.1.Biichi’s Theorem A set X g W' is k-recoHIrizablc if and only if it
is definat)Ie in the first order structure < IN. +. vI, >

There is anoth(:r version of Biiclri’s Theorenr in terms of weak monadic logic
Before \ve speak of it, let IIS give a useful definition and lemma
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DnFINrTION.Let xk, j(z, y) denote the relation “z is a power of k and the correspond-
ing digit in the representation of y in basis k is j” , for h e IV and j e {0, 1, . . . , k–1} .
PYe have the following result,

k-1LEMMA3.2, The relation Xh .j (n, y) is definable in < IN, +, Vh > for j = 1,

PROOF:Xk,J ( z, y) is defined by the formula

%(a;) = # A lz, t [z < # A %(t) > r A y = z + Jn + t] V lz[z < # A y = z + 37]

Here Jy represents y + . . . + g which is a term in the language.

j – times
This holds since %(r) = = is equivalent to z being a power of k and furthermore

z < =; arId %(t) > / rneans that z has 0 as coefficient for all powers of k greater or
equal to z and t has coefficient 0 for all powers of A smaller or equal to n.

Usually Biiclri’s Theorem is stilted using the weak monadic theory of < IN, S > ,
u,here S is the successor function on IN. The weak monadic theory of < IN, S >
is the extension of first order logic by allowing also the use of the weak moTbadic

qILCUbt.ifieTS VX and IX, which are interpreted as " for nil finite subsets of IN ” and
''tlbe7-e el lists a finite slrbsc it of IN ” respectively. We will write WM < IN, S > for
this structure. Hence usually Biiclri’s Theorem is stated a follows

THEOREM3.3.Biichi’s Theorem monadic version A set X C IV is 2-recogni-
za DIe if and only if it is definable in the weak monadic structure WM < IN, S >

Lca us show tlrirt tlris second fornr of Biichi’s Theorem is equivalent to the
first one for k = 2. We will give all bi-interpretation of WM < IN, S > in
< IN, +.Y2 >. First of all, any formula p(xI , . . . , X„ I:1, . . . , .tt) of WM < IN, S >,

where Xl . . . . . X. are nronadic varial)les (i.e. they represent finite sets) and
:1; 1, . . . , ri;i are first-order vari irl)les, is equivalent to a formula with no first-order
variables. since one can replace an elernent by a singleton containing it. Let us now
sho\v that there is a bijection q between the subsets of IN and the natural numbers
such that for any forrrrlrla p(X1, . . . , X.), there exists a formula p* with the prop-
crty that p(xI , . . . , X. ) holds in WM < IN, S > if and only if p*(77(Xl ), . . . , r/(X,))
hol(is in < IN,+,V2 >. And furtlrcrnrorc that for any formula O(rr , . . . , z,) there
exists a formula qi' su(tr that Vi(a:1, . . . , z,) holds in < IN,+,V2 > if and only if
'qb*(77–1(g;1), . . . , Ij– 1(r.,)) holds in \VM < IN, S > .

Define y(X) = EJ£ex 2z and let p be a fonnula in the language of
\Vb’I < IN, S > . Replace in it S(n,) by 2” + 2", X(m) (i.c. / C X) by x2,1 (2n, r)
and IX, VX by Irl;, V:1; and call this new formula p* . It is easy to show that the
irl)ovc: property hol(is
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Conversely starting fron1 O a formula in the language of < IN, +, 72 >, replace
in it r + y = z by

IR[X(0) A Y(0) b> RCS(o))] /\
Vr(RCS(z)) H> “ at least two of X(z), Y(z), R(z) hold ”)A
Vr(Z(7) b> ' only one or all three of X(n), Y(n), R(r) hold “ )

In this formula R stands for the “ carry over ” in the addition of EJiFx 2z and
EJ£€y 2£. This formula can lx: easily expressed in the language of WM < IN, S >

Finally rc:place %( rl;) = y by “ Y is a singleton contained in X and for all
II e IN snrallcr than the element of Y, X(z) does not hold ” .

Here also this can easily be expressed by a formula of WM < IN, S > as soon
as one note that = < y for r, y natural numbers is equivalent of “ every finite subset
containing u an(I closed under the inverse of S must contain z ” . The formula p*
so obtained has no\v the required property as one can easily check

Note tlr£rt in the translation of p into p*, if we replace 27' by k" and X2,1 by
xk.I u'c get and interpretation of WM < IN, S > in < IN, +, U, >. VVe will use this
fact later

4. A question of A.Joyal.

DEFINITION. Tu’o natural nurnbcr's k, i are said to be multiplicativcly dependent if
there exists natural ntrInbers n, in, such that kTI = Im

\Vc have the following facts
• if A and I are multiplic:rtivcly dependent then any set X C IN which is

A-recognizal>Ic is also Z-rccognizirl)le (see [4, Corollary 3.7]).
• A set X g IN wlri( III is a union of a finite set with finitely many arithmetic

progressions is A-recognizable for any k C IN (see [4, Proposition 3.4)
• For A, i nrultiplicativcly iuclcpendcnt a set which is k- and i-recognizable is

a finite union of a finite set with finitcly many arithmetic progressions, hence it is
n 7.-recognizable for any m, (see [3] or also [6] and [9]) .

Therefor(I for k, I nrultiplicativelv independent the class of h- and the class of
/-rccognizal)Ic sets of nattrral numbers are as far apart as they can be. This is quite
unfortunate from a colnputational point of view, since recognition depends on the
t}£rsis. A. Joytrl asked if \ve can find a concept of “machine” and of “recognition”
extending A:-r(:cognition and I-u:('.ognition for A, i Irrultiplicdtively independent.

Let K be thc smallest class containing all k-recognizable and all I-recognizable
subsets of IN" (for 71, C IN) all(1 closed under intersection, complemcntation arId
projection. \V(: sIlo\v that K contains all the aritlnuetical hierachy (i.e. the closure
of the class of recursive relations under projection and complement), hence that
there is nci nIa(Irirln nIn(tel SI>or:i}llizing Trrring rlllrclrines I)y wlriclr exactly the sets
in K are recognized. 1\’lore prt:cis(1ly we show the following
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THEOREM4.1. The structures < IN, +, %, A > for A, / multiplicatively independent
and < IN, +, . > are inter-definable (i.e. multiplication can be defined in terms of
%, U and vh, U can be defined in terms of ., +).

PROOF:Since any recursive function is definable in < IN, +, - > and %,U are recur-
sivc, it follows that %,U are definable in < IN, +, - >. This settles one direction,

For the other direction let kN be the set of powers of k. \Ve will first show the
following results

LEMM A4.2.For any k, i multiplicatively independent there exists a strictly increas-
ing fllnction h : AN –> kN definable in < IN, +, %, A > such that the following
condition holds.

(#) h(k . z) > h . (h(z)) for infinitely many = e kN and furthermore there
exists a d e iN such that for any consecutive power of k, kTI ,k'" satisfying the above
inequality mI, – n, $ cl.

\Ve will give the proof of Lenrrna4.2 in the last section

CoROLLARY4.3.Let h : AN –> kN be a strictly increasing function satisfying (+).
The rnultipliczltion of powers of k is definable in < IN, +, vh, h >

PRooF:\Ve first need to extend the interpretation of WM < IN, S > in < IN, +, % >
wc gave in st:ctioll 3. to an intcrprctation of WM < IN, S, h* > in < IN, +, %, h >,
u,here h* : kb –> kl\ is defined by h(A”) = kh'("). This is easily obtain by replacing
h* by IL. Note non' that addition is \VR'1 < IN, S, h* > will be interpreted as the
rntrltiplicati(nI of 1>on'ers of A: in < IN, +, %, /7, >

Using this interpretation it is sufficient to show the following.

LEbrMA4.4.Let if : IN –> IN be a strictly increasing function such that h* (SCr)) >
SCh.* ( z ) ) for infinitely many = e IN. Suppose furthermore that there exists a d e IN
suc:Jr that for any consecutive natural numbers =, y satisfying the above inequality
;c – u $ d. Then tIle addition of natural numbers is definable in WM < IN, S >

PROOF:This lenrma is a slight generalization of the result [13, Theorem 2] of W.
Thomas. \Ve u'ill follow' tIle proof of Thomas modifing it to prove the above lemma.
The technique is due to C.C. Elgot and M.O. Rabin and the interested reader should
Irirve a look at tlrcir nice paper [5].

The first important fact is to notice that if we can quantify over finite binary
relations over IN then we can define addition in the following way.

VE g IN x IN [(z, y) e EA Vu, u (u, u) e E –> (u + 1, u – 1) e E] –> (z, 0) e E
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The above formula holds if and only if = + y = z, since the part in bracket
means that E contains {(I, y), (z + 1, y – 1), . . . , (z + y, 0)}. Hence if each finite
binary relation satisfying this condition contains (z, 0), we must have that z = z+y.

Therefore we want to show that there is in WM < IN, S, h* > a forrnlrla
F(X , 2;, y), such that for any finite binary relation E g IN x IN there is X£ g IN
for which F(Xz, z, y) holds in \VM < IN, S, h* > if and only if (I, y) e E

Suppose \ve can define in WM < IN, S, h* > disjoint sets Ki which union equals
IN and one-to-one functions A : IN –> &, t = 1, . . . , d such that b–1(r) is infinite
for all ;c e IN. \Ve will show that this implies the existence of an FtX , z, y) with
the above property.

Let us see how we can define quantification over finite binary relations in
WM < IN, S, h , Ki ; t = 1, . . . , d >. \Ve need the following dcnnitions.

• IV.z't(X, g;, y) = X(z) A X (#) A z <yAVz[: < z < y –> Tx(z)].
Hence N :t(X, 7, y) means that = and y are in X and that y is the successor of

a; in this set, i.c. there is no clcment of X between = and #
• Od(X , z) = X(7) A IY Y(#) A “ Y contains the smallest element of X ” A

\I'D. z, t\N '.r.t.( X , y, z) A N zt(X, z, t) A Y(y) –> –IY(z) A Yd)] .
This can IIe written as a first-order formula and it means that 3; is in X and

that there is a odd number of elements in this set which are smaller or equal to z.
\Ve can no\v defrne F(X, r, y) by the following formula.
la, u[X(u) A X(u) A Od(X, u) A N =KX , k, u) A Af=1(Ie(z) –> bCu) = z) A

N!=,tKit'yl –, h(„) = :'/)]
To see that this forrrurla has the required property, let E = {(#1, yr), .

(= 1,, :1/k)} be an arl)itrary finite relation on IN. Let Ii be in K (i) and gi be in KB(c
Take n,1 to be such that /„(1)(n1) = z1, choose n,2 > nl such that /p(1)(n,2) = gl;
this is possible since /a1(91) is infinite. Choose r&3 > n,2 such that /„(2)(n3) = a2
and so on up to nik , Let X£ = {711, . . . , n2h}. Then F(XE , :t , ly) holds if and only
if (r, y) e E.

Therefore the last thing to show is that we can define such a and JC. Let
K i = {/ C IN; S(h*(z)) Z 1mA*}, K2 = {z e IN; z # K1 and S(2) (h* (#)) Z 1mA*},
. . ., K d = {7 e IN; .l; ( K\ , . . . . = ( Kd_\ and S(d)(h*(z)) g Im/b*} (here SCi) is
the iteration of the function S). Furthermore let X : IN –> Ki be defined in the
following u'ay. Let yi bc thc last element of Ki .

. . ~ r y if = = h*(’r')(S'(i>(h* (y))) for some m C IN and some y e 1<i.
’1 IT/d otherwise.

It is clear by definition that the sets Ki are disjoint and by (#) that their
union is IN. Let us show that the functions b are well defined. Suppose that
h*tm) (SCi)(/1.* ('!/))) = h*(’"’)(SCi)(h*(y’))) for some m,, ni,1 e IN and y, ly1 C K,
Since A* is one-to-one it follows that h*(m–m’)(SCi)(h*(y))) = SCi)(h*(#/)) (we can
suppose without loss of generality that m > m/). Since S(!) (h*(y’)) is not in Im/z*
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by definition of a, we must have that m = TrI. Hence SO)(h*(y)) = SO)(h*(g/))
and h*(y) = h*(y/), therefore y = y/

Furthcrmore the sets A–1 ( n) = {y; y = h*(m) (SCi)(h*(y))), m = 0, 1, . . .} is ina-
nite for every / e IN and i = 1, . . . ,d. Finally, bCn) is definable in
\VM <~ IN, S, h* ', by the following formula,

VX[X(z) A b[X(h(z)) A X(') I A X(S(:)(h*(#))) I

This holds since the formula says that any X which contains # and is closed under
the inverse of h* must contain SCi)(h*(y)). This completes the proof.

Let a, O be t\vo words on Eh. The concatenation aAa is the word obtained by
the letters of cl followed by the letters of /3. For n, m. in IN we will write nAm for the
natural number which corresponds to the conc,itenation jn,]£ [m]k. More precisely
if Km) is the length of [n]k then nAm = n + kI(") - m

\Ve no\v IUI\’C tIle following result

LEMNI A4.5. The (xincirtcnation in t)ase k is definable in < IV, +, %, h >.

PROOF:z = rAy holds if and only if
37 1(%(u) = u A u > / A“u is the smallest natural number with this property”

,A,Vt[f < u And) = { A Af:J(XkJ. (f, z) H> Xb (t, r))]
/\Vt[%(f) = { A Afl (xu (t . „, ;) b, xu (t, y))])
Since f . II is a product of powers of k this formula define the concatenation in

< IN,+,Yk, h > (by Lemma4.3)

By the following result of J. \V. Thatcher [12] it follows that any recursive
function is dcfinal ile in < IN,+,Yk, A >

LEMhrA4.6. Any rec:llrsi ve furrctiorr is definable in < IN, +, A > where A is the con-
c.atcnation irl IIase k.

PROOF:See [12, Theorem 2] antI also the footnote on page 183 in the same paper

COROLLARY4.7. Thc lnultil)li(:ati(nI of natural numbers is definable in
< IN, +, %, A >, h(inc:e by Lemma.4.2 and 4.5 it is definable in < IN, +, %, H >

The only thing which remains to be shown is LcmIna4.2
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5.Definability in < IN, +, %, A >. We will now prove that for any k, Z multi-
plicatively independent there exists a strictly increasing definable function satisfying
(8), this will give a proof to Lcmma4.2.

\Ve will often use the following fact: For k, n in IN, k and k" are multiplicatively
dependent, hence any set which is k-rccognizable is kn-recognizable, and vice versa
(see [4,Corollary 3.7]). This means that % is definable in < IN, +, %n > and
U,n is definable in < IN, +, % >, therefore we can consider < IN, +, % > and
< IN, +, %n > to be the same.

For the remainder of this section we will fix the following: k and Z are mul-
tiplicativcly indcpendcnt natural numbers and Supp(z) will be the set of prime
divis;ors of u. Furthermore A = pTL . . .p=" and I = pq\ . . .pE" where the pi are
prinle nurnbcrs

\Vc will consider three cases.

Case 1) Suppose Supp(k) ( Supp(Z) and Supp(i) ( Supp(k). We can suppose
without loss of generality that A > L since we can replace k by one of its multiple.
In this case \ve can easily define the multiplication of a power of k with a power of
i

LEMMA5.1.Let g ; AN x iN –> IV be tIle multiplication i,e. g(z, y) = = . g. The
fllrrction g is definable in < IN, +, vh, U > .

PROOF:The function g(z, y) = z is defined be the formula saying “z is the smallest
natural numI)or such that %(z) = z and U(z) = y

LEMMA5.2.Let j : kh –> iN bc such that, /(.1;) is the smallest power of I greater
than x . The function f is strictly increasing and definable in < IN, +, vI„ Vt > .

PROOF:We will s;lK)w that for any t\vo powers of k there is a power of Z inbetween.
T:Ike k" and let IS be the greatest power of Z smaller than k’ . Then I-+1 > k’ and
furthermore /'+1 < kr I < k-+1 since i < k by hypothesis. Hence kr < is+1 < k’+1
Since I is obviously definable in < IN, +, YI„ A >, this completes the proof.

LEhthl A5.3.Let u : IN –> AN bc SIIt:h that u( a) is the greatest power of A smaller
than x . The fIurc.tion u is deHnat)le in < IN, +. vI, > .

PROOF :Obviolls

LEMhIA5.4.Let h : kb –> kI\ be sllc:/1 that h( r) = u(g(/, /(1))). Then h( r) = 72

(i.e. for powers of k only) and the function h is strictly increasing.

PROOF:By d<:Hnition ZI(g(1;, /(7))) = it(= . /(rl;)) = z . u(/(a;)). for .I; e AN. By
definition of f , u'c have u(/(7)) = =, hence 7&(gCr, gCr))) = z./. Therefore h(r) = /2
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and h is strictly increasing. Since h is obviously definable in < IN, +, %, U >, this
completes the proof.

CONCLUSION .Here h(k . z) = k2 . 72 > h . r2 = k . (h(z)) for all u e AN, hence (#)
holds.

Case 2) Suppose SuPP(i) C Supp(k) and for any Pi,Pj e Supp(1), P = 2 = S,
where a, Ii e IN. Hence kB = L"u, u + 1, a + 0, (Z, u) = 1. Since k, kB and i, la
are multiplicatively dependent we can replace hP by A and laby I and assume that
k = Zu

LEMM A5.5.Let f : AN –> IN be as in Case I. The function f is strictly increasing
Furthermore there exists a d e IN\ {0} such that /(zAci) = /(z)i(d+1). As before
this functiorr is definable in < IV, +, %, A > .

PROOF:It follows as in the proof of Lemma 5.2 that f is stricly increasing.
For the second claim take d to be the smallest natural number such that ud > i

Since /(r) is the smallest power of J greater than z, we have that I# < =. Hence

It’?k' < xk'i, so J b)Id = /q'?PL $ it-Ij-”' < =kd. Therefore f (Hk'i) > f b)Id

LEMM A5.6.Ict r/ : IN –> kN be the function which sends /m to km. The function
g1 is multiplicative (i.e. g' (n . y) = g' (a) . g1 (y)) and strictly increasing. Furthermore
f 11 is defillable irl < IN, +, vh, H >.

PROOF:Since (i, u) = 1 it follows that U(h") = HCi"u") = A(1”) = Z”. Hence
we can define g/(r) = y by the formula A(g) = =. The remaining of the proof is
obvious.

LEMb'I A3 . 7 .Let h = gF o f : kb –} kN . The function h is strictly increasing,
FuTthermore for all = in kw , h(kd - z) > kd - h(n). (The d is the one of Lemma 5.5)
Finally h is definable in < IN,+, vI„ vl >

PROOF:Since f and g/ are strictly increasing by Lemma 5.5 and 5.6 respectively it
follows that h is strictly increasing.

Let us show that for all r C kN , h(Ad . z) > kd . h(r). This is the same
as showing that for all I; e kN g/(/(zk'i)) > g/(/(r))kd. Since by Lemma 5.5

we have that for any r in kN /(/Ad) ? /(r)Z(d+1), it follows (applying Lemma
5.6) that g/(/(rAd)) ? g/(/(I1)i(d+1)). Furthermore by Lemma 5.6 g/(/(rAd)) ?
g/(/(z))g/(i(d+1)) hencc g/(/(zAd)) > g/(/(z))kd since g/ is increasing by Lemma
5.6. Therefore / I,( Ad . r) > Ad . h(7)

Finally it follows by Lemma 5.5 and 5.6 that h is definable in< IN, +, %, A > .
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CONCLUSION.By Lemma 5.11 ive know that h(k'i .#) > k'lh(c) for all : C km. Since
h is strictly increasing h(k. x) > k.h(x). Therefore it follows from h(kcl .z) > kd .h(z))
th,it fC>T some y e {z, k - z, , , . , hd . d , h(k . y) > k . h(y). Hence (+) holds.

Case 3) Let Supp(1) c SuPP (k) and for some Pi, PJ, B} < ?. Hence m < n
with as before k = pT L . . .p:" and Z = pR\ . . - pn" . We can suppose without loss
of generality that # = min{#; Z = 1, . . . , m} and Sm = max{#; i = 1, . . . m}.
Furthermore since kB1 ,k and la\ , I are multiplicatively dependent \ve can suppose

without loss of generality that R = 1, hence ;m > 1.

L£MM A5.8.Let f1 : AN –> iN be the function which sends kF to is, u'here s = [F#’- ]
(the smallest natural number greater or equal to fIn ). The function f 1 is definable
in < IN, +, %, A > and strictly increasing.

PROOF:\Vc will show that IF (z) = y can be defined by the formula “ y is the smallest
power of Z such that Vu[H(u) ? y –} %(u) ? I]”

Let u = k' and y = Z'. Take u = pl1 - . .pX" some natural number, where some
A can be zero. There is no loss of generality in assuming that u in the above formula
is of this form since any prinre factor different of p\, . . . , p„ would not change the
value of UCu) and %(u) .

No\v %(u,) = %(pT1 . . ' pp ) = hmi11{lai;i=1’---’"} and in the same way UCu) =

Im:"{L#i;:=1’-"’m}. A,„„ A(„) ? y –> y,(„) ? , i, ,q„i„.,k„t t, “mi„{ l#j ;i =
1, . . . , m,} ? s implies that min{lf ] ; 'i = 1, . . . , n} ? r” . Furthermore this holds
exactly if “for all i, it ? sDi” irnplies “for all i, b ? rat” . Therefore Vu[H(u) ?
y –> %(u) ? #] holds if and only if rai $ sDi for all i. Hence “ y is the smallest
power of Z such that Vu[H(u) ? y –> %(u) ? z]” if and only if s = [rPI . The
function j1 is strictly increasing since p > 1. This completes the proof.

LEMM A5.9.Let g// : IN –> kN be tIle function which sends Z- to kT. The function
g" is definable in < IN, +, Vl„ Vt > and strictly increasing.

PROOF:Since + = 1, \ve can argue as in the proof of Lemma 5.8 to show that
g"(1;) = y can be defined by the formula “ y is the smallest power of k such that
V'tzU,(u) ? y –> UCu) ? ;c” . The function is strictly increasing by definition.

LEMM A5 . 10 .Let h = g11 o f 1 . The hmction h is strictly increasing and h(kr) = kS ,
u'it,II s = [ Tl" ] .

PROOF:This is obvious from Lcrurna5.9
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CONCLUSION.Here for any # = ku-A"'–l , 1 < u e IV we have that h(k ' z) =
h(k“-Pm) = k'“an = k.k“-“,„–1 = k.kr"'am–ll ? k.kru-a'"–a1 = k.kr("'P’"–1)-a1
= k . h(#). Hence (+) holds with d = Bm.
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PROBLEME DE JAMES AX

Herv6 Carrieu1

1. INTRODUCTION.DEFINITION

1.1 D6finition, Proposition. Urt cr)7'ps if est cbt. pseudo-rrlq6briqucmcnl clos
(PAC ) s ’ il, rltl71 bc 1’IIne des dean propositions 6qu,£ualentes suivantes

(£) . Toute vaIl,atc V (absolum,eIIt €rr£ductible) d£finie stir K admet un point K -
I '(it,i,on,net.

(ii) . IL e'.a,st,e Ko sorts corps tIe K a,7/ec Ko c K ext,en,tion. alq£brtque, tel que to tae
courbe pLane ct6finie sur Ko poss6clc un point K -TCLtionTbel,

1.2 Exemples,
(a). Toutc: (:xtc:nsioII alg61)riqllc (1’UII corps P AC cst P AC .
(b). Tollt,c extension alg6briqll(' innnie d’un corps nni est P AC
(c). If cst P AC s’il satisfait ai. i = 1. 2. - - . oil lcs ai sc>nt des 6nonc6s du langage

(Ie la tlr6oric (Ics corps. (voir par ext:rnple [2] p.132);

PROBLEME DE AX : Est.-ct '. q'ILi'. told, corps pseu(/o-a/g6b7qqucrn,emI r:los ct par-
fail. est cI ?

On rapt)cllr (Ill’luI corps K t'st (lit C,- (d) si tt)lrt 1)olyn(-)me homobane P de degr6 cZ

(trl n \'arial)1( ts a\r!( 1 72 > dz &rdIrr( tt IIII z(Iro rrorr trivial dans K. Url corps K est dit
C.',- . s'il cst G (d). p(nrr tout- d.

1.3 Remarques :
(a). Tout (brps nni cst C1 . (Tlr6(>ri:nlc de Chc:valley, voir [5] )
(b). C-; (d) cst lure propri6tc’I (’:l(Irlrcnt&rire

OII irrtrocllrit altirs la not,it)II (Ie cc)rps faiblcrrrcIlt, Ci .

2. PROPRIETE C.',-FAIBLE.

2.1 DefInition : Un corps K est dif fnibtcnlent Ci si. Ctanf donnE P polunome
tb07noq Elle CII ’It l>crri.abIes IIe (I.cgI-6 d. aucc it > d1 , l’f:71,semble alg6b7"i,qrre V(P) des
z6r'os d,t’. I) ll.(IrIS WI' ('oTI,t'i,(’TIt II;It,t’ K -I.tl,'I"i.tIt,6 atlst)I,’trIll,(’.IIt i,rr6(tIt('.t'i.bt(-

2.2 Remarques :
(a), Il est ('lair glut si url cc)rbs ost C'i . all irs iI est. fail)lenlcnt Ci. (Ie z6ro non trivial

If-rtrti(>nII('I ('tlrrstitlrtt la /\ -vtrri6t.6 al)soInuIt:IIt irr6(Itu:t,it)Ie).
(b). Si 1{ (*st l>arfait. ak)rs la It-\nrit’*t6 aIrs(rlunr(’nt irr6du('tible est d6finie sur K

( [1],P. 7=1)

ILdboratoirc (Ie Logiquc NIath(’'11ratiqllr. colrloir 45.55. 5lc'nle 6tage. Universit6 PARIS VII
.It 'SSIEt ’ 7.:)til)3 FiA RIS



(c). Ptitlr 1III (1)rbs it parfait ct P .A(' , los ('.(trrclit,i( 3ns - I< rst (J;" et - I< est
1}\il)I('rrr(tIlt (,';" SOIlt 6(j11iv&rl(lrrt(is

OII (loIrlr( I rrr&rirrt(tIlt tIIL (jlr(llqll('s prol)I'i6t,6s irrrl)t)rtaIrt( ts r( Ilat,iv( is arrx (:orI)t'; faiblerrrent,
(

2.3 Lemme : U II corps K cst fa,'i.t>1,CTU cut Ci si, t.oll,t pot,yn,ome P h,OTn,oqi'.ne dc
deIIrE d en n. OaI-iatl£es aciTrtet un z6ro non trivia,I, (x) tel. qu.e t’ext,en.tion K C K(x)
so it 'irl'irll.a.irr'. (i..e. K (x) est, Lilt6nITemr'IIt (Ii,sjn-int. tIe K, srLr IC )

011 (1(q(lllit aloI's (1(' ('(' 1('lrIIrr(’ tIll(' 1)roI)ri6t(1 (1(' (1( IS('('IIt(!

