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Un théoréme de Harnack dans l'espace.

Daniel Pecker. (Paris é)

A la mémoire de Mario Raimondo .

Le théoreme de Harnack affirme qu'une courbe algébrique réelle de genre g
a au pius g+l composantes connexes, et que pour tout degré d .on peut construire
une courbe plane lisse avant g(d)] composanies connexes, (o g(d) = (d-D(d-2)/2 est
ls genre d'une courbe plane de degré d ).

Dans l'espace de dimension trois, une courbe gauche de degré d aun genre

g = [(d—ZJZ / 4] (corne de Halphen) et Hilbert a moniré l'existence de courbes
gauches ayant [(d-232 / 4:| + | composantes connexes.

Castelnuova a etendu le résultat d'Halphen a l'espace Pp et trouve une borne
effective C{dn) pour le genre d'une courbe de degré d non dégénérée dans Pn
(ie. qui n'est contenue dans aucun hyperplan).

On montre ici que pour ¢ = C(dn) il existe une courpe lisse de degré d
non dégénérée dans PpR(R). ayant ¢+l composantes connexes. Notre démanstration
consiste & simplifier les points doubles de courbes qui ont Cld,n) points doubles réels
isolés, et qui sont situés sur des suriaces rationnelles réglées lisses. Pour illustrer cette
méthode, on iraite d'akord ls cas plan, car méme dans ce cas, noire construction différs
des constructions classiques de Harnack et Hilbert qui utilisent une récurrence sur le

degré, (of [B.C.R] page 245 [A] ou [Gh.



Commenoons pPar une remarque:
Lemme: Si A E B sont des polynémes de degrés a, e, b la courbe affine
€ - (BY, A/E) & au plus (b-INa-1)/2 points singuliers.
Démonstration: Les valeurs du paramétre pouvant donner des peints doubles ou
singuliers sont obtenues en trouvant l'intersection des deux courbes :
(B(H-B(s)) /(ts) - ©
(ADES-ADEWD) /(ts) - 0

Par le théoréme de Bézout il y a au plus (b-1(ase-D solutions .Par symétriela
multiplicité¢ d'intersection d'un point situé sur la diagonale est au moins 2 . et par
conséquent €(1) a au plus (b-D(a-e-1) / 2 points singuliers. D_
Proposition L. Scient a ef b deux entiers premiers enfre eux
La courbe affine €1 « (+ 3, (+-X) possede (a-!)(b-])/.? points singuliers qui sont
réels et Isolés.
Démonstration: Considérons l'ensemble A » {zeC | (28-Z3) / (z-2) =C}
Si zeA, 28Z2 dou (2/ lzh<a - 1, z / jzl # %1 . L'ensemble A se compose donc des
(a-D droites de vecteurs directeurs & , E23] | E#F] .

De méme, l'ensemble B = {ze€C | ((z—l)b - (;)b)/fz—ﬁ = O} se compose de (b-1)
droites de vecteurs directeurs 7 n2b=1 , n# #l
Comme a et b sont premiers entre eux, aucune des droites de B n'est paralléle &
une droite de A , et par conséquent lintersection de A et de B se compese de
(a-D(b-D points distincts. En ces points on a: £(z2) - £ - B@ . Ce qui fait que €
posséde (a-D(b-D / 2 points doubles isolés, et par le lemme, € ne peut avoir d'autre

point singulier dans le plan affine. D



D. Pecker

Corollaire (Harnack) : Pour fout ¢ < (d-1Xd-2)/2 il existe une courbe lisse de degré d
dans PJ{R) ayant (c+]) composantes connexes.

Démonsiration: La courbe plane &) - (td.(t-l)d‘l) posséde  (d-1{d-2) / 2 points
doubles réels isolés et une branche infinie. On peut simplifier ces points doubles ,chaque
point isolé pouvant au choix scit devenir un ovale soit disparaitre (cf[BRI1{P2D. On

obtient ainsi une courbe ayant ¢+l composantes connexes. D

Pour le cas général on modifiera la construction de la maniére suivante:
Proposition 2: Si a > e et b sont des entiers, (z-e.b)=l. Il existe des polynémes A(t),

E(t) et B(t) de degrés respectifs aeb lels que la courbe affine ECf)-(B(t), Al / E(t))

ait (b-a+e-1 / 2 points doubles réels isolés, et aucun autre point singulier.

Demonstration: Si f est une fraction rationnelle, définissons un polyndéme
Afty) = KD = (4D /(2D (ou z = xeiy)
Si f est définie au point atR , regardons Ay avec glz) = f(2) + n/(z-a) ,ou7n est

un "petit” nombre réel.
On & g - Af2) ~n/lal? - (z-alPaga) - w/lz-al?
Si n est assez petit, on voit que {/_\.9-0} est une "petite variation” de

{Af » O} U {2 = a} . cest done la réunion d'une "petite variation” de {Af = O} et d'un

petit ovale autour de a (si v est du signe adéquat).



En itérant cette construction, on voit que par un choix successif des a; et des n;
pour f = z3° . (nl/(z-al)) T (r,e/(z-ae)) .{&f’:;s compose de e ovales ernboités
autcur de ag et d'une figure qui est une "petite variation” des (a-e-1) droites

{(za-e-l . Ea'e‘l)/(z-i) - O} (df. figure avec a-e-5 e-2, b-4).

3i la variation est assez petite, cet ensemble va rencontrer

B« {z€ | (Cz-ae)b . (_z-—ae)tyﬂzé]- 0} en (b-D{a-e-D + 2alb-1) - (b-D(a.e-) points
distincts qui sont des valeurs du paramétre dennant (b-D(a+e-1) / 2 points doubles pour

la courbe €(z2) - ((z—ae)b. f(z)) . Par le lemme, & ne peut avoir d'aufre point

singulier dans le plan affine. D

Figure:
L'intersection de (f(2)-#2)/(z2) = 0 et (g(2-g®)/(z2) =0 ou gl)=(z-D4 |
(D =z34(e/(z- D' /(z-a)) aje]l £20l , 8w 0,00025est composée de 24 points .
Cela permet la construction d'une courbe lisse de degré Il non dégénérée dans Py
ayant 13 cornposantes connexes .
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Rappelons la définition de la borne de Castelnuove.

Si dzn22 , d-lm(n-D+¢ avec O<ein-l la borne de Castelnuove Cldn) est donnée
par: Cld,)-m{(n-1(m-D+2¢) /2

Théoréme 1: [l existe une courbe irréduciible de degré d , non dégénérée dans Pn
(d2n22) , possédant exactement C(d.n) points doubles isolés.

Démonstration: On a Cfd.2)-(d-l)(d-2)/2 et par conséquent le résultat est déja
démontré si n-2 . Supposons donc n23 . On a C(dn)20 et Cldnl0 si et
seulement si d=n. Posons d-l<{m-1){n-k)-e avec Oge<msl et Xen-2k-l.

On a C(d.n)=m((m+l))\+2e)/220 et par conséquent Az-1 . Si =] alors k=(n+2)/2 . n
est pair et n24 . Comme (m+lln-k:1>d-lzam(n-) .on & mdn / n-2 < 2 c'est & dire
m=l . On en déduit que Cldrn)-0 et dans ce cas le théocréme est évident, on peut

donc supposer que  Az0.

Scit bemsl, a=Abelee=d-(k-D(m-1).

Par la proposition 2 on peut trouver une courbe affine &(1)<(B(t),A(D) / E()) ou B(),
Alt} et E() sont des polynédmes de degrés bae, et qui a (b-1are-D) / 2= Cldn
points singuliers qui sont réels et iscies.

La courbegf.(t)=(B, B2. .. Bn-k A/E. AB/E ...... AB k“l/E) est une courbe de degré d
non dégénérée dans €N, ayant exactement Cldn) points doubles qui sont réels et
isolés. Enfin cornme C(dn) est une borne pour le nombre de points singuliers d'une
courbe projective dans P, . on voit que la complétée projective de & , admet aussi

Cldn) peints doubles réels isolés dans P,(R) . Cela achéve la démonstration du

théorame 1. D



Comme la courbe of est située sur une surface réglée rationnelle lisse, on peut
appliquer le théoréme de Tannenbaum, et simplifier ses points doubles de maniére
indépendante (cf. [P2]. [T)D.

On obtient ainsi le "théoréme de Harnack dans l'espace”.

Théoréme 2 Soit ¢ un enfier e<Cldn) , il existe une courbe lisse de degré d ,
irréductible. et non dégénérée dans Pn qui posséde exactement c¢+] composantes
coONnNexes.

On peut aussi formuler un résultat qui englobe des théordmes de Tannenbaurn

(cf [ Bp) , [T] (120 ).

Théoréme 3: Soit k et c deux entiers tels que kecsCldn) . Il existe une courbe
irréductible et non dégénérée dans Pn ayant exactement K points singuliers isolés,
¢+l composantes connexes homdéomorphes a des cercles, et de genre geométrique

Cld nl-k
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A la mémoire de Mario Raimondo

ABSTRACT.

