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Groups and Fields Interpretable in
Separably Closed Fields

by Margit Messmer

The following two theorems are part of the author’s Ph.D. thesis, written un-
der the supervision of Prof.D.Marker at the University of Illinois at Chicago,
1992, and will appear in the Transactions of the American Society ([9]).

Theorem A Let F be a separably closed field of finite Erdov-invariant (degree
of imperfection), and let G be an infinite group interpretable in F. Then G
18 definably isomorphic to an F-algebraic group.

Theorem B Let F be a separably closed field, and let K be an infinite field
interpretable in F. Then K is separably closed, char(K) = char(F) and
K has the same Erdov-invariant as F'. Moreover, if F' has finite Ersov-
invariant, then K is definably isomorphic to a finite (purely inseparable}
extension of F.

Both theorems generalize analogous results for algebraically closed fields,
see [8, 4, 12, 2, 13]. The proofs make use of model theoretic results like
stability, quantifier elimination and elimination of imaginaries, developed in
[6, 14, 3, 11, 5]. Furthermore, techniques from stable group theory (see [10])
and linear algebraic group theory (see [1, 7]) are needed.
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QUELQUES RESULTATS SUR LA THEORIE DES MODELES
DES GROUPES CYCLIQUEMENT ORDONNES. (Résumé).

M.Giraudet F.Lucas
Université du Maine Université d’Angers
BP535 72017 Le Mans cedex 2 bd Lavolsier 49045 Angers cedex

Equipe de Logique Mathématique
CNRS URA 753
2 Place Jussieu, 75251 Paris cedex

Abstract:
First, following the representation theorem of Rieger we prove that if a
cyclically ordered group C is given by C=G/<z> where G is a totally ordered
group and z a central and cofinal element, the first order theory of C is
determined by the first order theory of the ordered group G with
distinguished element z.
After that we look at orderability and give an axiom system for the
elementary class of cyclically orderable groups.
Finally we remark that there are different universal theories of abelian
cyclically ordered groups and prove that all the abelian cyclically ordered
groups containing elements of order n for each n, have the same universal

theory.

I Introduction

Rappellons les définitions introduites dans [R] et [F]:
Si A est un ensemble et R une relation ternaire sur A, R est un ordre
cyclique sur A ssi

1vx,y,z (R(x,y,z)sxzy#z=x)

20y, z, (xzyzzzx =( R(x,y,2) or Riz,y,x))

3l¥x,y,z, ( R(x,y,2) = R(y,2,x))

4)vx,y,z,u, ({ R{x,y,z) & R(y,u,z)} » R(x,u,z))
Si maintenant G est un groupe et R une relation ternaire sur G, (G,R) est un
groupe cycliquement ordonné si R est un ordre cyclique compatible avec la loi
de groupe:

5)Wx.,y,z,u,v, { R(x,y,2) » R{uxv,uyv,uzv)).
On peut déja remarquer que la théorie des groupes cycliquement ordonnés est
finiment axiomatisable et universelle si 1’on choisit de maniére adéquate le
langage de groupe.

Exemples:

1) Un groupe totalement ordonné est cycliquement ordonné par la relation :



R(x,y,z) ssi { X<y<z or y<z<x or z<x<y )

2} Le groupe des nombres complexes de module 1. K={xel, ]x!=l}={e:’-m9,
0=6<2m} muni de la relation R(eT8 28’ 20"} 551 §<0°<8", st 0 g oupe
cycliquement ordonné qui a des eléments de torsion et des éléments d’ordre
infini. On note U les éléments de torsion de K: ce sont les racines de
'unité de C.

3) Produit lexicographique. Un des moyens de construire ou de décrire des
groupes cycliquement ordonnés est le suivant: Si (C,R) est un groupe
cycliquement ordonné et (L,=<} un groupe totalement ordonné, on définit un
ordre cyclique R’ sur LxC par

R'((c,r),(c’,r’),{c"r")) ssi (czc’=c"#c & Rle,c’,e")) ou {c=c'#2c" & r<r’) ou
(c®c’=c" & r’<r") ou (e=¢"#c’ & r<r") ou (c=c¢’=c" & r<r’<r").

On note LZC le groupe cyvcliquement ordonné obtenu,on ['appelle produit
lexicographique de L et de C.

4} Enroulé de Rieger: Si (G,=) est un groupe cycliquement ordonné et z un de
ses ¢éléments positif, central et cofinal, la relation R définie ci-dessous
fait de G/<z> un groupe cycliguement ordonné.

R(g,h,k) ssi 3 g',h’,k’/ g=g’, h=h’, k=k’ &

(exg’<h’<k’<z ou e=h'<k’<g'<z ou e=k’<g'<h’<z).

Rieger a montré que (Theoréme de Rieger) que tout groupe cycliquement ordonné
peut étre obtenu de cette maniére, la démonstration donne la construction de
ce que nous appellerons le déroulé de Rieger (uw(G)) du groupe cycliquement
ordonné (G,R): uw(G) a pour ensemble de base le produit cartesien ZxG, pour

ordre total ordre lexicographique Z.v’:_x)G, la loi de groupe étant donnée par
les formules suivantes: (On utilise ici la notation mriltiplicative aussi
I’élément m de Z est ici représenté par zm),

(zK,e).(zm h)=(z%*m h), (z%,g).(z2M,e)=(zk'™ g) ( e est I’élément neutre de G)

if Rle,g,gh): (zX,g).(zm h)=(zk*m gh)

if g#e and gh=e then (zk,g).(zMm h)=(zk+m*1 e)

of Rie,gh,gi: (2K,g).(zM h)=(zk+m+1 gh},

On note z; ['élément {(z,e), il est positif, central et cofinal. On montre que
uw(Gl/<z >=G

Un sous groupe H d'un groupe cycliquement ordonne (g.c.o.) (G,R) est dit
c-convexe si VheH,geG (h%ze & R(hl,e,h} & Rfe,g h})sgeH.
Remarque l.I: Un sous groupe c-tonvexe n'est pas toujours pur dans G: Dans le

sous groupe G de (Z/30)3% engendre par (L1), le sens groupe I engendre
(0,3} est c-convexe, mais l’élement (0,3) n'est pas divisible par 3 dans H et
il est divisible par 3 dans G: 3x(1,11={0,3).

Un g.c.o. G est c-archimédien si YgzeeG,Vh#ee, IneN (R (e,g™ h)).
G est archimédien ssi il n’a pas de sous groupe convexe propre; si G n’est
pas totalement ordonné, G est archimedien ssi son déroulé de Rieger 1’est.

II Equiv alence élémentaire

Onr prouve ici un théoréme de transfert de ['équivalence élémentaire entre un
g.c.o. et son déroulé.

Theorem 2.1: Soient G et G’ deux g.c.o.: G=G’ ssi (uw(Gl,zg)=(uw({G’),z.,)
{on a aussi le transfert de |'inclusion élémentaire).
La preuve est donnée par les lemmes suivant on l'on utilise trois sortes
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de structures:;

-(G,R) dans le langage de g.c.o.,loi de groupe et ordre cyclique.

-(uw(G),<z;>) dans le langage des paires de groupe totalement ordonné, avec
un prédicat P pour le petit de la paire.

-ZxG avec la loi de groupe,deux prédicats, l'un pour Z, 1’autre pour G,

l'ordre sur Z et l'ordre cyclique sur G.

Lemme 2.2: On peut interpréter (G,R) dans (uw(G),<z>} et (uw(G),<z;>) dans

IxG.

Lemme 2.3: G=G’ iff (uw(G),<zs>)=(uw(G’),<zs>), et la méme chose pour
I’inclusion élémentaire.

Lemme 2.4: (uw(G),zg)=(uw(G’),z5) ssi  (uw(G),<zg>)=(uw(G’},<zg>),  (idem

pour l'inclusion élémentaire).

(L’idée de la preuve est de prendre deux structures saturées isomorphes de
(uw(G),z;) et (uw(G’),z;), dans ces structures z; et 2z, ne sont plus des
éléments cofinaux, mais on peut se restreindre aux sous-groupes convexes

engendrés.

En utilisant ceci on peut montrer un résultat sur le produit lexicographique:
Corollaire 2.8: S§I G et G sont deux c.0.g., et H et H' deux groupes
cycliguement ordonnés:

(G=G’ & H=H’)»GxH=G'%H’ et la méme chose pour l’inclusion élémentaire.

III Groupes cycliquement ordonnables.
On utilise ici et par la suite le théoréme de plongement de Swirczkowski:

Théoréme (Swirczkowski) [Sw]: Pour chaque g.c.o. G il existe un groupe
totalement ordonné (g.t.o.} H et un plongement f de G dans le produit

lexicographique [K>_<)H, {on dit que f est une représentation de G).
Jakubik [JP] a montré que la premiére projection est indépendante (a
isomorphisme pres) de la représentation, on la note K(G).

En utilisant ce résultat Zheleva a caractérisé les groupes cycliquement
ordonnables:

Théoréme (Zheleva) [Z]: Un groupe G admet un ordre cyclique ssi le sous
groupe de ses torsions U(G) est central, locallement cyclique et G/U(G) est
ordonnable.
(Dans le cas abélien ce résuitat est & relier 4 celui de G.Sabbagh [S] qui
donne la méme caractérisation pour les groupes qui se plongent dans le groupe
multiplicatif d'un corps).

La preuve utilise le fait que toute extension centrale d’'un groupe
totalement ordonné par un groupe cycliquement ordenné peut é&tre muni d'un
ordre cyclique.

On peut par cette méme méthode montrer:

Théoréme 3.1: G est cycliquement ordonnable ssi son centre Z{(G} est
cycliquement ordonnable et le quotient G/Z(G) est ordonnable.

(Résultat bien sir a relier avec celui de Kokorin et Kopitov [KK]: un groupe
G est ordonnable ssi son centre Z(G) et le quotient G/Z(G) sont ordonnables).