2.4 Propri6t6.'-'Corollaire : St)it 1( (_ L v/n (’ f’. Irt,cr 1,t, i oiI pl'/rna'; IT? ci /, 'll,II, (',ol"I)s

frI iblr'ment. C+ . al07's K rst. frriblc71 lent (',

D6monstration : Sc)it P e K- [Xn. . . . . X„] Irc>Int>g€'nc dc clctgr6 d avec lr 2 d‘
P e A’[X] ct soit alt)rs (x) 1111 z6ro cIe P ayer L C L(x) prirnairc. On a K C L(x)
cxtcntion prinlairc (par transitivit6) ct (toll(' I< C it (x). \y

t'tiut c'cllrl111(' la propric’+6 (' , , la prot>ri(ltd faiblcmcnt, C, se conlport-,e -'relativerncnt
t)icrr" I)orll' I('s ('xt('rrtioIrs. 1)Ills I)r(’'('is6lnclrt. :

2.5 Proposition : Si it tht un (I>rps C, (rc’sp. failil(’nront C,-) ct L unc ext,('ntion
cIt: I< cIc tIeRra tie trans('('ll(la11c'e J. itk>rs 1. ('st o+ j (resp. faiblement Ci+j).

D6monstr,rtion : Vt)ir par ex(trrrplc’ [3] .p.21 – 22

3.– PROCEDURE DE DECOMPOSITION

On ('c)nsid6rc' v (P). z(qr(>s (I'uIr pc>lynt>nIC P e /\'[X] ou plus g6rr6ralerrrent un sous

('ns( InIt)1(' algal>ri(lu( 1 ,4 de n" <>u P" (lc’:fiIri par (Ics pt)lynom( IS a c'oefti('ients dans K
OII va (It}Irrrcr url(' prc)('c’'[lrrrc ( lui p('rrrrc't clc' savciil' si crt, cnscnll>Ic A conticnt une
s( )115- /\’-va ri(’!t,6 :rl)s(illrrrr(lrrt, irr6(Irr('til)1(t

OII c:1>11sicli~ro /1 = U IS lil cIf’('orrrpc)sitit irl stir I< (Ie /1 ct, p(>ur cha(Frc I, U: = Ul Ml la
cIa(1)mptlsitic ill sllr A’. Pollr tc)Ilt /. {It;; ; } rcpr6st’IIte un sys;tame complet dc vari6t6s
('oIrjugu6c's sur [f. tit €1t)Il(' n/lt-I/ ost invariarrT srtus I'tr(+ion (lu groupe de (Idlois
athe>lu C,'( A-) = (;al( A'. / /\-, n/ it -, / t’st alttrs url cnsenrble alg6briquc dCIini par dcs
pDl)'llom(h A cl]('ffi<'ic'nts (lans 1< , ( [1] ,p.74) on Ie not,era Ui . Pt>sons A(1> = ULFi et
rc’'it6roIls ('c ltte clt':c\]rnpc)Sitic>II pc)ur ,4r 1 i . OII cttnstruit ainsi lrrrcl srrite (16croissante
t 3 AC1) 3 ' . ' 3 /It’") J I( r"+1) yIli c’st static)nnaire (If[X] cst Noeth6rien). On

rIot c' .4* sa limitc'. On nott’ra (jlr€' '1* p(:ut i’tre vida rt dire (IIIO a* ost, non vi(Ic
sigrriht' cjlr(' ,4 cc)ntic'nt lli1(' /\--\riric;Tf' aI)sc)Irnrrent irrc’'(ill('t it)lo
Plus pr6('is6nlcnt s(lit'11t IT’1 . IT’2. . - - . It: 1l’s clivc’rsc’s c'olllposantcs sllr Jf de A. Ajl)
_4(2). . . . (,t n( it(>rls L la plus p('titc, (,xt(.nII(nl Galoisirmlc: dc I< telle’ que cha(lrre IT’,
sttit d('fini(' sur L (L rsT appt'lc; r'07'/is dr ljf'f'rrlll IU ISI 'ltlll (It' ,I sur it ). alt)rs on a

3.1 Proposition : ScI-It I/ unr' f'.rrf'Ill lorI r/r' Jf trIll IIlje \1 nl = 1< . J/or's A*
t’St, II,OII, t:I,dt, SI (’t St’ tII(’'III(’ IIt SI /1 t'tyII,t.}€: 11t tIII t’ XI - t,U I'I (t,f tr\)St)ItI,'III CIIt 1,I'I'f.tLUCt;It)it.

D6monstrdtion : Si 'l* rst Ilt)n \-icIo. il cst (lair (luc '1 ct)nii('rIT 11rrc: /\--st)us \,-a,ric’+6

at>s(>l1I111c'nt il-r(“cl11('tit)It'. (IIli t'st allssi llllr ,V-v?lri(''t(q

')
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R,6ciproqllernent srrpposons gIro A (:orltienn( I tV, A/-vari6t6 absolrrment irr6duc
til)le. Alors iI cxiste i, j tcls que LV c l'Ej, Lcs composantes {}Vo} sora con-
jugu6cs stIr IT ct t(nlt a e Gal(L/K) sc prr)it)ngc on un A/-autornorphisme & de
NI L , car (tire qu(I M n E = K av( ic L extension Galoisicnno dc K 6qtlivaut a dire que
A/ et L s<)nt lindair('nrent disjointes sur K, d’oil Ic prolongcrrreIrt ,cl’ailleurs unique,
(Ie a

{H'-,'/ } sont, alors (ic’tfinies sur A/ L et ('onjugu6es sur A/. or I'I/ est invariant,c sous

1’action (Ie ai, avcc ai e Gal(L/ /o, (1(>nc IF C nj Inf .. Ainsi LY C ,4(1) ct par
induction mC A*. v

4.– LES CORPS KLa~,

Dans [5], J. Ax a prolrv6 que tout corps P AC et parfait K, cst C1 dcjg que G(K )
est at)61iCII. La prol)osit,iorr slli\'ante 110ils folrrnit (Ies excnlples (:orps P AC et par-
fahs av(x: G(K ) non at)aliens. On rappelle qu’un corps K est hilbertien si pour
t(nlt m. 6t,aIlt, dl)11116 rn polynC)mcs j\. - - ' . fu, e K\T. X\. - - - . X„] OII pcut trou-
vcr unc infinitc’! (1’616nrcnts a (Ie K t( tls que /1 (a, X), /2(a, X), . - . , in,(a, X) rc:stent
irr6ductibles sur I<

Exemple : Tt)IIt corps de nonrbrcs est hilb€:rtien, tout corps de fonction
alg6briquc d’unc variable est url cc)rps nni et Irilt)ertien, (voir [2])

Pour 1,t)Ilt (al, - - . , az) c Gal(K)/, OII rIot,cra

KLa\. - - - . q) = {/ C K / ai( 1) = =. i = 1, . - - , /}

On conf(mcI ici al c Gal(A-.//f ) avc(' s011 unique prolongcment h A’.

4.1 Proposition : So it. It (if 71.orrl,brIl1)1,(: (t FIJi.I,t)CIt'i,en,

(a). POnT tout 1. ct pOttT- prcsque to'll,t (a) C G(K)1 , K(a) est PAC , parIaH et de
groupe d,e C;a,Lots GLKb = F1

(b). So it, 0 lm £110nc6 dans £(X), ct 1 e N, alors 0 est trac dans K(a) petIT

p'resq’ue tau.t (a) ric G(K)! si et scm,j€qncrtt si 0 est In-cae dans tout corps PAC,
parfai.t (te grow,pe tIe GaIn-is F1 et cont.encm.t, K
D6monstration : [2].p.237 – 2.58

Remarques : "Pr(’s(IIIO tollt," ('st, 1)ris tIll s(nls (1(' la rncsllr(I d( t H&rar stIr Ie groupe
G(/{). P/ c.st le Lr0111)e profIIli Iit Jrc A / g6n6rat(:tlrs .(voir par exelnple [2],p.183)

La proposition slliva11tr Irl(’t OII r(’latit)11 les propri6t6s Ci. fail)lenIent Ct avec les
(1)rps K (a)

4.2 Proposition : Sryi,t, I< II;i,it)(’,Ttl,eII, (1611,07nb7'(I1)Ie. SOII,t dq'tr,'ir>ale71,tes

(a). K est faible7rlcnt C,
(b) . Pnn.r t,out ! et presqu,e t,ou,t (a) e GLK)I , KLa) est Ci .

D6monstration : (a) --' (b). Pour t(nlt / et 1>resquc tr )ut (a) e G( K)L . K (a) est
un corps P AC parf&lit, cl-apr6s 4,1(a) ct ('st faiblclrront C', (:onunc ext enti£ irl alg6briquc
(Ic I< , ainsi it (a) c.st (-;
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(b) + (a). Soit, P e it [Xt1. ' ' . . X„]. OII appli(IIlo la pro(£durc! de cId(:(rrnpobitiorr

h /I = Y(P). Sioit L Ic corps (III llt’tcornposit,i(nI (Ie V(P) sur K ct ai, al. . . - a; un
systanrc (Ic: g6n(Irat,ours cIe Gal (L/ A’). OII pCIIlt tr (ltlvt lr ((l’apr6s 'I.Ka) (!t l’hypoth6se

(b)) a1. ' ' ' , ar ( IIli prolt)ngent ai . al , - - - a / ct tcls (plc RCa\ . - ' - . ar ) s(>it C1. Ainsi,

74 = 1/(P) ('ollt,icnt unc KLa\. ' - - . ar)-vari6t,6 abst)lumcnt irr6ductibl(t (i.e. le zero
ni)n trivial (lans A’(a)). Or EU A’(a) = 1< et (k}II(' d-apr6s la proposit,it>II 3.1. a* cst
In)n \-i(Ie. /1 ('oIrtiont alt)rs tIll(' /\--vtlrif'tc’I al)sollrm( IIlt irr(’t(luc'tit)le : A- ( tst faiblcment
( V

4.3 ProposItion : Soit K ttii,tlc’.rtic’n„ d,Cn.OTlltrl'ot ll.c et fcri,btemc IItt, (ii . Atol-s toutc
entensioTI. tlr. It csl fai.blCTneTlt Ci et dorIC. tout rr)rps PAC parf(lit, c07tte71ant K est,
(

D6monstration : St>it F 1111(' t'xtc'rrsitm dc A- (plc I'on petIt SIl1)1)(lst:r (lc’'nombra
tile .(les ('<)t’fH('i('nt (I'IIn P C F[X] st>nt dans tIll(’ (txtc'rrsion lillie (Ic /o. Soit K'
exte'ntsion trans('c'11danto purr (Io K vt':rifiant, K c K1 c F et F alg(':t)ri(1ll€r blu K '
I< 1 cst (I(''llt>mI)rat)le hilb€'rtioII. ('t cl-apr('s 4.1(a). /(/(a) cst P A(' ct par&lit pour
tt)IIt I ct I)rc's(1llt' ttnlt(a). All)rs (I'aprcqs 4.1 (b). KF (al c'st Ci . et par 4.2. I<' est,

fail)I('nrctllt Ci . ainsi F. cxtc'nsi(nI alg(’'t)ri(luc dc it /. ('st, faiblcmcnt Ci. v

4.4 Proposition : (a). TI)IIt Il)I-ps P AC' pc ll'fu -l.t. /, dc cr17-cLr'.16r'isI.iqtl.r' pos'LLlue. p
esl C'2

(b) . Tout, r'(n'ps PAC pu.rfa,it ('.orde71,ant url ('or'ps ul,q6briqueTrt,emi cl,os est Cl

D6monstrdtion : (a). Si i. (:st, alg61)ricj11c stIr Fp. L est (,'1 cllr Fr, est, a1
Sinon L c'ontic tIlt Fp(f) a\'’c'(= t traIls(rn(lanl burr Fr, ct, Fr,(t) Irilt)crt,ion (I(’tnornbrable
est a2. (it)llc' fi\il)lcnrcrrt C2. L Iht, all)rs faitilenrctrrt, (/'2 ct, (IOIre C'z.

(b). SIll)pt)stills tIlle L ('olltient, S: +IIB(’'t)riquerncIrt ('l€)s. £2 est On ct L cl)ntient Qd)
in-cc t trans('( III(ItInt sur SI. £2(i) IISt Cl ct, dc)II(' fitit)lenIent, Cl. S2 r;out, fltre suppose
(1(Inond>rat)lo, S2(f ) ( lst, alt irs Irill>t:l't,i(in (16nornttrat)]c. L c’st don(: faiblCIrr€tnt C1 , done
c’I V

On voit, ctt>nc' quo Ie prot)li IIne (Ie AX 1>cut so bI)scr (Ie la faqoIr sllivtLnt(t : EsL-ct.
que tout. COT-pS cst, frrible7nr’.IIt. Cr ?

On clc;(llrit nlt irs tIes r6sultat s 1)rt''(I’'(it'IIt s

4.4 ProposItion : Suit it tIll c.CIr-ps et d trI CItI it'.r posit.if. K ad,m,et lrlle e.-.cteTts-i07r

Fn,ie Kd tell,e q’ue Kd soil 11111 ll,t:rllcrlt, C'ILdl

D6monstrdtion : SI>iT 'I- = { axiornc's (It's ('tir I)s P_4C,'.parfait c'ontcnant K }
(v(ir [2]). ttl st)it A lo diagramlllt' clc l< , Un mt>di,lo (Ir T U A est alt)rs (4.4(b)) un
CI)rbs P .'\(' 1)&lrfaiT c't Cl . La 1)roI)rif’tt’' C-1 (d) sr’ br(Ill\r' a I'aicle dc T U A et done a
l-ai(to (It’ T U A11 (IiI An t-st IIne T>?tl-tic' lillie (Ie A. X’tit(IllS K d l-cxtcrrsi[ in finie de K
('llgendr(“(' 1)iII r(IllS Ics C'ld'mcllts clr K int orven IInt (laIls Ao. D(nIC t(nlt corps parfait
P AC.' c'l>ntc'n tInt K ,I cst Cr (d).
Si I< ('st, llilt)('rti('lr (I(’'rloIIII)tIl1)1(' iI ('11 (tst (Ie rrrri1(1 (1( t I< d (IIli ('st doII( I fail)lerrrent
C’1 (r/) (l-?lpr6s -t.2
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Sinon on port trouver dans K un corps d6nombrable hilbertien E qui a(Imet une
extension hnie Ed faiblement Gl (d) ct, t,elle que tout corps PAC parfait contendnt
Ed est Or (d). On v6rifie alors que Kd = K E,t est fait)lcrnent al (d). \7
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The representation of f–groups over Priestley
spaces

D. Gluschankof F. LuCas

1 Introduction

Two natural generalizations of that of direct product are that of Boolean product (see

[3]) and that of Hahn product (see [6]). The two type of products have been used for
the representation of abelian lattice-ordered groups (g-groups). The first one, for the
representation of projectable abelian g-groups (see [13], [23] and [16]). The last one
appears through the Conrad-Harvey-Holland Theorem (see [7]). This theorem proves
that any abelian f-group can be embedded, as an f-subgroup into a Hahn-product of
totally ordered archimedean groups. In spite of its depth, the Conrad-Harvey-Holland
Theorem is limited for the study of model-theoretic properties of the represented groups.
That is, if the group is isomorphical to a Hahn-product, it is possible to study some of
those properties (see, for example [14] ). But, if it is a strict subgroup of the Hahn-product,
little can be said. On the other side, the Boolean prodlrct representation gives a lot of
results for the projectable g-groups (see [21], [23], [16] and [11]). But it cannot be used
for the non-projectable case.

In this article, we will study a generalization of the notion of Boolean product which
will give a representation for a wider class of F-groups, permitting a model-theoretic study
of that groups and, maybe, will be uscfrll for other classes of ordered structures

As a sidercslllt we obtain a fact,orization of the representation for MV-algebras as weak
Boolean products presented by Cignoli and Torrens in [4].

In all this article “group” and "f-group" will stand for “abelian latticc'-ordered group
and “o-group” for “totally ordered abelian group”

2 Priestley spaces, root-systems9 Hahn-products and
projectability

In this section we recall some definitions and results horn [17] and [18] for the Priest
ley spaces and from [1] and [14] for root-systems, Hahn-products, project,ability and r-
project ability .
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A Priestley space is a triple {X, r, $> where <X, r> is a topological space and $ is
a partial order on X such that, for any r, y e .V such that = X y there exist a clopen
increasing set Cf (that is, a clopcIr sct, which coincides with its final section) and a clopen
decreasing set L such that T C U, y e L and Un L = a. An equivalent definition is that of
an ordered space having a base of increasing (decreasing) clopen subsets, in the original
definition of Priestley’s there is the additional condition that {X, r> must be compact.
We prefer to have a little more generality.

It is immediate that a Boolean space (the spectrum of a Boolean algebra) with the
trivial order is a Priestley space. The Stone representation theorem (every Boolean alge-
bra is isomorphic to the algebra of continuous functions on its spectrum) is generalized
by the following result of Priestley:

Euery distributiue lattice is isomorphic to the lattice of continuous functions on the
Priestley space of its ordered spectrum. In particular, if the lattice has 0 and 1, its Priestley
space is compact,

A Priestley space is called an Id -space (Ii-space) if the closed initial (final) section of
every open set is open. An l-space is an Id -space and Ii-space. The notions of cd- space .
C,--space and C-space are the analogous ones replacing “open set” by “closed set”. A
space which has all those properties is called a Cl-space. Finally, if “open set” ( “closed
set” ) in the antecedents of the definitions is replaced by “compact-open set” ( “compact
set”) the analogous properties will be called weak. The initial (final) section of a subset
A will be denoted by A 1 ( A T). A subset of a Priestley space will be called d-compact
ti-compact) if each covering by a family of decreasing (increasing) open sets can be refined
to a finite subcovering.

Recall that a structure G on a language £ is called a Boolean product. of the family of
£ structures (/,„),ex if

i) G is a suI)direct product of the familv (L, ),ex.

ii) X’ admits a Boolean space topology such that

ii.a For each atomic formula p(1l1, . . . . r„) of £ and elements gI. . . . . q„ e G, the

„,t R't,CgI ,. .- . g,bI = {„ e X / II. b ',’(gI(a:)T.. . , g,I(-) J} I; 'I.p„1

ii.b For each g, g’ e 6’ and clopen set I’ g ,Y tllprc exists an element of G' coinciding
with g on Y and with g / on X \ I

A r'oot-sust fIll is a partially-ordered set sllch that tIl(' final section of each of its ele-
ments is totaljy ordered
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Given a root-system I and a family of a-groups (Li)icl, consider the product group
G = Flier Ii. For each element g of G, define its support supp(g) = {i e T / g(i) + 0}
and its ma£irnal support ms(g) = {i e supp(g) / Vj(j > i + g(J) = 0}. If a and b are
two subsets of J (for example the maximal supports of two elements), we have a natural
order between them given by:

a < b - i :- Vi e aIJ e b(i g j)

The Hahn- product A(I, (Ii),-el) is the subgroup of (; given by

!g e G 1 Vi e supp(g) the set [i, –>) n supp(g) is anti well-ordered}. (t)

Under such a condition, the Hahn-product can be ordered by g ? 0 if and only if,
for all i belonging to ms(g), we have g(£) ? 0. This order gives an f-group structure to
A(/, (Ii)icr). In fact, for any subgroup G1 of a whose elements satisfy the property

Vg(Vi e SL'pp(g) Ii e „„(g)(i $ i)) (#)

a partial-order can be defined as in the case of the Hahn-product. However, this partial
order is not necessarily a lattice order

If there exists a totally ordered group E such that, for all i e /, Li is isomorphic to L,
then A(/, (L,-)ie/) is called a Hahn -pouleT and denoted A(/, L)

For any t:-group, the set of its prime £-ideals with the order given by set-theoretic
inclusion is a root-system. The quotient of an Z-group by a prime £-ideal is a totally
ordered group,

Two elements # and y of an Z-group 6’ are said to be orthogonal and denoted a 1 y if
1 = 1 A 1 y I= 0 (where 1 = 1 is defined as (r V 0) + (–r V 0)) (we shall also denote with r+
(z_) the positive (negative) part of r: r V 0 (–r V 0)).

It is easy to verify that, if I ,g e G, an Z-subgroup of a Hahn-product. j 1 g if and
only if for all = e supp(/) and y e supp(g), r is not comparable with y.

The polar of a is the F-ideal of a

„1 = {geC / - rg}.

The double polar of ? is the £-ideal

„11 = {g e G 1 VV(y e £1 + y r g)}
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An f-group C; is called pr oj cct able if for all :r, ye (; there exist .ro e yI and 71 e g11
srrch that :r – 70 + 71.

An f-group a’ is called r-projcct able if

i) V=, 1/II, to( i 1 to & # = z + to & Vu , IP((it 1 u & u) = u+ n) + (u g vI & o 4 yI)))

ii) V=, #1;(ms(;) = ms(#) n ms(y))

A projectat)Ie C-group is always r-projectable, d Hahn-product is r-projectable. If the
Hahn-product A(I, (L,-),-er) is projectable then the root-system 1 is trivial)' ordered. Since
for our development Ive shall be interested only on agroups satisfying condition (i) of r-
projectability, we shall say that those groups are ri-pmjectable

For any f-group G, and non-zero g e G’, call go to the set

{- e gll / ly, ; e g11tyLL + gl- & z11 + gLL &- = y + ;)}

Which is a prime ideal, We have that, if G is a Hahn-product, then go is the lex-kernel
of g11 (see [11]). Denote by g- the quotient group gII/go. Since each go is a prime ideal
the family {g* / g11 + go & g eG \ {0}}, ordered by the set-theoretical inclusion is a
root -s)'stern

If G = A(X, (Ir)„ex), we have that there exists an embedding of the root-system
{g* / gII + go & ge G \ {0}} into the root-system X. If all the points of the root-
system X are branching points then the correspondence is bijective.

3 Priestley powers

In [15], Martinez studied the Priestley space of the underlying distributive lattice of a
\Vajsberg algebra and, by endowing such space with a binary operation, he arrived to give
a representation theorem for Wajsberg algebras in terms of what he called a Wajsberg
space. Since there is a categorical bijection betweclr the categories of \&’ajsberg algebras
and f-groups with strong unit , we have that his results hold also for this last category
For our representation theorems we shall look to a Priestley space inherent to the f-group
structure and wc’ dispense of ad(litiorlal operations

Consider now a Priestley spacc <X. r. g> such that the ordered set {X, $> is a root
system (in that case it n'ill be called a Pritstlt y root -syst tIll\ and a totally ordered group
1-

Given an element g e C( <X. r>, /,) (the f-group of continuous functions on L, where
L is endowed with the discrete topology) we have that its support, is clc)pen. If I

'1
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compact-open subset of X, we shall denote by gIl' the map given by

yIy(„) = { g(’) iI : ; }} } A::::E!: +

Denote by Y(g) the set (Y T rlsupp(g)) I IIsupp(g). Observe that the sets Y(g) and
X \ (Y(g) T) are orthogonal, in the sense that, given y e Y-(g) and / e X \ (Y'(q) T) we
have neither y 5 x nor r g g. Hence, it is possible to well 1lefine gl), U /Ix\(r(g)T) as the
map which coincides with gly and /Ix\(r(9)T) on their respective supports. In particular,
it can be proved the equality gI)/ U fIx\(y(g)T) = gly + /Ix\(r(g)T),

Definition I Let (X, T, g be a Priestley root-system and L a totally ordered group, The
PrIestley power PR(<X, r, g , L) is the group of continuous functions tvith compact sup-
port on {X, T) with values in L tvhere this group is considered lottE the discrete topology

The following 1,emma (and its proof ) is totally analogous to the corresponding I,emrna
for the case of Boolean powers (see [2, Theorem 5.6])

Lemma I Let <X, 7, $> be a Priestley root-system and L a totally ordered group. The
group PR((X, T, 'g , L) satis Bes the foLIo lung propeTties.

i) For all corrtpact-open subset Y of X and a C L the constant mInT) to a on its support
Y belongs to PR(<X, r, $> , LI,

h) For all f , g e PR(<X, r, $>, 1) and clopen set Y S X the element which coincides
with f on Y and with g on X \ I-- belongs to PR(< X, T, $) , L) . (Patch Inor}c property)
lb T)aTt.ictIIar ive hate

h’) For all I , g e PR(<X. r, $> . L) and clopen set Y q X the element /1), U glx\(r(r)T)
belongs to PR({X, r, $) , L) . (Orthogonal patchwork property) .

As in the case of Boolean powers and Boolean products, for / and g in
PR(<X, r, $> , 1), if <> is one of the binary relation symbols =, <, >, $ or ? we shall
denote with [/',>gl the subset {r e X / /(.r)<”>g(= )} of .X

Remark 1 Observe that, in a Priestley power, for any clc)pen set Y and element g the
set Y(g) = ((Y T nsupp(g) ) 1) n supp(g ) must be compact-open

Lemma 2 Let (X, T. 'a br a Priestity space and a e X . The closed initial and fInal
sections of a ((+–, a] and [a, –l) respectitlely) are closed sets

Prooj: Let b q ( +–, a]. There exist disjoint clc)pen sets (; (b) and /,(b) such that thc? first
one is increasing, the second decreasing. b e f F(b) and a e L(b). In particular u'e have
that ( '–, a] n U(6) = O. So. \ve have (+–, a] = rIbe(b,, I /,(b) which is closed. For the final
section the proof is alralogous. •



Lemma 3 Let (X , T, g be a Priestley root-sy.stent and L an o-group

i) PR( {X, r, $> , L) satis Fes property (+) and hence it has an OT der c07npatible with
the gro ltp stTUctuTe

ii) if X has the \d property then, for all g e PR( (X, r, $> , L) tjle have that ms(g) is
contpact

Proof: i) Let be g e PR(<X, T . g> , L) and a e supp(g). Co.nsider the subset of supp(g),
/ = {r e supp(g) / a $ 7}. Since X is a root-system, we have that I is totally ordered

Consider now, for each r e I the closed subsets AT = [z, –> ) n supp(g). We have that,
for each finite subset .I af /, the intersection r]r€J A, is non-empty, Then, by compacity
of supp(g) we have that n,CIA, + g. Hence there exists y e supp(g) such that a $ y,
nrc/ Ai = ny and then y e ms(g), Hence we can conclude that property (+) holds

ii) Let a be a family of open sets covering ms(g). Property Id implies that, for each li e U
the set ( J I is open. By what was proved in (i), we have supp(g) = supp(g) n (ms(g) 1)
Hence we have that the family of open sets { C/ 1 / F e &{} cover supp(g). Since supp(g)
is compact, there exists a finite subfdmily {U1 1, . . . , th !} still covering supp(g). We
have then that { t/l , . . . , Ch} covers ms(g) proving its compacity. •

Proposition 4 Lel <X, r, $> be a Id and u'enk cd Prlr stIr. u I'onl -system rnid L an o-group
The Priestley pouler PR( <X, T, a , L) with its natural order induced by property (+) is an
e-gTO tIP .

Proof: To prove that an ordered group is a lattice-ordered group it suffices to show that,
for each element g there exist q+ = q V 0 (see [1, 1.2.9]).