First we remark that two orders of a real field K have the same image
in the space of R-places if and only if there exists a 2-primary chain of
orderings of higher level beginning with these two orders. Using that fact we
we give a criterion for the separation of connected components in M(K) and .

relate the number of connected components with | ¢ K% n Y kH" /¢ (. K% |

I-INTRODUCTION ET NOTATIONS.

Sojt K un corps ordonnable, on désigne par x(K) !’espace des ordres
sur K. Si P est le céne d’un ordre = sur K alors
P

AP)={aeK|3Ire@ -r= as=s r } est un anneau de valuation dont on
P p

note v la valuation, kv le corps résiduel et P I1’ordre {(archimédien)
n
L 2 . ) e
induit sur k . ) K" représente l'ensemble de toutes les sommes finies de
v

. n .. .9z
puissances 2 -iémes d’éléments de K .

On note M(K) I’espace des R-places & de K (muni de la topologie
définie comme étant la plus grossiére rendant continues les applications e
de M(K) dans R u {«o} (le compactifié de R) qui pour chague a € K sont

définies par £ —> £(a)).

Rappelons qu'une telle R-place £ : K —> R u {oo} est déterminée par une

paire (v, P) , on note € = A(P) et £ est explicitement donnée par :



si a ¢ A[P) £&(a)
si a € A(P) E&(a)

«© ,

inf{r‘e@laSPr}'=sup{r’e®1r’spa}eﬁ?.

Des travaux de Brown [Brn] et Dubois [Du] on déduit :

Proposition I-1 : [L] Soit K un corps ordonnable :
(a) M(K) est un espace compact séparé ;

(b) L’application X : x(K)— M(K) est surjective, continue et fermée.

Dans [Bel] Becker a défini la notion de préordre de niveau supérieur 2"

comme étant une partie P d’un corps K telle que :

n
P+P<P, P.PcP, -1¢P, EKZ € P . Un ordre de niveau 2" est

- - . n
alors un préordre maximal de niveau 2 .
JLES
. . n .
Pour la notion d’ordre de niveau exact 2  {i.e. } K non contenu

dans P ) on ne peut définir de notion de cléture par extension algébrique qui
permette d’obtenir une unicité & K-isomorphisme prés ; mais la notion de
chaine d’ordre de niveau supérieur (de niveaux 2") introduite par Harman (H]

permet d’obtenir une telle unicité :

{P) est une chaine d’ordres de niveau supérieur si :
1
P0 et 13‘1 sont des ordres (au sens usuel)
Vi =z 2 Pi est un ordre de niveau exact Zi
Vi=z2 Pu-P =(PnP Ju-(PnP ).
1 i 0 i-1 0 i-1
Les réles des deux premiers ordres étant syméiriques nous dirons que P0 et

Pl forment un couple d’ordres chalnables (voir [Dil).

Les caractérisations suivantes des corps qui admettent au moins une chaine
d’ordres de niveau supérieur (dans le sens ci-dessus c’est a dire chaine

2-primaire) ont été obtenues dans [Bel] ((i) et (iii)) et [G2] ((ii)) :

Proposition 1-2 : Un corps ordonnable K est chainable si et seulement si il

satisfait l'une des propositions équivalentes suivantes :
n

(i) ):K2¢)::K4 =ZK8¢... :):Kz # o
(it) il existe o € K tel que «” ne soit pas somme de puissances quatriémes .
(iii) il existe sur K une valuation réelle de groupe deg valeurs non

2-divisible.

Le but de cet article est d’obtenir des résultats qui mettent en valeur
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I'importance des relations entre la théorie des corps chainables et [’espace
des R-places de ces corps. Leur origine vient du théoréme III-1 et du
corollaire III-2 qui entrainent que la relation sur x{K) définie par

"PRQ ¢ P=0 ou P et Q forment un couple d’ordres chainables (i.e. il
existe une chaine d’ordres de niveau supérieur commengant par ces deux ordres
P et Q )" est une relation d'équivalence sur (K) dont l'espace quotient
peut étre identifié & M(K) . Les résultats principaux sont les théorémes

I11-1, IiI-4, IV-1 et IV-4 .

II-RESULTATS PRELIMINAIRES.

Proposition II-1 : [H] Soit K un corps ordonnable, deux ordres P et @
sont un couple d’ordres chainables si et seulement si il existe une valuation
v compatible avec les deux ordres telle que dans le corps résiduel kv on

ait P=0Q.

Proposition II-2 : ([L] 2.13) Socient P et Q@ dans x(K) , alors
A(P) = A(Q) si et seulement si A(P) = A(Q) et P et @ induisent le méme

ordre dans le corps résiduel pour la valuation d’anneau A(P) = A(Q).

Proposition II-3 : ([L] 12.1) Scit P; , 1 €I, des éléments de x(K) , v une
valuation sur K d’anneau A telle que Viel A2 A(Pi) .

Soit m: K — k U {w} la place associde 4 v (mx)=o si x & A et
mx)=x si xed), alors chaque R-place A( Pi) se factorise uniquement

via m et on a le diagramme commutatif suivant :
ACP)
K ’ >R U {w}

n\ ﬁ(ﬁi) v {wh
kv '{oa}
En particulier st A(Pi) # ?\(Pj) dans M(K) alors A(’I—si) # P\(f’j) dans M(k)

Définition II-4 : [Br] Soit K un corps ordonnable, un fan T est un
préordre satisfaisant l'une des propriétés équivalentes suivantes :

(i) pour tout S 2T vérifiant - 1g¢ S et S* sous-groupe d’indice 2
dans K“t , S est un ordre sur K.

(ii) Vage - T T +al =T v aT .



Les ordres et les intersections de deux ordres sont des fans dits triviaux.

Rappelons qu'on dit qu’une valuation v est compatible avec un préordre
T si elle est est compatible avec un ordre P 2 T <c'est a dire si 1 +m &P
ot m est 1'idéal maximal de l'anneau de la valuation AV ; v est pleinement
compatible avec le préordre T si elle est compatible avec tous les ordres

tels gque P 2T .

Proposition II-5 : [L] (p.43) Soit K un corps ordonnable v une valuation
sur K et T un préordre de K , alors:
(a) si v est compatible avec T : T est un fan = T est un fan ;

(b) si v est pleinement compatible avec T : T est un fan & T est un fan .

Rappelons le théoréme de trivialisation d’un fan de Brécker [Br]l : Soit
T un fan d’un corps ordonnable K alors il existe une valuation v

pleinement compatible avec T telle que T induit sur kv un fan trivial .

Si K est un corps ordonnable on appelle ensemble d’Harrison les parties
de x(K) définies comme suit :

H(a) ={ P € x(K) | a € P } ; ces ensembles sont des fermés-ouverts de x(K).

Proposition II-6 : [H] Soit K un corps ordonnable et v(K) son espace
d’ordres, on désigne par H(a) un ensemble d’Harrison et par A la

sur jection x(K) —> M(K) ;

(i) A YACH(2))) = H(a) si et seulement si a’e ¥ K.

(ii) si »(K) = Xl U X2 ol Xi sont des fermés-ouverts tels que

?L_I(?L(Xi)) = X, , alors il existe a tel que X = H(a) .

III-SUR LA SURJECTION DE X(K) DANS M(K).

Nous allons donner une interprétation de certains faits connus.
Dans [L] est défini pages 21-22 un "produit extérieur" : soit v une
valuation sur K d’anneau A et de corps résiduel k ; soit m de A dans
k la projection ; soit T wun préordre de K et S un préordre de k tel

que S 2 T; soit TAS = Hdl(S*) alors T A S est un préordre de K
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totalement compatible avec v etona TAS =858.

Si on note € wune place réelle d’anneau Vg et de groupe des unités Eg R
P un ordre compatible soit Tg ={¢ce EE | £(e) > 0 } . K% = Y. K?> A P

Soit A de x(K) —— M(K) définie par P —— A(P) , alors pour & € M(K)
Ag) = T,
correspondants est un préordre qui est un fan ([L], p. 44) ; on a aussi
K" : Tl =T /2r].2=21T) | (LIP 26).

Rappelons enfin que tout fan T est presque local, ¢'est & dire que

| { APy P2T} | =2 (I[L]10-12 p.82 ).

) est un sous-espace de x(K) et l’intersection des ordres

Les théorémes III-4 et III-5 qui suivent sont conséquenses des résultats
ci~dessus et de la définition des couples d’ordres chainables.
Nous donnons néanmoins des preuves indépendantes utilisant la théorie des

corps chainables et des résultats élémentaires sur les fans.

Théoréme III-1 : Soient P et Q deux ordres de K , A(P) = AMQ) si et

seulement si P et @ forment un couple d’ordres chainables.