Nous donnons enfin un systéme d'axiomes pour la théorie des groupes
cycliquement ordonnables en utilisant la caractérisation des groupes
ordonnables donnée par Onishi et Los [0}, [L]:



Un groupe G est ordonnable ssi pour tout n-uple d'éléments non nuls

Xy,..,X, de G il existe ee{l,-1}" telque e n’appartient pas au demi-groupe

engendré par les conjugués de x, €W, ... x €.
Theorem 3.2: G est cycliquement ordonnable ssi il satisfait les axiomes
suivant:

-pour chaque n: ¥x (X"=e =» Yy xy=yx)
-pour chaque n:
3%p o Xl M peqr, ny X% A XPmRAVXIXT=E > VWigq | nX=X;)
-pour chaque n,k, chaque mot a kn variables m(tl,‘E I=i=n, l=j=k) et chaque
ee{-1,1}n
VXXX R Y- Vi Yaon )
(M ax®e A XP=e) = (Ve yn miy; %, 5Wy;  T1=x)).

IV Quelgues remarques sur le cas abélien en particulier sur les théories
universelles de g.c.o. abéliens .

Un résultat utile pour ’étude des groupes abéliens totalement ordonnés est
que pour tout sous groupe convexe C, G est élémentairement équivalent a

> ) . B .
(G/CixC; la preuve de ce résultat est basée sur les fait suivants: tout sous

} ] >
groupe convexe est pur et si G est w -saturé G=(G/C)xC.
Dans le cas des g.c.o. un sous groupe c-convexe n’est pas ioujours pur comme
on l'a vu en L.

Nous avons prouvé les resultats suivants:
Lemme 4.1: Si USG, tout sous groupe c-convexe de G est pur dans G.
Lemme 4.2: Si USG5 et G est w ~saturé alers G/Gg =K.

Théoréme 4.3: Si C est un sous groupe c¢-convexe & pur de G alors G=(G/C)5C.

Gurevich et Kokorin ([GKI, [Gll) ont montré que tous les groupes abéliens
totalement ordonnés onf la méme theorie universelle.

Il est clair que le resultat n'est pas valable pour les g.c.o. abéliens en
effet 1'existence d’éi¢ments d'ordres finis différents donne des théories
universelles differentes. Méme dans le cas de g.c.o. abeliens sans torsions
on peut avoir des theéories nniverselles différentes, par exemple la formmle

Ix R(x,4x,2x,0,3x) ({(abrsviation pour une conjonction) est satisfaite dans le
sous groupe de K engendré par un élément e2™® avec 8 irrationnel tel que
n/3<2n6<n (1/3<0<1/2), mais n’est pas satisfaite dans 1'exemple de la
remargue L.].

En toute généralite on peut démontrer un résultat du type du théoréme
de transfert 2.1:
Theoréme 4.5: Si G et G' sont des g.c.o.:
C=yG’ ssi (uwlG),z )=yluwlG ),z

Dans le cas abélien ncus montrons:
Théoréme 4.6: Tous les g.c.o. abéliens qui contiennent U ont la méme théorie
universelle.
Théoréme 4.7: Scient G et G’ deux g.c.o. abéliens tels que uw({G) et uw{G’)
sont des g.t.o. abeliens réguliers {i.c. élémentairement equivalent a des
archimédiens) et GnU=G'nU, alors G=yG'.
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QUELQUES PRECISIONS SUR LA THEORIE DES MODELES DES GROUPES
CYCLIQUEMENT ORDONNES ABELIENS DIVISIBLES. (Résumé).

F.Lucas

Abstract: We use a transfert result between cyclically ordered groups and associated
structures of ordered groups, proved by M.Giraudet and the author [GL], and model
theory of totally ordered abelian groups as developped by A.Robinson and E.Zakon [RZ],
M.I.Kargapolov [K], Y.Gurevich [G] and P.Smitt [Sc]. We remark in 1) that the theory of
divisible cyclically ordered groups is not complete and study its completions. One of
these completions, we call the theory of super-divisible is proved in 2) to be the
model completion of cyclically ordered groups. Following an idea of D.Macpherson [M] we
prove in 3) that the abelian super-divisible are exactly the circle-minimal models
(i.e. those in which the only parametricaly definable subsets are the finite unions of
intervals). In 4) we give a description of the different cyclically ordering of the
additive group of the rationals Q.

Les définitions et notions de base concernant les groupes cycliquement ordonnés ont été
rappelés dans un résumé précédent (M.Giraudet & F.lucas Quelques resultats sur la
théorie des modéles des groupes cycliquement ordonnés).

1) Theories de groupes cycliquement ordonnés abélien divisibles.(g.c.0.a.d.).

On remarque tout d’abord que la théorie des g.c.0.a.d. n’est pas compléte, un tel
groupe peut étre totalement ordonné ou non, il peut avoir des éléments d’ordre fini ou
ne pas en avoir...On peut donc développer une classification de ces théories, on en
donne ici quelques éléments. On utilisera le théoréme de transfert présenté dans [GL]:

Théoréme: [GL] Si G et G'sont deux g.c.c. on a G=G’ ssi (uw(G),zg)=(uw(G"),z).

Parmi les différences entre le cas totalement ordonné et le cas cycliquement ordonné,

on peut deés le départ noter:
1) Le fait que G soit divisible n’implique pas que uw(G) le soit.(Si G=Q(w)/<n> et
G'=Qlr)/<n>, G,G’ et uw(G) sont divisibles mais uw(G’) ne I’est pas.

2) un g.c.o.a.d. n’est pas toujours dense [ soit G=®;:>Z/<(a,l)>, le sous groupe engendré
dans G par (0,1) est c-convexe et discret, et chaque élément de G est divisible
puisque (0,1)=(a,1)~{e,0}).

On montre que cependant si un g.c.o.a.d. G a un élément d’ordre fini il est dense.

Dans le cadre des abéliens totalement ordonnés, la théorie des divisibles joue un rdle
fondamental, aussi est-il naturel de définir:

G est super-divisible si uw(G) est divisible.

Lemme: G is super-divisible ssi il est divisible et pour tout n il existe g telque ng=0
ou encore il est divisible et contient 1.

La théorie des super-divisibles sera étudiée dans le paragraphe 2).

En utilisant le théoréme de transfert cité ci-dessus on sait que la théorie de G est



donnée par celle de uw(G) et le type sur le vide de z; et on peut utiliser les
résultats de théorie des modéles sur les totalement ordonnés. On va commencer par le
cas régulier avant de donner une idée du cas général:

Suivant [RZ], si n est un nombre premier on dira que G est n-regular si

Yx),.. X (0<x <L <x 53y( x <ny=x_)).

cette condition équivaut au fait que tout quotient par un sous-groupe cONvexXe propre
est n-divisible.

On dit que G est régulier si il est n-régulier pour tout premier n. Si G est divisible
ou archimédien il est régulier.

Si mainterant G est un g.c.o.a. on dira qu’il est n-régulier si il est totalement
ordonné et régulier ou si uw(G) is n-regular; on dira qu’il est régulier si il est n-
régulier pour tout premier n.

Une différence est qu'un g.c.o.a.divisible n'est pas toujours régulier; par exemple

G=(0(m)30)/<m>, est divisible mais uw(G)=Q(m)%X0 n’est pas régulier.

Dans le cas dense la propriété d’étre n-régulier s’exprime par les formules suivantes
1) Ax#0/nx=0

2) ¥y(R(-y,0,y)=3xR((x,2x,...,(n~1)x,0,nx)&R(0,nx,¥))).

et on a le résultat suivant:

Théoréme: Deux g.c.o.a.divisibles denses et réguliers sont élémentairement équivalents
ssi ils le sont dans le langage des groupes c’est & dire s'ils ont les mémes éléments
de torsion.

Dans le cas ordonné non régulier on utilise les résultats de [G] et [Sc]

si geG, B(g) est le plus petit sous groupe convexe contenant g, A,(g) le plus grand
sous groupe convexe tel que B(g)/A {g) soit n-regular, and B, (g) le plus grand sous
groupe convexe tel que B (g}/A (g) soit n-regular, F (g) le plus grand sous groupe
convexe dont aucun élément n’est congru & g modulo n. S (G)={A.{(g), F, (g}, geG}. La
famille des chaines S (G) colorées de prédicats (précisant par exemple la théorie de
B, (g)/A,(g) ) détermine la théorie de G.

On a ici:
Lemme: Si G est divisible, pour tout premier p, uw(G)/puw(G) est un espace vectoriel
sur Z/pZ de dimension O ou 1.

Théoréme: Si G est divisible, pour tout premier p, S,(uw(G)} a au plus deux éléments.

2) Super-divisibles:

On a décidé dans le paragraphe !) d’appeler super-divisibie un g.c.o.a.d. G tel que
uw(G) est divisible. On a vu que ceci était équivalent au fait d’étre divisible et de
contenir U.

On peut encore remarquer que si G est super-divisible il est isomorphe a K(GIxGy.

Comme un corollaire de 1.1 on obtient:
Théoréme 2.1: La théorie des super-divisibles est compléte et modéle compléte.

On montre que:
Théoréme 2.2: La théorie des super-divisibles a la propriété d’ amalgamation.

On en déduit:
Corollaire 2.3: La théorie des super-divisibles a 1’élimination des quantificateurs.

Théoreme 2.4: la théorie des super-divisibles a un modéle premier: U,
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Enfin:
Théoréme 2.5: Tou g.c.o.a. admet une cléture super-divisible.

Donc:
Corollaire 2.6: La théorie des super-divisibles est la modéle-complétion de la théorie

des groupes cycliquement ordonnés abéliens.

3} Groupes cycliquement ordonnés K-minimaux.

On sait que dans le corps R tout sous ensemble définissable est réunion finie
d’intervalles, c'est a dire est définissable par une formule sans quantificateurs du
langage d’ordre. L’étude générale des structures algébriques totalement ordonnées ayant
une telle propriété a é&té menée par A.Pillay et C.Steinhorn puis D.Macpherson,
M.Dickmann etc. sous le nom de structures o-minimales.