For each element g e PR(<X, r, $>, L) consider the following subsets of its support:

„'s,(g) = {„ e ms(g) / g(„) > 0} ms–(g) = {„ e ms(g) / g(„) < 0}

supp,(g) = (ms+(g) 1) n supp(g> SL'pp–(g) = (ms,(g) I) n supp(g)

Consider the (finite) non-zero elements of Im(g) with their order
ao < . . . < a„ < 0 <~ a„+1 < . . . < a,„. We have Kg < 0] = U:=1 g–1(ai) and [g > 01 =
U;In+1 g-1(a,-) implying that both are compact-open sets. Since ms+(g) = ms(g) n[g > 0]
and ms_(g) = ms(g) n[g < 01 ive have that those sets are compact (and hence closed). By
the weak cd and Id properties we obtain that supp+(g) and supp_ (g) are clopen. Since

they are subsets of the compact set supp(g) we conclude that both are clopen and compact.
Now, by the patchwork property. define g+ equal to the restriction of g to supp+(g) and
analogously g_ as its restriction to supp_(g). So we can conclude that PR( <X . T . $> , 1)
is an f-group. •

Proposition 5 A Priestley-pouler such that its Priestley root-system satisf es the prop-
erties locale C, It?eal: li and Id is ri-projectable

6
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Proof: Let f , g e PR(<X, 7, $>, L), By the weak CI property we have that the set
Y = (((supp(q) T) n supp(/)) 1) n supp(/) is a compact-open subset of supp(/). By
property (ii) of Lemma 1, call /1 to the element Ir and 12 = f – /1 . We shall first prove
that /1 is orthogonal to /2

Let be : e supp(/1 ). By the construction of Y, there exists =1 e supp(g) and
r2 e ms(/) such that =,r1 $ 72, if y e supp(/) and y is comparable with r, then
it is less or equal than r2, implying that it belongs to supp(/1 ). For the converse, if
# e supp(f21 then it belongs to the complement of Y, Since Y is an increasing-decreasing
subset of supp(/), we have that # cannot be comparable with any element of Y

Suppose now that there exist /3, /4 such that /3 1 /4 and /2 = /3 + /4. By orthogo-
nality, we have that supp(/3), supp(h) C supp(/2) = supp(/) \ Y and then neither /3, nor
/4 are orthogonal with /2. So we have property (i) of r-projectability. •

Remark 2 in I,emma 1 we have separated the property of orthogonal patchwork because
it corresponds exactly to the ri-project,ability as can be seen in the proof of the above
Proposition

Remark 3 Observe that, if the order on the Priestley space is trivial and the space is
compact, then the definition of Priestley power coincides with that of Boolean power
Dropping the condition of compacity, we would have a lattice-power in the sense of
Weispfenning’s (see [22])

4 Priestley products
In the same way that the notion of Boolean product generalize that of Boolean power. we
shall define the notion of Priestley product as a generalization of that of Priestley power

Definition 2 LeI {X, r, $> be a Prirstley root -syst.eIn rInd. for each = e X , let be L,
a totally ordered group. We say that an f-group G is a Priestley product of the family
(Ir)rex ii and OIly if.

i) G is ct subciiTect product of the family (L„),ex .

ii.a For each atomic formula p( ??1 , . , , ,vA of C QTbd elentertts gl, . , . , gn e G , the set
[p(g1, . . . , gn )] = {r C X / L„ b p(g1 (7), . . . , g„( r)) } is rloprlt. in part iCtLlrrr.

for rqrh rlrmtn t g e C' fAr srI [g + 01 = supp(g ) is rIo pen and compact.

ii.b(L) For each g , 91 e G and ctopen set Y’ q X such that Y rnId X \\Y are orthogobat
there e£ists arl element of G coinciding with g on Y and with g1 on X \ Y

The class of all Priestley products over the space <X. r, $) and the family ( L,),ex will
be denoted by F( (X, r, $> , ( L').ex )



Remark 4 • We shall introduce later an enriched language for g-groups, hence, there
shall appear new atomic form11la.s and the meaning of the class of Priestley products
shall change. So, when it will be important to stress the language, its name will
appear as a superscript of the I',

• if we replace point ii.b(1) by

h.b For each g, 91 e C; and ctopen setY q X there e=ists un eleme at of G coinciding

with g on Y and u)ah g1 on X \)
we will have the class of strong Priestley pr'oducLs, denoted by F,( <X, r, $> , (L,)rcx )

A first –trivial example of Priestley product is a Priestley power PR(<X, r, S>, 1)
By posing L, = L for all r, it is easy to verify that it belongs to F,(<X, 7, $>, (L,),cx).

A more interesting example is the following: Let {X, 7, $> be a compact Priestley
root-system. Let ((E,),ex, (p„y),rv) be an inductive family of totally ordered groups and
monomorphisms. Call L to the inductive limit of the family and, for each r, call LI to
the image of L. in L. Consider now the subset G of the Priestley power PR( (X, 7, $> , L)
given by

G = {g / v' e x (g(-) e L:)}

First, we show that a’ is an f-subgroup of PR((X . r, $>, L)
It is clear that 0 e G. If g, h e G then, for each # e X, we have gCr), /I.(r) e L; and
hence (g + h)( z) = gCr) + hIT) e L;. For the join, we have that, for each = e X,
(g V h)(#) = g(7) or (g V h)(#) = h(r) and hence we can conclude that (g V h )( r) e L I.
Second, we prove that G e r,(<x, 7, $>, (I1),ex )
G is a subdirect, product of the family (I1)„ex: For each = e X and a, e L, we have an
image a’ e IJ, C L. The set {r} T is clc>pen in X and, for each r1 e {x} T we have that
there exists a unique a,r e L, such that its image in £ is a’. So, in the Priestley power
there exists the map which takes the value a’ on {r} T and 0 in its complement. It is
clear that this nrap belongs to C'. The property ii.a of the definition of Priestley product
is satisfied by G because it is already satisfied by PR((X, 7, $>, L). For property ii.b the
argumentation is analogous, observing that if Y g X is clopen and g, h e G, if A is the
element of the Priestley power which coincides with g over Y and with h over X \ Y then
k(=) = q(#) or k(7) = h(r) and hence k(#) e L;, implying that A e G.

Remark 5 As in the case of Pri('stlcy po\verb, \ye have that the Priestley products of
totally ordered groups satisfy the condition of ri-project ability (equivalent , in those cases
to the orthogonal patchwork property)

5 Projective limits of o-groups
Let be <1, $> an ordered set, (£,'),'e/ a family of (non-ordered) groups and. for each pair

; < J all Irolrrunrorphism V,J : if –d /,J such tlr?It, for all ; < ) < k, \ve have 9,'A = yjkov;,j

8
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We recall that the projective limit of the system is a group C; = lim.– Li and a family of
homomorphisms (xi : (; I ££),'€1 which commute with the p,j’s and that, for any other
group H and homomorphisms (pi)ie1, there exists an unique homornorphism h : A 1 G‘
making the diagram commute. Since, if there are i < j srrch that pi) is an isomorphism,
Li and £f can be identified, we can suppose that all the quotientis are proper

In this work we shaII be interested in the case where the family (p,i)i,\j€1 is composed
of onto maps.

If now each Li is an r-group, we have that, if (3 is the projective limit of this family
in the category of f-groups, then, since the kernels of homomorphisms are Z-ideals, the
ordered set </, g> must be isomorphic to a subset of the lattice of g-ideals of a. If each L,
is totally ordered, since the o-groups can be caracterized as the quotients of an f-group by
a prime Z-ideal, we have that (J, $> must be isomorphic to a subset of the root-system of
prime r-ideals of a and so, a root-system. In fact this characterizes the projective limits
(by epimorphisms) of a-groups in the category of f-groups.

Proposition 6 Let (1, g be an ordered set, LLi)icI a family of o-groups and

(p,'i : Li I Liji<.j a family of epimorphisms of OTdered growl>s satisfying the contli-
hons of compatibility. Then (I , g is in fact a root-system and the projective limit in the
category of (non-ordered) groups admits a natural f -group structure

Proof: By the considerations above, we have that, for i, J, k e I, if i < j, k, then both lj
and Lk are (ordered) quotients of the o-group Ii and hence they are comparable, implying
that </, $) is a root-system. Let G' be the projective limit and ( x,-)icr the projections
We define a subset A’ of a by stating g e it if and only if, for each ; e /, r,(q) ? 0. It is
immediate that. I< is closed for the addition and convex, so it is a cone, defining an order
$ on G. Now, call q+ to the element of [l/ Li given by

„i(g+) = { ii(g) : :: i:: : :
(g_ is defined analogously). If we consider H = {g+> as a subgroup of [1/ L, and, for each
i e /, p{ : I-I > 1. ,' the restriction of 7,', we have that the homorrrophism h : H > C;
is injective, iInplying that g+ belongs to a'. It is easy to verify that g+ is the least upper
bound of q and 0. implying tlrat, the order $ is a lat.ti(_'e order. •

Lemma 7 A projective limit in the couditions of the above stated Proposition satisFe.q:

the condition of ri-projectub’ihty

Proof: Let be .r, y e Gf = lim._ I.i. (JaII /* to the set ( {supp(//) T nsupp(x)} T) I. And
definr z = = 1 /v 8 and to = z – z. The collst.rtrction of /* asb;tires that /* is orthogonal with
its complement, implying z 1 ?o. Now suppose to = u + ?' for two orthogonal elements u
and u, thcn supp(u), supp(r) C supp(#) g l• . In particular, IICit,her u nor n are orthogonal
to y, which implies that property (i) of r-projcctability is verified. •

9



Observe t,hat, in general, such a projective limit does not satisfy property (+ ), For
example, consider a totally ordered abelian group G' such that there exists a value V which
is neither a succesor nor the last elenrcnt in the ordered set of convex subgroups. Consider
the ordered set of the respective quotients of the group by those corlvex subgroups but
without considering G I V . It is immrdiatc that those groups plus the canonical projections
give a projective system whose liIrlit is a’ and, if g e G is such that W is the value of g,
the support of q, looked at as an element of the projective system, is rIot upper bounded
However, if a projective limit satisfIes property (+ ) it is possible to show a relationship
with Hahn products.

Proposition 8 Let A(/, (Gi),-e/) be a Hahn product. There erist a projective family
((£{){€/,(pij ){,y) of totally or(lewd groups such t.hat A( /, (Gi )icr) can be embedded into
lim L

Proof: Call /7 to ,\( I . (C,-),-c/). For each ; e I we consider the sets

<i> = {g e H / supp(g> n ({i} T) = O} and

a = {g e H / supp(g) n ({;} T) = {i}}
It is not difficlllt to verify that, both sets are prime ideals of H. Herlc(' the quotientis

Li = H 1 <i> are totally ordered. If i < j we have that (i> C <j) implying the existence
of a canonical onto morphism yD : L, –> Lj. Call C to the projective limit of the family
((Ii),-c/, (p,j),',rj ) and consider the map I : H –} [1/ Li defined by /(h )(f) = h I (i>, Since,

for each A + 0 there exists i e ms(h) we have that f is one-to-one. Observe that the
projective limit, G can bc seen as an f-subgroup of rl/ Li. Since if i < J we have that,
/(g)(j) = p,I(/(q)(i)) we conclude that it Hl g G'. •

The proof of the above proposition gives us a partial converse:

Proposition 9 Let ((Ii)ie/, (y,',- ),',\, ) be q projectiue family of totally OTdercd groups when

</, $> is a root-system and each pu an onto map. Call G to the project.ive limit of the
family. If G satisfIes property (t) then there e lists a sxbset J of 1 and a JcIIn,itu of totally
ordered groups (G j)jeJ such that G can be subdiwctly embedded (as a non-ordered group)
into ny Gj and the Hahn product A ( J, (G j) jc.1) can bt embedded (as an F-group) into C;
If, moreover, G satisfIes property (\ ) then it is isomorphic to the Hahn product.

Proof: Since C; has property ( * ), for each g e G, if g+ 0 the set ms(g) is not empty.
Call J to U,learns(g). For each j e J consider the sets (J> d11d {}> which, as in the above
Proposition, are prime ideals of (','. llencc, the £-group GI = (J>/ (J> must be totally
ordered. The Inap a : G –} [L aJ defined by a(g)( J) = g/<j> is a group honlomorphisnr.
It is one-to-one because, if g+ 0 tllcrc’ exists J C ms(g ) g ./ and hence g Q <J> implying
that g/(i> + O,
The embedding A( J, (Gj)j€J) L+ C' is constructed as in the above proposition. The proof
that this embedding is onto in case of a satisfying property ( t) is irnmediate from the
definition of IIalln-product. •

10
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6 Topological projective limits
The notion of projective limit is a generalization of that of product., the last one being
when the order on the set 1 is trivial, The notion of Boolean product is also a general-
ization of that of product, the later one being when the topology of the space is discret
Considering ordered topological spaces we shall define another construction invo]ving to-
tally ordered groups

Definition 3 Let (X , T, g be a Priestley root-system, (L, ),ex a family of o-groups and,
for each x,y e X such that a < y , P,y : L, –+ LI an t-epimorphism (the family of
epimorphisms satisfying the condition of compatibility) , We say that tr s\tb9roup G of
the projective limit bmw IT is a topological projective limit of the family (which will be
denoted by G C T((X, T, S>, (L'),ex )f if and only if.

i) For each =,y e X StICk that : $ y , a e Ly and b e p;,1 (a) there elists g e G StICk
that a„(g) = b (and hence Tv(g) = a).

ii) For all g e G , supp(g) is a decreasing d-compact clopen set

iii) For all ge (; the subsrts [g > 0] and Eg < 01 are clopen

iv) For all f , g eG and cIopen set Y E X the subset Y( j) is d-compact and ctopen and
the element /\y U glx\tr(J)I) belongs to G . (Orthogonal patchwork property)

A subgrozp of the projective limit bnf isfying only conditions (i) , (ii) and (iii) lodI be
called a weak topological projective limit and the class of such groups will be denoted by
T„(<X, r, $> , (L'),ex ) . If it satisFes the general patchwork property it will be called a
strong topological projectivc' limit and its class drnoted by T,( {X, r, g>, (LT)rex ). Hc)lu-
ever toe will not deal toith this last class.

Remark 6 Condit.ion (i ) of the above definition is analogous to that of subdirect, product
for the case when the order on X is trivial. It would be possible to call it a sUDprojective
IiInit but we think tlrat it would only lead to conrplicate our language,

Remark 7 Observe that, for a more general casr, it will br necessary –as in the case of
Boolean product,s– to replace condit.ion (iii ) by

iii’) For all atomic formula p(211, . . . , tin) and clements qI, . . . , g„ e G , the set

[?(gl, . - - ,gn)I is cl.P. "

Lemma IO Let G be a topological projrctive lint it of a family ( 1,)„ex of totally ordered
abelian groups.

i) G SQtisftes propeTty (4)

ii) For any g e G, toe hnr'e supp+ (g) = [g > 0] and supp_ (g) = [g < 0]

11



iii) G is an E-subgroup of the projective limit.

iv) For any d-compact ciopen, decreasing set Y g X there crisIs g e G such that
Y = „lpp(g)

PTOOf: i) The proof is analogous to that of Lemma 3 i), observing that in that, proof we
IIse the compacit,y with respect to increasing closed sets, which is exactly the d-compacity.

ii) Since G satisfies condition (*) we have that supp+(g) is well defined and equals
(Eg > 01 n ms(g)) I. Let r e supp+(g), there exists then y e ms(g) such that
q(y) = xy(q) > 0. Since ay(g) = y„y(x„(g)) and the mappings are order morphisms,
we conclude that g(z) = r,.(g) > 0, implying that y e [g > 0]. The converse is immediate
and for supp_(g) the proof is analogous
iii) Since G is a subgroup of the projective limit, it is ordered, To prove that it is
an f-subgroup it suffices to show that, for each g e G. the element g+ belongs to G.
By using the orthogonal patchwork property and what was proved in (i), Ive have that

g+ = glsupp+(g) is an element of the group
iv) Observe that property (+) irnplirs that Y = m( Y) I, where m (Y) is the set of maximal
elements of Y. Using property (i) of Definition of topological projective limits, for each
y e m(Y’) there exists g 3/ e G sllc'll that gg(g) > 0 and %(z) = 0 for all = > y. By prop-
erty (iii) of the Definition and part (i) of this Lemma, we have that, for each y e m(Y),
the set [gg > CJD is clopen and decreasing and the family ([gg > ol)gem(y) covers Y. By
d-compacity of l’ there is a finite family of disjoint sets Y1, . . . , Y;, , where Y; = [gyt > tIl for
some yi e m(F) covering Y. Now, using n, – 1 tirnes the orthogonal patchwork property,
call g to tIl(: el(:IIlent of G which coincides with gu. on }1 for each i = 1, . . . , m. We have
that supp,(g) = „lpp(g) = 1’. •

For a Hahn-product G' = A(X, (Er)rcx) \ve have that, for each = e X, the subset
< / >= {h e G / supp(h ) n ( {#} T) = O} is a prime f-ideal of a , implying that the
quotient G/ < .r > is totally ordrred. In particular < = > is a value for all g e G such
that r e ms(g). Observe that, if a is only a subgroup of [[x L„ satisfying the property
(#), we have that G is a partially ordered group aIld also each < r > is a prime convex
subgroup and f: I < r > is totally ordered

Proposition 11 Lr I <X. r, g> hr a Id and II:t.ak cd Priest tty root-system and I am o-
group. Call G to the Priestlcy poll’rr PR( <X, r, $ ). L) . There exists a family (L,)„ex of
o-groups and a family of compatiblt epimorphisms (p,y = L„ I Ly),<y such that (I is
isomorphic to a Tnembcr of T( (X. r, $> . ( I1)rex ) .

Proof: For each = e X, call /.., to the quotient G I < .r > and rr, to the canonical
epimorplrisln. Suppose / < g. silla’ X is a root-systrm. \ye have that {,I/ } T is a proper
final sect,iorl of {/ } T and then (.r> is a proper (prinlr) f-ideal of (P> . defining a natural
projection Pr,/ which conrIllut('s with 7,. and xy. By ('oIlstruct.ion and the property of
universality of the projectivc linrit . \vc have that f; is isomorphic to a subgroup of it
\Ve know that a’ verifies ( as a Pric'stlcy po\vcr) property ( + ). Since the supports of its
elements are rIot the same for our II('\\' colrstrrlct ion . \ve IIa\'(' to ('ll(’ck t, Ilat it still satisfies
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that property. Let be g e G and I e X such that E„(g) + 0. This implies that g q <=>

and then there exists g ? = such that y e supp(g) (in the Priestley power). By Lemma 3
i), there exists ; e ms(g) such that y $ 3. Now, for any to > : we have that g e {to> but
g { <z>, imp]ying that z belongs to the maximal support of g construed as an element
of the projective limit. Hence we can conclude that a satisfies property (+), The above
proof shows that the support of q as an elclnent. of the projective limit, is the initial section
of its support as an element of the Priestley power, implying that the maximal supports
are the same.

Property (i) of the definition of topoIogica1 projective limits holds true by the con-
struction of the projective system. Properties (ii) and (iii) hold because, for any g e G
supp(g), supp+ and supp_(g) (construed in the Priestley power) are compact-open. Since
X satisfies the properties Id and weak cd , ive have that the respective supports in the
projective linrit (the respective initial sections) are also cIc>pen and, being closed initial
sections of compact, I>rts, d-compact. The patchwork property, being applied to orthogonal
sets, is transferred directly from the Priestley power to the projective limit, •

Proposition 12 Lc/ G' = A(/,(/,,'),'€/) . Thtrc crisIs a I)rlt st.try root-bust trlr {X, r, $>
which as a root-system– ertends I, a fumily oj o-groups (I1)rex (such that. for any
a el, we have that L, is isomorphic to n subgroup of Lll) and such HICIt (; is isomoTphic
to an element of Tl(X , r, $), (I1)rcx ) .

Proof: Let Y lie the family of all values of clcr11('nts of (; (t}lat is, the f-ideals rnaximal
for the condition of not containing an element of the group) and its successors (that is,
the f-ideals minimal for the condition of containing an element of the gr011p). Since any
value is a prime f-ideal and any f-ideal greater than a primo one is also prime, we have
that the set Y, with the order of the inclusion forms a root-system. Define, then. for each
F e Y, the totally ordered group L1\, = G IV . We shall define on Y the topology r whose
two senribases of clopen sets are:

(i = { V e Y / g i F}- i = {1’ e V I g e 1/}),ca.

That is, any open set can bc writcn as (UjeJa gIn /lj )U(Uj€j1 ,#j)U(Uje./2 hj) for families
(gj )j€J,uJ, and (h j )je./,u./2 of elements of G. The proof of the d-compacit,y of the sets e is
analogous to tllat of the conrpacity irl tIle classical case (non-ordered spectrum) (see, for
example [13, jI] )

We shall first show that <Y, 7, g> is a Priest,]c’y space
Let F, IV e Y burch that L/ g H“, IIen(’c, t.llert' ('xi'it,s g e l’ \ I’[. Then, I/ belongs to thr
increasing clopen sct 4 and Ll/ to the (It'('rcasing clopen s('t e. The definitions of those
sets, imply that the intersection is empty. provilrg that Y is a Priestley space.

By the coIlstruction of t,II(' quotient s, observ(' that. if I’', I,t ’ e Y such that. 1/ (- 14'’ there

exists a natural epimorpllism Pl/It' : Li. 1 1.1\\. and the family of all such epimorphisrns
is coInpat,ible. Let t,IIen call // to tIre projective linrit, of tIle systcrrr. SiIlce the natural
maps pr : C; ) liv colllnrrlt(’ ayer t.II(' Ft,it,, w(' have t.llat t,hero exists an f-grolrp
homomorphi llnl a : ('; I H defined by a(g)( 1/) = g/ I '. Sincr. for cach non-zero
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g e C; there exists a value y e Y, we have that a(g)(F) + 0, implying that a is an
embedding.Since, for each i e /, the set (i> g G is a value, we have that {< i > / / e /}
is a sub root-system of Y. By the standard construction of a Hahn product we have that
I,- is the quotient of the f-ideal B ( i) = {g e G / I e ms(g)} by < ! >. Hence, we obtain
a natural embedding of Li into Ii.

The property (8) is consequence of the fact that, for any lattice-ordered group G,
element g e G and f-ideal A C G such that g 4 4, there exists an f-ideal V extending A
and maximal for the condition of not containing g. In fact V is a value of g and, in our
case, it belongs to ms(g)

For property (i), consider two values F C H/, a e Lw and b e VFL.(a). Since Ly
is a quotient of a', there exists g C G such that pr(q) = b and hence pty(g) = a. The
construction of the eInbedding a gives the surject,ivity of the quotients

Property (ii) is consequence of the fact that supp(g) = {Y e Y / g 4 1/} = # which is
d-compact clopen. This set is, obviously, decreasing.

For property (iii), since G' is an f-group, we have that, for all g e G, q+ and g_ belong
to C. So we have supp+(g) = g-+ and supp_(g) = d_ which are clopen sets. Since b)
Lemma 10 (ii), we have the identities [g > 01 = supp+(g) and [g < 01 = suPP_ (g) we can
conclude that (iii) holds for G.

For the orthogonal patchwork property, it suflices to prove that, for any g e G
and clopen set Y E X the element gD. exists. The support of this element must be
Y(g) = (Y T r)supp(q)) 1 nsupp(g) which is d-compact clopen and decreasing. By Lemma
10 (iv), there exists an element f e G' such that supp(/) = Y(g). So, using condition (i)
of r-projecta,bility, we have that there exist unique go and g1 such that g = go + gl , go 1 gr
and gl is maximal for the condition of not being possible to decompose it in two elements,

one of them orthogonal to f . The orthogonality of go and 91 iInplies that the final sections
of supp(go) and supp(91) in supp(,7) are orthogonal. The maximality of gl implies that
supp(gl ) is the greatest part of supp(g) with no subpart orthogonal to supp(/). Hence, we

can conclude that ql equals gIF, proving the orthogonal patchwork property. •

Remark 8 Observe that in the above Proposition, for g e A(1, (Ii),-c/). if we call sh(g)
and msh(g) to its support and maximal support in the llahn-product, we have that
supp(g) n / + sh(q) if / is infinite and not anti well-ordered, because supp(g) n / is
an initial section of J. However, we have that msh(g) = ms(g) n /

Observe that in the above Proposition. we have only used that a’ is a IIahn-product
for proving the embedding of tIle root-s)’stenr. The rest the proof is absolutely general
for ri-projectable f-groups. However, if we consider any f-group. the proof still holds true
for weak topological projective linUts. So we can state the

Theorem 13 (Topological Ordered Representation Theorem for f-groups)
any £-group thert erists a Pricstlcy root-syst.tm {X, r, $) , a family (Ir ) „ex of o-group.=
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and an E-gTO tIP (;1 e T„LkX, T, $>, (IT)„ex ) such that the isomorphism G B G1 holds
Moreover, if G is ri-projectab te, then GF e T({X, T, g), (L.„ )„ex )

In fact, we have also the converse for the ri-projectable case

Theorem 14 Given a Priestley root- system (X, T, a , a family (L,),cx of o-groups, all
the members of T((X , T, g , (L,.),.ex ) are ri-projectable

Proof: Let G e T(<X, r, $>, (L,),ex) and f , ge G'. Call Y- to supp(g). By the ortohogonal
patchwork property, the element in = fw belongs to G. Call /1 to I – fo. It is easy to
verify that fo 1 /1 and that the decomposition is “optimal" in the sense of the definition
of ri-projectability. •

Remark 9 in [4] Cignoli and Torrens study for MV-algebras (another formulation for
Wajsberg algebras) the space of all prime ideals endowed with its Stone or/and Priestley
topology. They state the problem of characterizing the topological root-systems which
are the spectra of MV-algebras. Theorem 13 and the proof of Proposition 12 gives an
answer to the analogous question:

Which. are the Priestley root-systems uthich are homcomorphic to the space of values
and their successors of an F.-gro tIp?

Answer: all. Consider, for a PricstIey root-system <X, r, $>, the Priestley power
PR({X, r, $> ,Q). The fact of taking all archimedean o-group assures us that the topolog-
ical root-systern of values and tlrcir successors of the Priestley power will be honreornorphi('
to the original Priestley root-system. This example permits to sharpen the result as

Coronary 15 For any Priestley TOOl-system th€'r'e c3isis a clir>isible, r'i,-projcctablc €-group
rvhose space of ualues and thrir succrssors is homeomorphic to the given Priestley root.-
sysf erm ,

Remark 10 in [13] and [1, Ch. 10: SJ 0.6], Keimel developes a sheaf representation for
f - rings ( which can be utilised for abelian f-groups) over the space of all prime f-ideals. A
main difference with our treatment is that in l{eimel’s the /-rings (f-groups) associated
to each point of the space are not necessarily totally ordered. In Keimel’s representation
the order of the space plays IIO parti<'lllar role I)Ilt. in orlrs it is essential for defining the
order of the £-grollp

7 Factorizing the weak Boolean representation
Recall (see [11]) that given an f-group C; with a weak unit n e G, \\'c can define in a
natural way a Roolcan alg('bra

Bjf Jl II) = {g e (; / 0 S g g h & g 1 ( 1/ – g) }
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In the projectable case, it is proved that for any weak units u, u e G', the isomorphism
BCC:-. u) = BIG I u) holds. This Boolean algebra determines the natural Boolean product
representation of such groups. If G has a strong unit u (that is, for all g e C there exists
n e N such that g $ nu), we call /3(G) to B(( Ii u) since the Boolean algebra does not
depend (modulo isomorphism) from the particular strong unit chosen. This BCG) is ex-
actly the same B( A), the Boolean algebra of complemented elements of the MV-algebra
A = C[0, a] = {g e G / 0 $ 9 S u} (see [4]).

Definition 4 IVe say that an F.-group G is uniformly Boolean if there e=isLs a weak and
u StICh that, for all weak ubit t ? u the isomorphism BLG', u) = BCG; u) holds

As in the project.able case, the isomorphism is given by the application g ' > g Au
(in the general case this application is only inject,ive).