Démonstration :

= la propositions IT-2 donne l’existence d’une valuation v associée a

I'anneau A(P) = A(Q) telle que dans le corps résiduel kv P = (3 : la
proposition II-1 montre qu'alors il existe une chaine d'ordres de niveau
supérieur commencant par le couple d’ordres (P,Q}.

«si P et Q forment un couple d’ordres chainables alors par la proposition
I-1 il existe une valuation v compatible avec P et Q telle que P=2Q

dans kv . On a alors Av > A(P) et Av 2 A(Q) , A(P) = A(Q) dans M(kv) et
en appliquant la proposition [I-3, on déduit que A(P) = A(Q) dans M(K).

Corollaire 11I-2 : Si (P,Q) et (Q,R)} sont deux couples d’ordres chainables

alors (P,R) est un couple d’ordres chainables.

Démonstration :
le théoréme III-1 montre l’existence d’une valuation v d’anneau
A(P) = A(Q) = A(R) telle que P =Q =R dans kv donc P et R gont un

couple d’ordres chalnables (par la proposition II-1}



Corollaire III-3 : Soit K un corps ordonnable, les propriéfés suivantes sont
équivalentes :

(i) ’application A de x(K) dans M(K) est bijective ;

(ii) K est non chainable ;

(iit) vYa € K o’ est une somme de puissances quatriémes d’éléments de K .

(iv) pour toute valuation réelle v le groupe des valeurs satisfait I' = 2T .

Démonstration : les équivalence (ii} « (iii}) et (ii) & {(iv) résultent de la
proposition I-2 ; par I-1 on sait que A est surjective ; le théoréme III-1

donne alors (i) & (ii) .

Théoréme III-4 : Soient J‘:’i les ordres de K tels que VYi V] {# j
(Pl, Pj) soit un couple d’ordres chainables, alors le préordre T = n P1 est
un fan ; st [ K:T ]=2" alors il y a donc 2" ordres P

co-chainables deux a4 deux.

Démonstration :

Le théoréme III-1 donne v la valuation associée a A(Pi] qui est compatible
avec tous les F‘i donc est pleinement compatible avec T (si Q2T = n I:"l
alors v est compatible avec les P1 donne que 1+ m € n P1 €Q etla
valuation v est aussi compatible avec Q )} ; les ordres Pl étant deux a deux
chainables, le méme théoréme donne que Vi Vj }31 = ]5J dans k_ est un ordre
de kv , T est donc égal & cet ordre et est donc un fan trivial de kv , le
théoréme II-5 montre alors que T est un fan de K .

N.B. n Pi = TE de l'introduction de cette partie d’ol le résultat.

Puisque tout préordre contenant un fan est aussi un fan on peut définir une
notion de fan minimal : un fan T est minimal si pour tout préordre T ,

T €T et T # T entrainent que T’ n’est pas un fan.

Un fan T est un fan de valuation si et seuiement si il existe une valuation
v compatible avec le fan T et telle que T induit sur le corps résiduel un

ordre .

Théoréme III-5 : Un fan minimal T est un fan de valuation ou est égal a
U’intersection de deux fans de valuation . Si T n’est pas un fan de
valuation alors T est égal a l’intersection de deux fans de valuation de

méme cardinalité.
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Démonstration :

Par le théoréme de trivialisation d’un fan di & Brocker, il existe une
valuation v pleinement compatible avec T telle que dans kv T induit un
fan trivial T . Si T est un ordre de kV alors tous les ordres contenant
T sont co-chainables deux & deux et T est un fan d valuation. Si T est
un fan trivial intersection de deux ordres P et Q de kv alors les deux
seuls ordres contenant T sont P et Q . Les ordres contenant T induisent
sur kv un ordre P ou Q , puisque v est pleinement compatible avec T ,
et correspondent donc a deux paquets d’ordres {Pi} et {QJ}- co-chainables
deux & deux de K . T est alors l'intersection des deux fans de valuation

T =n Pi et Tq =n Q_, . Enfin dans le cas ol le nombre d'ordres au dessus

p
n

q

n
du fan est fini celui-ci est une puissance de 2 et l'égalité 2 Pe2d=2"

entraine np = nq= n-1.

Puisque tout fan est presque local on savait déja que tout fan T contient

TE N T‘; deux fans correspondant & deux places réelles £ et ¢ ; V = VE VC
est un anneau de valuation compatible avec T , et T induit un fan trivial
dans le corps résiduel ; si T n’est pas de valuation ce fan est une
intersection de deux ordres qui se relévent en deux fans T1 2 TE et T2 2 Tc
de méme cardinalité car (Tl) ={P|P-~V, P = 150 b est tel que

|x(TlJ| = I(l"v /2T ) | etilen est de méme pour x(Tz).

IV-COMPOSANTES CONNEXES DE MI(K) .

Le carré d’une somme de carrés étant une somme de puissances quatriémes
5 . ] ; 2 X
d’aprés [Bell], il est clair que si « n'est pas une somme de puissances
<] s . 5 2 .
quatriémes alors « n’appartient pas a #* } K" . Par contre la réciproque

n'est pas vraie dans tout corps chainable.

Harman a étudi¢ le probléme de la réciproque de la propriete
"a ety K2 » a°e ¥ K* " et a montré que cela était équivalent a la

connexité de l'espace M(K) des R-places de K ; plus précisément on a :



Proposition IV-i-a : Soit K un corps ordonnable,
a) sont équivalentes les propriétés :
(JvaeK a €YK = ae+tYTK ;
(ii) M(K) est connexe .
b) sont équivalentes les propriétés :
(j) K est pythagoricien et satisfait a) ;
(jj) K est pythagoricien au niveau 4 ;

(jjj) K est pythagoricien au niveau 2" pour tout n = 2.

Du travail de Harman on peut déduire des exemples de corps tels que M(K)
est connexe : Qx) , aix,yy , aiw) , [D((tll)((tz)) R lR(Xf""Xn) . R((t)
et bien sir les corps chaine-clos ou plus généralement d’aprés [G3] et [G4]

les corps de Rolle .

Harman a en fait montré le résultat suivant :

Proposition IV-1-b : Soit K un corps ordonnable, les propriétés suivantes
sont équivalentes :

(i) M(K) est connexe ;

(ii) M(K(X)) est connexe ;

(iii) M(K((X))) est connexe .

Les résultats de la partie III permettent d’obtenir des théorémes sur les

composantes connexes de M(K) :

Théoréme IV-2 : Soit K un corps ordonnable, P et Q deux ordres de K,
alorg AfP) et A(Q) sont dans la méme composante connexe de M(K) si et
seulement si il n'existe pas B séparant P et Q tel que B & ¥} K? et
g2 ey K'.

Démonstration :

> remarquons d’abord que si les ensembles H{a) = { P | a e P } et H(-a)
forment une partition de x(K), les ensembles A(H(a)) et A{H(-a)) ne sont
pas forcément d’intersection vide ; cependant si B est tel que B ¢ * } K>
et Bz ey K* il ne peut exister P e H(B) et Q € H(-B) tels que

AMP) = A(Q) : car sinon B & (Pn Q) v - (P n Q) donc B n'appartient pas a
PZU - P2 (ol P2 ordre de niveau 2 d'une chaine de début le couple (P,Q))
et Bz 3 P2 d’on {32 3) K" ce qui est impossible : d’aprés [Bel] en effet

) k' = ¥ K n P2i ou Pz_ parcourt I'ensemble des ordres de niveau 4 .
1
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Supposons alors P # Q dans x(K) tels que A(P) et A(Q) soient dans la
méme composante connexe C de M(K) ; si il existait un B séparant P et Q
tel que B # = ¥ K et BZ €Y k* , alors puisque les ensembles H(a) sont
toujours des fermés et que l'application A est fermée , C n A(H(B)) et
C n A(H(-8)) réaliserajient une partition de C en deux fermés non vides ce

qui est impossible.

« nous allons montrer que si A(P) et A(Q) sont dans deux composantes
distinctes de M(K) , C et C' , alors il existe B8 séparant P et Q tel
que BEi'ZKZ et BZEEK4.

Si M(K) a un nombre fini de composantes connexes on a :

les composantes connexes sont des ouverts-fermés qui réalisent une partition
de M(K) ; considérons les deux ensembles, non vides, complémentaires C et
D=uv Ck ol les Ci sont les composantes connexes de M(K) a l'exception de
C, C et D forment une partition en deux ouverts fermés de M(K) . Soient
X=2"10) et Y =2YD) , alors X et Y sont deux ouverts fermés non
vides de x(K) qui réalisent une partition de x(K) ; puisque AT = X
et ATAY) =Y la proposition 11-6 permet d’obtenir [’existence de B tel
que X = H(B) et Y =H(-B) avec B¢ * ¥ K? . {32 ) K* et bien sir B
sépare P et Q puisque Pe X et Qe Y.