Je remercie D.Macpherson de m’avoir de m’avoir parlé de ses premiers résultats, obtenus
dans un contexte trés général [MS], concernant une notion analogue adaptée au cas des
structures cycliquement ordonnées.

Soit (G,+,R) un g.c.o. et I un de ses sous ensembles: I est un intervalle si 1 est
réduit a un point ou si I={ieG/R(g,i,g’)} pour des g,2'eG; I est convexe si il est
réduit & un point ou si pour tout geG et tous i,i’el si R(i,g,i’) alors gel.

On dira que G est:
-K-minimal si il est infini et que tout sous ensemble définissable est union

finie d’intervalles.

—fortement-K-minimal si pour tout G’ élémentairement équivalent a3 G, G est
K-minimal.

-faiblement-K-minimal si il est infini et que tout sous ensemble définissable
est union finie de convexes.

Remarques:

1) Ces trois notions correspondent respectivement aux notions de o-minimal, fortement-
o-minimal et faibiement-o-minimal dans le cas ordonné,

2) Dans le cas des groupes abéliens ordonnés ces trois notions coincident et sont
réalisées exactement par les abéliens divisibles.

3) Clairement si G est fortement-K-minimal il est K-minimal et si il est K-minimal il
est faiblement-K-minimal.

On va caractériser ici les faiblement-K-minimaux et montrer que G est K-minimal ssi il
est fortement-K-minimaux ssi il est super-divisible.

Si H est un sous groupe de G soit C(h,H) le plus grand sous ensemble convexe de G
contenant h et contenu dans H; on 'appellera composante convexe en h de H.

On remarque que:

1) C{0,H)} est symétrique: si heC(0,H) alors -heC(0,H).

2) C(0,H)={heH ¥YgeG (R(0,g,h)or R{0,g,-h))=geH).

Lemme: Si G est faiblement-K-minimal et H un sous groupe infini définissable:
1} C(O,H} est définissable dans G et H n’a qu'un nombre fini de composantes convexes.
2) si HeG, alors H est un sous groupe convexe de Gg.

Lemme: Si G est faiblement-K-minimal:
1) G, est divisible.

2} G est abélien.

3) si G n’est pas divisible K(G)€U.



Lemme: Soit G faiblement-K-minimal:
- ou bien G est divisible et il est alors super-divisible,

- ou bien il n’est pas divisible et il est de la forme (Z/nZ)?GO avec G, divisible.

Lemme: Si G est K-minimal il est super-divisible.

Lemme: 1) Pour tout D divisible totalement ordonné G=(Z/nZJ;<)D est faiblement-K-minimal.
2) Tout super-divisible est K-minimal.

On en déduit:

Théoréme: Soit G un g.c.o.:

1) G est K-minimal ssi il est abélien et super-divisible.

2) G est faiblement-K-minimal ssi il est abélien super-divisible , ou bien de la forme

(Z/nZ)XD avec D abélien divisible.

Remarque: si G’ est élémentairement équivalent 2 G et G est faiblement-K-minimal G’
I’est aussi.

4) Ordres cycliques sur @.

On montre d’abord que deux sous groupes cycliquement ordonnés de K, isomorphes sont
égaux.

Soit G=(®@,R) un ordre cyclique sur @ @ muni de cet ordre peut se plonger dans un

produit lexicographique K(G]?L avec L totalement ordonné divisible, et il y est
engendré comme Q-espace vectoriel par un élément que l'on notera (a,b).

a) Si a=0 on a un groupe totalement ordonné, et l’on sait qu’il existe deux maniéres de
munir @ d’un ordre total,

b) §i b=0, G est contenu dans K:

on a alors & décrire les sous Q-espaces vectoriels de K de dimension 1!.

En utilisant la notation multiplicative complexe dans K, on remarque d’abord que pour
tout g=eieeG, B8/2n est irrationnel. Sojent € une base de R sur @ , (Pi)ie[N la suite des
premiers, q; et q'; les suites définies par G=M=(Pjt @ = (=P et
enfin F={fe NN Vi 1=f(D=([]«p )Py )Y

Pour chaque 6€8 et chaque feF on définit un O-espace vectoriel de dimension 1 engendré
par g=ei® de la maniére suivante: (il suffit de  définir g/q; pour tout ieN ) on
definit g/q; par recurrence: si g/qj=e19 alors g/qj+1=e1(9+2“ﬂ1))/qi .

¢) if a#0 and b=0:

- si a n’est pas un élément de torsion on a un isomorphisme de groupe cycliquement
ordonné entre le Q-espace vectoriel engendré par (a,b) et le Q-espace vectoriel
engendré par (a,0).

- si na=0, alors n{a,b)=(0,nb), et le sous groupe engendré par (O,nb) et les (O,nb/m)
pour ménN est c-convexe et divisible par m pour chague menMN. On peut alors déterminer
les diviseurs manquant d’une maniére analogue & celle du b).

On voit par la qu'il y a 2% ordres cyclique compatibles non isomorphes sur (®,=),
certains d’entre eux n’étant pas archimédiens.
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Abstract Real Spectra
by Ludwig Brocker, Miinster

In this abstract we are going to present an axiomatic approach for the
problem of the describing real constructible sets by few inequalities. In
all situations, as semialgebraic geometry, semianalytic geometry, real spec-
tra of rings, for the description of constructible sets one does not need
the precise values of the defining functions but just their signs. This leads
immediately to the very general notion, which we introduce by the following

Definition 1.1. A real space (X, G) consists of a set X and a multiplicative
monoid G of maps G : X — IF; such that the following conditions hold:
S;: G contains the unit map 1: X — F3; =z -+ +1.

S,: G contains the map —1: X o Fy; - —1.

S.: G separates points, that is, for any two points z,y € X there is an
f € G with f(z) # 1(y).

Clearly, not very much can be done in this general setting. However, one
has already a lot of notions, which can be fixed in the usual way: basic open
sets, basic closed sets, constructible sets, Harrison topology on X and also
constructible topology and Zariski topology on X. One may even imitate
weak equivalence classes of quadratic forms. For this consider n-tuples
(ay,....a,), a; € G and write (ay,...,a,) = (by,...,b,) if

Zag(m) = Zb,(:c) for all = € X.
=1 i=1

Here, of course, the summation is done in Z. Then a form g over X is just
an equivalence class under the relation =. Also, write g(z) 1= Y1, a;(z)
for » € X. In the sequel, we write, for a ¢ G, {a > 0} instead of
{z € X|a(z} = 1}. Similarly, we write {& = 0}, {a < 0} and also
{a > 0,5 > 0} for {a > 0} N {b > 0} and so on.

2. Axioms for abstract real spectra

Definition 2.1. Let (X, G) be a real space. If X is compact with respect
to the constructible topology, (X, &) is called an abstract real prespectrum.



Now let {X,() be an abstract real prespectrum. We are going to define
abstract real spectra by imposing three supplementary axioms. The notion
we get generalizes real spectra of rings in [BCR, Chap. 7} in a similar way
as Marshall’s spaces of orderings M| generalize real spectra of fields. Now
the axioms:

P E: For any two a,b € G there exists ¢ € G such that {a =0, b = 0} =
{c= 0}.

HL: Let ¢ ¢ X be constructible and closed. Let f,g € G such that
CN{f=0}C {g =0} Then there exists f' € G such that

a) f'=fonC,f ~gon{f=0k

b) < fig>=<f.ffg>.

MM: Let p =< a4,...,a, >, T =< by,...,b, > be forms over X, and let
h € G such that ¢ + 7 —< h,cay..oyChogm >, With ¢a;...Copm € G. Let
2 € X be a point such that

h(z) #0, a(z) #0, b,(m) #£0, ci(z) #0

for all ¢,j,k. then there exist forms o' =< f,a},...,a, > and 7 =

* 3

< g,b,,...,b >, an element ¢ € G and a Zariski neighbourhood U of

e

z such that, for all y € U:
1) ai(y) #0, b;(y) # 0, f(y) # 0, g(y) # 0, c(y) # 0 for all 4, 7.
i) e(y) = o'(y), 7(y) = 7'(y).

i) <f,9>(y)=<h,c>(y)
Definition 2.2. An abstract real prespectrum (X, G) is called abstract real

spectrum, if PE and HL hold for (X,G) and MM holds for any Zariski
closed subset of (X, G).

Remark 2.2. Let (X,G) be an abstract real spectrum. If G is a group,
then (X, ) is a space of orderings (see [M]).
Finally , we have

Proposition 2.3. Let 4 be a commutative ring with unit. Let X :=
Spec,(A) be the real spectrum of 4 and set G := {signf : X — F; | f €
A}. Then (X, G) is an abstract real spectrum.

Proof: [ABR, III 5I
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3. Statement of a main result

The theory of abstract real spectra is surprisingly rich. We are able to
develop, in this abstract setting, the whole theory of describing real con-
structible sets by few inequalities [B| and related problems, as far as it was
known for real spectra of rings and beyond that.

Before we state a result we need

Definition 3.1. Let (X, @) be an abstract real spectrum, and let ¥ C X
be a set of the form

Then (Y, G{Y) is called a subspace of (X, G).

Proposition 3.2. A subspace of an abstract real spectrum is again an
abstract real spectrum.

Proof: [ABR, TII 4].

Next consider an IF,;-vectorspace H of dimension n + 1 which we write
multiplicatively, and fix an element —1 € H with —1 # 1. Let H be the

dual group of H and F = {¢ € H | 2(—1) = —1}. Then H is a group of
maps h: F {1, 1} C IF3; =z ~+ h(z) := z(h). Then (F, H) is a space of

orderings, where #(F) = 2". Such a space is called a fan and denoted by
F,.

Now let (X, G) be an abstract real spectrum and let (¥, G|Y) be a subspace.
In general, G}Y will contain the zero-function 0. However, it may happen,
that (G|Y )\{0} is a group and even, that (¥,(G|Y)\{0})is a fan. Then we
say, that Y is a fan in X.

Now we are able to state one of the central results for the theory of real
spectra in our abstract setting.