As it is the case for MV-algebras, we have that a non-trivial uniformly Boolean P-group
G is directly indecomposablc (does not admit a non-trivial representation as the product of

two f-groups) if and only if B( G) = 2. In their article, Cignoli and Torrens prove that any
MV-algebra ,4 is represent,able as a w€'ak Boolean product (the supports are not necessarily
clc)pen but only open) of directly indecornposable MV-algebras. Moreover, they prove that
each Boolean subalgebra of B( A) is the Boolean algebra of such a representation. The
essentials of Cignoli and Torrens proof, translated to our context, are the following:

Let G be a uniformly Boolean f-group, u e G a weak unit such that B(GI II) 3 BCG) and
C a Boolean subalgebra of BCG; u). For each prime ideal P of C, the set

ltP) = {g e G / in e N, a e P( 1 g }$ na)}

is an f-ideal of a'. By calling Xc to the set of prinle ideals of C’ with its Boolean topology,
the map

~ : G –, Il GjltPl („(g)(p) = g//(p))
PC X

gives a weak Boolean product representation. Such that all the g-groups (G' 1 IkP))Pex,
are indccomposable if and only if C' = BkC: : u ).

Now, coIrsidering the weak topological projective limit representation of such a group,
if we call Y(u) to a, we hav(’ that <Y( u), r, C> is also a Priestley space, but in this
case cornpact, giving a new topological pro jecti\'e linrit representation of a’ by totally
ordered groups constructed in all alralogorls \yay to that of Proposition 12. If we call
D£)1 (C; u ) = Z>a1(<Y(u ), 7, g> ) to the bounded distributive lattice whose Priestley space

is <Y(u), r, g> , \vc have that it is isomorphic to the quotient of the interval [0, u] of G by
the relation given by: g N g’ if ,Ind only if j = &’. Since for g. g’ e BCG'. u ) we have e = g'
if and only if q = qf , we can thiIlk 13(fIr n ) as a 01-SIIt)lattice of D01 (G; u). Obviouslv the
same holds for any Boolean subal£(bra f- of BiC;-, II ).
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Since the functor Pr (which gives the Priestley spacc of a bounded lattice) is con-
travariant, we have the following topological surjections:

<y(„),,, g> ’, P'(BCG;„)) ’ , p,(c).

Now, for each P e Y = Pr(C), call u(P) to (wo p)–1(P) which is a compact subset
of X and then a compact Priestley space. Call Gp to the restriction of a’ to u( P), We
have a natural isomorphism Gr = GI ILP), if A : G 1. IITex GT is the topological
projective limit representation of a, we can thought of Gp as the topological projective
limit representation of GI ILP) in the form hr : G//(P) > [1,c,(r) G,
This permits IIS to state the following:

Proposition 16 Let G be a uniformly Boolean f-group, u e (; a weak unit satisfying the
corresponding property and C a Boolean subalgebrn oJ BCG', u). The C’ignoti and Torrens
weak Boolean product representation of G over Pr(C) can be factorized through, the weak
topological projcct.ive linrit rcpresrntat.ion of G over X = <Y(u), r, g)

8 Transfer of elementary equivalence
The Fcferman-Vaught theorem (scc [9] ) says, cshent,idlly, that the t,h(:ory of the product
of InodeIs is given by that of its factors. In [3], [21], [23] and [11] it is extended for
certain particular cases of Boolean products. So it is a Ilatural questioll t,o look at its
possible extelrsion for Priestley powers and prodtlcts. \Ve shall restrict orrrselves to the
study of elementary equivalence and this will be done by the method of back-and-forth
or Ehrenfeuclrt.-Fra'iss6 gaIrl('s,

Recall (see [8]) that given two models A and B for a finite language £ which has no
function symbols, we have that ,4 = B ( A is elementary equivalent to B) if and only if
there exists a family of relations (=„,,„ )„,mew g A” x B" with the following properties

) if
I

(al
(a

(b1. . . . , b„) then there is a partial isomorphism
, a„ ) for the relation and constant symbols of £

ii) if (a1. . . . . a„) =„.„, (b1, . . . . A„ ) and a„+1 e /I ( b„+1 e B), there exists b„+1 e B

(a„+1 e A) such that (a1, . . . , a,. a„+1 ) =,+1,„_1 tbl. , . . . b„, b„+ I ). (Back-and-forth
property ) .

Two such Incidols are said t,o I>e b-elementary cquivalcnt, (derloL€’d /I =w B) if the
above family of relations does not, (lepend on the index III. That is, the back-arId-forth is
unifornr

Taking the language C = <+, – , 0, g> of or(lore(1 gr011ps. we can transform it, in a new
]anguage without function syrnbols £’ = {sum( . . ). o. g> where sum(/, g, h ) if and only if
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f + g = h. We do not need a relation for the minus function because it can be expressed
with a formula in £’. So we can use the back-and-forth characterization of elementarY
equivalence.

The following result is general and almost does not depend on the order strrrcture of
the Priestley space.

Proposition 17 Let (X , T, g be a Priestley root-system and L and L’ two totally ordered
groups. If L = L1 then theiT respective PTiesttey po\uers G = PR( <X, 7, $) , L) and
G1 = PR( {X , T, g , L1) are elementary equivalent

Proof: By the Ehrenfeucht-FraTss6 theorem, there exist a family of
( En,m )„,m£w C L" x Ll" giving the elementary equivalence
Define a new family of relations (E: m)„,m€w such that Ei ,„ g G" x C',"" by:
(g1, , . . , g„)El m(#{, . . . , gl) if and only if, for each = e X,

(gl („), . . .,gnC-IIEn,mCg', C-I, . . . , g;,(-)) halds.

We shall prove that this family has the properties (i) and (ii) above

relation s

i) (91, . . . , g„) ELo(g11, . . . . gl) implies that. for each T e X, (g1(#), . . . , g„(#)) and

(g; (ir), . . . , gl(#)) satisfy the same atomic fornlulas of the language £’. It is im-
mediate, by the definition of the product operations that this holds for the sum on
the n-tuples of G and G’. For the order, since gi $ gj if and only if ms(a+) < ms(n+ )
and for each r e ms(g,'+ ) n ms(n+), gi(r) $ nCr) we have that Ei o preserves the
order. So we have that EL,o implies an C’-isomorphism

ii) Suppose (91, . . . . g„)EL m(gi , . . . ,gl) and consider g„+ I C C. There is a partition of

X in a finite set (9 of clopen ('onrpact sets on which the maps g1 , . . . , gn+ 1 , g{ , . . . , gl

are constant (this hold bec,ntsc each one of the nIilps takes only a finite number of
values). For each clopen conlpact hf e O chosc' a point =t, e 1; and g{, e L’ such that
(gl(„u), . . . ,gn,1(„u))En+1„n,-I(gi('L'), . . . , g:,trL'I, g;,)- Sirlc. all the giver1 maps

are constant on U, we have that, the equivalence holds true for each # e U. Now,
by the patchwork property, define the element g„+1 e C' given by g„+1 IU = gI, for
each U e O. The construction implies (91, . . . ,g„+1 )Ej+1 m_1(g{, . . . . g:+1).

So we have the elementarY equival('IICC of those Prirstlev powers. •

Remark 11 Observe that for the Proposition above u’e do not need aIry addition,bl as-
sumptiorr al)otlt, the properties of tIle Priestley root -system. So this result holds true even
in the casr that the respective Priestley powers are llot f-groups (see Proposition 4).

For a Priestley root-system (X, r, 5> , let D(X ) be the distributive lattice associated
with the space given bv the Priestley representation theorem of distributive latt ices, Ob
serve that Z>(X) can be tholrgtrt of as the set of cloprn clecreasinb or Clot>t:It irrcreasinb
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subsets of X. Define now fT(X) the set of clopen compacts which are the intersection
of a decreasing clopen d-compact and an increasing clopen i-compact. Since any decreas-
ing (increasing) clopen is d-compact (i-compact), we have that any nonempty element of
IFR(X) is associated to a unique ordered pair of elements of D(X) and conversely. On
TR(X) we can consider two partial order relations: the set theoretical inclusion S and
the order < defined on 52.

Proposition 18 Let (X, 7, $> and {X’, T1, $> be two Priestley TOOL-systems and I and I’
hoo totally ordered groups. If L = L1 and D(X) =w D(X’), then their respective Priestley
powers G = PR((X , T, a , L) and G1 = PR(<X/, T, g , L1) are elementary equivalent,

Proof: Let C(X) (C(X’)) be the set of clopen compact sets of X (of X’). Each Y e C(X)
is the union of a finite family of elements of TR(X). Let TR(X)- be the set of finite
sequences of elements of TR(X) (we proceed analogously with fR(X’)). By the consid-
eration above, we have that D(X) =u £>(X1) if and only if He(x) =w TltkX'). Hence, it
is immediate that, the uniform family (Fn)„cu of back-and-forth relations between D( X)
and D(X’) implies the existence of a family (F= m)„,mew of back-and-forth relations be-
tween 77Z(Xy and TR(X’)-. By hypothesis, there exists another family ( En.m)n,mew

giving the elementary equivalence of Z and Z’.
As in the proof of the previous Proposition, for each qI, . . , ,gn e G there is a finite par-
tition O*(gl, . . . , gn) of X in clopen compact sets such that, gi (i = 1, , . . , n) is constant
for each LF e O-(91, . . . , g„). Observe that, if k $ n then the partition O' (g1, . . . , g„) is

finer that the partition O*(gr , . . . , gk )

Now, define a family (El m )„,,„cw of back-and-forth relations between a and C1 by:
(g1. . . . , g„ )E: .m(gi , . . . , gl) if and onIy if, there exists an order isomorphism I between
O' (gl , ... 9%) and O-(g{, . .. ,g:,);

tO'Cgll. . . . , o-CgI. -.-.g,.>1[=.„,tO'tg’, ), - . . , O'(g: , .. . , g;,)), where thp implied is.mar-
phism coincides with I and, for each U e O-(g1, . . . , g„), # e ! ! and y e /(f/) we have
that (gl(„), . . . , gn(„))En,m(gi(y)I . . . , g:,(y)) hol'Is.

Let us prove that the family ( E!, m )„,„,ew is a back-and-forth family for the models G and
G

i ) Let (91. . . . , g„ )E: o(g; , . . . , gl ) then / is an isomorphism between

O-(91, . . . , gn) and O-(g/l , . . . . gl). For each IF e O-(g1. , , . , g„), r e L' and

y e /(P), we have (91(r), . . . ,g„(r))E„,o(g{(y), . . . ,g:(y)) and hence the two n-

tuplos are iIIrrnediately isolrlorpllic for the group relation. We shall verify that
the isomorphism also holds for the order relation: if !! ,- $ gf , for each maxima,I
L' e O-(g1, . . . . g.) (that is. an element of the partition maximal for the relation
<) and r e I.F . we have g,-(.r) $ gJ(#), /(r/r) is maximal in O'(gi , . . . , gl ) and for
each y e /(C/), q:(y) $ d(#) holds. So \ve have the isomorphism also for the order
relation

ii) Suppose (g1,...,g„)£'£ m(gi , . . . , gl ) and consider an clement g„+\ C G, By the
back-and-forth between fR.( X ) and TR( X1) t,here oxists a finite scqurnce O* and
a biject,ion j : O-(g1. . . . , gn+1 ) 1 O- such that
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(O*(gl )T . . . T o*(gIl - . . 1 gn+1))/'';.m(O*(gi )I. . . I O-(gjl- - . I gI )I O-). Fol- each 1: e

O' (q1, . . . , gn+ t ) we can chose an r e (J and a Jr (r e 1,1 such that, for all y e
/(U )T (gl(")T . . -Tg,1(„)7grL+1 )En+1.m–1(g{(?/)1, . . 9 g;,(y >IgF) hDldS- li."lark that the

elements g1 , . . . , g„+\ and g; , . . . , gl are constant, respectively, on tF and /(U). Now,

by the patchwork property, define g:+1 C (;' as coinciding with g jr on each U e O*
So we can conclude (gl , . . . , gn+1 ) E:+ 1 m_1 (gi , . . . , g:+1 ), implying the elementary
equivaleIrce. •

For Priestl('y products we have a weaker result. (:onsidcr z:/d the laIlgtrage C/ enriched

with the countablc set of unary relation symbols (dp)pc Prinles where r/l,(g) is to be inter
preted as “g is divisible by p”. As it \vas stated in Remark 4, for any f-grollp G e F£“‘
and any g C G, the set jdp(g)] must be clopcn

We recall (see [19] ) that the elclllc'rILary class generated by the totally ordered archimedean
groups is that of regular totally ordered groups. A group (; is regular if and only if either
it has a first positive element (in that case a' = Z) or, for each prime p and each g, he C’
such that g < /1 , each class of G/(p> has a representative in the interval (g, h ). Hence, in
particular ally divisible totally or(I('red abelian group is regular and elerrrentary equivalent
to Q

Proposition 19 Let (,X, r, $> br a Priestley root-systc7n and. for each / e X, a, and
H, two elementary equivalent totally ordcred regalar groups, in that conditions, if Ge
Ff’d(<X, r, $>, ( G,)rcx) and H e Ff’d( <X, r, $> , (//',),ex ) then a = H

Pm)of: Since for each # e X, we have the elementary equivalencr of the two regular
groups G'„ and Il , we can use a result inspired by [12, Lemma 2.6} and developped in [11,
Lemma 3.1] giving, for the regular totally ordered groups an uniform family of back-and.
forth relations ( E„.m)„.mew . Define a new family (Ei m)„.,„eu such that, for each n e N
\ye have El _ C G” x H" by:
(g1 , . . . , g„ ) Ei ,„ (h1, . . . , /z„ ) if and only if for all .r e X we have

(gl (#)I ' ' ' Ign(r))E::,.m( hl (#)I . ' - I hr,tr))-
We shall prove that this family satisfies properties (i) and (ii) of the back-and-forth:

i> Lg1. . . . lg.IIE:nth I. . . . , h.I) i111Pli.s that (gl („), . . - , gn(„) ) and (/z1(.-), . . . , hnC zI) sat-

isf)’ the same atomic formulas in CL for each .I' ( X. Since CS is relational this implies
that (g1 . . . . , g„ ) and ( A1, . . . , h„ ) also satisfy the same atomic formulas and are then

£)-isomorphic

ii) Suppose (.r/l, . . . , g. )El „,( h 1. . . . , /t„) and consider aIr element g.+1 e G'. For rach

r e X it is possibl€’ to find an ('lcmrnt h’ e H, such that
(gl(r),--..gn(r)9gn+l('r)>/“'i+1.m–1(hl(r), - . ' ' All(F). /?’). Since 11 is a subdirect
product of the family ( H'},ex . \vc have that. for each r e _\’ there exists an el-
emcnt h’ e // such that A’(r) = hr. For each .r e X call Y;. to the subset of
X given by {,1/ e X / Cglty). . . . . g-It !/).grt+1(y))En+1.m–lt hIt y). . . . , hn(y>! /z’(y))}
Since the relation E„+ 1 ,„=_1 (:an be expressed by a (luantificr hec CL-formula, we can
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conclude that Y, is clopen. Since supp(g„+1 ) is compact, there exists a finite subset
{r1, . . . , a,} g X such that U:=1 Y,1 = supp(g„+1 ). Hence, using s – 1 times the
patchwork property, we can Hnd h,+1 such that (g1, , . , , g„+1 )q+1 m_1 ( 41, . . . , h,+1).

References

[1] Bigard, A., Keimel, K. and Wolfenstein, S., Groupes et anneaux r6ticu16s, Lec-
tures Notes in Mathematics 608 (1977), Springer-Verlag.

[2] Burris, S. and Sankappanavar, H.P., A course in universal algebra, Springer-
Verlag, New-York - Ileidelberg - Berlin, 1981

[3] Burris, S. and Werner, H., Sheaf constructions url.d thaT elemeTttaru pToptl-Lies, Trans,

A.M.S.. 248 (1979), 269-309.

[4] Cignoli, R. and Torrens, A., Ordered spectra and Boolean products of ,\'j\-’-qtqcbr-us.

preprr nt .

[5] Corner, S., Elementary properties of structures of sections, Boletfn Sociedad
Matem£tica Mexicana, 19 (1974), 78-85.

[6] Conrad, P., 1,er -subgroups of lut.tjrr-order-ed groups, Czech. Math, ,J., 18 (93) 1968,
86- 103.

[7] Conrad, P., Harvey, J. and Holland, W.C., The Hahn embedding theorem for latLice-
ordered groups, Trans. A.M.S., 108 ( 1963), 143-169

[8] Ebbinghaus, H.D.. Flum, J. and Thomas, W., Mathematical Logic, Sprillger Vcr
lag, New York, 1984

[9] Feferman, S. and Vaught, R..Thr Prsit nrdc r properties of qtqebrqjc systems, Funda-
menta Mathematicae, 47 (1959), 57-103

[10] Gluschankof, D., Thr tIt mt IIt arg class of products of totally ordered abt linn groups
The Journal of Symbolic Logic, 56 ( 1991 ), 293-299

[11] Gluschankof, D. arId Lucas, F., Hy ptr-regular IrLttiCe-OrdC I'd gro\Lps. to appear in the
Journal of Synrbolic Logic.

[12] Gurevich, Yu.. Elern cnt nrg propr.rt it s of ordt rr d nbr'liars groups. Trans. A.M.S. 46
(1965), 165-192

[13] Keimel, K., The represcntatton of lattice-ordered groups and rings by sections of
sttcavcs. Lecture Notes in X’latlrcmat.ics Springer-Verlag 2.18 ( 1972), 1-98

21



[14] Lucas, F., Elementary equivalence of Hahn poll>ers of divisible totally ordered groups
on a root-system, preprint in S6minaire “Structures alg6briques ordonn6es” , Univcr-
sit6 Paris VII, 1993

[15] Martinez, N.G., The Priestley dILqjiLy for \Vnjsberg algebras, Studia I,ogica, XLIX
(1990), 31-46.

[16] Point, F ., QuantiFer elimination for projectable E-groups and linear elimination jOT
rings, Ph. D. Thesis, Universit6 de 1’6tat i Mons, February 1983

[17] Priestley, H. A., Represenl nl toll of distributive lattice.'i hy means of ordered Stout
spaces, Bull. London Math. Soc., 2 (1970), 186-190.

[18] Priestley, H. A., Ordered Lopologlclrl spaces and the representation of dist ributite Int-

1 icts, Proc. London Math. Soc., 24 (1972), 507-530

[19] Robinson, A. and Zakon, E., Elementary propertIes of ordered abelian groups,
Trans. A.M.S. 96 (1960), 222-236.

[20] Schrrritt, P., Model- on d s\Lbstruct urc cornplrLr. theories of ordered abelian groups in

Models and Sets, Proceedings from the Logic Colloquium Aachen 1983, Springer
LNM 1103 (1984), 389-472.

[21] Weispfenning, V., Modcl-Colullet tness and Elimination ol QILnntifters for Subd irect
Produ cls of StrhCltLre'i. Journal of Algebra 36 ( 1975), 252-277.

[22] Weispfenning, V., Model theory of lattice products, Habilitationbchrift, Ruprecht-
KerI- Universitat, ITeidelberg, 1978

[23] Weispfcnning, V., Eliminaf ion of QuanLifrrs; for C';er£a£n Ordered and LrrILicL-
Ordered Abelian (ITOILPS. Bull. de la Soc. Math. de Belgique, 33 ( 1981), 131-155.

U.R.A. 753
Equipe de Logique-Nlath6nratique
U.F.R. de Math6mat.iques
Universit6 Paris 7
2, pl. .lussieu
75251 Paris Cedex 05 - France

e-rnail: grpord€41ogique.jussieu .fr

D6partement de Math6matiques
U.F.R. Structures et Mat6riaux

Universit6 d’Angers
2, Bd. Lavoisier

49045 Angers Cedex - France
e-Inail: gluscha©univ-angers.fr

e-rnail: lucasiQuniv-angers.fr

22



Corps presque r6els clos ou “ARC“

FranQoise Delon

Nous appelons ARC (pour “almost real closed”) la classe des corps ad-
mettant une valuation henselienne telle que le corps de restes soit r6el clos
La valuation triviale est arrtoris6e, les corps r6els clos sont dorIC ARC. Plus
g6n6ralement, d’apr is le th6or ame d’Ax-Kochen-Ershov, un corps est ARC
ssi iI cst 616mcntairement 6quivalcnt a un corps de s6ries formelles g6n6ralis6es
R((G)).

Cette classe est 616mentaire car close par ultraproduit et 6quivalence 616-
ment;aire. On en obtiendra une axiomatisation effective si, parmi les valua-
tions avec les propri6t6s ci-dessus, on peut en trouver une qui soit d6finissable,
uniform6ment pour tolls les corps de la classe. II suffira alors de transcrire la
d6finition de la classe ARC. La question de la d6finissabilit6 d’une valuation,
c’est-a-dire de son anneau dc valuation, dans un corps a souvent 6t6 consi-
d6r6e. Ax est sans doute Ie premier qui remarque que k[[X]] est d6finissable
dans le corps k((X)) (c:cla lui pcrmet de prouvor que l’ind6cidabilit6 du corps
k se transmet au corps k((X))). II note que, si u est la valuation en X dans
A((X))

u(r) ? 0 ssi A((X)) F ly //2 = 1 + X=2.

puis donne un argument pour 61iminer le paramatrc X (au prix de 1’intro-
duction dc quelques quantificateurs). Son argument se g6n6ralise imm6dia-
tement aux corps R((G’)) oil R cst r6el clos (ou plus g6n6ralement v6rifie
R = /?2 U (–#2)) ct Gf nc contient, pas de sous-groupe con\,exe propre 2-
divisible: 1a valuation canonique i valeurs dans a y est definissable dans la
seule structure de corps. Unc condition restrictive sur a est certainement
n6cessairc. Supposons OII (’ffct que C' a rin sous-grotlpe convexe divisible



propre, par exemple C' = Z x D ordonn6 lexicographiq11enrcIlt, oil D est
divisible non trivial. Alors, par rrn isomorphisme canonique,

R((G)) = (R((D)))((X))

= IR((X) ), par Ax-Kochen-Ershov

(isomorphismc ct 6quivalCIrce 616mentaire forll r6f6rcnce aux structures de
corps). Or iI n’y a bien sar dans IR((X)) qu'unc valuation d6finissablc non
triviale. Cette propri6t6 sc transfare par 6quivalence 616mcrrtairc a IR((G))
oil elle signifie que la valuation quotient de la canonique, a valeurs dans Z,
est d6finissable, et auctrne autre, en particulier pas la canonique.

Nolrs avions fait un raisonnement et dorln€’1 unc formule fond6'i sur les

carr6s et la 2-divisibilit6. On peut faire de mame avec un nombre premier
quelconque a la place de 2. On obticnt ainsi lc r6sultat suivant: dans le
corps X((G)), R r6el clos, la valuation canonique est d6finissable
ssi il existe un nombre premier p tel que G ne contienne pas de
sous-groupe convexe /hdivisible propre.

Que se passe-t-il lorsque O ne remplit, pas rette condition? Introduisons le
sous-grorrpe convexe p-divisible maximal Dp dc_' G, ce pour cha.qrle p premier
Soit o la valuation canoniquc sur IR((G)), et up = vl D„ la valuation quotient
a valeurs dans G IDp. Chaque ui, est d6finissablc, il y a de plus un bon choix
Op de la formule d6finissante - qu’on peut bien sar consid6rer atr-dessus d’un
corps quelconque - pour lequel on a: un corps 1< est ARC ssi9 pour tout
premier p, Or d6finit sur K une valuation henselienne avec un corps
de restes r6el et sans extension r6elle propre de degr6 g p. Cc crit are
fournit une a,xiomatisat,ion de la classe AR.( J.

Si K est ARC, dp d6finit. la plus grossi ire vallrat.ion henselienne avec corps
de restcs clos pour les extensions r6elles dc degr6 g p. Soit rp cctte valuation
et ux=sup I'p. Alors ux est la plus grcISSi are des valuations henseliennes i
corps de restes r6el clos, elle est d6finissablc ssi elle coincide avcc une des
vp, et aucune autirc valuation i corps de restes r6el clos n’est (16finissable.
Qu’elle soil limitc de vdlllations d6fLnissabl('s lui confare un conlportement
int6ressant.: ainsi, si Z (:st tin alrtre corps. alors

It = L + ( I, est ARC 6galcnlc’nt et ) rl( it = 1'LL.

I,’inrplicat ion r6ciproqllc cst lrne cons6qucncc (I'.,\x-Kochen-Ershov :

')



De Ion

ul,-K = VI,L + (K, vI,') = (L, ut)
(puisque Ies deux valuations sont henseliennes ct les deux corps de restes
r6els clos)

+ I< = 1, en t;ant que corps

On a de la mame fa€on,

It d6cidable VK 1’est.

Les choses sc passent beaucoup moins bien pour les th6ories incompl&tes.
Ainsi, pour une classe C de corps ARC, la d6cidabilit6 de Th(C) n’implique
pas cclle de Th({uxA, A’ e AT}) (intuitivement et trbs approximativemcnt,
a cause de 1’existence d’ensembles r6cursivement 6num6rables non r6cursifs)
L’inrplicatiorl irrvcrse est toujours exactc, d’apr as Ax-Kochetr-F:rshov, qui
permct de tra,nsf6rer la d6cidabilit6 meme dans Ie cadre des th6ories incom-
plates

Pour avoir un exemple de corps ARC dans lequel u n’est pas d6finissable,
consid6rer IR((G)) avcc=

oil Z(p) = {ab-1; a e Z, be N*. b premier a p} et a est ordonn6 lexicographi-
querncnt, les premiers a)’ant leur ordre naLurel. Alt>rs Dp = 1-Iq,,p Z(q), Ur cst
a valeurs dans Hq>p Z(q), et ux coincide avec Ia valuation canonique.
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ABSTRACT. \Ve study the model theory of fields k carrying a henselian valuation
with real closed residue field. We give a criteria for elementary equivalence and
elementary inclusion of such fields involving the value group of a not necessarily
definable valuation. We also characterize the frrst-order definable convex subgroup
of a given ordered abelian group and prove that the definable real valuation rings of
k are in correspondence with the definable convex subgroups of the value group of a
certain real valuation of A'

§ I. Introduction

In [Jl] B. Jacob introduced the notion of Hereditarily S-Pythagorean fields and studied
their model theory. The almost real closed fields include these fields and the results of B3
may br seen as a generalization of some results of [Jl] and [J2].

By an almost real closed field we understand a field carrying a hensehan valuation
with real closed residue field. The simplest example of an almost real closed field is a
real closed field. The almost real closed fields appear in a natural way when studying
algebraic properties of Hereditarily-Pythagorean field and dealing with closures in certain
sense: the generalized real closed fields of Becker (see [Bl] and [B2]), chain-closed fields in
the sense of Harman (see [H]) and in the sense of Schwartz ( see [Schl]). Another example
of almost real closed fields are the Rolle fields of Brown, Craven and Pelling (see [B-C-P]),
whose model-theory u-as studied by F. Delon in [D2], Other characterisations of almost
real closed fields are obtained in [Sch2] and IB-B-G], where the algebraic properties of such
fields are studied

In section 2 we study the almost real closed fields ( ARC) and the chain H’( k) of real
valuations of such a field k. We make special attention to jlo, the first element of the chain
with real closed residue field. Also the valuations t's (the first element with S-Euclidian
residue field), for $ a set of primes, play an important role. Their value rings are the
Jacob rings defined in [Jl] and turn out to be first-order definable in the case where S is

+ Partly supported by grants PB91-0279 of DGICYT and PR9014 of UPC
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finite. We prove that the theory of ARC fields is elementary and provide an explicit axiom
system using the first-order definability of us for S finite.