Si M(K)} a une infinité de composantes connexes on peut donner la preuve
générale suivante :

On sait que M(K) est un espace compact séparé donc il existe un ouvert-fermé
U séparant les deux composantes connexes C et C', Cg U et C < U°® . On

reprend alors la preuve ci-dessus en remplagcant C et D par U et u° .

Le théoréme V-l montre !'importance des éléments S tels que

g e ) K* \ ) K*? dans la détermination des composantes connexes de M(K).

Dans [Be2] (1-4) se trouve un théoréme qui donne le nombre de composantes

connexes de M(K) :

Proposition 1V-3 : Scit K un corps ordonnable, le nombre de composantes
connexes de M(K) est fini si et seulement si E' est d’indice Ffini dans [
o [E désigne le groupe des unités de l'anneau d’holomorphie de K . S’il y a

s composantes alors [ E : E']=2°.

On peut relier les deux résultats pour obtenir :



c s A 2 a* 2.2,% N
Théoréme IV-4 : Si le groupe | (K" n LK) /(T KI)) | a 2 éléments

alors le nombre de composantes connexes de M(K) est n + 1.

Démonstration :
. - 4,.% 2,2, % . -2
Soit ¢ E —> (K" "n LK) 7/ (X K9 définie par & —> €~
*
¢ est surjective : soit x € K> A Y xh" ; x e (} k' s x=¢ q2 avec
ceeE et qe} K® (cf.[Be2] 1-9) ; comme x € ¥ K' ona ee¥ K> et donc
eelE ; xe K® entraine aussi x = yz d’'od € = (y/q)z ; comme l’anneau

d’holomorphie H est intégralement clos (ef. [Be3] p. 884), on obtient
e € E° , x s'écrit donc e’z():qf)z .
Le noyau de ¢ est I’ensemble des unités € telles que e’ e (¥ k*? donc
ker ¢ =E UE .
+ - 2 4. * 2,2.%
Onadonc E/E vE = (K'nYK) 7 {EKI)).

Si |E/E VE [ =2 e

" alors |E/E | =2 d’ol le résultat en
utilisant IV-3.

Le théoréme IV-2 permet d’obtenir d'autres résultats :

Théoréme IV-5 : Soit L une extension de K telle que tous les ordres de K
s’étendent & L alors le nombre de composantes connexes de M(K) est

inférieur ou égal au nombre de composantes connexes de M(L) .

Démonstration :

Soit a € K et séparant deux composantes connexes C1 et C2 , a ey} K2 et

aeYK' ,aenT (o0 MT)eC)et -aenT (oo AT )eC);
11 11 1 2§ 2] 2

tous les ordres s’étendent donc a € n 'T'“ {non vide) et - a € n sz et
donc puisque ¥ L A K= Y K® (tout ordre s'étend) a & Y L? et sépare dans
L deux composantes connexes ; le nombre de composantes connexes ne peut donc
que croitre de K & L.

N.B. une autre preuve consiste a dire que la restriction res. de M(L) a
M(K) est continue et que donc si M(L) = v Zl , ou les Zi sont les
composantes connexes, alors M(K}) = v res.(Zl) et les res.(Zi) sont des

connexes éventuellement non disjoints.

Schulting [S] a montré que M(K) et M(K(X)) ont le méme nombre de composantes

connexes. On peut aussi prouver :

10
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Théoréme IV-6 : M(K) et M(K({X))) ont le méme nombre de composanles connexes.

Démonstration :

Soit L = K({X)) , d’aprés 1V-5 le nombre de composantes connexes ne peut gue
L]

croitre de K a K({X)) . Supposons x =1£m alti (am:t 0) tel que x° € Y L
et xe):Lz, on en déduit 2m = 0 (4) , ameEKd’ et ame):l(z (car

m = 0 {2)} donc a_ sépare aussi deux composantes connexes. Plusieurs tels x
issus du méme am étant dans les mémes ordres de L , le nombre de
composantes connexes de L est finalement égal & celui de K .

N.B. Une variante consiste & dire que si un corps K admet une valuation
henselienne a corps des restes k alors M(K) & M(k) et qu'on on a donc

M(K((X})) = M(K) .
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THEOREME DES ZEROS REEL
EFFECTIF
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Laboratoire de Mathématiques. UFR des Sciences et Techniques
Université de Franche-Comté. 25030 Besangon cédex France

Résumé€  Nous donnons les idées et résultats essentiels d'un calcul d'une majoration des degrés pour le théoréme

des zéros réels effectif,

Abstract We give the main ideas and results concerning a computation of a degree majoration for the real
nullstellensatz.

Introduction

Nous rendons compte ici d'une preuve constructive du Positivstellensatz réel et de ses
variantes (voir les références [Lom x]). Nous reprenons ici les notations de [Lom e].

Une formulation générale du théoréme des zéros réel et de ses variantes peut €tre la suivante
(cf [BCR] théoréme 4.4.2) : on considére un systéme d'égalités et inégalités portant sur des
polynomes de K[X] = K[X,X,,....X,] , ot K estun corps ordonné de cloture réelle R ; ce
systéme définit une partie S semialgébrique de R"; le théoréme affirme que S est vide (fait
géométrique) si et seulement si il y a une certaine identité algébrique construite & partir des
polynomes donnés, identité qui donne une preuve de ce fait géométrique.

L'idée générale de notre preuve constructive est la suivante. Pour un corps ordonné K il 'y
a un algorithme de conception trés simple pour tester si un systéme de csg (conditions de signes
généralisées) portant sur ces polynomes en plusieurs variables est possible ou impossible dans la
cloture réelle de K . Clest l'algorithme de Hérmander (cf. la preuve du principe de Tarski-
Seidenberg dans [BCR] chap. 1), appliqué de maniére itérative pour diminuer par étapes le nombre
de variables sur lesquelles portent les csg. Si on regarde les arguments sur lesquels est basée la
preuve d'impossibilité (en cas d'impossibilit€), on voit qu'il y a essentiellement des identités
algébriques (traduisant la division euclidienne), le théoréme des accroissements finis et l'existence
d'une racine pour un polynome sur un intervalle ol il change de signe.

Les ...-stellensatz réels effectifs doivent donc pouvoir étre obtenus si on arrive a "algébriser” les
arguments de base de la preuve d'incompatibilité et les méthodes de déduction impliquées.

Un pas important a déja été réalisé avec la version algébrique du théoréme des accroissements finis
pour les polynomes (cf. [LR]), qui a été 4 l'origine des formules de Taylor mixtes et généralisées.
Un autre pas a consisté & traduire sous forme de constructions d'identités algébriques certains
raisonnements élémentaires (du genre si A=> B et B> C alors A= C).

Il fallait en outre trouver une version "identité algébrique" des axiomes d'existence dans la théorie
des corps réels clos. Clest ce qui est fait & travers la notion d'existence potentielle.

Calculer une borne sur les degrés pour le théoréme des zéros réels consiste a calculer une
majoration sur les degrés des polynomes intervenant dans le résultat final (l'identité algébrique
construite) a partir de la taille de l'entrée (le systeme de conditions de signes portant sur la liste de
polynomes donnée au départ). Les parametres qui controlent la majoration des degrés dans le
résultat sont en fait : le nombre k de polynomes dans l'entrée, le degré d des polynomes dans
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I'entrée, et le nombre n de variables.

Le calcul de majoration est obtenu en suivant pas & pas la preuve constructive d'existence de
l'identité algébrique et en explicitant les majorations  chaque étape de la preuve.

C'est une majoration primitive récursive, donnée par une tour d'exponentielles : le nombre
d'étages dans la tour est n+4 et en haut de la tour on trouve :

d.log(d) + loglog(k) + cte .

Ce résultat n'est pas trop mauvais, dans la mesure ol la principale responsabilité de l'explosion est
supportée par l'algorithme de Hormander, 4 la base de la preuve effective. On peut espérer baser
une autre preuve effective sur des algorithmes plus performants et néanmoins de conception tres
simple, et obtenir en conséquence une majoration ol le paramgtre n interviendrait de maniere
moins catastrophique, sans tour d'exponentielles.

Bien que nous nous placions a priori dans un cadre constructif "a la Bishop", tel que
développé dans [MRR] pour ce qui concerne la théorie des corps discrets, comme nous ne
précisons pas le sens du mot effectif ni celui du mot décidable, toutes les preuves peuvent €tre lues
avec des lunettes adaptées 4 la philosophie ou au cadre de travail de chaque lecteur particulier.