Theorem 3.3. (generation formula). Let (X, () be an abstract real spec-
trum and let ' C X be constructible such that (' does not intersect the
Zariski closure of its boundary. If for all fans F' in X one has

#(F) = 0mod #(C N F)

and

284(C N F) mod #(F),

3



then there are ¢,,...,gx € G such that C = {g, > 0,...,4; > 0}.
Proof: [ABR, Th. 3.1.4].

References
[ABR] Andradas, C., Brocker, L., Ruiz, J.: Constructible Sets in Real Ge-

ometry. to appear

'BCR] Bochnak, J., Coste, M., Roy, M.F.: Géométrie Algébrique Réelle.
Ergeb. Math., Springer 1987

‘B| Brocker, L.: On basic semialgebraic sets. Expo. Math. 9, 289-334
(1991)

'M] Marshall, M.: Classification of finite spaces of orderings. Canad. J.
Math. 31, 320-330 (1979)

Mathematisches Institut
Einsteinstr. 62
48149 Minster



The algebras of Lukasiewicz many-valued logics

Roberto Cignoli

MV-algebras were introduced by Chang in 1958 as the algebraic counterparts of
the infinjte-valued Lukasiewicz logic. These algebras have appeared in the litterature
under different names and presentations. Recently it was discovered that they are
naturally related to the Murray-von Neumann order of projections in C*-algebras
and that MV-algebras are also useful for the study of Ulam’s searching games with
lies.

The aim of this paper is to present a brief account of the theory of these al-
gebras and their relations with Lukasiewicz many-valued logics. The forthcoming
monograph [16} contains a rather detailed and self-contained account of the theory
of MV-algebras.

For the applications of MV-algebras to AF C*.algebras and Ulam’s games, we
refer the reader to Mundicl’s papers [32, 35, 33]. For the connections with Moisil’s
Lukasiewicz algebras we refer to the survey article [11] and to the book [5]

1 FEukasiewicz many-valued systems of propositional
calculi.

As in the classical case, the propositional formulas of Lukasiewicz propositional

calculi are obtained from a denumerable set of propositional variables, Var =

{Po,p1,---}, by means of the connectives of negation - and of implication —,

and the parentheses,

More precisely, the set Form of propositional formulas is given inductively as
follows:

F1) Each variable is a forinula.
F2) If Pisa formula, then =P is a formula.
F3) If P and @ are formulas, then (P — Q) is a formula.

The “truth tables” of the connectives — and - are given by the following two
functions defined on the segment [0,1] = {z € R |0 < z < 1}, where R denotes the
set of real numbers:

(l) X zﬂ'efl—:r



and
(2) = -y =g min{l,1-z+y}

A Lukasiewicz subalgebra of [0,1] is a subset § of [0,1] such that 1 € § and S is
closed under the operations — and —.

For each Lukasiewicz subalgebra S define an S-veluation as a function v which
assigns to each proposition P a truth-value v{P) € S satisfying the conditions:

(3} wv(~P)=-w(P)
and

(4) v(P—Q)=v(P)—v(Q)

An S-tautology is a propositional formula P such that v(P) = 1 for each §-valuation
v.
The next result is obtained as in the case of classical propositional calculus:

Theorem 1.1 Let § be a Lukasiewicz subalgebra of [0,1]. For each function f :
Var — § there is a unique valuation vy : Form — S such that vi(p,) = f(pn)
forn=20,1,....

For each n > 2, the following n-element sets are Lukasiewicz subalgebras of [0, 1]:
L,={0,1/(n-1),...,(n=2}/(rn-1),1}

Note that L, = {0,1}, and that the L,- tautologies are the classical tautologies,
provided we identify, as usual, 0 with false and 1 with true.

If A and Q denote the set of algebraic and rational numbers respectively, then
A N{0,1] and Q N {0,1] are examples of denumerable Lukasiewicz subalgebras of
[0,1].

If for each n > 2, Taut, denotes the set of L,-tautogies, then it was proved by
Lukasiewicz and Lindenbaum (see [28]}that:

(5) Taut, C Taut,, if and only if m — ldividesn — 1

It follows from (5) that Taut,, # Taut, for m # n. The set Taut,, is called in
(28] the n-valued system of propositional calculus, for each n > 2.

On the other hand, Lindenbaum [28] proved that all the infinite Lukasiewicz
subalgebras of [0, 1] have the same tautologies. The set of these tautologies, that we
denote by Tauty,, is called in [28] the Ro-valued systern of propositional calculus.

The following relations among the n-valued systems of propositional calculi, for
n=2,3,...,8p are given in [28]:

Theorem 1.2 For each n > 3, Tauty, C Taut, C Taut,
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and

Theorem 1.3 (Tarski) If2 < n; < ny < ... is an Increasing sequence of natural
numbers, then Tauty, = (=, Taut,,

It follows from (2) that for every z and y in [0, 1]:
(6) z<y ifandonlyifz —-y=1
Moreover
(7) zVy=gymax{z,y}=(z—-y) -y
and then, from (1):
(8) zAy=g4es min{z,y} = ~(~zV =y)

Thus the order structure of the segment [0, 1] can be recovered from the Lukasiewicz
operations — and —. If we restrict these operations to Lq, (7) gives the following
well known relation between material implication and conjunction in classical logic:

(PorQ)is equivalent to (P — Q) — Q)

while (8) gives the De Morgan law. Therefore the operations V and A can be
regarded as many-valued generalizations of the classical truth tables of disjunction
and conjunction, respectively.

In classical propositional calculus we also have that

(~P — Q) is equivalent to { P or Q)
but from (1) and (2) we obtain:
(9) 2@y =desmin{lz+y}=-z—y

It is not hard to see that L, is the only Lukasiewicz subalgebra of [0,1] on which
the equation ¢ Vy = z @ y holds. Hence we can consider the binary operation @
as another many-valued generalization of the classical truth table for disjunction.
Accordingly, the operation @) defined in the next formula, generalizes the truth table
for conjunction:

{10) 20y =gef ~(~z P ~y) = max{0,z+y— 1}
Moreover, we have that for each z, y in [0, 1]:
Ty =@y

This shows that, as in the classical case, the operation — can be recovered from the
operations & and —. On the other hand, if § C {0,1] is a Lukasiewicz subalgebra
and 5 # L, then there are proper subsets of § which contain 0 and 1 and are closed



under the operations V and -. Therefore the operation — on S cannot be defined
in terms of v, = and the constants 0 and 1.

It is well known that Boolean algebras are the algebraic counterparts of the
classical propositional calculus. They are often defined in terms of operations that
correspond to the logical connectives of conjuction, disjunction and negation. Ac-
cordingly, Chang [9] introduced the M(any)V(alued)-algebras as the algebraic coun-
terparts of Lukasiewicz propositional calculi by taking the operations @, © and -
as primitive.

Before given the formal definition of MV-algebras, we want to say a few words
about the sintactical aspects of Lukasiewicz calculi.

Lukasiewicz conjectured that all Ly, -tautologies could be deduced from all in-
stances of the schemes L1} L4) listed below, by means of the rule of detachment (or
modus ponens): From P — @ and P, infere @.

L1} P-+(Q — P)

L2) (P—@Q)— (@ — R)— (P — R))
L3) (P—Q)—Q)—({(Q— P)—P)
L4) (P = ~Q) = (Q — P)

Actually, Lukasiewicz considered one more scheme, bu it can be derived from
L1)-L4), as was proved independently by Chang [8] and M :redith [31).

It is easy to check that the formulas obtained by the schemes L1)-L4) are §5-
tautologies for each Lukasiewicz subalgebra of [0, 1], and that the rule of modus
ponens preserve tautologies. Therefore all the propositional formulas that can be
derived from the schemes L1)-L4) by modus ponens are S-tautologies. There-
fore, Lukasiewicz conjecture asserts that all Ly,-tautologies are derivable from the
schemes L1j-L4) by the rule of modus ponens.

In an article of 1935, Wajsberg (45, p.240] announced that he had verified
Lukasiewicz conjecture, but his proof was never published. A proof of this con-
jecture was published in 1958 by Rose and Rosser [40], and in 1959, Chang [10]
published another proof, based on the properties of MV-algebras.

2 MV-algebras.

As we already mentioned, Chang [9] defined MV-algebras by axiomatizing the oper-
ations @, and - on [0, 1] considered in the previous section. The definition that
we are given below, simpler than the original, is essentially due to Mangani [29] (see
34. 17, 18].

Definition 2.1 An MV-algebra is an algebra (A, ®,-,0) with a binary operation

T,

&, a unary operation -~ and a constant 0 fulfilling the following equations:
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MV1) 2@ (ySz)=(z®y)d =
MV2) z@y=y&z
MV3) z@0=1z
MV4) -~z =1
MV5) z & -0 = -0
MV6) ~(~zcy)By=~(zd-y) Dz
As usual, we are going to denote an MV-algebra (A, ®,-,0) by its universe A, and
the MV-algebra whose universe is the singleton {0} is said to be trivial.
Note that axioms MV1)-MV3) imply that (4,®,0) is an abelian monoid.
It is not hard to check that ({0, 1],®,—,0), where the operations = and ¢ are
defined by (1} and (9) respectively, is an MV-algebra.
This example can be generalized as follows.