In section 3 we prove the transfer Theorem 3.4. In fact, one of the implications of
3.4 is a consequence of the Ax-Kochen-Ershov theorem and the completeness and model-
completeness of the theory of real closed fields. The new fact is that the theory of the field
k (without valuation) determines the theory of oo(k). As a consequence we prove that
there is a bijection between theories of ARC fields and certain theories of ordered abelian
groups. The theories of ordered abelian groups involved in this bijection are characterized
in Proposition 3.9. Moreover, this bijection preserves the completeness and, in certain
cases, the decidability. If the valuation ring of yo were definable, the results of Theorem
3.4 would be a consequence of this fact . This raises the question whether ao has a definable
valuation ring,

In section 4 we study the definable real valuation rings. For this purpose, we start
giving a characterization in 4.1 and 4.2 of the definable convex subgroups of an ordered
abelian group. In Theorem 4.4 n’e prove that there is a bijection between the definable
real valuation rings of k and the definable convex subgroups of the value group of the
maximum element of 1’T’(k). This result allows us to conclude that yo is definable only
when t’o = us for some S finite. This criteria does not apply to the valuations us for S
infinite. us may be defindble even in the case it is not equal to any usl for S1 finite. In the
case where dimr k < x (definition in 52) the definable elements of TV(k) are completely
characterized

S 2. Almost real closed fIelds

If (k, u) is a valued field, we are going to denote by A„, M„, U„, u(k), k/o and I
respectively the valuation ring, the maximal ideal of A„, the group of units of A„, the
value group, the residue field of (k, u) and the canonical projection from A, to hIv . If u, u1
are tIVO valuations of k and A„ C A„F Ive shall denote it by u > u'. Then u induces in a
natural way a valuation on k/u’ which we will denote vI J , if I carries an order $ with
P its positive cone, u is called convex or compatible with $ if A. is convex in k, which is
equivalent to 1 + Af„ G P. Then $ induces an order in kJv by putting 7(a) > 0 iff a > 0
for every a e U.. If F is a subfield of k, Ar = {r 1 III $ y for a certain y e F} is a
valuation ring of k with F G AF. \Ve are going to use the notation up for the valuation
associated to AF. Hence zr is injective on F. If Ff is another sub6eld of k with AF = AFl
then XF = XIn is injective on F1 and TFLF' ) is not bounded in (k/up , $)

\Ve denote

I“(k) = { F 1 r a is henselian valuation over k with real closed residue field }

IT’(k) = { u 1 o a is henselian real valuation over k } .

PROPOSITION 2.1. Let I be any field. Then:
i) if k is real. then Tl’(k) is linearly ordered.
ii) if rf is a real valuation of I and u e V(k), t'1 : t' implies t,1 e V(k)

2



F. Delon & R. Farr6

iii) if v1 is any valuation of A, u e V(k) and v1 S u then v1 e Y(k) iff u/t/l(A/u/) is
divisible,

iv) if Y(k) is not empty, then it is a final segment of tV(b) with minima and maxima. The
minimal element oo of Y(k) is the valuation of Y(k) with no non-trivial convex divisible
subgroup in Ilo(k) and the maximum element ul is the valuation with archimedean
real closed residue field

Proof: i) if I is real then TV(k) is not empty, and every henselian valuation over k is
convex for every order of A [K-W]. Fix any order of k. The convex subrings of A are totally
ordered by inclusion.

ii) and iii) are proved using systematically the following facts:
1. If u is a real valuation of k, then k is real closed iff o is henselian, b/o real closed

and u(k) divisible [K-W]
2. For two valuations u’ > u over k. one has

u’ is henselian iff u and u1/t, are

kId -LkjvIIt„' la

',(k)~„’(k)/(.'/„)(k/„) [Ri].

iv) is a consequence of i), ii) and the fact that given an order $ of A there exists a convex
valuation u with archimedean ordered residue field. D

The value group of any valuation of Y(k) is the quotient of ul(k) by a convex divisible
subgroup, and %(k) is the quotient of ul(k) by its biggest convex divisible subgroup. Thus,
given two valuations u, rf c Y(k) and any prime number p, dim;, u(k) = dim I, o’(k), where
dim1, u(k) is the dimension of u(k)/po( 1) as IFr-vector space. When Y(A) + 0, it allows
us to speak of dimp k for every prime number p. As we will see, these dimensions by
themselves contain much information about the field k.

Definition We are going to call a field k almost real closed ( ARC) if Y(k) + 0.

PROPOSITION 2.2. Let k be a field:
i) if k is ARC then so is any real algebraic extension of k
ii) if v is a real valuation of k then k is ARC iff k/u is ARC and v is henselian

iii) if A is ARC, TV(k) = {u 1 u is a real valuation of k}

Proof i) is routine
ii) if u’ e V(k), it is convex for every order of k, hence comparable with every real

valuation of k. We now distinguish the cases u ? u’ and u’ ? u, and finish the proof with
the same tools as in 2.1 i) and ii)

iii) follows from ii). a

It is easily seen that I is real closed iff it is an ARC field and dimp k = 0 for every
prime number p. A is a Rolle field iff it is an ARC field with dim;, A = 0 for every odd prime
number p ([B-C-P]). In a similar way we can characterize chain-closed field and generalized
real closed fields. Also it can be shown that there are exactly 2'lim2 k orders in any ARC
field A

3



\Ve are interested in first-order definable vallrations of k, and Jacob valuations ([Jl])
will provide us with important examples of those. In order to understand the meaning of
these valuations let us introduce some definitions. Let P be the set of all prime numbers
and S g iP. Following [Jl} we call a valuation u over a field I S-KrTrtTrbeT henselian (S-Kh)
if Hensel lemma holds for polynomials of type a? – a when p e S and a e X,. I>Kh will
mean {p}-Kh. When u is real, then u is 5-Kh iff for any a C U. and p C S, a e kP iff
„(') C (X-/.),

LEMMA 2.3. Let I be an l’ field and u. uf tIVO valuations of k such that uf > o and
k/r' has characteristic zero. Then u’ is S-Kurnmer henselian iff u and u’/o are.

proof: The characteristic zero of the residue fields of u and u’ makes the polynomials of
type =p – a having only simple roots when a + 0. The only non-trivial step is to prove that
u is S-Kh when u1 is. If rP – Ir.(a) has a root r,(b), then 7,(a/P) = 1 and T,I (a/P) = 1.
Applying the S-Kh of uf to the polynomial rr – nIV we find c e k with cp = a IV and
x„f (c) = 1. We n’ill finish if \ve prove zr,(c) = 1 because then cb is the desired root of
TP – a. It is clear from (T.(c))P = 1, a„r (c) = 1 and the zero characteristic of k/ul. D

Note that we only need that the characteristic of k I v1 does not belong to S

We call a field k S-Elrclidi aTt if it is real and k = tkP for every p C S. If p / 2
this condition is equivalent to k = kr. For S = {p} we are going to say ;rEuclidian. The
usually Euclidian fields are exactly the 2-Euclidian fields in our terminology. If A is a field
we define

Vs(k) = { u 1 u is a S-Kh valuation of k with S-Euclidian residue field }

% \viII denote V{?} .

LEMMA 2.4. Let k be a field and r a real valuation of k. Then I
i) u e Vs(k) iff for every re k and /I e S the following equivalence holds

r e tk? iff u(r) e pr(kI

ii) if I, e lb(k), m e N* such that all its prime divisors are in S and = e k, the following
equivalence holds:

r e IIm iff u(#) C muCk)

iii ) The following are equi\’alrnf

k is S-Euclidian iff t e 1/s(k) and u(k) is S-divisible

Proof: Suppose r c lb(k) and let a C k such that u(a) = po(b) for a certain b C k.
Then r(r/br) = 0 and thus x(a/iP) ( 1(b/?')P. Applying the S-Kh to the polynomial
ir + ajbp we deduce a/bP e tkr whence a C +kD . This proves the only if part of i)
For the if part let a e if with rCa) = 0. This implies a e bliP for p e S and hence
x(a) c £(k/r )p and Hense1 lemma holds for the polynomial rP – a (k/o has not primitive
;>roots of unit). This proves u e V’s(k). ii) follows iterating i). The left to right implication
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of iii) follows easily keeping in mind that hIv has no primitive proots of unit. The other
side follows from i). D

Point iii) of the preceding proposition suggests us to call a field S- almost Euclidian
when Us(k) + 0. Clearly an S-Euclidian field is S-almost Euclidian and every S-almost
Euclidian field is real.

If I is a real field and u is a 2-Kh valuation then I + M„ g b2 and thus u is compatible
with any order of k. By the same arguments as for Y(k), the set th(k) of 2-Kh valuations
is totally ordered. If 2 e S then Vs(k) g +h(k), whence Ys(k) is also totally ordered.

PROPOSITION 2.5. Let k be a fIeld and Sa set of primes. Then
i) if of is a real valuation of k and y e Vs(k), u' ? u implies u1 e Vs(k) and u1/o C

VsO: .)
ii) if u’ is a valuation of A, u e Vs(k) and u' S u then v1 e Vs(k) iff u/u'(k/u’) is

S-divisible.
iii) The infimum of two valuations of Vs(k) belongs to Us(k).
iv) if Vs(k) + 0, Ys(k) has a minimum element. The minimum element is the unique

valuation of Vs(k) without non-trivial S-divisible convex subgroups.
v) if 2 e S and Ys(k) + 0, Ys(k) is a final segment of W2(1) with maximum element ,

i.e. the valuation tH of Vs(k) wifh archimedean residue field

Proof: The proofs of i) and ii) use the same arguments as the proof of Proposition 2.1
replacing everywhere henselian by S-Kh and real closed by S-Euclidian and using Lemmas
2.3 and 2.4

Claim. If I carries two independent RICh valuations of residual characteristic zero,
then k = A?.

Proof of the claim: Let o and uf be two such valuations and a, b e k. From the
aproximation theorem for independent valuations, there exists c C k such that v(c – a) >
u(a) and v1(c – bP) > uF(P). From the /hKh of uf we deduce c C kP and from the ;hKh of
u we conclude a e k?

iii). If the two valuations u and u’ are comparable the conclusion is obvious. If u
and u' are not comparable, applying the claim to u/u A u' and u’ Iv A u1 (o A a1 stands
for the infimum of u and u') we deduce that 2 ( S and k/u A u' is S-Euclidian, whence
u A u1 C Ys( A). This shows again that when 2 e S, Vs(k) is totally ordered.

iv) follows from iii)
v), Take any u e Vs(k) and any order of the residue field kI v. Take v1 the valuation of

k/u compatible with this order and with archimedean residue field. Taking Ur the valuation
of k composition of u and uF we have t/l C Vs(k) and k/ul is archimedean, From the linear
order on Hq(k) n’e deduce that it is the only one. D

Example. Let n > 1 be an integer, k a field with n orders existentially closed [vdD],
and S = IP \ {2}. Then k = IP for all p e S, hence Vs(k) = { u lu a real valuation on b}.
If I is a bit saturated, its orders are not archimedean and Ys(k) is not linearly ordered.
Indeed two distinct orders of k are independent, which means that they define distinct
topologies. Now any non-trivial valuation which is convex for some order defines the same



topology as this order, Hence the archimedean valuations associated to two different orders
on k are not conrparable.

We shall denote the first element of Vs(k) and %(k) by us and up respectively. The
valuation rings of these valuations are the Jacob rings (see [Jl]) defined as follows:

Of(k, S) = { 1 e I I = e tkP and 1 + r C kP for some peS }

(92(b, S) = { a eII r e tkP for all p e S and IOl(k, S) g of (b, S) }

O(II S) = Ol (k, S) U O2(k, S)

Remark. When S is finite O(k , S) is definable by a first-order formula of the language
of rings LR= {+, –, -, 0, 1}

PROPOSITION 2.6. Let S g IP and k an S -almost Euclidian Held, then O(k, S) is the
valuation ring of us .

Proof: if o e Vs(k) \ve remark the following facts
1).- le Ol(k, S) iff u(=) > 0 and u(r) ( pu(b) for some p e S
2).- u(#) : 0 and u(r) e pr(k) for all p e S implies # e Q2( k, S)
3).- if u( 1) has no non-trivial convex S-divisible subgroup then A, = O(k, S)
Proof of 3): Rom 1) and 2) we have that Ol(k, S) g 4, g O(k, S). It remains to

prove that if re O2(k, S) then u(T) ? 0. Suppose oCr) < 0; from the fact that u(k) has no
S-divisible convex subgroups we deduce the existence of y e k such that 0 < u(y) g –u(z)
and u(y) is no S-divisible. Thus y e Or(k, S) and u(ry) $ 0, whence = e O2(k, S). n

As a consequence of Proposition 2.6 we deduce that if S is finite the class of S- AE
fields is elementary: take sentences expressing that O(b, S) is an S-Kh valuation ring with
S-Euclidian residue field

LEMMA 2.7. Let I be any field and S g IP. Then I is S-AE iff k is S1 -AE for every
S1 e Pf LS), the set of finite parts of S .

Proof: The left to right direction is obvious. Conversely, suppose Usr (k) + 0 for every
S1 c PI(S), and let Asl be the valuation ring of Usr. Then A = n{Asr 1 51 C PJ(S)}
is a real valuation ring because it is the intersection of an inverse filtrant family of real
valuation rings (Asrusu g Asp n AsH ). If u is the valuation corresponding to A obviously
u ? usf and from proposition 2.5 we have that u e v’sI (k) for every S1 e PJ(S) whence
u C Ys(k). D

As a consequence of Lemma 2.7 we deduce that for any S the class of S- AE fields is
an elementary class.

Remark. If k is S- AE and S’ g S G IP then Vs(k) g I/sp(k) and vsl $ us. From the
fact that the maximum convex S-divisible subgroup of an o.a.g. (ordered abelian group) is
the intersection of all the maximum convex S’-divisible subgroups for Sf e P/(S) it follows
that us = suPP ep/(s) Usr and thus O( k, S) = n{O(k, S1 ) 1 S1 e P/(S)} (this is shown in
[Jl] using the definition of O( k, S))

6
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Our interest in the sets %(k) is when k is ARC. In this case, even when 2 ( S, Vs is
totally ordered because every real valuation is henselian. Then obviously Y(k) = %(k) C
Vs(k) g TV(k) = W2(1) whence us $ up = to $ 111 for every set of primes S.

PROPOSITION 2.8 The class ARC is elementary and its theory is decidable.

Proof. This class is closed by ultraproducts and elementary equivalence: if I is ARC
and I = k, from the Keisler-Shelah theorem k and I have isomorphic ultrapowers ku =
Lu ; thus Eu carries a henselian valuation u with real closed.residue field, Because I is
relatively algebraically closed into Eu, o F L e V(L). Applying the Ax-Kochen-Ershov
theorem [WeI, the theory :F of henselian valued fields with real closed residue field is
decidable in the language of valued fields. We are using here the decidability of the theory
of ordered abelian groups [G] in addition to the decidability of the theory of real closed
fields [Ch-K]. The decidability of ARC follows from the decidability of T. a

An Hereditarily-Pythagorean field (do not mistake with the notion of Hereditar-
ily S-Pythagorean in [Jl]) is a real Held k such that every real algebraic extension is
Pythagorean (a sum of squares is a square). E. Becker (see [Bl] for example) has charac-
terized Hereditarily-Pythagorean fields as those fields k for which every finite extension is
of the form b ( VR, Vb, . . . , tv/n) for some a1, - - . an e k and t1, . - . t„ e N

Property iii) in the following proposition provides an explicit axiomatization of ARC

PROPOSITION 2.9. For any field k the following are equivalent;
i) k is an ARC Se]d.
ii) a) every real valuation of k is henselian

b) k carries an order $ such that for every archimedean subfield (F, S) of (k, S),
the real closure of (F, S) is contained in (k, S)

iii) k is IP- AE and Hereditarily-Pythagorean

Proof: i–}ii. In order to prove b), let $ any order of k and F a subfield of k
archimedean for this order. Let ur the valuation associated to F; then or has archimedean
residue field and thus OF Z to, whence kJv F is real closed. From the henselian property
of ur there exists i : k IvF –} I a ring homomorphism such that F g Im£ and rr o i = Id
Moreover, taking in k Ivr the order induced by the order of A, i is an homornorphism
of ordered rings. Identifying k Ivr with its image we have (F, $) g ( A/UF, $) g (A. S)
whence the real closure of (F, S) is contained in (k, S).

ii–H. Let S the order satisfiying ii) b) and let u the archimedean valuation associated
to this order. From ii) a) u is henselian and hence we can consider (as above) I/u with
the induced order m an ordered subfield of (k, g). From ii) b) (k/o, S) has its real closure
into (k, S) which in turn is also archimedean. Passing through a to the residue field we
conclude that the real closure of (k/u, S) is contained into (I/r, S) whence k Iv is real
closed

i–+iii follows from proposition 2.2 i) and the fact that any ARC field is Euclidian and
hence Pythagorean

Claim. k is real closed iff k is IP-Euclidian and Hereditarily-Pythagorean.

7



Proof of the claim: One direction is trivial. For the other we need to prove that A
has no proper real algebraic extensions, that is, no proper real extensions of type k( W).
If t is odd, from the IP-Euclidianity af k we have a e kt . If t is even it cannot be –a ( it
because I( W) is real; thus a e II

iii–}i. Let u e %(k). k/u is Hereditarily-Pythagorean (because k is) and IP-Euclidian,
thus real closed. We are going to prove that (k, u) has no proper algebraic immediate
extensions and hence u will be henselian. Let (L, u) with L = k( W) be an immediate (and
thus real) extension of k. Then u(a) e fu(E) = fuCk) and hence a e Iht. If t is odd a C kt
and Z = k. If t is even, I being real it cannot be a e –kt , whence a e kt and Z = k. []

Remarks

1.- it follows from the proof that if ii) b) is true for an order of k it is true for every
order of k

2.- For every S C IP, the class of S- AE fields has an undecidable theory, because it is
weaker than one of the theories :F2R or T,R of [Zi], which are hereditarily undecidable. The
same holds for Pythagorean fields. As far as we know, the question of the decidability of
Hereditarily-Pythagorean fields and the decidability of IP- AE fields are open

S 3. A transfer theorem

We are going to use P. Schmitt analysis of ordered abelian groups (o.a.g.). For this
purpose we include an appendix with the notation and statements to be used in this and
the following sections without proofs (see [Sl] for proofs). The proofs of Lemma 3.1 and
Theorem 3.2 are inspired in [D-L]. If G is an o.a.g. and n a natural number n ? 2, G"
will denote the maximum convex n-divisible subgroup of G. When working with different
o.a,g. we are going to use the notation .4:(g) for An(g) to indicate we are refering to a
The same convention for F:: (g) and FE(g). If X is a convex subgroup of G, i denotes the
class of g modulo 11, if the congruence we are speaking about is clear from the context

LEMMA 3.1. Let G be an ordered abelian group. n ? 2. If an + {0} then Sp„(Gl =
sp„(GIG,a U {a}, where a minorcs Sp„(Gl G f \ {a}, a > O, a satisfying the relations
ACa), TF(a), –'DCa) and Ta(p, k, m)(a) for every relevant p, k, m

Proof: if g e G„ \ {0} then A:(g) = {0}. If g ( Gn then G„ g A:(g) and bearing in
mind that C –> C/G, provides a bijection between the convex subgroups of a containing
G„ and the convex subgroups of G/G„ , BG/G- (i) = BG(g)/an and that Ba(g)/C =
BG /c" (g)/C/G„ we get ,4:/c- (i) = A„(g) IGn, g ( nG iff i ( n(G/G„) and in this case
Gn g Ff(g), since g g G„ + nG. Then, bearing in mind that for a convex subgroup C
of G containing G„, g c C + nG iff i e C 1 G „ + nG IGn we get Ff/a- (i) = F:tgjl Gn
Thus h e rfn(g) iR i e rSc"(i) for i = 1,2, whence F:(g) = rS/G"(g) follows. Now
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the application defined by

SpIt(G) –, Sp'ltG IG Ti + {a}
aS(g) +, aS/G" (i) if g q an

ff(g) b, f,f;/G" (g) if g g „G
{0}' '“

OH–tO

is well-defined, bijective and preserves the relations <, A, F, D and aCp, k, m). D

THEOREM 3.2. Let G and H be two ordered abelian groups. Then

j J JIE][ = 1G ; IAr { :::::; JIin : 1(J: IT:n = : 1 :o: :Un ) 2

ji j ) r JE][ g 1G ? t h en JIE1r g 1G d][ { :::: : : 11: n Jf=== BEfITS iI rdr / n ) 2
Proof: The implications from left to right follow from the fact that the maximum

convex n-divisible subgroup is definable by a formula without parameters, namely a e G„
iff G A (VV)(( 3 : 0 A 0 S y $ 3) V (r $ 0 A 0 S y S –a) d (lz)(y = nz)). For the
converse, if Gn = {0} for some n = 2 the other implications are trivial. If G„ + {0} for all
n ? 2 the same happens for Hn, and using Lemma 3.1 and Theorem C of the appendix,
i) follows from Spn(Hl = Sp„(A 1 H f + {a} = SpR(G / Gn) + {a} = SpR(G), where a is
defined as in Lemma 3.1. We use here the following claim, a consequence of [F-V]

Claim. Let QI be a coloured chain with minimum, which we are going to denote by
0. Let 21* be the coloured chain consisting in adding to 21 an extra element a (a e 21),
placed in the order following the minimum (a > 0, a < b for all b e 21, b > 0) and
satisfying some fixed set of monadic predicats (the same for all such a). Then, for every
formula ?(z1, . . . , gm, #m+1, . . . , a„) in the language of coloured chains there is a formula
p1(=1, , . . , Tm) in the language of coloured chains such that for any coloured chain 21 with
minimum, and for any a1, . . . , a,„ e 21 we have

21’ F y(al. - - - , am q a, - la) iff 21 Hp’(all. . . I am)

In particular, if p is a sentence, p’ is a sentence and QI* F p iff a b y’
For the proof of ii) we use Theorem D of the appendix. From Lemma 3.1 and the claim

-b'„„, SPn( X) = Sp.KH 1 Xn) + {a} 3 Sp.AG /an) + {a} ~ SPRtG). E-.m Xn = an n X
and HI Hn 3 G/Gn we have that nH = nG n H and thus the elementary inclusion
Spn(HI 3 Sp„(G) is defined by

spIt(x) –, spR(c)
A: ( h) +} AS(i) if h ( x"

A: (h) = {o} +} AS = {o} if h e Xn \ {o}
F= kb) + FELTI) Kh { nH

O1 10
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It remains to prove that the extension if g G preserves the predicates M(k), ECn , k) and
D( p, r, i). If if A M(k)(h) then h ( H„ and CHI A- (i) = CH (h) and thus A b M(k)(h) iff
Hl Hn A M(k)(h). Doing the same for G, from Hl Hn 3 GIG „ we conclude IT k M(k)(h)
iff G E M(k)(h). Also if if E ECn, k)(h) then h e n X and a similar argument shows that
H b ECn, k)(h) iff Hl Hn b ECn, I)(h), For D(p,r,i) it suffices to remark that h e pFH

in i C p’tH / H ,I ,nd if h ( P' H th,n Fit/H’ (B) = F$(h). n
Remarks
1.-Theorem 3.2 in not true if we restrict the conditions. for n prime, as shows the

following example. Let X = ©neh. Fn and G = ©n€w, ER, where w' denotes the inverse
order of u and

{;
if n = 0
if n is odd
if n > 0 n is even

if n = 0
if n is odd
if n > 0 n is even

Here Z2 and Z3 denote respectively the rings 2–adic and 3–adic integers. It is easily seen
that Hr + {0} and Gr + {0} for all prime p, HI Hv = GI Gp = {0} for all prime p + 2, 3,
and

HI HI = G/G2 = ' ' - a Z3 @ Z2 O Z3 a Z2,

HI Hs = GIGs = ' ' ' a Z2 Q Z3 O Z2 O Z3

However H + G since #2 C #3 and G3 C G2.
2.-In fact, as suggestet in the example above, the relations XI, g Hq for p, g C IP

is the extra information we need in order to code Th(G). Theorem 3.2, for elementary
equivalence, may be stated as

Hp = {0} iff Gp = {0} for all p e IP
Hp g Hq iff Gr g Gg for all p, ge IP
HI Hv = Gl(3p for all p e P.{

A = G iff

This follows from Theorem 3.2 since for n ? 2 Xn = #1, for some prime pI n and this
happens at the same time in iI and G since H„ = X? iff Hp g Hq for all prime g, g I n.
It also holds a similar result for elementary embeddings

Notation. For any ordered abelian group G, Go = fIpeT Gp, the maximum convex
divisible subgroup of G.

COROLLARY 3.3. Let G and H be tIVO ordered abelian groups. Then
i) if No = {0} and Go = {0} , then

H = G iff HI H„ = Gl (;n for an nZ'2

ii) if Xo = {0}, Go = {0} and if g G, then

H 3 G iff Hn = G„ nH and H / Hn 3 G / G„ for all nZ 2

10
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in) H = G implies H / Hq = G /Go.
iv) H 3G implies H n Go = Ho and Hf Ha dG I Go
v) G = G/Go aT either Go = {0} or for all PC IP there is some ge IP such that Gg C Gr

vi) HI Ho = G I(lo and G + H iff for some peT Hv = Hp, Go = Gp, Hl Hp = G IG1, and
exactly one of fIr, Gp is equal to {0}

vii) UH gG, then H nGo = Ho, HI Ho 3 GIGo and H jG iff for some p ev Hq = Hp,
Go = Gr, X n Gr = Hp, HI Hp 3 GIG v, Nr = {0} and Gp + {0}

Proof: i) and ii) follow from Theorem 3.2 and the following remark. If Go = {0},
then a„ = {0} iff an g Gq for all p e IP iff (G I Gnp)n = {0} for all p e P.

iii). It follows from remark 2 to Theorem 3.2 and 3.3 i) bearing in mind that
kG IGq]n=GnjGq, v\\cIne G IGn I kG IGb]RuG IGn

iv). If 3 G implies Xn Gp = Hp for all pe IP whence X n Go = Xo. The rest of the
proof is as in iii)

v)+. If Go = {0} is clear and the other case follows from remark 2 to Theorem 3.2
as in iii), since Gp g Gq iff (G IGa)p g (G/Go)q

v)+. If Go + {0} and for some pe IP Gp g Gg for all g e IP the Gp + {0} and
(G/Go )1, = {0} u’hence a # G IGv,

vi)+. If HI Hb = G/Go and H + G then either II + HI Ho or G # C/Go, hence by
3.3 v) there is some prime p such that {0} + Xo = Xp or {0} + Go = Gp. In any case,
from HI Ho = G IGb we get Ho = Hr and Go = Gp, whence HI Hp = GI Gp. Hp,G? may
not be equal to {0} nor different from {0} at the same time since by remark 2 to Theorem
3.2 this would imply G = X. The converse is clear since No = Xp and Go = Gp.

vii) it follows from vi) bearing in mind that in this case Ilo = #1, and Go = Gr. D

Remark. If we want to deal in the conditions of Corollary 3.3 with prime n only, we
can set

i) if No = {0} and Go = {0}, then

X = G iff Hp g Hq iff Gp g Gg for all p, ge IP
HI Hv = G IGp for all p e P{

ii) if if Xo = {0}, Go = {0} and H g G, then

JIFJIr 3 1(JrI i ff { :::: : :: i Jd;JIT : i I J:I; I/ iI ; LIbra pcP

IVe are going to denote by LOG= {0, +, –, $}, the usual o.a.g.-language, and by TOG
the theory of all ordered abelian groups in this language. The following corollary will be
useful later.