En fait les preuves données fournissent des algorithmes uniformément primitifs récursifs,
“uniformément" s'entendant par rapport  un oracle qui donne !a structure du corps des coeffi-
cients du systeme de csg considéré :

si (Cie1,..m ostla famille des coefficients et si P€ Z [(Cpioy,..m] V'oracle répond

i la question « Quel est le signe de P((¢piy.. ) 7 »-

Incompatibilités fortes

Nous considérons un corps ordonné K , et une liste de variables X;, X,, ..., X, désignée par
X.
Nous notons donc K[X] [Il'anneau des polynomes K[X;,Xs,....X;].
Etant donnée une partie finie F de K[X]:

nous notons F'2 l'ensemble des carrés d'éléments de F .

le monoide multiplicatif engendré par F est l'ensemble des produits d'éléments de
FU {1} , nous le noterons M(F) .

le céne positif engendré par F est l'ensemble des sommes d'éléments du type p.P.Q2 ol
p est positif dans K, P estdans M(F), Q estdans K[X]. Nous le noterons Cp(F) .

enfin nous noterons KF) l'idéal engendré par F .

Définition et notation 1 : Etant donnés 4 parties finiesde K[(X] : F,, Fs, F_, F,, contenant
des polynomes auxquels on souhaite imposer respectivement les conditions de signes >0,
»0,=0, 0, ondiraque F=[F, ; F,; F_; F, ] est fortement incompatible dans K si
on a une €galité dans K[X] du type suivant :
S+P+Z=0 avec SEMF,UE, Y, Pe CpF,UFE,), Z€ KF.)
Nous utiliserons la notation suivante pour une incompatibilité forte:
$0820,.,820,P%0,..,P;%0,2,=0,..,Z,=0,N; %0, ., Ny*¥0]]
11 est clair qu'une incompatibilité forte est une forme trés forte d'incompatibilité. En particulier, elle
implique 1'impossibilité d'attribuer les signes indiqués aux polynomes souhaités, dans n'importe
quelle extension ordonnée de K.

Si on considére la cloture réelle R de K , 1'impossibilité ci-dessus est testable par I'algorithme de
Hormander, par exemple.
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Le théoréme des zéros réels et ses variantes

Les différentes variantes du théoréme des zé€ros dans le cas réel sont conséquence du théoréme
général suivant :

Théoréme : Soit K un corps ordonné et R une extension réelle close de K . Les trois faits
suivants, concernant un syst¢me de csg portant sur des polynomes de K[X], sont équivalents :
I'incompatibilité forte dans K
I'impossibilité dans R
l'impossibilité dans toutes les extensions ordonnées de K

Lot £

Ce théoréme des zéros réels remonte 4 1974 ([Ste]). Des variantes plus faibles ont été établies par
Krivine ({Kri]), Dubois ({Du]), Risler ([Ris]), Efroymson ([Efr]). Toutes les preuves jusqu'a
([Lom a]) utilisaient I'axiome du choix et d'autres méthodes non constructives.

Degré d'une incompatibilité forte

Si nous voulons préciser les majorations de degré fournis par notre preuve du théoréme des z€ros
réel, nous devons préciser la terminologie.
Nous manipulons des incompatibilités fortes écrites sous forme paire, c.-a-d.:

S+P+2Z=0 avec S€ MF,?UF,Y), Pe CpF.UF,), Z€ KF.)

(la considération des formes paires d'implications fortes a pour unique utilité de faciliter un peu le
calcul de majoration des degrés).
Quand nous parlons de degré, sauf précision contraire, il s'agit du degré total maximum.
Le degré d'une incompatibilité forte est par convention au moins égal a 1, c'est le degré maximum
des polynomes qui «composent» ['incompatibilité forte.
Par exemple, si nous avons une incompatibilité forte :
L [A>0,B>0,C>»0,DY0,E=0,F=0]J
explicitée sous forme d'une identité algébrique :

h k
A B+ C. Y piP2 + ABD. ) q.Q% + EU + FV=0
i=1 j=1
le degré de l'incompatibilité forte est ;
sup { d(A%B®) , d(C.P?) (i=1...h), d(A.BD.Q?) G=1..k ,dEV), dEV) }.
Constructions d'incompatibilités fortes
Définition 2 : Nous parlerons de construction d'une incompatibilité forte & partir d'autres incom-
patibilités fortes, lorsque nous avons un algorithme qui permet de construire la premiére 2 partir
des autres.

11 s'agit donc d'une implication logique, au sens constructif, liant des incompatibilités fortes.

Notation 3 : Nous noterons cette implication logique (au sens constructif) par un signe de
déduction "constructif” . La notation
(LH L et LHy L) kons LHs L
signifie donc qu'on a un algorithme de construction d'une incompatibilité forte de type Ha &
partir d'incompatibilités fortes de types H; et Hj,
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Le raisonnement par séparation des cas (selon le signe d'un polynome)

Nous donnons ici un énoncé détaillé des «raisonnements cas par cas», incluant la propagation des
majorations de degrés.

Proposition 4 : Soit H un systéme de csg portant sur des polynomes de K[X], Q un élément
de K[X], alors:

[ (H,Q<0) ] et J(H,QX0)] ign L (H,Q*0) | @

[L(H.Q<0)) et L(H,QY0)L] ks i H L (@)
De méme :

[L(H,Q>0)] et L(H,Q=0))] kg L (H,QX0) | (b)

[L(H,Q%0)) et L(H,Q=0))] Kyl H I ©

[L(H.Q>0) ) et L(H, QLML kpe & H I (d)

Dans chacun de ces cas, notons d; et d, les degrés des deux incompatibilités fortes données
dans I'hypothése, le degré de l'incompatibilité forte construite est respectivement majoré par :
P(ddy) = @p(ddy) = dy + dy
Pp(dy,dy) = dydy
¢c(dydp) = dy.dy
Pg(dy.dy) = dydy + dy
Ces 4 fonctions sont majorées par ¢(d,,d;) = dy.dy + d; + dy
Enfin, pour démontrer que H est fortement incompatible, on peut raisonner en séparant selon
les 3 cas Q>0, Q<0, Q=0. Cequirenvient 2 affirmer :

[J(H,Q>0)) et L(H,Q<0) et L(H,Q=0)Ll] kpnd HL (©

La version algébrique dynamique de l'implication

Définition et notation S :
Soient H; et H, deux systtmes de csg portant sur des polynomes de K[X] . Nous
dirons que le systéeme M, implique dynamiquement H, lorsque, pour tout systeme de
csg H portant sur des polynomes de K[X,Y] , on a la construction d'incompatibilité forte :
L ITHX)  HXDT L ke 4 TEX), HXY) ]
Nous noterons cette implication dynamique par :
(O HX) > Hy(X) )
Lorsque le systtme H; est vide, nous utilisons la notation “( Hy(X))".
Remarque :
On a trivialement 'équivalence des affirmations :
LEd e 'CH D (1=0))
Fonction-degré d'une implication dynamique

Une implication dynamique "( H; => H,)" signifie par définition un algorithme fournissant
la construction :

JIH;, H1 ) hons LTHy, H1L
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Chaque fois que nous établissons une implication dynamique particulire, nous devons établir des
‘majorations primitives récursives de degré’ pour cette construction d'incompatibilités fortes : le
degré de l'incompatibilité forte construite est majoré par une fonction A(d,..;k,...) ou d estle
degré de l'incompatibilité forte initiale, k le nombre de csg dans H, etc.... (le point-virgule
isole les ‘variables’, qui dépendent de l'incompatibilité forte initiale, des ‘parameétres’, qui ne
dépendent que de H; et Hy ).

Nous disons qu'il s'agit d'une fonction-degré acceptable pour l'implication dynamique considérée,
ou encore, (par abus) nous parlons de la fonction-degré attachée & l'implication dynamique.

La transitivité des implications dynamiques

La proposition suivante est immédiate : il suffit d'enchainer les deux algorithmes de constructions
d'incompatibilités fortes.

Proposition 6 : Soient H, , H,, Hj trois systemes de csg portant sur des polynomes de
K[X]. Alors:
["(H, = H,)" et "([H;, Hy] = H;)"] impliquent ‘(Hy = H3)'
Supposons que la premiére implication dynamique admette comme fonction-degré acceptable
Al(d;p) ob d estle degré de JI[H, HJ J et p représente certains paramétres dépendant
de H, et H,, supposons de méme une fonction-degré acceptable AX(d;q) pour la deuxiéme
implication dynamique, alors une fonction-degré pour I'implication dynamique construite est
obtenue en composant les deux fonctions-degré précédentes :

Ad;p,q) = AN (A% q)p)

La version algébrique dynamique de la disjonction

Définition et notation 7 :
Soient H,, Hy,..,Hy et K;, Kp,.., K, des systemes de csg portant sur des
polynomes de K[X] .
Nous disons que le systéme M, implique dynamiquement la disjonction Ky V K; V
.. V K, lorsque, pour tout systéme de csg H portant sur des polynomes de K[X,Y] , on
a la construction d'incompatibilit€ forte :
(L RLX), HOGY) 1) et et LKLY, HEY) W) kons LTH 0, HX DI
Nous noterons cette implication-disjonction dynamique par :
CHX) 2 [KX) V KX V. VKX )*.
Lorsque le systtme H; est vide, nous utilisons la notation
(K(X) V KX) V. VK (X))
Enfin, 1a notation :
C[TH V H V. VEID[KVEKYV.VE])
signifie que chacune des implications-disjonctions dynamiques
CHX) 2 [KX) V KX) V.V ELX) ] ) G=1,..,k
est vérifiée
Remarques : Toute formule sans quantificateur de la théorie du premier ordre des anneaux
totalement ordonnés dicrets & paramétres dans K est équivalente & une formule en forme normale
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disjonctive et donc & une formule du type
EiX) V E,X) vV oV KLX)

ou les Ky(X) sontdes systémes de csg portant sur des polynomes de K[X] .
Les implications-disjonctions dynamiques consituent une forme de raisonnement purement
«identité algébrique» concernant les formules sans quantificateur, ot la logique a été évacuée au
profit d'algorithmes de constructions d'identités algébrigues.