Let G be a lattice-ordered abelian group (l-group for short). For each u € G,
u > 0, set [0,u] =go5 {x € G |0 < z < u}, and for each z, y in [0, 1], define

DY =def uh (2 +y)
and
X Sdef U — T

It is not hard to see that ({0, u}, ®,-,0) is an MV-algebra (see [26, 32]), which will
be denoted by I'(G, u).
Observe that the Lukasiewicz subalgebras of [0, 1] considered in the previous sec-
tion are subalgebras of the MV.algebra I'(R, 1), and consequently, are MV-algebras.
On each MV-algebra A we define the constant 1 and the binary operations @,
8, V and A as follows:

1 =45 =0
O Y =dges (-2 & ~y)

TOY =dej 20O Y

TVY =ges ~(-z DY) By =(20y)By

TANY =Zdey (TOY)OY=(2D y) By = (- V-y)

With these operations, the axioms MV5) and MV6) can be written as:



MV5) z2@1=1
MV6’) aVy=yVa
Note that in the MV-algebras I'(G, u) we have that:
l=u
tOy=(z+y—u)Vu
zoy=(z-y)Vvo0

For each MV-algebra A, L(A) = (A,V,A,0,1)is a distributive lattice with small-
est element 0 and greatest element 1. The corresponding order relation, which we
call the natural order of A, is given by z < yif and only if ~z@y = 1 (or equivalently,
&y =0), and the following relations hold in A:

(11) z0y<zAy<zvy<zdy

An MV-algebra such that its natural order is total, is called an MV-chain.

Note that L(I'((Z,u)) coincides with the underlying lattice of the I- group G.

Since £ Ay = =(—z V —y), the system < A, V,A,—,0,1 > is a De Morgan algebra.
As a matter of fact, it is a Kleene algebra, i.e. it satisfies the condition zA-z < yV-y
(see [1] for details on De Morgan and Kleene algebras).

Let A be an MV-algebra. The Boolean algebra formed by the complemented
elements of the lattice L{A) will be denoted by B{(A4). I z € B(A), then the
complement of z is -z. More preciselly, we have:

Theorem 2.2 The following are eguivalent conditions for each element z of an
MV.-algebra A:

1.z & B(A).
2.zv-z=1
3 zA-z=0
4. Foreachye A, zvy=zqy
5. Foreachye A, s Ay=z01y

The above theorem implies that B(A4) is a subalgebra of the MV-algebra 4. In
particular, it follows that Boolean algebras can be characterized as the MV- algebras
which satisfy the equation z § z = z.

MV-algebras have been considered by several authors under different presenta-
tions. We are going to describe a few of them.

A Wajsberg algebra (Rodriguez (37, 20]), or an NC-algebra (Komori [23, 25]) is an
algebra (A, — —.1) with a binary operation —, a unary operation - and a constant
1 fulfilling the following equations:
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W1) z > (y—2) =1

W2) =y~ {((y—2)=(z—2)=1
W3) (e —y)—y=(y—2z)—z

W) (e =~y —(y—2)=1

Theorem 2.3 ([20]) If (A, ®,~,0) is an MV-algebra and we define the binary op-
eration — by x — y =45 2 @y, then the system (A,—,-,1) is a Wajsbery
algebra, and -z — y = z @ y. Conversely, if (A, —,,1) is a Wajsberg algebra, and
if we define 0 =45 -1 and @ y =45 —~z — vy, then the system (A,8,-,0) is an
MV-algebra, and z = -z By — y.

A bounded commutative BCR-algebra [47, 22] is an algebra (A,*,0,1) with a
binary operation * and two constants 0 and 1 fulfilling the following equations:

Y1) (zxy)xz={(z+2)*y

Y2) zx(zry)=y*(y*x)

Y3) axa=10
Y4) z+x0=1=z
Y5) 21 =0

Bounded commutative BCK-algebras were considered by several authors, (see [44,
38, 39, 46]. Bosbash {7] considered them under the name of bricks. We refer the
reader to [4] for an interesting account of the relations between BCK-algebras and
partially ordered grupoids (see also [46}).

Theorem 2.4 ([20, 34]) For each MV-algebra (A, ®,-,0), the system (A,0,0,1)
is a bounded commutative BCK-algebra. Moreover, ~z = 10z and 2@y =16
(1o z)oy)). Conversely, if (A,*,0,1)} is a bounded commutative BCK-algebra,
and if we define =z =ge5 1%z and Gy =gey L+ ((1*+2) % y), then (A4,®,-,0) is an
MV-algebra, and 2 S y = z * y.

3 MV-algebras and lattice ordered abelian groups.

An ideal of an MV-algebra A is a subset I of A fulfilling the following conditions:
I1) 0 el

I2) Ifzel,yc A andy<z,thenye .

-1



I3) If z,y arein I, thenz @y € I.

By (11) it follows that each ideal of A is an ideal of the lattice L{A). An ideal I of
A is called prime provided that it is prime as an ideal of L{A): I # A andzAy €[l
implies z € I or y € I. If C is either a distributive lattice or an MV-algebra, then
Spec(C') will denote the set of prime ideals of C.

Let A be an MV-algebra. The set of ideals of A, ordered by inclusion, is an
algebraic lattice, which we denote by Z(A). Let Con(A) be the algebraic lattice of all
congruence relations on A. Chang [9] proved that the correspondence 0 — J(8) =
0/0 = {z € A| (2,0) € O} establishes an isomorphism J from Con{A} onto Z(A).
The inverse of J is given by: J"1(I) = {{(z,y) e AX A|(z68y)B(yOz) € I}, for
each ideal I of A. As usugll, we are going to write A/l in place of A/J~1(]).

Chang [9] proved that an ideal I of an MV-algebra A is prime if and only if the
quotient A/1 is an MV-chain, and that the intersection of all prime ideals of 4 is the
trivial ideal {0}. From these results, by standard techniques of universal algebra, he
obtained:

Theorem 3.1 (Chang) Each non-trivial MV-algebra A 1s a subdirect product of
MV-chains.

Let A be a totallv ordered MV-algebra. On the set Z x A\ {1} define the bicaiy
operation +. the unary operation — and the binary relation < as follows:

[ (m Fn,z®y) ifedy<l
y) =4 °
(m,z)+ (n. ) im+n+l,z0y) fzdy=1
_ (._Tn’o) if$:0
—(m,x)w{ (=(m+1),-z) if0<z<1

(m,z) < (n,y)if and only if m<n or m=n and z<y
The following is a fundamental result of Chang [10]:

Theorem 3.2 (Chang) For each totally ordered MV-algebra A, the system G 4 =
(Zx A\{1}, +,—,(0,0), <) is a totally ordered abelian group, and T'(G 4,(1,0)) = A.

By taking into account that the direct product of a family of totally ordered
groups is a lattice ordered group, Lacava [26] observed that from theorems 3.1 and
3.2 it follows that each MV-algebra is of the form I'(G,u) for a suitable lattice
ordered abelian group ¢ and a suitable 0 < u € GG. This result was perfectioned by
Mundici {32] as follows.

Recall that an element » in an l-group G is called a unit provided that for each
& in G there is a natural number n such that |z| < nu. Let G be the category whose

8
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ob jects are the pairs (G, u) such that G is an l-group and u is a unit of G, and whose
morphisms are the l-groups homomorphisms which preserve the corresponding units.
Let M be the category of MV-algebras and homomorphisms.

We already noted that for each object (G,u) in G, I'(G,u) is an object in M.
Let (G,u) and (H,v) be objects in G and b : G — H an l-group homomorphis
such that A(u) = v. It is easy to check that A maps [0, | into [0, v). Hence, if we
denote by I'(h) the restriction of A to {0, u], we have that T'(h) : T(G,u) — T'(H,v)
is an MV-algebra homomorphism. It is plain that I is a functor from G into M.
Mundici [32] proved that T is invertible:

Theorem 3.3 (Mundici) The functor T' establishes a natural equivalence between
{the categories G and M.

The following theorem is proved in [2, Corollaire A.1.7]:

Theorem 3.4 Fach l-group is a homomorphic image of @ sub l-group of a direct
product of copies of Z, the additive group of the integers.

By using this result and Theorem 3.3, it is proved in [14] that each MV-algebra
is an homomorphic image of a subalgebra of a product of MV-algebras of the form
I'Z,n), whith 0 < n € Z.

Since for each » > 2, T'(Z,n — 1) & L,, it follows that the equational class of
MV-algebras is generated by the algebras L,, for n < 2. On the other hand, it is
easy to check that an equation holds in the MV-algebras L,, for all n < 2 if and
only it holds in the algebra I'(Q, 1) (cf 1.3). Then we have the following theorem,
that was originally proved by Chang [10] by using theorems 3.1 and 3.2 and the
following result from model theory: a universal sentence of the first order language
of totally ordered abelian groups holds in a totally ordereded abelian group if and
only if it holds in Q.

Theorem 3.5 (Chang) The equational class of MV-algebras is generated by the
MV-algebra T'(Q, 1), i.e. an equation holds in all MV-algebras if and only if it holds

in T'(Q,1).

Chang used Theorem 3.5 to prove the Lukasiewicz conjecture mentioned at the
end of §1. We are going to sketch this proof.

On the set Form of propositional formulas, define the relation = as follows:
P =@ ifand only if (P — Q) and ( — P) are both derivable from Lukasiewicz
axioms L1)-L4) by the rule of modus ponens. Chang [9] (see also [32, §4]) proved
that = is an equivalence relation on Form, and that the quotient Form/ = becomes
an MV-algebra with the following definition of the operations:

Pl= &Q/==45 (-P—Q)/=
~(P/=)=4e5 (-P)) =



0 =4e5 ~(po — po)/ =

Moreover Chang showed that for each P € Form, P/ == 1 if and only if P is
derivable from L1)-L4) by modus ponens.

Hence to prove Lukasiewicz conjecture we have to prove that if a propositional
formula P is an Ly,-tautology, then the equivalence class P/== 1.

Suppose that p;,,...p;, are the propositional variables which occur in a formula
P. If we replace each occurrence of p; /= in P/= by the symbol z;, j=1,...k,
we obtain an expresion P(zi,...,z;) that can be evaluated in any MV- algebra.
Suppose P/=# 1. Then the k-variable equation P =1 does not hold in the MV-
algebra Form/ =, and by Theorem 3.5, it does not hold in I'(Q, 1). Therefore there
are rational numbers rq,...,7: such that P(Tl,...,Tk) £ 1. If f: Var — [0, 1]
is any function such that f(p;) = r;, for j = 1,...k, then it is easy to check that

vi(P) = P(ry,...,rt) (see Theorem 1.1). Consequently, the propositional formula
P is not an Ly,-tautology. This completes the proof of Lukasiewicz conjecture.