COROLLARY 3.4. For every LOG-sentence P n’e can find by a recursive procedure
n, me to, ri,j,si,j,tilj Z 2 and LOG-sentences Of ,J for i = 1, . . . , n J = 1, . . . , m such that
for any ordered abelian group G

G b . ia A V (G/G.,. k +i. V G ,,. = {0} V Gt,. + {0})
IJ

11



Proof: From the definability of Gn, it follows that one can translate every LOG-
sentence V' of a„ to a LOG-sentence @n of G in a recursive way. Now we consider : the
set of sentences of type

A V ( C(:/ V G.,„ = {0} V Gt.„ # {0}) ,
i=1 y =1

for some II, in e u', and rilj , si,j,ti,j ? 2, LOG-sentences d'£1J for i = 1, . . . , nJ = 1, . . . , m.
E is clearly closed under conjunctiorr and negation. Now let P be a LOG-sentence and letr bc

p = {$ e = 1 TOG b y A d}

\Ve are going to prove that TOG U F E p. Indeed, if G b TOG U F consider Fc = {$ C
= 1 G A C'}, then F g Fc. TOG UFc, U {p} must to be consistent because otherwise
TOG U {p} E ny’, for a certain U' C Fc, (E is closed under conjunction and negation), a
contradiction to F g Fc. Let Ii F TOG U Fc, U {P}, by Theorem 3.2 i), if = G whence
G A p. By a compactness argument there exists d' e F such that TOG b p b} $ (F
is closed under conjunction). Since TOG is recursively axiomatizable, by a dove-tailing
procedure we can find n, in e It', r,,1, s,,j ,t,,j and q'i.j for i = 1, . . . , n J = 1, . . . , m. D

For n = 2 let us denote u„ = max{% I p e IP, p I n}, whose valuation ring A„ is
definable since A„ = [lpln X?. Hence, for an ARC field k, Un(k) = uo(k)/uc( A)„. If k and
I are ARC fields we denote by uf and ui respectively the first element of V(k) and Y(E)
Also u£ and uk denote the valuation t,n corresponding to k and E.

THEOREM 3.5. Let I and I be tIVO ARC fields. Then
i) k = L i RoE(k) = rtf(E).

ii) if k gl, then k 3 L iff uk extends vR and vI(k) 3 vt{(1)

Proof: The right to left implications follow' from the Ax-Kochen-Ershov theorem.
i). If k = 1 then ul(k) = t f(E) for every n ? 2 by the definability of the valuation

ring ,4„ . Non, Corollary 3.3 i) implies of (k) = u#(1)
ii). From k 3 L it follows A„(k) = A„(1) n I and uS(k) 3 ui(E) whence A,,(1) =

nnZ2 Ap(k) = nn22 ap(E)nI' = (nlt?2 Ap(E)) nb = A„,(bn k. Finally, using Coronary
3.3 ii) we conclude ul( k) 3 uf (E ). a

Remarks :

1.- The sam(’ proof (using Theorem 3.2 instead of Corollary 3.3) shows that if in i) we
change rf and u{ by r C V(k) and tr e 1-’(1), 1, + rf and u, + u{ the statement remains
true. The conditions u + cf and u, + u{ are necessary as shows the following example:
k = L = IR((Z 6 Q)), where Z $ o is lexicographically ordered. Y(k) = Y(E) has two
elements ut3 and 1,1, with co( A-) = Z. rl(L) = Z 8 (> and Un(k) + ur(L). In the same way
if u e V(k) and ul e F(E), u + ul, u, + uf , u, an extension of u then k 3 L implies
u(k ) 3 uKL). Corollary 3.3 sho\vs that this distinction is essential only in the case when
tIp = uo for some p e IP, As we will see in b 4, this is exactly the case when Aoo is definable.

12
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2.- Part i) of the theorem may be stated as: k = L iff u„(k) = u„(1) for all n = 2
iff ao(k) = vo(1). Part ii) may be stated as: if k C I, k 3 Z iff ui extends ui and
u„(k) 3 Un(E) for all n = 2 iff uf extends uf and Ilo(k) 3 voCE).

CoROLLARY 3.6. Let (I, g) and (E, S) be two ordered ARC fields. Then
i) ( IIS ) = (II S ) ;If I = L
ii) if (I, S) g (E, $), then (I, $) 3 (1, $) iff k 3 L

Proof: if I = 1 then, by Theorem 3.5, yo(k) = tpo(1). The re$idually ordered fields
are elementarily equivalent since they are real closed, thus applying the extended version
of the Ax-Kochen-Ershov theorem of [Fa2] (Corollary 4.2 iii)) we get (k, S) = (E, $). The
proof of ii) is similar using in this case Corollary 4.2 ii ) of [Fa2]. D

Remak. After 3.5 and 3.6 the result may be described as follows. Given a pair of
ARC fields, They are elementarily equivalent as rings iff they are elementarily equivalent
as ordered rings (no matter the order we choose) iff they are elementarily equivalent as
valued and ordered fields (provided we are careful distinguishing between Ua and the other
valuations of y(k) and no matter the order we choose). For the valuations we must be
careful distinguishing between tpo or the rest of valuations of Y(k) only in the case when
uo = up for some prime p, and in this case the distinction is essential. For elementary
embeddings the situation is analogous.

We are going to use the notation 21 31 tB to indicate that 21 is a substructure of B
which is existentially closed in tB

COROLLARY 3.7

i) Let k be an ARC field and L a field extension of k. Then k 31 L iff L carries a real
valuation to extension of of Mfl t,o(k) 31 to(E)

ii) Let (k, $) be an ordered ARC field and (L, g) an ordered field extension. Then
(k, $) 31 (E, S) Hf (L, $) carries a compatible valuation u extension of ui with
t’o(k) 31 w( L)

Proof:

i). If k 31 1 then there exists a field extension K of L such that k 3 K. Hence K
is ARC and otS(b) 5 uf'(A’). Take to to be the restriction of of to L. The converse is an
application of the existential version of Ax-Kochen-Ershov (see [K-P])

ii). The arguments are the same as in the proof of i), using Corollary 4.2 i) of [Fa2]
a

Let us now obtain some consequences of Theorem 3.5. It might be pointed out that
the following results may be obtained as well for the language of ordered rings or even the
language of valued and ordered fields taking the valuation to be Ilo.

THEOREM 3.8. For every LR-sentence p there exists a LOG-sentence pC such that
for every ARC field k,

kb s, ia „o(k) F yO

Moreover, pO rnay be built recursively horn ?
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Proof: i) First of all, using the dc6nability of A„ we can translate every LOG-sentence
t!' of On(k) to an LR-sentence O" of k by a recursive procedure. Consider now E the set of
sentences of type:

A RJ (B:y )
i= 1 ]= 1

for some n, m C u', ritj ? 2 and Ibi.j LOG-sentences for i = 1, . . . , n j = 1, . . . , m. E is
clearly closed under conjunction and negation. Now let q2 be a LOG-sentence and let r be

F = {d e E 1 TARC b y –> d},

n’here T ARC denotes the theory of ARC fields. We are going to prove that :FARCUF E p.
For, if k b TARC U F consider FI = {$ e E 1 k A O}, F g Ft. T ARC U FI U {P} is
consistent because otherwise by compacity T ARC U {p} E =$ for certain @ e FI and
thus nd e F, a contradiction. Let L b TARC U Fk U {?}, by remark 2 following Theorem
3,5, k = Z whence k E p. By a compactness argument there exists VI e F such that
TARC E V' b} P. Since TARC is recursively axiomatizable, we can find this $ through a
dove-tailing recursive procedure, i.e., we can find recursively n, m C to, and risj ? 2, II>isi
LOG-sentences for i = 1, . . . , n j = 1, . . . , m. Finally, translating @ tJ to yo(k), we can
find recursively the desired sentence pQ. D

Remark. Since GIG ,„ is interpretable in GIG„ for m 1 n (because of G/Gm =
G/G„/(G/G„ )„,), in the set E of Theorem 3.8 it sufHces to take sentences of type $”.
Thus Theorem 3.8 may be equivalently stated as follows: for every LR-sentence P we may
find, by a recursive procedure, a naturals number n = 2 and a LOG-sentence pO" in such
a way that for every ARC field k, k E p iff u„(k) E pQ-

It is not possible, however, to translate LOG-sentences of yo(k) to LR- sentences of
k. For example, consider the LOG-sentence expressing a„ = {0} for some n = 2. For any
ARC field k, oo(k) A G„ = {o} iff k h l\rv X„ g Ap. If this were firs-order expressible,
by a compacity argument, it would be equivalent to a finite conjunction of sentences of
type An g Ap, which is no possible, since by remark 5 after Theorem 4.4 we can find an
ARC field k satisfying this finite set of setences and k bl Ap€B X„ g Ar. If we try to
apply the same kind of arguments of 3.8 to translate LOG-sentences to LR-sentences, the
problem we find is that {t'o(k) 1 k E T,4RC} = {G 1 G F TOG and Go = {0}} is not an
elementary class, as Proposition 3.13 shows

Now we are going to see that we can translate also theories of ARC fields to theories
of ordered abelian groups preserving the completeness and in some cases the decidability.

Definition. Given a theory :F of ARC fields, n’e define TO as the following theory of
ordered abelian groups

To = Th{vo(k) 1 k F 7}

Remarks

1.- For every LR-sentence p, y> e =F iff Q<> e TO .
2.- For every ARC field k, k A =F iff I,o(b) E To iff tto(k) b pO for all p e :F

14
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3.- For every ordered abelian group G with Go = {0}, IR((G)) A T iff G h TO iff
a b pQ for all p C T

4.- O is a one to one application between theories of ARC fields and theories of ordered
abelian groups. In fact A is monotone: T C T1 iff TO C Tf O

Al these remarks are immediate consequences of the definition of TO and Theorems
3.5 and 3.8. If T is a consistent theory of ARC fields, obviously TO has models G with
Go = {0}. Hence, O is not onto, there are consistent theories E of ordered abelian groups
with E b Go + {0}: take a with {0} + Gp g Gg for some p e P and all g e P and E
its theory. The followig proposition characterizes those theories of ordered abelian groups
which are under the image of Q.

PROPOSITION 3.9. For every theory E of ordered abelian groups the following are
equivalent.

i) There is a theory :F of ARC fields such that TO = E,
ii) E satisfies the following properties.

(a) G h E implies G/Go b E,
(b) = = Th{a 1 G E E and Go = {0}}
Moreover, if i) is satisfied Mod (T) = {k I k carries a henselian valuation u with real

closed residue field and r(k) E E}

Proof.

i)+ii). (b) is an immediate consequence of the definition of TO. For (a), let G A E.
Then G = [11.e/ yo(Ii)/U, a certain ultraproduct of t'o(b) with ki E T. Thus, by Corollary
3.3 iii), Gl Gq = (nic/ vo( hi) /U)/ (n ICI Ilo(Ii) /U)o. Now [l1.el(b, v:' )/U is a hensehan
valued field with real closed residue field and value group isomorphic to FIle/ vo(ti)/U.
Thus t/o(nic/(It? ufi )/U) = ([]ie1 uu(Ii) /U)/ ([l,-€Juo(Ii) /U)o and TIlerAi/U k r,
whence GI Go b E

ii)+i). We show first that by (a), the class C = {k 1 k carries a henselian valuation
u with real closed residue field and u(k) A E} is elementary. K is clearly closed under
ultraproducts. If I = L C C then I is ARC and yo(k) = Ua(E). By (a) oo(L) b E
whence yo(k) b E and I e K. Let now :F = Th(C). If we show To = = the proof of the
proposition is complete.

TO g E. By (b) we must show To g Th{C I G h E and Go = {0}}. We sho\v
{C 1 G h E and Go = {0}} g {to(k) I k A T}. If G h E and Go = {0} then, by definition
of T, IR((G)) F T whence G = t,o(IR((G))) C {ro(k) I k b 7}

E g To. We must show k A :F implies t,o(1) A E. Since C is elemetary, k b =F implies
that I carries a henselian valuation u with real closed residue field and and u(k) F E thus,
by (-)7 „o(k) = „(k)/.(k)o E =. a

The following propositions show that O preserves some logical properties.

PROPOSITION 3.10. IF is complete Hf TO is complete.

Proof: if TO is complete, given A', I E =F then yo(b), t,o(L) b TO whence vo(k) =
uu(E) and k = 1, hence T is also complete. For the converse suppose T is complete and TO
is not. Then H + C for some X, G F To . Now, by Proposition 3.9, IR((X)), IR((C)) b :F

15



whence IR((#)) = IR((G)) and HjHQ = .o(IR((#))) = „o(IR((G))) = GjGQ- Hence, by
corollary 3.3 vi) {0} + Hp g Ng or {0} + Gr G Gg for some pe IP and aII g e P. By the
completeness of 7, T A Ap g Ag for all g e IP whence TO b Gp = {0}, a contradiction to
H.G + To . D

The same is true for model completeness, but in fact we have

PROPOSITION 3.11

i) The only model complete theory of non-trivial ordered abeIIan groups (in LOG) is the
theory of non-trivial divisible ordered abelian groups.

i) The only model complete theory of ARC fields (in LR) is the theory of real closed
fields

Proof.

i). Suppose E is a model complete theory of ordered abelian groups and G A E. Let
n ? 2, from nG = G we get nG h E whence nG 3 G. This implies nG = C1 otherwise
taking g C G \ nG we have G A ( ly)(ng = ny) and nG f ( IV)(ng = ny) .

ii). Suppose :F is a model complete theory of ARC fields and k A =F. We are going
to show that roCk) is divisible. ntlo(b) = ua(k) impliesT by Theorem 3.51 IR((nuo(b))) =
IR((uo(1))) = k A T whence R((nt)o(b))) 3 R((yo(k))). By Theorem 3.2 nao(k) 3 tlo(k)
cmd, as before, nuo(1) = Ilo(k). []

Remark. In fact, if TReIF denotes the theory of real-closed fields, TRCFO is the
theory of the trivial ordered abelian group {0}, which is also model complete. The theory
of non-trivial divisible ordered abelian groups is not under the image of <>, by Proposition

For the relation between the decidability ot T and TO we have one trivial implication:
3.9

TO decidable implies :F decidable. It follows from veT iff pQ e TO for every LR sentence
and the recursivenes of O. Since not all LOG-sentences are equivalent to one of type p<>1

the decidability of T does not implie the decidability of TO in general, as the following
example shows.

Example. Let B C N2 recursive such that 7(B) is not recursive, where 7r denotes
the first coordinate projection 7 : N2 –} N. Since there is a recursive bijection between
N and IP, there is some 4 g IP2 such that T( A) is not recursive. Let 1) = {(a, y) c N2 1
I < y}. An D is recursive and 7( A nD) is not recursive: x(A \ D) is recursive since
= e x( A \ D) iff (IV g r)((#, y) e X), thus the recursiveness of 7(A n D) would imply, by
I( A) = nCA n D) U T(A \ D), the recursiveness of 7(,4). Let no\v

T = T ARC U { Ag C Ap I (P, g) e A n D}

1.- By the remark 5 after Theorem 4.4, there is an ARC field k such that Ag(b) c Ar (k)
for all p, qC IP with p < g. So T is consistent.

2.- Let us now show that T is decidable. By the remark after Theorem 3.8, there is a
recursive procedure which, to every LR-sentence ? associates a natural number n ? 2 and
a LOG-sentence yO- in such a way that

THy ia 7(„) = Th{„n(b) 1 k b 7} h go"

16
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Bearing in mind that G, is interpretable in G, for r E s, we can suppose without loss of
generality (by replacing n by n n{p 1 p e IP and p < n}) that the set of prime divisors of n
is an initial segment of IP, say b1, . . . ,p,. Now we want to prove that T(n) is axiomatized
by

TG AO U {Gn = {0}} U {Gq C Gp I (p, q) C 4 n D and p, q I n},

where TG AO denotes the theory of ordered abelian groups. It is clear that T(n) implies
this set of sentences. Conversely, let G A TGAO U {an = {0}} U {Gg c Gr 1 (p, g) e
A n D and p, q I n} and take

F = G O (Pll . ..,Pr)-"Z © (Pl, . . . IPr+1 )–'*’Z O ' - - O (Pl1 . . . tPm )–'”Z O - '

lexicographically ordered, where p„ denotes the n-th. prime number and s–C-Z denotes
Ul€N s–hZ. It is not difficult to verify that IR((F)) F T and that u„(IR((F))) = C, whence
G E T(n) follows. This proves that T(n) is axiomatized by TG AO U { OR}, where @n is
obtained from n by a recursive procedure. Thus

:F by iff TG AO A +B –} po"

and the decidabibty of TG AO implies the decidability of T.
3.- However TO is not decidable, as it will be clear if we prove

TO b Gp + {0} iff pe 7(AnD)

If p C r( AnD) then :F F Ag C Ap for some q such that (p, g) C AnD, thus TO F Gg C Gp
u’hence TO b Gp + {0} . Conversely, for po prime, po ( x( A n D), let, by remark
5 after Theorem 4.4, 1 be an ARC field such that Ap,(k) C Ag(k) for all g e P and
Ag(k) C A?(k) for all p, g e IP, p < g, p + Pa. From k A T and oo(k) F G r = {0} it follows
TQ F G, # {0}

However in some cases, for example when T is complete, the deci(Iability of T implies
the decidability of TO

PROPOSITION 3.12. Let T a theory of ARC fields such that tOT aN n = 2 :F b oo = u"
or :F F oo + Un, i.e. :F F ApeF A„ g Ag or =F b Vpe? ,41, C An, in particular if T is
complete. Then

T is decidable iff TO is decidable.

Proof: Suppose IF is decidable. Then {n 1 :F b to = u„} is recursive, because if
this set is non-empty, taking m is this set, we get IF b jlo = u„ iff T F An S Am for all
n ? 2. By Corollary 3.4, for every LOG-sentence p u'e can find by a recursive procedure
n, in e to, r,1j , silj ,ti,j ? 2 and LOG-sentences \',1j for i = 1, . . . , n j = 1, . . . , m such that
for any ARC field k

„o(k) by iR A $ („„., (k) b OI,j V „f = „!,. V „f # „I.') ,
lj
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We can replace, uniformly for I h T, the statements of = ul j and of + uh j by true or
false LR-sentences, accordingly to { it 1 :T A t/o = o„}, More8ver, since An is definable,
we can replace the statements u,1. j (k) E ('i,J by k E yiIJ for some LR-sentences pil , also
obtained by a recursive procedure horn Tilj and Of, j. Putting all this facts together we can
find, by a recursive procedure, an LR-sentence pv such that for all k h =F

„o(i-> b y ia kb Vv.

Now the decidability of T implies the decidability of TO a

In particular, for an ARC Held k, k is decidable iff roCk) is decidable.
We end this section with a characterization of when {oo(k) I E F T} is elementary.

PROPOSITION 3.13 Given a theory E of ordered abelian groups, then

E k Go = {0} iff there is some n E 2 such that E A Cn = {0}

Proof: E F Go = {0} iff E E (Vr)(= = 0 V\f pcI? r d Gp). By compacity E F
(V,)(, :bvvp,', , d G ,{td, „,m, i.i;,- ILp. H,., i SF"b d„ :{O} t;ki.;; :-ilp„b.
D

Thus {oo(k) I k h T} is elementary iff T<> E G„ = {0} for some n = 2 iff T F ut> = o"
for some 72 > 2

S 4, DefInable real valuation rings

In section 2 we have studied the valuations us and have shown that when S is finite
its valuation ring As is first-order definable. In this section I will be an ARC field and we
will study the first-order definable real valuation rings of k.

In order to give some results on definable real valuation rings of k we first study the
definable convex subgroups of an o.a.g.

Notation. If a is an o.a.g., G+ = {g e G 1 g = 0} and if g e G, IgE = max{g, –g}.

THEOREM 4.1. Let G be an o.a.g. and X a convex subgroup of G. If H is definable by

a LOG-formula with parameters in G, then there exists n e N such that if = []sIgH An(g)
Proof: Let pCa, r) be a formula with parameters a in a defining II (here a denotes

a finite sequence of elements of G). From Theorem B of the appendix there exist n = 2,
a quantifier-free LOG+-formula \''1 (a, r), an LSP-formula d'o(y1 , . . . , gm , z1 , . . . , z,), LOG-
terms si(a, r) for f = 1, . . . , rn and fI(a, r) for i = 1, . . . , r such that

Gb -(;’') " { :„(I;( iI:(Cl(a)....,C„(r),Dl(r),...,D,(-)>

where a(#) = X„(si(a, r)) and D,(T) = F„(ti(a, r))
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Since X is a convex subgroup, for every N cIV \ {0}, r C A iff Nr e X, thus

(1) -'" ” { :,„(g; 1:: iCl(Nz),...,C„(N=),DICN=),...,D.(N=X

Let N be a common multiple of n, pf and m for every p, r such that D(p, r, i) occurs
in V'1 , and for every m such that for a certain k ECm, k) occurs into Or . For such N, by
Proposition A iii) we have

DttN a) = Frlttita\ 0)) for i = 1, . . . , r

and

Dtp,-, i)(sN- + b) H* Dtp, rl i)(b)
ECm, k)(tNa + c) A ECm, k)(c)

for all formulas of this type occuring as subformulas of $1 . Hence, replacing such subformu-
las by logical constants (always true or always false sentences) we can consider $1 (a, N z)
a quantifier-free formula in the language {0, +, –, $, M(k) for k > 0}

Claim. If H+ G and Gl H is not discrete, we can choose M e N \ {0}, a, p e G+,
a e X , B q A such that every atomic subforrnula of $1(a, Ma) is constant in the interval
(., P)

Proof of the claim. Let A/ be a multiple of N, M > k for any atomic predicate
M(k) occuring in the formula $1. 1f for every atomic subformula 0 of $1 (a, Ma) there
exists such an interval in which 0 is constant, we only need to take the intersection of all
(a finite number) such intervals. The claim is clear for all subformulas of type 5 M= ? b
or sM z $ b, where s C N and b e G. For each subformula of type M(k)(sA/= + b) we
distinguish three cases

Case 1. If C ,4(b). Taking a e H+ and p e X(b)+ \ N , for # e (a, p) A(sMr + b) =
A(b) and M(k)(sMr + b) H+ M(k)(b)

Case 2. A(b) C A. Then b e A, and taking a ? bbl, p C G+ \ H , for r e (a, p)
a(sM= + b) = X(sMl) and M(k)(sMr + b) is false because M > k.

Case 3. A(b) = H. Then, by hypothesis, C(b) is not discrete and there exists a e
B(b)+ \ A(b) such that sMP < jb} + ,4(b). Thus taking any a e X+, # e (a, p) implies
IsM=1 < liII + 4(b) whence ,4(sAf= + b) = X(b) and M(k)(sMr + b) is false. This ends the
proof of the claim

Let us now go back to the proof of the theorem. In the case if = G, nO is understood
to be equal to G and the case H = {0} causes no problem since {0} = ngcc\{o) An(g) for
any n e N, thus we may suppose {0} C A C G. If G / H is discrete, Il = An(g) for every
integer n and some g e G \, A . Otherwise, let us define, for the integer n of (1)

HQ = n{an(g) I g e G, and A g an(g)}

If we prove Xo = H \ve are done, since this implies if = n{4„(g) I g g A }'. n{ An(g) I
g d H\ C A because g g A„(g) and if g n{ A„(g) I g e H} because g g A = No
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implies g g A„(h) for some h e G with Ii g A„(h) and, by Proposition A iv) in the
appendix, if g a„(h) C A„(g). Suppose that H c No, then for some r, y e Xo \ X,
A„(r) = X„(y) C /1, since by Proposition A v), A„(r) C ,4„(y) implies = e A„(y) and
H g A„(y) whence y e A„(y), a contradiction. Let us denote A„ = An(#) for = e Xo \H .
Also An(r) = An for r C li \ X„ . We apply the claim, and we are now going to restrict
the interval (a, P) in such a way that we get the extra condition that a(M=) is constant
for i = 1, . . . , m (D,(M=) = Di(0) is constant for i = 1, . . . , r). This would lead to a
contradiction to (1). If Ci(Mz) = A. (r M=+b) for some r c N, r + 0, b e G, we distinguish
two cases. If An C /4„(b), then, by restricting the interval if necessary, we can suppose
B e HI \ X, thus # C (a, a) implies A„(?) g A„ c ,4„(b) and A„(rAf: + b) = An(b). If
A„(b) g An then, by restricting the interval if necessary (if b c H we take a e X+ \ An
such that rMa > 2jbl and B e Hi \ A; if b ( X take a c H+ \ An and p e HI \ X
such that 2rM# < 161), we can get that = e (a , P) implies rMr + b e Ho \ An, whence
,4„(rAf: + b) = A„. []

Remarks

1.- if dimp(G/pG) < +oo for every p e P then the only definable convex subgroups
of G are the An(g) for some g e G and n = 2. It follows from the fact that in this case

SP,„ (G) is finite for every m ? 2 (see [Sl] for example).
2.- it is also true that X = U{B„(g) 1 g e X} for the same n as in the thesis of

the preceding theorem. For, if ge X then for every be G \ A , g c An(h) and thus
B„(g) g A„(h) by prop. A v). This implies Bn(g) g A for every g e if

3.- it is not possible, in general, to write H as a union of An’s or intersection of Bn’s
as show the following examples:

Example 1. Let a = w + 1 and let G = ©pca Zp lexicographically ordered, where
ZN is an isomorphic copy of Z. If H = Zu, then, for every n ? 2, X = Bn(lu) (where ip
stands for the unit of Z/?) and U{A„(g) 1 g C G and a„(g) g a} = {0}.

Example 2. Let the order type a = 1 + w', where w* is the inverse order type of
o and 1 minores w*. Then, if G = Open Z/3 and if = @ Jew, Zn, for every n = 2
H = An(11 ) (here the subindex I stands for the last element if a) and n{B„(g) I g e G
and if g B„(g)} = G,

4.- But we can prove that if U{ X„(g) I g C G and A„(g) g #} C if for every
n = 2 then II = Bn(h) for some h and n. Let it as given by Theorem 4.1 and h e
X \ U{ A„(g) I g e G and A„(g) g # }. By remark 2, Bn( h) g H. If there exists
hF C H \ B„( h), then h e A„(hf ) g H , a contradiction. In a similar way we can prove that
if if C n{Bn(g) I g e G and if g ,4„(g)} for every n then li = An(h ) for some h and n.

COROLLARY 4.2. Let G be an o.a.g. and if a convex subgroup of G. If H is definable
in a by a LOG-formula with parameters, then there exist n e N and an initial segment A
of Sp„(G) such that

r e H iff A„(3) e A,

A definable in Sp„(G) by an LSP-formula with parameters. Moreover, if H is definable
without parameters so is A. The correspondence which, fo a defining formula of X ,
associates a defIning formula of A is uniform in the parameters
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Proof: Let n as in Theorem 4.1. Then

a e X iff A„(a) C II

This proves the first assertion
For if = {0} or X = G, A is trivially defined in SpR(G) without parameters. Thus1

from now to the end of the proof we are going to suppose that if is a proper non-trivial
convex sub©oup of G. Let do and $1 be as in the proof of Theorem 4.1. The first step in
the proof tha A is definable consists in modifying do in such a way that it only depends
on '4„(a). For every Ci(a) = X„(rr + b) occuring in do with r + 0, if X g A„(b), we can
replace do by

An(') C An(b) A V,o (An(b)/a(,)),

where do (A„(b)/C,-(#)) is obtained by replacing any occurrence of C,( r) by A„(b) in do
If An(b) C H, we can replace do by

('„(') C ”„(,) " do ('„(„)/','(-))) „ '„(-) g '4„(b).