La fonction-degré d'une implication-disjonction dynamique se définit comme pour les
implications dynamiques

LLa proposition 4 peut €tre relue comme affirmant des disjonctions ou implications-disjonctions
dynamiques :

Proposition 4 bis : On a les implications-disjonctions dynamiques suivantes :

(Q+0 =[Q>0V Q<0 1) (a)
'‘(Qgo v .Qyo) @)
(QY0=>[Q>0vQ=01) (b)
(Q*x0v Q=0Y) ©)
(Q>0 v Qgo) @
'(Q=0V Q>0vV Q<0)' (e)

La transitivité des implications-disjonctions dynamiques
L'énoncé le plus général est le suivant :
Les implications-disjonctions dynamiques

(ITH;V HV . .VHEHID[K VKV . .VEK])
et

(I Ky VE V. .VE, ]2 [L;VLV.VLI])
impliquent :

([H, V H, V. .VHEH]ID[LV L V.VLI1)

Cette transitivité s'obtient en enchainant les algorithmes de constructions d'incompatibilités fortes.
Les fonctions-degré résultantes s'obtiennent donc par composition convenable des fonctions-degré
initiales.

Implications dynamiques faciles

Définition 7 : (implications triviales )
Une implication H;(X) = Hy(X) estdite triviale lorsque toute incompatibilité forte
VIHEX), HX )1
fournit par simple relecture l'incompatibilité forte
VLE(X), HXY) 1
L'implication dynamique ‘(5 (X) = Hy(X))" accepte alors pour fonction-degré :
Ag(dy=4d.
Exemple : L'implication [A>0,B>0] = AB>0 estriviale: dans l'incompatibilité forte
L[AB>0, H] |

on relit chaque constituant AB (dans la partie «monoide» ou dans la partie «cone») sous forme du
produitde A par B pour obtenir I'incompatibilité forte
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JIA>0,B>0 H] |

Notez que l'implication ‘contrapposée” [A>0,A.B<0] = B <0 n'est pas une implication
simple.
De nombreuses implications, sans &tre des implications triviales, sont d'un traitement “rapide” en
tant qu'implications dynamiques :
Par exemple :
L'implication [A>0,AB20] = B=0 accepte pour fonction-degré :

(d;8)—> d+2.5 ol d=d(A) .
Preuve : on multiplie, terme & terme, 1'implication forte par A% en prenant soin de remplacer les
B.A? par (BA).A .

Le principe de substitution

Proposition 8 :
On considére des variables X;,Xj,....X,, U, Us,....Up, Z1,Z,.... 2 , €t des polynomes
P..P,,...P, de K[Z]. Notons P(Z) pour P(Z), ..., P(Z) .
Siona (H(X,U) = HyX,U)) ()
alors on a aussi *(H(P(Z),U) = H,(P@),U))’ (b)

Formules de Taylor mixtes

On considére deux variables U et V etonpose A:=U—V . On considére un polynome P a
coefficients dans un corps ordonné K ou plus généralement dans un anneau commutatif A qui
est une Q) -algébre.

Si deg(P) {4 ,onales 8 formules de Taylor mixtes suivantes:
P(U) - P(V) = AP’ (V) + (1/2).ALP (V) + (1/6).A3 PX(V) + (1/24).A* PW
P(U) - P(V) = AP (V) + (1/2).A2P"(V) + (1/6).A%.PEY(U) - (1/8).A* P
P(U) - P(V) = AP’(V) + (1/2).A2P”(U) - (1/3).A3 P(V) - (5/24).A*P®
P(U) - P(V)= AP (V) + (1/2).AZP”(U) - (1/3).A3 PO(U) + (1/8).A%.PW
P(U) - P(V) = AP (U) - (1/2).A2P"(V) - (1/3).A° POY(V) - (1/8).A%PW
P(U) - P(V)= AP (U) - (1/2).ALP"(V) — (1/3).A% PD(U) + (5/24).A% PW
P(U) - P(V)= AP’ (U) - (172).A2P"(U) + (1/6).A3 PD(V) + (1/8).A* p¥
P(U) - P(V) = AP (U) - (1/2).ALP"(U) + (1/6).A3. P - (1/24).A% P

Comme toutes les combinaisons de signes possibles se présentent, on obtient :

- supposons que u et v attribuent la méme suite de signes (au sens large) pour les dérivées
successives d'un polynome P non constant de degré <4, notons £ = 1 ou -1 selon que
P’(u) et P’(v) sonttous deux =0 ou tous deux <0, alors le fait que P(u) — P(v) a méme
signe que €,.(u — v) est rendu évidnet par l'une des formules ci-dessus, ce qui donne
l'implication sous forme d'une implication simple (u et v peuvent éire des éléments de K mais
aussi des variables, ou des polynomes)

— si u et v n'attribuent pas la méme suite de signes pour un polynome P de degré <4 et
ses dérivées successives, alors on a une identité algébrique qui donne le signe de u— v & partir
des signes des P(u) et des P(i)(v) . la formule de Taylor mixte a utiliser est avec PY (i=0,1,
2,0u 3) ol i estle plus grand indice pour lequel les deux signes ne sont pas identiques

Plus généralementon a :
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Proposition 9 : (formules de Taylor mixte)
Pour chaque degré s , ilya 251 formules de Taylor mixtes et toutes les combinaisons de
signes possibles apparaissent.

Formules de Taylor généralisées (le lemme de Thom sous forme
d'identités algébriques)

Le lemme de Thom affirme (entre autres) que 1'ensemble des points ol un polynome et ses
dérivées successives ont chacun un signe fixé, est un intervalle. Une preuve facile, par récurrence
sur le degré du polynome, est basée sur le théoréme des accroissements finis. Nous pouvons,
grace aux formules de Taylor mixtes, traduire ce fait géométrique sous forme d'identités
algébriques, que nous appellerons des formules de Taylor généralisées. Plutdt que de risquer un
énoncé, nous donnons un exemple.

Un exemple : Considérons le polynome générique de degré 4
PX) = co X 40, X+ X3+ 03 X2+ ¢4 X + s

Considérons le systeme de conditions de signe portant sur le polynome P et ses dérivées
successives par rapport a la variable X :

H(U): PU)>0, P'(U) <0, PPU) <0, PPU) <0, PPWU) > 0.
Considérons également le systéme de conditions de signe généralisées obtenues en relachant toutes
les inégalités, sauf la derniére :

H’(U) : P(U)20, P’(U) <0, PP) <0, PPW) <0, PYW) > 0.
Le lemme de Thom affirme (entre autres) :

[H'(U),E(V), UKZKV] = H(@) 1)
Nous allons voir que ce fait géométrique est rendu €vident par des identités algébriques.
On écrit les formules de Taylor mixtes suivantes :
o) POZ) =PV +PD(Z-V)
B) PP@)=PPW) +PF2).(Z-U)- 12 PP (Z-U)?
Y P@)=PU)+PPU).2Z-U)+12PP2Z).2Z-U)?-13PH 2Z-1U)}
8 P(Z)=P(V)+P(Z).(Z-V)=12PP@).(Z- V) + 1/6 POV).(Z - V)* + ...
1/8 Pz — vy

Posons |A;=Z~-U, A, =V-—12

Dans [B) on remplace P3(Z) par son expression donnée dans o) et on obtient :

By P@2) =PPW) + PA(V).A; — PY[ALA, +1/2 A7

On obtient de la méme maniére, par substitutions :

Y)Y  P(Z)=P(U) + POWULA, + 12 POVIALA = PP AZA)2 + A/3]

et enfin
8) P(Z) = P(V)— P’(U).Ay ~ POU)[ALA; + 1/2A,7]
— POWILAZAY2 + ALAZR + AP/6]
+ PYIAL A3 + A2 A2 + ALAS2 + A,%8]

Les égalités ), §°), ¥'), 8’) donnent l'implication (1) sous forme d'une implication simple. La
premigre égalité est une formule de Taylor ordinaire portant sur le polynome P®). Les trois
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derniéres peuvent étre vues comme des formules de Taylor généralisées portant sur les polynomes
PO P et P.