The MV-algebra Form/ = is called the Lindembaum algebra of the infinite-valued
Lukasiewicz propositional calculus, and will be denoted by L. As a matter of fact,
L is the free MV-algebra on a denumerable set of generators. More precisely, the
equivalence classes of the propositional variables form a set of free generators of L.

By Theorem 3.3 there is an l-group M and a unit 4 € M such that L 2 T'(M, u),
and the pair (M, u) is unique up to isomorphisms in the category G.

The following description of the l-group M is due to Mundici [32].

A function f : {0,1)" — R is called a McNaughton function over [0,1]* pro-
vided it satisfies the following conditions:

1. f is continuous.

2. There is a finite number of distinct polynomials of degree one and integral
coefficients Ay,...,Ax such that for each (zy,...,2,) € [0,1]", there is ¢ €
{1,...,k} such that f(zy,...,25) = X(&1,-. ., Zp).

A function ¢ : [0,1]¥ — R is called a McNaughton function over (0,1} if for
some integer n > 1, there is a McNaughton function f over [0,1]® such that for
each sequence x = (o, £1,...) € {0,1}¥, ¢(x) = f(zo,...;Zn-1).

Theorem 3.6 (Mundici) The MV-algebra L = F(M, u), where M is the I- group
formed by the McNaughton functions over [0,1]“ with pointwise operations, and u
is the constant function 1.

The proof of the above theorem given in [32, Theorem 4.5} depends on a classi-
cal theorem of McNaughton [30] which relates propositional formulas on n-variables
with McNaughton functions over [0,1]*. The original proof of this theorem is not
constructive. Recently, Mundici [36] gave a constructive proof of McNaughton the-
orem.

10
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4 Equational classes of MV-algebras.

An lideal of an l-group G is a subgroup I such thatifz € I, y € G and |y| < |2|,
then y € I. The set of l-ideals of an l-group G, ordered by inclusion, is an algebraic
lattice, that we will denote by Z(G). It is well known that Z(G) is isomorphic to
the congruence lattice of the l-group G.

The next theorem is proved in [18](see also [26]):

Theorem 4.1 Let G be a lattice-ordered abelian group and v a unit of G. The
correspondence J — ¢(J) = {z € G : [z] A v € J} defines an isomorphism from the
poset I(A) of ideals of the MV-algebra A = T'(G, u) onto the poset T(G) of I-ideals of
G. The inverse isomorphism is given by the correspondence H v (H)= H N[0, u].

A totally ordered group is called archimedean if for each pair of elements z, y in
G such taht 0 < z < y, there is a natural number n such that y < nz. A theocrem
of Holder (see {3] or [2]) asserts that a toally ordered group is archimedean if and
only if it is isomorphic to a subgroup of R.

Recall that an algebra is called simple in case it has exactly two congruence
relations. In particular, if C denotes either an MV-algebra or an l-group, then we
have that C is simple if and only if Z(C) = {{0},C}.

It is well known (and easy to check) than an l-group is simple if and only if it
is totally ordered and archimedean. Then from theorems 3.3 and 4.1 and Holder’s
theorem we obtain:

Theorem 4.2 (Chang) An MV-algebra A is simple if and only if there is a sub-
group S of R such that A =2 T'(§.1).

The above theorem asserts that, essentially, the simple MV-algebras are the
subalgebras of I'( R, 1}, i.e. the MV-algebras that we considered in §1. In particular,
the algebras L, = I'((1/n — 1)Z, 1) are simple for each n > 2.

An algebra is called semisimple if it is a subdirect product of simple algebras.
Since T'(Q, 1) is a simple MV-algebra, Theorem 3.5 implies that the equational class
of MV-algebras is generated by a simple algebra. Despite this fact, there are MV.
algebras which are not semisimple. Indeed, we are going to produce a family of
subdirectly irreducible but not simple MV-algebras.

Given an l-group G, let A(G) be the lexicographic product Z ® A. It is well
known that A(G) is an l-group (see, for instance, [3, Chapter XIII, §2, Lemma 3]).
For each l-group homomorphism b : G — H, define A(h): A(G) — A(H) by the
prescription A(R){({m,a)) = (m,kh(a)) for each (m,a) € Z ® G. It is easy to verify
that A is a functor from the category l-groups into itself.

For each integer » > 1 and each z of an l-group G, (n,z) is a unit of A(G), and
hence T(A(G), (n,z)) is an MV-algebra.

11



The algebra ['(A(G),(n,r)) can be described as the set

n—2
{(o,no<teGyul {1 ]teGru{(n-1,2)|teG, t <}

i=1

with the operations:

(i+7,8+1) tf i+j<n=-1
(i,8)@d (4,) =< (n— L min{z,s+1t}) if t+j=n-1
(n—1,2) if i+j>n-1

-(i,t)=(n—-1-4,z—1)
and
0 = (0,0)
(see [38, 39, 25]). It is easy to check that the correspondence J — {(0,2) |0 <t € J}

establishes an order isomorphism from Z(G) onto the set of proper ideals of the MV
algebra A = T(A(G),(n,x)). In particular, {(0,?) | 1 € G} is the only maximal ideal
of A.

For the above remarks we get that when G is a subgroup of R, T'(A(G),(n,0))
is a subdirectly irreducible but non simple MV- algebra.

For each n > 2, let K, = I'(A(Z),(n—1,0)). The algebra K, was introduced by
Chang [9] as an example of a non semisimple MV-algebra. These algebras, together
with the algebras L, play an important role in the characterization of the equational
classes of MV- algebras. Indeed, we have the following:

Theorem 4.3 (Komori) For each proper and not trivial equational subclass C of
the equational class of MV-algebras, there are two finite sets I, J of natural numbers
such that TU J # 0 and the algebras {Ly, }ier and {K, };cs generate the class C.

To prove the above theorem, Komori {25] uses the first order theory of a class of
totally ordered abelian groups that he had expressly introduced in [24]. In {14], it is
shown how Theorem 4.3 can be derived in an algebraic way from theorems 3.3 and
3.4.

For each n > 2, the equational class of MV-algebras generated by the algebra
L, is denoted by V,,. The classes V, were studied by Grigoglia [21]. In particular,
he gave sets of equations to characterize each of them. These sets of equations can
be considered as axiomatizations of the corresponding n-valued Lukasiewicz systems
of propositional calculi. Observe that V;, which coincides with the class of Boolean
algebras, is characterized by the equation = @ r = x. The class V3, the class of
Lukasiewicz three-valued algebras, is characterized by the equation bz dz = zdz.
For n > 4, more complex systems of equations are requiered to characterize the class
Vi, (see also [37]).

12
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The classes V, have been considered in (12, 13] as Heyting algebras with some ad-
ditional unary and binary operations, under the name of proper n-valued Lukasiewicz
algebras.

Recently Di Nola and Lettieri [19] gave equational characterizations for all equa-
tional classes of MV-algebras.

5 Order structure of MV-algebras.

For each integer n > 2, the algebra L,, is a totally ordered MV-algebra with exactly
n elements. Moreover, it is not hard to see that each totally ordered set C' with
n > 2 elements admits a unique structure of an MV-algebra, and that C with this
structure is isomorphic to L, (see, for instance, [20, Theorem 19]).

Since each finite MV-algebra is a direct product of a finite number of finite
MV-chains (see, for instance,[44] or [20}), it follows that a finite partially ordered set
admits an MV- algebra structure if and only if it is a direct product of a finite number
of finite chains, and in this case the MV-algebra structure is uniquely determined.

On the other hand, there are infinite chains admitting two non isomorphic MV-
algebras structures. To give examples, we need the following well known (and easy
to prove) result:

Lemma 5.1 Let 5 and T be two subgroups of R such that 1 € § and 1 € T. There
is an ordered-group isomorphism h from S onto T such that h(1) = 1 if and only if
S =T, and in this case h is the identity.

Corollary 5.2 If § and T are as in the Lemma, we have that T'(5,1) = I'(T, 1)
if and only if T(S5,1) = I'(T,1), i.e. two subalgebras of the algebra T'(R,1) are
isomorphic if and only if they are equal.

By a classical result of Cantor, every two countable dense totally ordered sets
with no first or last element are isomorphic. Therefore I'(Q, 1) and I'(A,1) are
order isomorphic, but by the above corollary, they are not isomorphic MV-algebras.
Therefore we have an infinite chain admitting two non isomorphic MV-algebra struc-
tures.

Note that 1 plays an essential role in Lemma 5.1. Indeed, the correspondence
p+— p/(n—1) defines an ordered-group isomorphism from Z onto (1/n — 1)Z which
maps the unit {(n — 1) to 1. Hence we have I'((1/n — 1)Z,1) ¥ I'(Z,n- 1) = L,,.

Another consequence of Corollary 5.2 is that the set of (non isomorphic) simple
algebras is non denumerable. Indeed, for each irrational number « such that 0 <
a<l, So={m+na|mne€Zandl < m+ na < 1} is a subalgebra of I'(R, 1),
and 5, = Spifandonlyifa =B ora=1-4.

Boolean algebras are simple examples of MV-algebras that are uniquely deter-
mined by their natural orders. It is proved in [15] that the algebras in the equational
classes V3 and V4 are also uniquely determined by their natural orders.
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In [17] we consider a class of MV-algebras which are uniquely determined by their
natural orders, and that contains all the finite MV-algebras and, more generally, all
the algebras in the equational classes V,, for each n > 2.

An MV-algebra A is called liminar provided A/J is finite for each prime ideal J
of A.

The main result of [17] is as follows:

Theorem 5.3 Let A be a liminar MV-algebra. Then [ = L({A) is a bounded dis-
tributive lattice which satisfies the following two conditions:

i) The prime ideals of L occur in disjoint finite chains.

ii) For each f € L and each r € Q, there is an element b € B(L) such that for each
minimal prime ideal J, b € J if and only if

_ card{A € Spec(L)|J C Kandf ¢ J}
B card{K € Spec(L)}| J C K}

Conversely, if a bounded distributive lattice L satisfies conditions i) and ii), then
there is an MV-algebra A, unique up to isomorphisms, such that L{1) = L, and
moreover, A is liminar,

The class of liminary MV-algebrasis in correspondence with the class of liminary
C*- algebras with Boolean spectra. See [17) for details,

It is shown in [18] that an MV-algebra is liminar if and only if it is a Boolean
product of a family of finite MV-chains.