Repeating this procedure for any Ci(r) occuring in do we arrive at an LSP-formula oa(=)
with parameters in Spn(G) such that

le H iff G h dl (at -) and SPrltGI E da(Art(a;))

If G/ X is not discrete, let a, P and M as in the claim of Theorem 4.1. Since $1 (a, Mr) is
true in (a , P) (# + {0} implies (a, p) n A + 0), we have

= e H iff Irl C A iff G E 01 (a, MIxl) and Sp„(G) b di( An(r))
iR G h IT £ < P and SpntG) E d: (An(r) )
iff SPntGl b An(T) C An(#) A db(Arl(,))t

by Theorem 4.1

If GI A is discrete, then A = X„(g) for some g e G and thus

I e X iff Gb 01 (a, ifIrl) and Sp„ E d&(A„(1))
iff SPntG) E an(') c An(b) A da(An(,))

In the case where p(#), the formula defining H, is without parameters, it is easy to see
that , for a suitable M C N\ {0}, (;1 ( AIr) remains constant, hence true, in {g e G 1 g > 0}.
Thus ,

1 eH iff SpR(G) b :/'i(An(-))I

where the formula d'iCA„(#)) has at most the parameter A„(0) = F„(0) = a, which is
definable in Spn(G).

The correspondence which, to a defining formula pCa, r) of X, associates a defining
formula +>(b, y) of A can be chosen uniform in a: depending on a, finitely many formulas
p:’kbi , g) occurred in the proof, such that

G b y(a,„) iff SptltG) b y:’(iII An(-)).
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The combination Vp:’(b,-, y) A c,' = di is equivalent, for a suitable choice of a and d, to the
formula p:'(i,-, y) we want. []

COROLLARY 4.3. If A + {0} is a definable convex subgroup of a then GI, g A for
some p e IP, where Gp denotes the maximum convex p-divisible subgroup of G

Proof: By Proposition A vi) of the appendix we can impose in Theorem 4.1 n to be
a prime number. 4.3 is then a consequence of 4.1 keeping in mind that if g e Gp then
Ar(g) g {0} and if g g Gp then Gp g 41,(g). a

If I is an ARC field, we recall that 111 = max Y(k) and for u e W(b), we are going to
denote C, = ul (,4„ \ Af„). It is a convex subgroup of ul (k).

THEOREM 4.4. Let k be an ARC field and u C tV(k). Then A, is definable in k iff
G, is definable in ty1 (k) and u $ up for some p e IP,

Proof: Let us denote Gp = G,p, also equal to (a1(k))n, using the notation of 53
1. The only if part of the proof uses the following Delon’s elimination result (see [Dl],

chap. 2) valid for Hensel fields of zero residual characteristic: if a subset of u(k) is definable
by a formula of valued fields with parameters in k it is definable by a LOG-formula with
parameters in uCI). For, if A, is definable in the field structure k, G, is definable in the
valued field structure (k, th ) (ul (r) e G. iff = e X„ and r-1 C A„), hence in the o.a.g.
u1(1). If u + t'1 then G. + {0} and, from corollary 4.3, Gp g G„ for a certain p C IP,
whence u $ oI,. If u = ur the following claim gives the result

Claim: if A,, is definable then ur = up for some p.
Proof of the claim.' if pCa, r) defines A„, and ul > Ur for every p C P consider the

following set of formulas, consistent in I

7(=) = {ly;(y(a, gJ A v(a, ; J A v(a, y-1 ) A -VCd, z–1) A ' = „ + y2 + z) I „ C „}

Let L an elementary extension of I realizing T(r). Then L is an ARC field and y(a, #)
defines a henselian valuation ring of E with real-closed residue field. If we denote by u
this valuation, u e VCE), u > uf for every prime p (since (I1)(Pr(a) A TV(a, r)) holds in
A, thus in L, where pp(r) is a formula defining Ar) and u < ur because the realization of
T(r) makes L/t' non-archimedean. This contradicts the last assertion before the claim

2. If G, is definable in t'1 (k) and u $ up for a certain p then Gp g G„ and from prop.
3.1 of [D-L] G„/Gr is definable in u?(k) = c1(k)/Gp. It is then not difficult to deduce the
definabibty of A„ from the definability of A r. n

Remarks:

1.- The same may be seen replacing ul by any r e V(k) in Theorem 4.4,
2.- The collection {up 1 p C IP} is cofinal in the set of definable real valuation rings.
3.- to is the only possibly definable valuation in Y(k) and, in this case, it is the biggest

definable real valuation of k. vo is definable iff uc = up for a certain p iff Gp is divisible for
a certain p iff tpo(k) has no non-trivial convex Fxdivisible subgroups for a certain p iff there
exists a minimum element in the collection {Gp I p e IP} iff {up 1 p e P} has a maximum
element .
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4.- in the case dim), I < oo for every p, by Theorem 4.4 and remark 1 following
Theorem 4.1 we characterize all definable real valuations of k.

5.- Let us describe all possible relations of inclusion occuring in the set {or 1 p e IP}.
If we define it on IP as

vg g OI, iff g Rp,

then I? is clearly a linear preorder, i.e., R is a reflexive and transitive relation satisfying
pRq or gRp for every p, g e IP. Conversely, for every such R, let us consider the associated
equivalence relation: p N g iff pR q and q Rp, and the quotient order S on IP/ hr. For
i C P/ h', let GT to be an archimedean and dense o.a.g., I>divisible for p with F $ i and
not ;>divisible for p with p > i (this choice is always possible, see [Za] or [Sl]). If we set

G = O OF
F€1P/I-

!exicographica11y ordered, the maximum convex pdivisible subgroup Gp of G is Oi>P Gi
Thus G? g Gq iff # $ F iff q Rp. In IR((G)) we have ug $ up iff q Rp. Hence, by rem–ark 3,
there are many examples where tJo is not first-order definable.

6.- The situation is different in the case of us for S + IP. It can be first-order definable
even in the case us + up for all p e IP as the following example shows

Let S = P \ {2} and, for any g e S, let Hq be an archimedean o.a,g, pdivisible for
p g g, p + 2, and not ;bdivisible if p > q or p = 2. Let X2 be archimedean, I>divisible for
all p C S and not 2-divisible. Let then

'= [a„,I ,„=
PCS

where ©p€s Xp is lexicographica11y ordered by the natural order of S (S g N). If k =
IR((G)), ol is the canonical series valuation of k with hIv\ = R and t/l(k) = G. Then
G ,, = #2 = B2(g) for g C HI \ {0}; hence, by 4.4, us is definable in A. But G,s + Gp for
every P e IP, because C2 = {0} and Gp = Og>p Xg if P e S.

Appendix

The statements, definitions and notation of this section are taken from [Sl] and [S2].
All the proofs may be found in [Sl].

We start with some definitions. Let G be an o.a.g., g e G and n : 2.
G is called n-regular iff for every convex divisible subgroup A + {0} of G, then G/X

is n-divisible. It is equivalent to the following first-order sentence:

V=y(121, . . . , :n(= $ ;1 < =2 < . . - < =„ S y) –+ I?(a $ nz $ V))

Let g C G \ {o} . We define
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A(g) =the largest convex subgroup of G not containing g.
BCg) =the smallest convex subgroup of G containing g,
O(g) = Bkgl I /Kg)
An(g) =the smallest convex subgroup a of G such that Bkg ljC is n- regular.
Bn(g) =the largest convex subgroup C of G such that C/4(g) is n- regular,
CrI(gI = an(g)/'4n(g)
For g = 0 we define A„(0) = O, B„(0) = {0}.

For g e G we define:
F„(g) =the largest convex subgroup C of G such that C n (g + nG) = O (i.e., g g C + nG)
if g d nG, Fn(g) = O otherwise.
rl,n(g) = {h e G 1 Fnthl C Fn(g)}
F2,n(g) = {/z e G 1 FR(hI g Fn(g)}
If g { nG, Fl 1„(g) and F21„(g) are shoitn to be subgroups of G (Proposition A ii)). In this
case we define:

F„(g) = F21„(g)/Fll„(g), F„(g) is shown to be a torsion group with n as an exponent.

The sets A„(g), B„(g) and FR(g) are shown to be definable in the language LOG=
{0, +, $} by a first-order formula with the only parameter g.

PROPOSITION A. If g,h / 0 then
i) A„(g + h) g An(g) U A„(h) and if A„(g) C A.(h) then An(g + h) = A„(h)

ii) Fn(9 + h) g F„(g) UF„(h) and ifF„(g) C Fn(h) then Fn(g + h) = F„(h)
iii) F„(g + nh) = F„(g). F„(g) = O iff g e nG.
iv) An(h) g A„(g) iff Bn(h) g Bn(g) iff A„( h) C B„(g) iff h C Bn(g) iff g ( An(h)
v) An(h) C A„(g) iff Bn(hI C B„(g) iff Bn(h) C A„(g) iff g ( B„(h) i ah e An(g)
vi) An(g) = U{ Al,(g) I p a prime divisor of m}

The language LSP of spines contains as non-1%ical symbols a binary relation symbol
S and the following mona(tic relation symbols: A, F, D and o(p, k, m) for all k, m C N,
k > 0, p prime

The n-spine of G for n ? 2 is defined as the LSP-structure with universe

{an(g) I y e G} U{&l(g) I g e G}

and with the following interpretation of the relations

Cl $ C2 iff Cr g Cl
ACC) iff C = A„(g) for some g e G
FCC) iff C = F„(g) for some g e G
DCC) iff C + 0 and G/C is discrete

aCp, k, m)(C) iff C = F„(g) for some g C G '\nG and a1,11(Fn(g)) ? m

where arl1(C) is the Szmielew invariant given by dim? (pk–1C[p]/pkCkr]). ap1 b(Fn(g)) is
the number of cyclic groups of order pl in the direct sum decomposition of F„(g) [Sz].

We are going to denote this structure by SIl„(G'l
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Let LOG+ be the definitional expansion of LOG by the following unary predicates:
M(k)1, ECn, k) and D(p, r ,a for all n ? 2, r = 1, 0 < i < r, 0 < k < n and p prime.

For g + 0 they are defined by:
M(k)(g) iff C(g) is discrete with E denoting its first positive element and i = kE in

C(g) iff Cn( g) is discrete with E denoting its first positive element and i = bE in On(g).
ECn, k)(g) iff there exists h C G such that F„(g) = An(h), M(1)(b) holds and i = kh

in F„(g) iff there exists h e G such that Fn(g) = X„(h), M(1)(h) holds and F„(g – kh) C
FnCg)

D(p, r, i)(g) iff g e pTG or i e PIFpr (g) iff g e pTG or there exists h e G such that
F,’ tg – p' h) c F,-Lp’ h) = F,,(g)

For g = 0 they are defined to be false.

Cmi DI

THEOREM B. For every LOG-formula y(F) there exist n : 2, a quantifier-free LOG+-

formula d'1 (E), an LSP-formula V'o(yr , . . . , Um, zI , . . . , z,), LOG-terms fi(1) for i = 1, . . . , m
and si(F) for i = 1, . . . , r such that for every o.a.g. G and every i e GU

Gb„(n m { :p„cI; -: OoCC , D,)

where a = A„(t,-(g)) and Di = F„ (s,-(i))

Theorems C and D are consequences of Theorem B.

THEOREM C. Let G and X be two o.a.g. Then

G = H iff Sp„(G) = Sp„(H) for all nZ 2

THEOREM D. Let G and ll be f ivo o.a.g.. If g G. Then iT 3 G iff H is a LOG+-
substructure of G and for all n 2 2 the application defined by:

&n(Ir) –, spIt (G)

Ait(h) ++ AS(h) if he H
FII (h) ++ F: (h) if he H

is well defined and an elementary embedding of LSP-structures

Remark. Theorem D is not stated in [Sl] but it is equivalent to Theorem 6.1 of [Sl].
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HENSELI AN FIELDS WITH REAL-CLOSED RESIDUE FIELD

EBERH ARD BECKER

RALPH BERR

DANIELLE GONDARD–COZETTE

INTRODUCTION .

In this paper henselian fields with real-closed residue fields are

studied. To study this class of fields was stimulated by the observation that

many fields of importance for the theory of formally real fields in fact

belong to it : real-closed fields in the original sense of Artin, generalized

real–closed fields introduced by the first named author in [Be], chain

closures of fields in the sense of Schwartz, [S] and [S2], and the Rolle

fields first studied by Brown, Craven and Pelling in [B–C–P], to mention the

main examples. The occurence of so many examples also asked for a general

treatment. To facilitate slightly the notation, the fields in question are

refered to as restduaLL y reaL–cLosed hertseLtan fields.

In the first section we study the valuation theory of such a field R

Among the henselian valuation rings with a real closed residue field there is

a smallest one, ACR) , and a largest one, #(R) . If F denote the value

group of ;(R) , then SCR) == { p 1 p prime, F + p F } is called the

exact type of R

The subsequent section deals with a first-order characterization of the

class of all residually real-closed henselian fields, as well as of the

subclass of fields of exact type SCR) = S . That these are elementary classes

has been proved first and independently by Delon and Farr6, [D-F]. However,

they use other methods and their set of axioms is not as simple as ours,

Residually real-closed henselian fields enjoy sharper versions of

Hensel’s lemma. In addition, they satisfy Rolle’s theorem for certain set of
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polynomials. This is proved in section 3 which is inspired by Brown, Craven

and Pelling’s study of Rolle fields

In the last section we study algebraic residually real-closed henselian

extensions of a formally real field. In our point of view the extensions have

to be considered as a type of rather general real closures which should share

the basic properties of the Artin-Schreier theory. In fact we are able to

describe the conjugacy classes of residually real-closed extensions in a quite

satisfactory way. Minimal extensions of this kind are well understood, and

finally, all this fits nicely into Schwartz’s theory of real closures relative

to generalized signatures

I- THE VALUATION THEORY OF RESIDUALLY REAL-CLOSED HENSELIAN FIELDS.

From now on residual Ly reaL–cLosed he nseLtarl fieLd will mean a field

admitting a henselian valuation with real–closed residue field

We first introduce some notations and recall known facts

Let K be a field, a subset TS K is called a preorder ing if T + T ST

O , leT , - 1 dT and T = T \ {0) is a subgroup of K' . Now let v

be a valuation of K with valuation ring V , maximal ideal m. Then v

(resp. V ) is fuLLy compatible with T if I + m ST . In this situation T

induces a preordering T on the residue field of v . If in addition i is a

total order, then we say that v (resp. V ) trtvtaLtzes T . Now T is

called a vaLuation fan if for any xe IT we have it x cT or

1 ! x-1 c T . From [ JI] we know that a preordering Tg K is valuation fan

if an only if there exists a valuation v of K which trivializes T

2
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For any preordering Tg K let

ACT) = ] x cK IIneN nIx CTF

It is known that ACT) is a PrUfer ring, and by [Br2] lemma 1-8 , T is a

valuation fan if and only if ACT) is a valuation ring which trivializes T

Proposition 1.1. Let ( R,v ) be a residual Ly reaL-closed henset£an fieLd, then

any real vaLuation ring of R is hensel ian, there exists a smallest one and

the set of real valuation rings is totally ordered by inclusion .

Proof . The rings ACP) , P € X(R) , are the minimal real valuation rings (see

[L] theorem 2.6). Hence if V is real henselian, V is compatible with all

orders of R (c.f . [L] 3.14) and for each Pc X(R) ACP) S V . Then by

mapping V to the residue field R , ACP) is sent to ACP) since if

n t a c P then nt ; c F , hence we get ACP) = A(112 ). Thus ACP) is

henselian since the unique real valuation ring of R is such and using IR]

(proposition IO p. 211) we deduce that ACP) is henselian. So every real

valuation of R is henselian . In particular, if P e X(R) , then every real

valuation of R is compatible with P . Hence the set of real valution rings

of R is totally ordered by inclusion. Finally we get that for every P and

Q in X(R) the minimal real valuation rings ACP) and A(Q) are equal

hence there exists a smallest henselian valuation ring

Remark 1.2. We also get the following properties of a residually real-closed

henselian field

for all orders P and Q ACP) = A(Q) , R admits a unique tR-pLace

(c.f . [L] corollary 2.13 ) and R is real henselian in the sense of [Br2]

which means that R admits a hensel ian valuation with archirnedean reaL–cLosed

residue fieLd.

3



Let R = n R2TI and let H(R) denote the real holomorphy ring of R , i.e
nC[N

the intersection of all real valuation rings of R . For properties of H(R)

we refer to [B2]

Proposition 1.3. Let (R,v ) be a residual ty reaL–cLosed henselian field,

then the smallest henseLtan valuation ring is described by :

H(R) = A(R2) = A(RZn ) = A( R )
aa

Proof . From the proof of 1. 1 and the definition of H(R) it follows that the

smallest henselian valuation ring is equal to H(R) . First note that by

Hensel’s lemma R is pythagorean at any level since R is such. Hence for

every ne A' ACE Rar1) = A(R2r1) . Now if F is the value group of H(R) we

know from the general theory that R2n = ] x c R2 1 vCx) € 2nF F , hence we

get Rm = { x c R2 1 vCx) € n2m2nr F = 3 x c R2 1 vCx) c rdlV F (')

where FA. is the maximal divisible subgroup of F . Clearly we have

ACR_) S A(RaFI) g A(R2) = H(R) . On the other hand take x c H(R) = A(R2)

then there exists n € N with n ! x c E- Rz = Ra . Hence we get

1 + n ! x c H(R)X n E R2 which implies by (+) that 1 + n t x € Rm , hence

x c ACR )

Remark 1.4. From the proof above it follows that a residually real-closed

field R is pythagorean at any level and that for every n R2n is a

vaLuation fan .

For any preordering T let /(T) denote the foILowing set introduced by

Jacob in [ J] : / CT) = Of tK, T) u OT(K,T) where

Of(K,T) = < xc KIx dtT and 1 + x c T F

Oz(K,-1-J = { x cK 1 xe IT and x Ol(K,T) S Of(K,T) F

4
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Proposition 1.5. Let T be a valuation fan then }(T ) is the largest

vaLuation ring trivial tztng T

For the proof we need preliminary lemma

Lemma I.a. Let T be a valuation fan of a fieLd K , v a valuation

which triviaiizes T and Let xc K . Then vCx) c v(T' ) if and onLy if

x e T u -T

Proof of Lemma I .a. We have only to show that vCx) c v(T') implies

xc T u - T . Choose y e T' such that vCx) = v(y) , then xy -16 V ' . Since

T induces a total order on the residue field we find z in T (or -T) with

xy-1 ez + m where m is the maximal ideal of V ; but then xy-1 is in

z-1( 1 + z mv) . Now I + mv is contained in T . If z eT we get

xy–1 cT . If z is in – T we get xy–1 in -T . Hence xc Tv - T , as

yeT

Now given a valuation fan Tg K we let vT (resp. FT ) denote the

valuation (resp. the value group) corresponding to ACT) . Moreover, let

AT g FT be the maximal convex subgroup of vT(T') . With these notations we

get the following lemma :

Lemma I.b. Let T g K be a valuation fan and Let Pg K be a vatLIation ring

with A( T ) gP . Then P triviaLtzes r if and on ty if r corresponds to a

convex subgroup A of A

Proof . Suppose that V corresponds to A . If V trivializes T , then

V STu - T , by lemma I.a . Hence A g AT . Conversely , assume A gA

and let x cV . Then vCx) c v(T') hence by lemma I.a xc Tu –T . Thus



V- STu - T . Moreover, V is fully compatible with T as ACT) g V ; hence

V trivializes T

Proof of proposition 1.5 . It is known from Jacob ([ J] theorem 1 p. 96) that

#(T) is a valuation ring which trivializes T . Thus we have just to show

that if a valuation ring W trivializes T then WE #(T) . From lemma 1.a

we know that W STu - T

If xc W' we pr,ve that xc O9 . Let ye Q1 then xy c Ol , and

xy dTv – T because x is contained in Tu -T but y is not . First we

claim that ye m is the only possible case : ye W' is impossible since

y e Ol implies y d T u - T ; y dW cannot hold because in this case

1 + y-1 would belong to W' hence to Tu - T and we would deduce

1 + y = y ( 1 + y–1 ) e T u –T which is impossible since ye OP . Then we

get xy cm and since xc W- 1 + xy cW , residually I + xy is sent to

IcT hence 1 + xy eT , and as xy d Tu - T we get x c O?

If x cm , if xd Tu – T then I + x cW , so I + x is sent

residuallv to T hence 1 + x cT and x cO : if x cTu - T . take

ye Ol then xy d Tu - T and 1 + xy cT because xc mv , so xy e Of
and xc CD

2

Now let mCR) denote the set of all real (henselian) valuation rings with

real–closed residue field . By assumption on R , mCR) is not empty

Also from remark 1.2 we get that H(R) c mCR)
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Proposition 1.6. Let R be a restduaLLy reaL-cLosed herrseLian fieLd. Then

(t) m( R) contains a smallest and a largest vaLuation ring ;

(ii) H(R) is the smaLLest valuation ring in m( R) ;

(tn) ;(Ro) is the largest valuation ring in mCR) .

Proof of 1.6.

(ii) follows from remark 1.2 which implies H(R) c mCR)

(i) follows from the general fact that a henselian field (K,v) is

real–closed if and only if the value group Fv is divisible and the residue

field is real-closed . Applying this to our situation of a residually

real-closed henselian field we get that the residue field of a real valuation

is real–closed if and only if the corresponding value group is (convex)

divisible, hence the valuations of mCR) correspond to the convex divisible

subgroups of the value group of H(R)

(iii) Let ;(R) denote the largest valuation ring in rD(R) we have to show

that JCR) = #(Rm)

Note that, by lemma I.b and proposition 1.5, #(Rm) is the largest valuation

ring trivializing Rm and corresponds to the maximal convex subgroup A of

vCR ) (where v is the valuation associated to ACR ) = H(R) ) . But since
00 Qa

„(R:) = Fdiv by th, d,fi„iti,. C') ,f Rm ,.d A i, a convex subgroup of

Fdiv , we get that A is divisible. From the end of proof of (i) we know that

the valuations of mCR) correspond to the convex divisible subgroups of the

value group of H(R) hence #(Rm) € mCR) and is contained in #(R)

Next suppose that )(R) corresponds to AD , then AD is divisible , as the

residue field of #(R) is real-closed, hence #(R) trivializes Rm , thus by

proposition 1.5 JCR) S )(Rm) .
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From now on ACR) will denote the smallest henselian valuation ring with

real-closed residue field and #(R) the largest one

For any real field K and any IR-place X we note

SACK) = ] P e P 1 FA # P FI F . If R is a residually real–closed

henselian field we shall denote its unique [R-place by A , the valuation

associated with A by v , and by F its value group. For a residually

real–closed henselian field R S, (R) will be denoted SCR) since R has a

unique IR–place
2

Note that p d SCR) is equivalent to R2 = R2P = R2P = . . . = R2P

IS a

Definition 1-7. Let S be any set of primes , then R is called a residuaLly

reaL–cLosed henseLtan fieLd of type S if R is a restduaLLy real–cLosed

residue fieLd and SCR) SS ; R is said of exact type S if S( R) = S

Examples .

(i) if S = a we get the real-closed fields,

(ii) if S = 32 F we obtain the Rolle fields in the sense given in [B-C-PI

and [G]

(iii) let S be any set of primes, there exists a residually real–closed

henselian field K of exact type S

let F = { r/s 1 r e Z , s = ITP p [ then the field K = R((F))
pds

residually real–closed henselian field satisfying S(IR((F))) = S

a

For the following sections we shall need further results.

Lemma 1-8. Let R be a restduaLL y reaL–cLosed hense tian fieLd of type S and

Let L = R ( L + R ) be a finite extension. If L is real, then

f L : R I c TIS ; if L is non real , then 1/2 [ L : R / c TTS u { IF .

8
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Proof . The statement is trivial for real–closed fields . Suppose that R is

not real-closed . We know by proposition 1.1 that v is an henselian

valuation with real–closed residue field. Let v be the unique

extension of v to L . Since v is henselian and char R = O we have

[ L : R ] = e– 1 f– 1 . R is a residually real-closed henselian field of

type S so e: 1 v € ns ' If L is real then f;1 v = 1 and fJ1 v = 2 if and
only if L is non real . This proves the claim. Moreover if 2 cS then

[ L : R ] c ITS for any finite extension L of R

Remark 1 .9. This lemma can also be deduced from the structure of the Galois

group of R . A residually real-closed henselian field R has the following

properties :

(i) R is hereditarily-pythagorean (see [Be] part III)
at

(ii) G(k IR(i)) = IT ZnP where peP and

ap = dim [ [ R2' : R2P' ] = dim [ [ rv : prv ] ( see [Be] (P. 120) )
P P

Il-AN AXIOMATIZATION.

The following theorem gives another characterization for residually

real-closed henselian fields . It will lead to first order axiomatizations for

residually real-closed henselian fields and for residually real-closed

henselian fields of type S



Theorem I1-1. Let R be a fieLd, then the following statements are equivalent

(i ) R is a residual Ly reaL–cLosed hensel tan fieLd ;

( tt) R is a heredttartl y pythagorean fieLd and for all n c IN R2r1

valuation fan ;

(iii) R iS a hereditar tty pyth,g,r,,n ft,td ,„d Rm = n R2-

valuation f an

Proof

(i) + (ii) see section I

(ii) + (iii) : since Rm = n R2" , Rm iS , p,,,,d,,i.g. Th„, it ,,m,i., t,
show : (') x e t R + ltx€ R or 1 ! x-1 c R

00

Choose nc [N with xd ! R2n ; we may assume without lost of generality

that 1 + x c R2n hence ('+) 1 + x–1 d R2n because otherwise

1 + x = x ( 1 + x-1) c R2T' but x d R2FI . Now let kc IN . In view of

R2nk S R2n , (++) implies 1 t x c R2nk S R2k , and we deduce it x c Rm .

(iii) + (i) : Let w be the valuation which corresponds to the Jacob ring

}= #(Rm) . Then the pushdown of Rm with respect to w is a total order.

Hence the residue field R is euclidean and R2 = R2f1 for all n c IN
W

Next we have to show that R is real-closed

First note that R is also hereditarily pythagorean ; now let L be a

finite real extension of R , since R is hereditarily pythagorean it
2 t i v 9 2t / !

follows from [Be] that L = Rw C ' n\, ... , nC ) for som, ,1

in N and al, ..., ak in Rw . Now R= = n R£n implies that L = Rl
which shows that R is real-closed

If w is trivial then R = R and we are done

Therefore assume that w is not trivial. We will show that w is henselian ;

to this end we prove that ( R, w ) does not admit any proper immediate finite

algebraic extension. Let ( L , w ) be a finite extension of ( R , w )

' ,tk

10
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If L is not formally real, by theorem 1 of [Be] p. 86, we know that L

contains a , hence f - , = 2 . Now assume that L is real and that

( L, w ) is an immediate extension of ( R , w ) ; using theorem 13 of [Be]

p. 114 we may assume that L = R ( m ) for some n e N and a e R . Since

( L , w ) is an immediate extension of ( R , w ) we have w(a) e n F ; let

now y€ R be such that w(a) = n w(y) then ay -2r1 c #' . Define

f = X2r1 – a2y-2n then i has a simple root a in R„, . It follows from the

proof of theorem 2 of [ J] that there exists an overring #1 of # which

satisfies Hensel’s lemma for all equations X2n - a . Since ay -2n is a

unit of #1 as well there exist 13 cR such that f (F) = O . Hence

a2 = /32FI y2n and since L is a real field this implies L = R .