Plus généralement, on obtient:

Théoréeme 10 : (évidence forte du lemme de Thom)

Soit T une variable distincte des C; . Soient P€ K[C][T], dedegré s en T ,

64, 03, ..., G, une liste formée de < ou >. Onnote H(C,T) ou H(T) le systeme de csg :
P(C.T) 6,0, ..., PNC,T) 5, 0, ..., PNC,T) 6, 0 (les dérivées sont par rapporta T ) .

Soit H'(T) le systdme de csg obtenu 2 partir de H(T) en relachant toutes les conditions de
signe sauf celle relative 2 P,

Soit H,(T) le systtme de csg: PO(C,T)>0,PUCT)Y 0,i=1,..,s-1.

Soient enfin trois variables U, V, Z distincte des C;.

On a alors les implications dynamiques suivantes :

([H@Q), H'(V),Uc, V]I = PU>PV))’ (a)
([HU), V>U]1 = PV)>PU)) (b
([H@U),H(V), UCZKV] = H@Y ()

Ce sont des implications dynamiques qui ne coltent rien ( d = d est une fonction degré

acceptable).

Existences potentielles

Notations et définitions

Elles sont tout 2 fait analogues & celles données pour les implications-disjonctions dynarmiques.

Définition et notation 11 :

Soient H; un systéme de csg portant sur des polynomes de K[X], H; un systeme de
csg portant sur des polynomes de K[X,T,T,,...,Ty] = K[X,T] .
Nous dirons que les hypothéses W, autorisent l'existence des T; vérifiant H, lorsque,
pour tout systéme de csg H portant sur des polynomes de K[X,Y], les variables Y; et Tj
étant deux & deux distinctes, on a la construction d'implication forte

L ITE,XTD), HXY W ons & [HiX), HX )T
Nous parlerons également d'existence potentielle des T; vérifiant H, sous les hypothéses
Hy
Nous noterons cette existence potentielle par :

( HX) = IT HXT) ).

Lorsque le systéme H; est vide, nous utilisons lanotation *( 3 T Hy(X,T))".

La notion de fonction-degré acceptable pour une existence potentielle peut étre elle aussi
directement recopiée du cas des implications dynamiques.

Remarques :

1)

La notion d'existence potentielle est une notion d'existence faible. L'existence potentielie

signifie qu'il n'est pas grave de faire comme si les T; existaient vraiment, parce que cela
n'introduit pas de contradiction: on peut paraphraser la définition en disant :
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pour construire l'incompatibilité forte J[HX), HX.Y)1!
il suffit d'avoir construit U 1HXD), HXY) I
2)  On pourrait étendre la définition de I'existence potentielle en remplagant le systéme de csg

H,(X,T) par une disjonction de syst¢mes de csg, comme on a fait avec la notion d'implication-
disjonction dynamique.

Transitivité, principe de substitution, preuves cas par cas

La transitivité des existences potentielles est immédiate, comme dans le cas des implications
dynamiques.

Le principe de substitution pour les existences potentielles s'énonce et se démontre comme pour
les implications dynamiques.

Voici maintenant un énoncé correspondant aux preuves cas par cas d'une existence potentielle,
conséquence immédiate de la proposition 4 .

Proposition 4 ter : (raisonnement cas par cas pour les existences potenticlles)
Soit Q un polynome de K[X].
a) Pour démontrer une existence potentielle
([HX),Q%0) = I T HyX, D))"

il suffit de démontrer chacune des existences potentielles
([HyX), Q201 = I T HyX,T)) et ([ Hy(X),Q<0] = I T HyX, D)
Si Al (i=1,2) sont les deux fonctions-degré des existences potentielles supposées, une
fonction-degré pour l'existence potentielle déduite est donnée par : Al + A?

a’), b), c), d), e): énoncés analogues décalqués de la proposition 4

L'existence implique l'existence potentielle

Un autre principe utile est le fait que l'existence implique l'existence potentielle. Il s'obtient
facilement : on remplace les variables T; «existentielles» par les polynomes concrets P; qui
réalisent l'existence. On reconnait 14 une analogie formelle avec la régle d'introduction du
quantificateur existentiel en calcul naturel par exemple (cf. [Pra]).

Proposition 12 : ( U'existence implique I'existence potentielle)
Soient P;,P,,...P € K[X] etnotons P(X) pour Pi(X), ..., P,(X). On a l'existence
potentielle : *( H(XP(X)) = I T HyXT) .
Si & majore les degrés des P; , I'existence potentielle accepte pour fonction-degré :
(d;8) — d.sup(1,8)

Existences potentielles fondamentales

On sait démontrer les existences potentielles correspondant aux axiomes existentiels de la théorie
des corps réels clos.

Théoréme 13 : (autorisation de rajouter l'inverse d'un non nul)
On a l'existence potentielle de l'inverse d'un non nul. Ce qui s'écrit:
(Ux0= 3aT 1=uT)
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Soit & le degré de U, une fonction-degré acceptable pour I'existence potentielle est
(d;0)— d+dd+d

Remarque: La preuve de cette existence potentielle recopie ce qu'on fait, dans la preuve du
théoréme des zéros de Hilbert, pour passer du théoréme des zéros faible au théoréme des zéros
général (c'est le «Rabinovitch trick», par exemple dans I'exposé classique de van der Waerden).
La notion d'existence potentielle de l'inverse d'un non nul est donc en filigrane dans les

classiques.

Théoréme 14 : (autorisation de rajouter une racine sur un intervalle oll un polynome change de
signe)
Soit P(C,X) un polynome de degré s en X et de degré global & .
On a l'existence potentielle d'une racine sur un intervalle oli ce polynome change de signe. Ce
qui s'écrit, en notant P(X) pour P(C,X) :
([P)PY)C0, X<Y ] = 3IZI[P@)=0, X<ZKY1 )
et,si X, Y, Z désignent des variables, une fonction-degré acceptable est donnée par :
@:3,5) —> ((2d+7) G+ ) on y(s) = 2692

Remarque : La preuve du théoréme précédent "recopie” la preuve classique, par récurrence sur le
degré du polynome P, du théoréme «si un corps est ordonné et si P(u).P(v)< 0 avec P
irréductible, alors le corps K[W]/P(W) est réel». Ceci donne 'existence potentielle d'une racine.
Pour avoir la racine sur l'intervalle, il y a de nouveau une récurrence a faire. Tout ceci conduit a
une relativement mauvaise fonction-degré. Le probléme semble difficile & contourner. Dans le cas
complexe (théoréme des zéros de Hilbert), 'existence potentielle d'une racine d'un polynome non
constant est au contraire extrémement simple et conduit & une fonction-degré tout a fait
raisonnable : par exemple si P(X,Y) est un polynome unitaireen Y dedegré s en Y etde degré
& en X, il suffit de tout réduire modulo P et une fonction-degré acceptable pour l'existence
potentielle °( 3 Y P(X,Y)=0 )" estdonnéepar : (d;8) — d.(3+1)

Tableaux de Hormander

Nous donnons ici quelques majorations directement liées a l'algorithme de Hormander lui-méme
(cf. [Hér] annexe, ou {BCR] chap. 1).

L'algorithme de H6rmander traite des polynomes en n variables, en éliminant chaque variable
F'une aprés l'autre. A chaque élimination d'une variable, le nombre de polynomes a considérer et
leurs degrés croissent de maniére impressionnante. Ceci est précisé dans la proposition suivante :

Proposition 15 : (Tableau de Hoérmander paramétré)
Soit K un corps ordonné, sous-corps d'un corps réel clos R .
Soit L=[Q; ,Q;, ..., Q] une liste de polynomes de K[X,, X, ..., X, 1[Y] .
On peut construire une famille finie F de polynomes de K[X;, X,, ..., X] telle que, pour
tous xi, Xs, ..., X, dans R, en posant Pi(Y) = Q,(x;, X4, -.., X3Y) , le tableau complet des
signes pour L=[P; , P, , ..., P,] est calculable a partir des signes des S(x;, X5, ..., X;,)
pour S€ F.
Supposons que la liste 1. posséde k éléments de degré en X majoré par & etdedegréen Y
majoré par s . Considérons la famille G , formée de tous les coefficients de tous les
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polynomes de tous les tableaux de Hormander possibles, construits sur L, en remplagant
l'opération "reste" par l'opération "pseudo-reste”. Une famille F convenable peut €tre extraite
de G. Alors:

le degré de chaque polynome de G et de chaque pseudo-division est major€ par :

d.(s+1)!, (saufsi n=0 ,donc d=0, etles degrés sont majorés par s ).

le nombre d'éléments de la famille G est majoré par : (k+1)25

Mené jusqu'au bout, cet algorithme produit donc une explosion de degrés obtenue en itérant n-1
fois ( n étant le nombre de variables) la fonction s —— s ! . Ceci conduit & la majoration finale.