6 The prime spectra of MV-algebras.

Recall that if C denotes either an MV-algebra or a bounded distributive lattice
Spec(C) denotes the set of prime ideals of C. Analogously, if C stands for an 1-
group, Spec(C) denotes the set of prime l-ideals of C. In any case, Spec(C) is the set
of meet-irreducible elements of the algebraic lattice I(C). We are going to consider
Spec(C) ordered by inclusion.

We say that an ordered set X is M V-representable provided that there is an
MV-algebra A such that X is isomorphic to Spec(A).

It is easy to see that the mappings ¢ and ¥ of Theorem 4.1 define an order
isomorphism between Spec(T(G,u)) and Spec(G) for each unit u of the l-group G.

Therefore the ordered set X is MV-representable if and only if there is an l-group
G with an order unit » such that X is isomorphic to Spec(().

A root systemis an ordered set X such that foreachz € X,[2) = {z € X : 2 > 2}
is a totally ordered subset of X. A spectral root system is a root system X fulfilling
the following two conditions:

14
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RS1) Fach totally ordered subset of X has supremun and infimun in X.

RS2) If z,y are elements of X such that z < y, then there are 3,7 in X such that
z £ s <t <y, and there is no element of X between s and ¢.

The following theorem is proved in [18]:

Theorem 6.1 A partially ordered set X is MV-representable if and only if it is a
spectral root system.
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There are 2%o existentially closed non elementary equivalent countable groups.

Anatole Khelif

Plan of the proof

I We will prove that there are 2% models of ZFC such that their integers are the true integers and such
that their second order arithmetic ({w, p(w)) are not elementary equivalent, We will admit the existence of an

inaccessible cardinal and we will obtain 2% countable models without forcing. The hypothesis of the existence
of an inaccessible cardinal can be eliminated if we replace ZFC by a large enough finite fragment of ZFC (We

can prove in ZFC the existence of modeis of some finite fragment of ZFC),

11 In all these models of ZFC we will find "existentiaily saturated" groups such that the second order

arithmetics of these models are interpretable in these groups.

LEMMA 1

If we admit ZFC + "There exists an inaccessible cardinal”, there are 2% models of ZFC such that their

integers are the true integers and such that their second order arithmetic are not elementary equivalent.

Proof ;

If we admit ZFC + "There is an inaccessible cardinal”, There exists an uncountable standard model (e is well

founded) M, of ZFC + V=L. Thus by Loweneihem - Skélem there are ¥, countable standard models of ZFC +

V=L . Let A be the set of the countable standard models (up to isomorphism of ZFC + V=L. Let < the following



relation : if M, and M, € A, we have M, <M, if and only if every ordinal of M, is an ordinal of M, and M, =
M,. Then < induce a well order on A and (A,<) is isomorphic to w, , €). Since ¢very element of A is
isomorphic to an element of M,, we can say that in " M, "There are uncountably many standard models of
ZFC + V=L". Since Léweneihem Skélem is a theorem of ZFC, M,~—" There are %, standard countable models
of ZFC + V=L". By Loweneihem Skélem in the universe (not in M,). There is a countable standard model of
ZFC + V=L which is elementary equivalent to M,. We can conclude that the set { x € A, x = "There are %1
countable standard models of ZFC + V=L"} is non empity. Let N, be the smallest element of this set for the
relation <. Then N, - " There is not an uncountable standard model of ZFC + V=L" and N, " There are %1

countable standard models of ZFC + V=L".

But in ZFC + V=L, there exists a definable bijection from | into the reals. Let R be such a bijection,
we ¢an suppose that R is absolute. Then N, = "Every standard model x of ZFC + V=L contains (relatively to x)

countably many standard models (which are element of x) up to isomorphism of ZFC + V=L.

Since the set of these models, which are elements of x and A, is well ordered by < ; it is isomorphic to

an ordinal ax which is countable relatively to x. In this case, R (ax) is a real which is an element of x.

If x # y (x and y transitive models of ZFC + V=L and elements of No} R (otx ) # R (ay).

We know that two different reals have not the same binary development. Thus N =" There are m,

standard models of ZFC + V=L which are not elementary equivalent even if we consider only the formulas with

integers and reals.
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But if we identify the set of the formulas to w, the set T of the second order arithmetics which are in
models {not necessary standard) of ZFC where the integers are the true integers is an analytic subset of {0,173,

Thus the cardinal of T is either < ¥, or 2%e.

But in N, this cardinal is Z y, , thus it is 2%e. By the absolutness of the cardinal of an analytic set ; we
can conclude that, in the universe, there are 2% countable models of ZFC + V=L such that their integers are the

true integers and such that their second order arithmetics are not elementary equivalent,

LEMMA 2

Let M be a countable model of ZFC + V=L such that the integers in M are the true integers. Then
there exists G existentially closed group such that G € M and such that the second order arithmetic of M is

interpretable in G without parameters,

Proposition 1

If G € M, G group and M model of ZFC containing the true arithmetic then M = "G is existentially

closed iff G is existentially closed."



Proof ;

G is existentially closed is equivalent to the fact that every existential formula which is consistant with
the non quantified formulas with parameters in G and with the group theory holds in G. But consistent means
finitely consistent. Since M contains the true arithmetic the consistentness in M and in the universe are
equivalent. Thus if G € M, G is existentially closed iff M =" G is existentially closed." { N-B- if M doesn't
contains the true arithmetic and M & "G is existentially closed;" G is never existentially closed because two

elements of different non standard orders are not conjugate).

Poposition 2

Let us call " existentially saturated" a group G of cardinal > y, such that

a) Every group M of cardinal < G has an injective embeddement in G

b) Let Hand H' be sub-groups of G, if card H < card G and if ¢ is an isomorphisme from H to H' there isy

G such that for every x € H{(x) =y xy.

It is obviously equivalent to the fact that every existential type on a subset of G of cardinal < card G is
satisfied in G. If we admit the continuum hypothesis (which holds in every model of V=L) such a group exists
and it is existentially closed. We can even say that in this case, up to isomorphism, there exists only one

existentially saturated group of cardinal 2%°.
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If follows from the theorem of Léwenheimen Skélem and the fact that every elementary sub-structure of an
existentially closed group is existentially closed that an " existentially saturated” group is the union of an

increasing clain of existentially closed sub-groups. Thus it is existentially closed.

Proportion 3

Let M be a model of ZFC and G e such that M "G is existentially saturated", then the second order

arithmetic of M is interpretable in G without parameters,

Proof :

In an " existentially saturated" group, which is an existentially closed group, two elements of same

order are conjugate. We can write that an element u of G is of infinite order by u = ¢

3 v, v uv=u? (the order of u isn't pair)

I w, wild A ' wu = w! (the order of u isn't impair)

An element u' of G is a powerth of u (u®, n ef) if and only if v’ belongs to the centralizator of the
centralizator of u which we name CC(u). We can identily the conjugary classes of the couple (u, u') to relative
integers. We can already say that the first order arithmetic is interpretable in G, the product of two elements of
CC(n) can be assimilate to an addition and a morphism from CC(u) to it self inducted by a conjugaison is

equivalent to a multiplication.



If u has an infinite order, for every subset P of V4 (in M), there is an element v and an ¢lement w
such that if ' e CC(u), w commutes to u"! vit' if and only if the class of (u,u’) belongs to P. So, the second

order arithmetic is interpretable in G without parameters.

Proof of lemma 2;

If G belongs to M and if the integers of M are the true integers, according to proportion 1, G is

existentially closed. Thus, according to proposition 3, the second order arithmetic is interpretable in G without

parameters.

Conclusion:

According to lemma 1, there is 2% countable models of ZFC + V=L countaing the true arithmetic such

that their second order arithmetics are not elementary equivalent.

But in this models and relatively to them, the "existentially saturated” groups of cardinal 2% are not

elementary equivalent.

Since these models are countable, these groups are countable. According to propositions 1 and 2, there
are existentially closed. Thus, there exist 2% countable existentially closed groups which are not elementary

equivalent.



A. Khélif

Case of the division rings:

Theorem :

Let k be a countable field, there are 2% non elementary equivalent division rings over k.

Proof ;

We have the amalgamation property for the division rings [1]. Then we can conclude that if we assume
GCH, we have an "existentially saturated"” division ring over k in the same sense that the "existentially
saturated" groups. In an "existentially saturated” division ring A over k, x is transcendental over k if and only if
there is u belonging to a such that u'xu = x? and if there exists y different from 1 such that x'yx = y! #y. This
is also a consequence of the amalgamation property. If x is transcendental over k, x'is a power of x (there
exists n € Z such that x* = x') if and only if x' belongs to the centralizator of the centralizator of x and if (
X, X'%) is conjugate to (x, X'} with & = 2 if charasteristic of k # 2, & = 3 if charasteristic of k = 2. Then, in
the same way that for the "existentially saturated” groups we can interprete te first order arithmetic and the
seond order arithmetic. By using lemma 1 and proposition 1 with "division ring" at the place of group we can

conclude that there are 2% non elementary equivalent division rings over k.
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Joining k— and [— recognizable sets of natural numbers

ROGERVILLEMAIRE

Département de mathématiques et d’informatique
U.Q.AM., C.P. 8888 succ. A, Montréal (Québec), CANADA H3C 3P8

Summary. We show that the first order theory of < IN, +, Vi, V| >, where
V. : IN\{0} — IN is the function which sends z to V,.(z), the greatest power
of r which divides z and k, ! are multiplicatively independent (i.e. they
have no common power) is undecidable. Actually we prove that multiplica-
tion is definable in < IN, 4+, Vi, Vi >. This shows that the theorem of Biichi
cannot be generalized to a class containing all k- and all I-recognizable sets.