Corollaire I1-2. The cLass or residual Ly reaL–cLosed henseLtan fields is an

elementary cLass.

Proof . In IJ] it is shown that the class of hereditarily pythagorean fields is

elementary ; hence the claim follows from theorem II–1

An alternative first order characterization of hereditarily pythagorean

fields can be obtained as follows

let K be a real field and K(X) a rational function field in one variable

By theorem 4 of [Be] p. 94, K is hereditarily pythagorean if and only if

(#) E K(X)2 = K(X)2 + K(X)2 , hence if and only if

(##) [ K[X]2 g KCX>2 + K(X)2 . Now by Cassel’s theorem (##) is equivalent to

C###) E K[X]2 = K[X]2 + KIX]2 . Now let f, g, h c K[X] such that

f2 = g2 + hz ; then the degrees of g and h are less than or equal to the

degree of f since K is formally real ; hence (###) is expressible by an

infinite sequence of first order sentences in the language of fields,

11



Corollaire 11-3. Let S be any set of primes ; then the class of residual ly

reaL–closed henseLtan fieLds of type S is eLementary.

Corollary II–3 follows from corollary 1-2 since a field K is a

residually real–closed henselian field of type S if and only if K is a

residually real–closed henselian field and for all pc IP \ S we have

Kz = KzP

Recall from [GI that residually real-closed henselian fields of type ] 2 F

– which means Rolle fields - are characterized by the following first order

axIoms

K is real, K4 + K4 = K4 K2 is a fan and K has no odd extension

In the case of residually real-closed henselian fields of type S

similar first order axiomatization

Corollary I1-4. Let R be a fieLd, then the foLLowing statt

equivalent :

(t) R is a residuaLLy reaL–cLosed henseLian fieLd of type S

(ii) 7- Every extension is a radical extension ;

2– R has no real extension of degree in aN \ ns u ] IF ;

3– R4 + R4 = R4

4– VP e S u { IF , R2P is a fan ;

we obtain a

..ts are

(i) + (ii) is clear using theorem I1-1 and lemma 1.8

(ii) + (i) R has to be formally real, e. g. by axiom 4.

From axiom 1 we get that R is hereditarily pythagorean

Axioms 3 and 4 imply that R2r1 is a valuation fan for every ne ns . To see

this we make use of Becker’s result (theorem 3-14 of [Be2]) and of a lemma

12
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by Jacob (lemma 6 of [ J]) . From axiom 2 we get that R2 = R2P for every

p e S , hence these R2P are fans. To finish the proof we have to show that

R2P is a valuation fan for every pe S . Since R2 is a fan this follows

again from lemma 6 of IJ] . Now apply theorem I1-1

Remark I1-5. One might wonder whether it is enough to demand the following

properties
P

I- Every extension of degree pcS is an extension R ( a ) ;

2– R has no real extension of odd degree pc IP \ S ;

3– R4 + R4 = R4

4- VP e S u { IF , R2P is a fan ;

The following gives an example of a field E satisfying these axioms but

admitting an extension of odd non prime degree, and E is not a residually

real–closed henselian field

We shall use the following lemma

Lemma I1-6. For n = 5 , the group A has a subgroup of prime index if and

only if n is a prime number,

Proof of Lemma I1 -6' + if n is prime then An_1 is a subgroup of index n
since the order of A is n1/2

+ Let U be a subgroup of A and IA : U ] = r > 1 and assume r to be

prime but not n . Let @ : A ) S ( A / U ) defined by

h I ) ( gU 1 ) hgU ) . As nz 5 , A is a simple group

Since $ is a group homomorphism Ker cP is a normal subgroup of A . Hence

Ker@ is 1 or A . It cannot be A . Thus 0 is injective , and we must

have n1/2 s r! . As r is a prime r divides n! . Hence r = n-1 , thus

n1/2 s (n-1)! which is impossible for n > 2

13



(nbe an extension of a realizing A notProof of remark II–5 Let K

prime and nz 5 ) as the Galois group of the extension ; let E be a maximal

algebraic real field such that Kn E = aJ

First , E is euclidean : by the transfer theorem of Galois theory we can

argue as follows , let a eP \ E:2 for some order P , then ECM) is a non

trivial extension of degree 2 of E but, since it is real, ECM) n K + O

and this must also be an extension of degree 2 of Q , but the Galois group

A of the extension K of a has no subgroup of index 2 hence P = K2

Next, E has no extension of odd prime degree p . If F were such an

extension then Fn K would be an extension of degree p of a which is

impossible since the Galois group of K over a has no subgroup of index P

Since E is a number field then E E2P = E Ez = Ez , hence, because E has

no extension of degree p , E2 = E2P

A henselian valuation ring of a real number field has to be trivial. If E

were residually real-closed henselian it had to be real-closed violating the

existence of a galois group A , nz 5

iII-LirrING ZEROS AND ROLLE’S THEOREM.

In this part we show that the henselian valuation rings of a residually

real-closed henselian field R allow, in certain situations, to lift zeros

from the residue field R back to R even if these zeros are not simple

That this stronger version of "Hensel’s lemma'’ is also related to the validity

of Rolle’s theorem in R was already stated in the main theorem of Brown,

Craven and Pelling [B-C–P] (theorem 2.1).

14
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Let V be any henselian valuation ring with a real-closed residue field

k , and keep V fixed in the sequel. Let a : V > R be the canonical

epimorphism and set nCb) =: b for every beV . Clearly n also induces

in a natural way an epimorphism from V[X] onto itXt and we set n(f ) =: f

accordingly. If Be k is a zero of f such that f (X) = (X-6)m.H(X) with

H(B) + O then m = pCB) is the multiplicity of 6

From the defining property of a henselian valuation ring it is known (see

theorem 4.3 page 186 of [R] ) that if fc V[X] is given with f + O and P

is a simple (i.e. pCB) = 1 ) root of F in R , then there exists beV

such that b = /3 and f (b) = O , i.e. B can be lifted to a zero of f

Note that f needs not be monic

More generally, we say that, relative to V , zeros a multiplicity D can

b) lifted, if for every polynomial fc V IX] with f + O and every zero P

of F in k where pCB) = m there exists beV with b = /3 and f (b) = O

We set : S(V) =: ] m e N 1 zeros of multiplicity m can be lifted F

Note that le S(V) and that if V = R then S(V) = IN obviously

In the next theorem we compute S(V) in terms of the exact type SCR) of the

residually real-closed henselian field R . To this end we denote by

< 2, SCR) > the additive semigroup in [N generated by 2 and the prime

numbers in SCR)

Theorem III.1. If R is a residual ty reaL–cLosed henseLtan fieLd of exact

type S( R) and if U is a non trivial henseLtan valuation ring with

reaL–closed residue fieLd then

SCF) = [N \ < 2, S( R) > , more precisely

(i) S(’P) = { odd numbers F if S( R) S { 2 F

(ii) SCF) = { m € N 1 1 s m = p-2 , m odd F where p is the srnaLLest odd

prime in SCR) , if SCR) is not contained in 42 F .

15



As an obvious corollary we obtain that S(V) is independent of V as

long as V varies over the henselian valuation rings with a real-closed

residue field.

Proof of theorem II I .I. First we consider a number me IN \ < 2, SCR) > and

assume a situation f c V[X] , i = (X-B)-1.H(X) with 6 ck , H(B) + O

Since V is henselian we find polynomials h , gc V[X] with f = h.g ,

h = (X-/3)-1 deg h = m , i = H (see p. 186 of [R]) . Now decompose h into

R–irreducible polynomials hI , . . . , h . From lemma 1.8 we know that each of

the degrees deg h. is divisible either by 2 or by some of the primes in

S(V) unless it is equal to 1 ; hence if none of the h ’s were linear then

m would belong to < 2, SCR) > : a contradiction. Therefore , some h has

to be linear, i.e. h , hence f , has a zero b with a(b) = b

We next have to show that, if V + R , no element m € < 2, SCR) >

belongs to S(V). Denote by v and F the valuation and the value group

associated with V . Let Pt, . . . , P be primes in SCR) and take at c R

such that O < v(a. ) and v(a. ) e p. r ; now choose b + O and b in the

maximal ideal of V . For any set 1, 11, . .. ,1 of natural numbers consider

the polynomial

f = ( X 2 + b 2 ) 1 ( X P 1 a 1 ) 1 e p B ( X P r w a r ) 1 r
c V[X]

r

Clearly, f has no zero in R . However, i = Xn' with m = 2.1 + E p..I. ,

and the zero B 0 of multiplicity cannot be liftedrn

Statement (i) is obvious. To deduce (ii) one just observes that every number

map - 1 belongs to < 2, SCR) > where p is the smallest odd prime in

SCR)

16
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We are now going to study Rolle’s theorem for our field. Quite generally

we say that an ordered field ( K, < ) satisfies Rolle’s theorem for degree D

if for every polynomial fc K[X] of degree n and elements a , be K

satisfying a < b , f (a) = f (b) = O there is cc K with a < c < b

such that f ’(c) = O . ( K, < ) is said to be a Rolle field if Rolle’s

theorem holds for every degree.

Theorem II1-2. Let R be a restduaLL y reaL-cLosed hense tian fieLd, then :

(i) if S( R) = { 2 F , R is a RoLLe fLeLd for any of its orders ;

(ii) if S( R) is not contained in ] 2 F and p is the smallest odd prLrne

number in SCR) , R satisfies RoLLe’s theorem, for any of its orders,

exactLy for the degrees 1, 2, ..., p

Remark. Part (i) is Brown-Craven–Pelling’s result, [B-C-P]

Proof of theorem III .2. Let P be any order of R and X = X be the unique

real place of R . The valuation ring V of A is henselian with real–closed

residue field as shown in section 1 . This valuation ring will be used in the

sequel

We first prove the following claim : let netN be such that me S(K) for

every odd number msn – 1 then ( R , P ) satisfies RoLLe’s theorem for

degree n. In fact, consider fc R[X] of degree n with two zeros a, b

with a < b f (a) = f (b) = O . As in the proof of theorem 2.1 of [B-C-P] we

may assume that a = O , b = 1 and f c V[X] , f + O . Passing to the

residue field R we find that f ’ = P has a root BetR where O < /3 < 1

By studying the Taylor expansion of f in a local extremum we even find a

root /3 cIR of f ’ of odd multiplicity m , O < 6 < 1 . Clearly msn – 1

Since R is algebraically closed in IR we deduce that pcR . By assumption

f ’ has a root b with b = /3 . From O < /3 < 1 we deduce O < b < 1
P P

17



This already yields the statement (i) by using theorem III.I

Next consider the case where SCR) is not contained in { 2 F and let P

denote the smallest odd prime in SCR) . From (ii) in theorem 111-1 we derive

that Rolle’s theorem holds for every degree ns p . It remains to prove that

Rolle’s theorem does not hold for degrees n > p

To prove this we assume that ( R , P ) satisfies Rolle’s theorem for degree

n and we will show that this implies that every odd number ms n - 1

belongs to S(V) , hence n > p is impossible in view of (ii), theorem II. I

Thus, let fc V[X] be given such that f + O admits a zero B of odd

multiplicity ms n - 1 . We have in ktxt : F = ( X – B )m. H , H(B) + O

As above this leads to a decomposition f = g.h with g monic,

g = ( X - B )-’ and R = H . Choose any cc V with a = /3 . Since R

Archimedean we can find a natural number ! < 6 . Then consider the
X

polynomial Fc R[X] defined by F(X) = 1 gd).(t-t)rl-1-m dt where the

integration is carried out symbolically. F has degree n and
X

F(x) = 1 (t-6)m.(t-t)"-1-'- dt
B

In a suitable neighbourhood of 6 F looks like the parabola

(1/(m+1))(t–/3)-'+1 . Choosing a sufficiently small rational number c we

obtain that F(X) – F(B+e) has (at least) two distinct solutions a , 7 ,

satisfying t < a < /3 < 7 since m + 1 is even . Applying Hensel’s lemma we

see that F(X) – F(c+c) has two zeros a and d satisfying a = a , d = 7

which yields t < a < c < d . By the assumption that Rolle’s theorem holds

for degree n we are led to the existence of a root b of (F(X) - F(c+c))’,

hence of g(X). (X–E)n-1–m , in (a,d) . Clearly gCb) has to be zero , and we

get f (b) = O with b = /3 . Hence m is in S(V)

18
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Brown, Craven, and Pelling have shown that an ordered field is a Rolle

field iff it is a residually real-closed henselian field with SCR) g ] 2 F

One may wonder whether, quite generally, residually real–closed henselian

fields can be characterized by requiring the validity of Rolle’s theorem

for some degrees . This is not the case as we are going to show. For example,

assume 3 c SCR) then statement (ii) of the theorem III.2 says that R

satisfies Rolle’s theorem exactly for the degrees less or equal to 3 . As

we will see there are many fields sharing this property which are not

residually real-closed henselian fields. We first prove :

Proposition III.3. The foLLowings statements hoLd :

(i) An ordered fieLd ( K , < ) satisfies RoLLe’s theorem for the degrees Less

or equal to 3 iff K is pythagorean ;

(ii) a pythagorean fieLd satisfies RoLLe’s theorem for the degrees Less or

equal to 3 reLativeLy to any of its orders.

Proof of Proposition III .3. Clearly (i) implies (ii) . To prove (i) first

note that, trivially, Rolle’s theorem for degrees 1 and 2 is satisfied in

any ordered field. In considering polynomials of degree 3 meeting the

hYpothesis of Rolle’s theorem we may restrict ourselves to polynomials of the

type

f = X ( X – 1 )( X – a ) , ae K , and the zeros 0 , 1 of f
a

Therefore we have to investigate the property that for every a c K fI has

a root in CO,1) . Since f= = 3X2 + 2(a-1)X -a \ve g,t that f= has a root

in K iff for every a the element a2 + a + 1 is a square in K . The

later property is equivalent to K being pythagorean. If K is pythagorean

one finds that one of the roots lies in (O,1) , for every ordering in K

19



Corollary III.4. The pythagorean closure of a satisfies RoLLe' s theorem

exactLy for the degrees 1,2,3 . It is not a residuaLLy reaL–cLosed henseLtan

fieLd.

Remark. For the pythagorean closure we refer to [R2]

Proof of corollary I1 1 '4' Opyth the pythagorean closure of O is clearly not

a residually real-closed henselian field. We have to show that it does not

satisfies Rollo’s theorem for degrees nz 4 . In view of the following

considerations (remark III.5 (ii)) it would be enough to show that it does not

meet this property for n = 4 . However, we want to give a direct proof .

Consider the polynomial f = Xn - Xn-3 where nz 4 . It has the zeros O

and 1 . Therefore. Q would contain the zero a = 3/„-3/„ of f ’ if
pyth

it satisfies Rolle’s theorem for degree n . However, one checks that

X3 – (n-1)in is irreducible over a . Hence, the 2-extension Q I O
pyth

cannot contain a

We conclude this section by some remarks concerning ordered fields

satisfying Rolle’s theorem for some degree

Remark III.5. By adjusting the proof of the theorem (2.1) of Brown, Craven and

Pelling in [B-C-P], especially of the implication (a) + (c), one can derive

the following facts

(i) if the ordered field (K,<) satisfies Rolle’s theorem for degree n then,

considering the natural place A : K ) Ru { mF and its valuation ring V,

every root of odd multiplicity of f + O in [R , where f is any polynomial

in V[X] of degree less or equal to n - 2 , lies in A(V) and can be lifted

to K . This in turn implies

(ii) if (K, V) satif ies Rolle’s theorem for degree n it also satisfies

this theorem for degree n - 1 , hence for each of the degrees 1, 2, . . . , n
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(iii) if (K, V) satisfies Rolle’s theorem for some nz 4 the place X has

to be a 2-henselian valuation ring with an euclidean residue field

Remark 111 .6. Fields satisfying Rolle’s theorem up to a certain degree which

are not residually real-closed henselian fields exist in abundance. Take any

hereditarily euclidean number field K which is not real–closed. K has a
a

Galoi' g'''P G(RIK) = <a> HjT gp P , wh''' th' ''t 'f P’' with ap + O can

be described arbitrarily ( [Be] , p. 118 ff . )

If Pn is the smallest occuring P then the smallest degree of a

subextension of K in a fixed real closure R of K is just Pn . Therefore

K satisfies at least Rolle’s theorem for degree Pn but not, in view of

remark III.5 (i) , this theorem for degree Pn + 2 . An open question is

whether such a field K satisfies Rolle’s theorem for degree Pn + 1 ?

IV- ALGEBRAIC EXTENSIONS AND RELATIONSHIP WITH SIGNATURES.

Let K be a given real field and R a residually real-closed henselian

field which is an algebraic extension of K . We denote by AD the real place

of R , by v? the Krull-valuation attached to XE and by Fn its value

group

Using theorem 3-2 of [Brn] we can get the following result
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Theorem IV-1. Let R and R’ be two restduaLL y reaL–cLosed hensetian fields

which are aLgebraic extensions of a given fieLd K , then the foLLowing are

equivaLent :

(t) R and R’ are K–isomorphic.

( ii ) Vn Rr' n K = R’11 n K .

('iii) Vn R2FI n K = R’2r1 n K

( iv) R2 nK = R’2 n K and Fp = Fp1 ( as subgroups of the divisible hull of

the value group of vR 1 k ) .

(v) some ordering of K extends to an ordering of R and to an ordering of

R’ and F = F .
R R

Proof

(i) $ (ii) o (iv) o (v) follow directly from [Brn] since R and R’ are real

henselian fields in the sense of [Brn] (i.e. R admits an henselian valuation

with archimedean real–closed residue field) and are extensions of the field K

(ii) + (iii) is trivial and it remains to prove (iii) + (ii)

Let nc IN be odd and let x c Rr1 n K . Then x2 c R211 n K = R’2r1 n K . Hence

x c R’f' nK as n is odd , i.e. RTI n K S R’r1 n K . By the same argument we

get Rr1 n K 2 R’T' n K

Remarks :

1- Since R2 is a fan then T = R2 n K is also a fan and

IMT(K) I = 1] X € M(K) 1 X(T) 2 O FI = 1 . Th, ,,m, h,Id, [,, R’2 n K ; hence

R2 n K = R’2 n K = T is equivalent to the fact that the sets x(R) and

z(R’ ) induce the same set of orderings xT = Res(z(R)) = Res(x(R’ )) of K

2- As soon as Res(z(R)) n Res(x(R’ )) + o we have XR 1 K = X?IIK

In the following the place An Ir will be denoted by X and for any

preordering T we shall denote by MT(K) the set ] ( c M(K) 1 ((T) = O F .
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The above theorem shows the importance of the sets T = R2r1 n K ; these

sets clearly have the following properties

(i) Vn T is a fan of higher level and I M_ (K) 1 = 1
n

(ii) Tn 2 K2" . ux , whith ux = { , , VI* 1 x(,) > o F wh,,, Va i, th,
valuation ring associated of A

(iii) Vn,m (T )-1 S T
n rlrn

Theorem IV-2. Let K be a real fieLd and A c M(K) ; for each sequence of

farts (Tn)nGN satisfying the foLLowing two conditions :

(L) Vn e N Tn 2 (E Kar1) . Ul
( ii) Vn.m c IN (T )m S T

n nrrI

there exists an algebraic extension R 1 K with R a residual Ly reaL-cLosed

henseLtan fieLd , uniqueLy determined up to a K–isomorphism, such that

X_ I._ = X and for att n R211 n K = TR ' K - n

Proof . Let v be the canonical valuation associated with A and kg IR the

residue field, let Ux = 4 c e VAX 1 X(e) > OF where VI is the valuation

ring of v . Now consider an henselian closure H of K valued with v and

let R, be an unramified extension of the valued field H such that the

residue field r SIR is the real closure of k ordered by PI = kn R2 (the

order of k induced by the orders compatible with A ) ; then the value

groups satisfy Fx = FH = r?

We shall also denote by A the extensions of A to H and Rl . Clearly

RI is a residually real-closed henselian field

By hypothesis T is a fan in K ; now we define
R_ R

TH = T . H2FI . uT and TX = T . H2FI . U. X wheren n ' '- ' '-;\ “''-- ' n n ' “ ' 'A;\

Ul = ] c c V;* I X(,) > oF with v: th, „,I„,ti,. ,i.g ,,,,,iat,d t, I
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UXA = 1 c c VIA 1 X(c) > 0 F where VA the valuation ring associated to

First the proofs of 3–2 and 3-3 of [L] p. 22 can be adapted in order to prove
R

that TH and TA are fans

if we use the notation of [L] we have : TH = (T . H2r1) A F, and
R_ 11 11 R

TnA = (Tn . HZn) A F; and we get that T: and TnA are preorderings of

level n in H and RI respectively which are fully compatible with the
valuation associated with X in H or R_ and such that TH = F_ and;\ '-“-' --'-“ -“-"' ' n ' ;\

R

TnA = F; . Then we also get by th, ,.,1,g,., ,f 3–4 in [L] P. 23 th,t
TH = nP , where P is any ordering of level n in H such that A = X

P

and Tn g P . This comes from the fact that since it is a wedge product

all the orderings above TH are compatible with the valuation of X and have

the same archimedean pushdown Pl , so every ordering induces the place A

Conversely, if P 2 T and ID = X , then TH gP , as P induces a total

order on the residue field
R

In the same way TA = nP where P is any ordering of level

which contains T . Hence TH n K = T and TAn H = THn n n n n

Now fix a real closure of K for some order above T and consider the
a

following extensio„, ,f R, r = R, (Z ) ; ,i„,, Tm ST w, h,„,
F g F hence we can define a field R by R = uF ; R is a residuallyn nm ' n n ’ ‘

real–closed henselian field

rrom [Be] P. 116 one derives F:- n RX = Tn Ri- ; ,i„,, UX g R:11 w, g,t

F : n n 1S: X = 1r n X a n d U S i n g a g a i n [ B e ] P g 1 1 6 t his Will yield R 2 n nRl = T : A

finally we obtain R2r1 n K = T and by theorem IV-1 such a residually

real-closed henselian field R is unique up to a K-isomorphism

We next study algebraic extensions of a field K which are residually

real-closed henselian fields of type S with fixed S

If R is such an extension the value group rp corresponding to the unique
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place of R is p–divisible for any pdS thus FB contains Fdlvsc the

(IP\S)-divisible hull of F . Conversely, if R is any residually real-closed

henselian field and extension of K satisfying FR 2 Fdivsc then FR = P FH

for every pdS , and R is a residually real–closed henselian field of

type S extension of K . Hence we get

Theorem IV-3. Let K be a real fieLd and A e M(K) ; then for any SSSI

K admits minimal residual Ly reaL–cLosed hensetian extensions of type S

They correspond to FA. c, and are determined up to K–conjugacy by the

sequence :
2n a a

Tn = Tn .n c = (E K s) ' UA where ns =p EsP p and nsc =P:sP p

Next we will consider order spaces of higher level of K . Let p be a

p,im,. R,,all that , h,m,m,,phi,m f : K' > { 1, –1 ) x Zn iS called a

chain signature of type p if ker f is a valuation fan (for details see

ISI).

Given a chain signature f : K' ) { 1, -1 ) x Z and nc IN_ we set :
P

an(f ) = f–1( 1 x pn ZP ) U (0) , aCf ) = ( an(f))n€Nf

Let us call a sequence a = (an)neN of preorderings an gK an order chain
0

,f tyP, P if th,,, exi,t, a ,h,i. ,ign,tu,e f : K' ) { 1, -1 ) X Z1

with aCf ) = a . Let X (K) be the set of order chains of type P of K

A subbasis for a toppology of X (K) is given by the sets

D (a) = { a Iaea \ {O} } , acK , nc IN

With this topology X (K) becomes a quasi compact space (for details see

[B–J]). Now let R 2 K be a field extension and let a = (a ) e X (R)n P

Then a n K = ( an n K )netN is an order chain of type P of K ' Hence

we have a canonical map
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res: : X (R) > X (K) defined by a 1 > an K
K P P

and as in the case of spaces of total orders, res: is continuous .

Proposition IV-4. Let R and R’ be two residual ty real –cLosed henseZian

extensions of K ; then R and R’ are K–isomorphic if and only if for any

P res:(Xp(R)) = res: (Xp(R’ ))

Proof .

+ is clear

e Since Ra-= nan w, g,t R2- n K = n ann K = n Pn

a€xp ( R) a€xp ( R ) ReF es:(Xp(R))

since the same holds for R’ theorem IV-1 gives the result.

and

The residually real–closed henselian extensions can also be understood as

real closures for generalized signatures in the sense of [S2] .

By definition, a homomorphism f : K' > C where C is some abelian

group, is called a generalized signature if ker f is a valuation fan

Furthermore, K is called real–closed with respect to f if for any proper

algebraic extension L 2 K , f cannot be extended to a generalized

signature g : L –> C

Theorem IV-5. Let R be a restduaLLy reaL–cLosed }tense tian extension of K

such that S = S( R) . Then there exists a signature f : R ) Z x nz I
PCS P

for some I such that ( R , f ) is reaL–cLosed,

Proof . Let F be any torsion free abelian group , and I = dimr F/pF
P

then there exist isomorphisms P : F/pr'F –> (Z/pr'Z)I satisfying

nnlm o Pm = Pn where nn m : (Z/prlr'Z)I –> (Z/pnZ)I iS the obvious map,
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To prove this let jaI + prFi€1 be a Fp-basis of r/pr then jai + pnrFi€1

is a Z/p11Z-basis of the free module F/pFIF

first they form a set of generators ; if a c F , let a = E niai + PB

,.d 1,t .,w P = E ,.a. + P7 then a = E (ni + pri)ai + P27 and so on

second they are free ; let E n.a. c pn r , this is contained in pF hence

for all i pIn. and n. = pm. ; thus we get pE miai € pF'F and deduce

that E mri e prl-IF , iterating we get E tiai c P F , where the ti divide

the n1 , which is impossible since the < a1 + PFFieI are a Fp-basis of F/pF

S, yn ( E ,i( q + p-r) = (,i)iCI , (Z/P"Z)1 .

The sequence (p ) gives rise to a homomorphism P from F to I} Z1

r ) ;im r/p-r > Jim (Z/p"Z)(1) S T Zp with th' tw' following

properties

(i) ker p is the largest p–divisible subgroup of F and is equal to n prIF

(ii) imp is a p–pure subgroup of TIT Zp since in all factors irnp is not
contained in pZ

Applying all this in the case r = Fp yields a signature

f : R ) Zx nz I
PCS P

Since all extensions of R inside the algebraic closure are known to be

tamely and completely ramified one gets as in [S2] that (R,f ) is real-closed

hence (R,f ) is the unique real closure of (K,f 11 )

Corollary IV-6. For a fieLd R the following statements are equivalent

(t) R is a restduaLLy reaL–cLosed henseLtan fieLd ;

(ii) R is reaL–cLosed with respect to a signature f : R Zx 71

( iii) R is reaL–cLosed with respect to a signature f ; R ) G , where

G is any abeLian group
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Proof . (i) + (ii) is given by theorem IV-5

( ii ) + (iii) is clear

( iii ) + (i) is given by theorem 8 of N. Schwartz in [S2

Note .

The model theory of "residually real–closed henselian fields" have been

studied independently by F. Delon and R. Farre in [D-F]. There residually

real-closed henselian fields are called "almost real-closed fields’' ; these

are also the "real henselian fields" of [Brn]
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