Introduction. As J.R. Biichi showed (see section 3.), a subset of IN" represented
in base k is recognizable on the alphabet {0, 1,...,k—1}" if and only if it is definable
in the first-order theory of < IN,+, Vi >, where Vi(z) is the greatest power of k
which divides z. This shows that the class of k-recognizable subsets of IN” (n € IN)
is closed under intersection, complementation and projection. Hence a set is in
the smallest class containing all k-recognizable sets and closed under intersection,
complementation and projection if and only if it is definable in <IN, +,Vy >.

A. Joyal asked to which extend it could be possible to generalize the above
result joining k- and l-automata. I proved that if one takes the smallest class closed
under intersection, complementation and projection which contains all k- and all I-
recognizable subsets of IN" (n € IN) (hence the definable subsets of < IN, 4, Vi, Vi >
), then it contains multiplication. Therefore there is no machine specializing Turing
machines by which exactly the sets in this class are recognized. Hence one cannot
hope to generalize Biichi’s theorem in this way.

In the first three sections we give definitions an results about automata, recog-
nition and logic. In section 4. we reduce the main theorem to some technical result,
which we prove in the last section.

1.Automata. Let ¥ be an alphabet, i.e. a finite set. X* will denote the set of
words of finite length on ¥ containing the empty word A formed of no symbol. Any
subset L of ¥ will be called a language on the alphabet X.

DEFINITION.Let ¥ be an alphabet. A T-automata A is a quadruplet (Q,go, ', T)
where
(2 Iis a finite set, called the set of states,
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go Is an element of @, called the initial state,
I is a subset of Q called the set of final states
and finally T' is a function of Q@ x ¥ to @, called the transition function.

The transition function T can be extended to a function 7% : @ x ¥* — Q in
the following way:

T*(q,0) =T{q,0) forc € ¥
T*(q,a0) =T(T*(gq,a),0) fora €E* and o € X
Furthermore we have the following definitions.

DEFINITION. A word « € ©* is said to be accepted by the X-automata (@, o, ', T)
if T*(go, ) €T

DEFINITION. A language L on ¥ is said to be XL-recognizable if there exists a X-
automata such that the set of words accepted by this automata is exactly L.

2.Recognition over IN. Let X; be the alphabet {0,1,...,k—1}. For n € IN let
[n]r be the word on X which is the inverse representation of n in base k, ie. if
n = X5_ok® with A; € {0,...,k— 1}, then [n]x = Ao+~ As.

It is also possible to represent tuples of natural numbers by words on (X7)*
in the following way. Let (m1,...,m,) € IN". Add on the right of each [m;]x the
minimal number of 0 in order to make them all of the same length and call these
words w;. Let w; = Ajp --- Ais where A;; € X, We represent (ma,...,my) by the
word (A11, A1y eens )\nl) (A12, Aoz, ..., /\n2) cen (/\15, Adgy ey Ans) € (EZ)*

DEFINITION. We say that a set X C IN" is k-recognizable if it is ¥};-recognizable.
k

3.Biichi’s Theorem. Let Pi(z) be the predicate (i.e. subset ) on IN defined by
“r is a power of k”. Let also as we said before Vi, : IN \ {0} — IN be the function
which sends z to Vi(z), the greatest power of k which divides z.

In [2,Theorem 9] Biichi states that a subset of IN" is k-recognizable if and
only if it is definable in the first-order structure < IN,+, P, >, i.e. defined by
formulas built up from =, 4+, P, using A (“and”), — (“not”), 3 (“there exists a
natural number such that ...”). Unfortunately, as remarked by McNaughton in [7],
the proof is incorrect. Furthermorc the statement has been disproved by Semenov
in [11, Corollary 4]. Thanks to the work of Bruyére [1], we know that the ideas of
Biichi can be used to show the following theorem. (See [1] for a proof among the
lines of Biichi’s, [8] for a different proof or also [14]).

THEOREMS3.1.Biichi’s Theorem A set X C IN" is k-recognizable if and only if it
is definable in the first order structure < IN,+,Vj, >.

There is another version of Biichi’s Theorem in terms of weak monadic logic.
Before we speak of it, let us give a useful definition and lemma.
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DEFINITION.Let Xy, j(z,y) denote the relation “z is a power of k and the correspond-
ing digit in the representation of y in basis k is j”, fork € INand j € {0,1,...,k—1}.
We have the following result.

LEMMA3.2.The relation Xy, ;(z,y) is definable in < IN,+,Vi > forj =1,...,k— 1.

PROOF: X} ;(z,y) is defined by the formula
Vi(z) =2 A3Jz, btz <aAVi(t) > wAy=z+jx+t]\/Elé[z <TAy=2z+jz]

Here jy represents y + - - - 4+ ¥ which is a term in the language.
S —
Jj—times
This holds since Vi (z) = 2 is equivalent to z being a power of k and furthermore
z < z and V4 (t) > = means that z has 0 as coefficient for all powers of k greater or
equal to xz and t has coefficient 0 for all powers of k smaller or equal to z.

Usually Biichi’s Theorem is stated using the weak monadic theory of < IN, S >,
where S is the successor function on IN. The weak monadic theory of < IN, S >
is the extension of first order logic by allowing also the use of the weak monadic
quantifiers VX and 31X, which are interpreted as “for all finite subsets of IN” and
“there exists a finite subset of IN 7 respectively. We will write WM < IN, S > for
this structure. Hence usually Biichi’s Theorem is stated a follows.

THEOREM3.3.Biichi’s Theorem monadic version A set X C IN" is 2-recogni-
zable if and only if it is definable in the weak monadic structure WM < IN, S >.

Let us show that this second form of Biichi’s Theorem is equivalent to the
first one for k = 2. We will give an bi-interpretation of WM < IN,§ > in
<IN, +, Vo >. First of all, any formula o(Xy,..., X, 21,...,2¢) of WM <IN, S >,
where X,..., X, are monadic variables (i.e. they represent finite sets) and
Ty1,...,Ts are first-order variables, is equivalent to a formula with no first-order
variables, since one can replace an element by a singleton containing it. Let us now
show that there is a bijection 1 between the subsets of IN and the natural numbers
such that for any formula ¢(Xi,...,X;), there exists a formula ¢* with the prop-
erty that ¢(X1,...,X;) holds in WM <IN, § > if and only if o*(n(X1),...,n(Xy))
holds in < IN,+, V5 >. And furthermore that for any formula ¥(z1,...,2zs) there
exists a formula ¥* such that ¥(z;,...,zs) holds in < IN,+,V, > if and only if
v*(n~Hay),...,n(z,)) holds in WM < IN, S > .

Define n(X) = 3 ,.x2" and let ¢ be a formula in the language of
WM < IN,§ >. Replace in it S(n) by 2" + 2", X(n) (ie. z € X) by X»1(2™, )
and JdX, VX by 3z, Vo and call this new formula ¢*. It is easy to show that the
above property holds.
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Conversely starting from ¢ a formula in the language of < IN, 4, V; >, replace
initz+y ==z by
AR[X(0) AY(0) < R(S(0))]A
Vz(R(S(z)) « “at least two of X (z}, Y(z), R(z) hold ”)A
Vz(Z(z) < “ only one or all three of X (), Y(z), R(z) hold )

In this formula R stands for the ¢ carry over ” in the addition of 37, 2* and
> iy 2°. This formula can be easily expressed in the language of WM <IN, S >.

Finally replace Va(z) = y by “ Y is a singleton contained in X and for all
z € IN smaller than the element of Y, X(z) does not hold .

Here also this can easily be expressed by a formula of WM < IN, § > as soon
as one note that z < y for z, ¥ natural numbers is equivalent of “ every finite subset
containing y and closed under the inverse of S must contain = ”. The formula *
so obtained has now the required property as one can easily check.

Note that in the translation of ¢ into ¢*, if we replace 2™ by k™ and Xy 1 by
X1 we get and interpretation of WM <IN, S > in <IN, +,V,, >. We will use this
fact later.

4. A question of A.Joyal.

DEFINITION. Two natural numbers k, | are said to be multiplicatively dependent if
there exists natural numbers n, m such that k™ =1[™.

We have the following facts.

o If k¥ and ! are multiplicatively dependent then any set X C IN which is
k-recognizable is also I-recognizable (see [4, Corollary 3.7)).

e A set X € IN which is a union of a finite set with finitely many arithmetic
progressions is k-recognizable for any k € IN (see [4, Proposition 3.4)

o For k, I multiplicatively independent a set which is k- and [-recognizable is
a finite union of a finite set with finitely many arithmetic progressions, hence it is
m-recognizable for any m (see [3] or also [6] and [9]).

Therefore for k, | multiplicatively independent the class of k- and the class of
I-recognizable sets of natural numbers are as far apart as they can be. This is quite
unfortunate from a computational point of view, since recognition depends on the
basis. A. Joyal asked if we can find a concept of “machine” and of “recognition”
extending k-recognition and [-recognition for k, ! multiplicatively independent.

Let K be the smallest class containing all k-recognizable and all I-recognizable
subsets of IN™ (for n € IN) and closed under intersection, complementation and
projection. We show that X contains all the arithmetical hierachy (i.e. the closure
of the class of recursive relations under projection and complement), hence that
there is no machine model specializing Turing machines by which exactly the sets
in K are recognized. More precisely we show the following.



5 of 12

R. Villemaire

THEOREM4.1.The structures < IN,+, Vi, Vi > for k, | multiplicatively independent
and < IN,+,- > are inter-definable (i.e. multiplication can be defined in terms of
Vi, Vi and Vi, V; can be defined in terms of -, +).

PRrOOF:Since any recursive function is definable in < IN, +,- > and V;,V] are recur-

sive, it follows that V,V; are definable in < IN, +, - >. This settles one direction.

! For the other direction let k™ be the set of powers of k. We will first show the
following results. -

LEMMA4.2