Nullstellensatz, positivestellensatz et nichtnegativestellensatz
réels effectifs

Théoréme 16 :  Soit K un corps ordonné, sous-corps d'un corps réel clos R .
Soit H(X;,X5.....X,) un systéme de csg portant sur une famille finie de polynomes de
K[X,X;,...X,] . Ce systeme est impossible dans R si et seulement si il est fortement
incompatible dans K . En termes plus formalisés :
Si | HX.X;...X,) ) (dans K),
alors les csg H sont impossibles A réaliser dans
n'importe quelle extension ordonnée de K .
Si V x3,%5,...X, € R H(xy,x,...,%x,) est absurde,
alors : d HX.X,,..X) |l (dans K).
Précisément, si k est le nombre de csg dans H(X;,X,,....X,) et d le degré maximum, on
peut calculer une implication forte
d HX . X5, X ) 4 (dans K) de degré majoré par le nombre W,4(d,k,n) donné
par la tour d'exponentielle a n+4 étages

. dlg(d)+glgdk)+cte
22"
Remarque : La principale cause d'explosion des degrés dans la majoration finale actuelle réside
dans l'utilisation de 'algorithme de Hérmander.

On peut donc espérer améliorer sensiblement ces majorations en se basant sur d'autres preuves,
élémentaires mais moins longues, d'incompatibilité.

Remerciements : Je remercie Marie-Fran¢oise Roy pour ses nombreux commentaires et
suggestions.
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Anneaux de Witt abstraits et groupes spéciaux

M. A. Dickmann

Introduction.

Cet article rend compte de maniére abrégée d’une partie d’une série d’exposés dont le but
était de:

(1) Rassembler les résultats principaux de la théorie des formes quadratiques sur les corps
de caractéristique # 2, en mettant en relief les plus significatifs parmi eux en vue des
géneralisations axiomatiques de cette théorie.

(2) Présenter ces généralisations axiomatiques, notamment la théorie des anneauz de Witt
abstraits.

(3) Introduire une nouvelle théorie axiomatique de formes quadratiques, la théorie des
groupes spéciauz, équivalente en fait & celle des anneaux de Witt abstraits, mais beau-
coup mieux adaptée qu’elle & I’étude des formes quadratiques du point de vue des langages
du premier ordre.

(4) Enfin, présenter un premier résultat modéle-théorique concernant les groupes spéciaux
des corps de nombres algébriques {extensions finies du corps des nombres rationnels).

Le premier point ci-dessus sera omis dans ce compte-rendu écrit. Les résultats et les
constructions exposés se trouvent dans les Chapitres I-IT1I et X de Lam [3], et dans les
Chapitres 1 et 3 de Marshall [6].

Le point (4) est également omis; il fera ’objet d’une publication séparée actuellement
en préparation.

En ce qui concerne le point (2), nous nous bornons & une présentation tres succincte
de la notion d’anneau de Witt abstrait et de certaines de leurs propriétés élémentaircs
(celles utilisées dans ce texte), avec une discussion du sens des axiomes illustrée par le cas
des corps. Les structures quaternioniques, bricvement présentées dans ['exposé oral, sont
également omises ici; on renvoie le lecteur intéressé au Chapitre 2 de Marshall [6].

Les groupes spéciauz sont introduits au §2. Ils sont les modéles d’un systéme fini d’axiomes
simples formulés dans un langage du premier ordre mathématiquement naturel. Certains
aspects de cette théorie du premier ordre sont discutés briévement. Ensuite nous ébau-
chons la construction de I'anneau de Witt d’un groupe spécial et nous démontrons:

Théoréme. La correspondance qui ¢ chaque groupe spécial assigne son anneau de Witt
est une équivalence entre la catégorie des groupes spéciauz et celle des anneaur de Wit
abstraits (toutes les deux munies de leurs homomorphismes naturels). O
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L’article [4] (ce volume) contient un exposé plus détaillé de la théorie des groupes spéci-
aux, ou 'accent est mis sur les relations entre les groupes spéciaux réduits et les espaces
d’ordres abstraits. Nous publierons ultérieurement une étude plus compléte de la théorie
des groupes spéciaux, réduits et non-réduits, sous la perspective de la théorie des modeéles.

1 Anneaux de Witt abstraits.

La notion d’anneau de Witt abstrait fut introduite par Knebusch, Rosenberg et Ware au
début des années 70 dans le but de traiter de maniére axiomatique (ou “abstraite”) la
théorie algébrique des formes quadratiques sur les corps. Ils réussissent 4 donner dans
ce cadre des preuves uniformes (et simplifiées) de beaucoup de résultats connus préal-
ablement pour le cas des corps; nous citons quelques exemples & la fin de cette section.
Ultérieurement, Marshall (dans le cas réduit) et Kleinstein-Rosenberg (dans le cas non-

réduit) améliorent et étendent cette théorie. L’exposé ci-dessous suit, essentiellement,
celui de Marshall [6; Ch. 4].

Définition 1.1. Un anneau de Witt abstrait est une paire < R, G > ol

(1) R est un anneau commutatif avec unité;

(2) G est un sous-groupe d’exposant 2 du groupe multiplicatif B des éléments inversibles
de R contenant —1;

vérifiant les axiomes (W1)-(W3) ci-dessous:

(W) G engendre R additivement, i.e. tout r € R peut &tre écrit (de maniére non-unique)
dans la forme r = gy + -+ + gn, avec ¢1,...,9, € G, n > 1.

On désigne par Ig I'idéal de R engendré par les éléments de la forme a + b avec a,b € G,
Ir est appelé Vidéal fondamental de R.

(W2) i) GnlIgp=0.
) (G+G)n 1% = {o).

(Wa)Pourn>3:sigi+---+gn=h1+---+h, avec g1,...,8n, h1,..., hn € G, il existe
Gy hyza,.. .,z EGtelsquegr +g=hi+het o+ +g,=g+23+-+2, (donx
hat o tha=htzt-tz). O

1.2. Explication des axiomes; exemples.
Le modeéle qui motive ces axiomes est celul de 'anneau de Witt d’un corps, F', commutatif
et de caractéristique # 2. Dans ce cas on pose:

G(F) = F*|F**,
(ou G(F) = F*/ Y. F** si 'on veut faire la théorie reduite), et
W(F) = Panneau de Witt du corps F.

W (F) est 'ensemble des formes quadratiques a coefficients dans F' modulo 1’équivalence
de Witt,”~”, muni des opérations de somme et produit tensoriel; voir Lam [3; Ch.II,
§1] et 2.3 plus bas. Oun identifie G(F) & un sous-ensemble de W{F') par I’application
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G < g >/, §€ G(F). [Attention.Toutes les formes quadratiques considerées ici sont

en forme diagonale.]
L’axiome (W;) exprime le fait —évident d’apres la définition de somme de formes—que

toute forme est la somme de formes unaires:

<AL G > =< >/ D DTy >/~

L’axiome (W3) traduit la description inductive de I'isométrie des formes de dimension
n > 3 en termes de l'isométrie des formes binaires:

<@y, ..y0y >=< by, ..., by > 81 il existe a, b, €3, ... ,Cn tels que
<a,a> = <b,b>,
L Ogyeeeyln > = < @4,03,...,00 >,

< by, by > < b,Caye O >

Dans Pexemple < W(F), G(F) > cette caractérisation est un corollaire du théoréme de
simplification de Witt; cf. Marshall [6; Thms. 1.12 et 1.13].

En vue de la clause (2) de la Définition 1.1 Paxiome (W2.1) dit, simplement, que I'idéal
I est propre. Llorigine de 'axiome (W,.ii) est moins immédiat. Le théoreme suivant est
’un des résultats importants de la théorie des formes quadratiques sur les corps:

Théoréme. (Arason-Pfister) Soit f une forme anisotrope sur un corps F. Sif[. €
I(F)*, alors &im(f) > 2%. O

(I(F) désigne I'idéal fondamental de W(F).)
Corollaire. N2, I(F)* = {0}. O
L’axiome (Wa.ii) exprime, donc, la propriété d’Arason-Pfister pour & = 2.

La preuve du théoréme d’Arason-Pfister utilise des extensions transcendantes du corps
de base F —opération sans analogue dans le cadre abstrait— et on ne sais pas faire
autrement. Pour des preuves de ce théoréme, voir Lam [3; Ch.X,, 83] et Knebusch-Scharlau
[1; §12]. Or, dans les cas k = 1,2 il y a une preuve trés simple qui n’utilise pas de méth-
ode générique, valable également pour les théories abstraites. Nous donnons cette preuve
ci-apres pour le cas des corps.

Le discriminant, d(f), et le discriminant signé, d¢(f}, d’une forme f sont définis par:

d< ay,...,a, >) = [liz; (a1,...,an € G),
n{n—1)
de(f) = (1) d(f).

Le discriminant est invariant par I'isométrie des formes (verifiez) mais il n’est pas invariant
par I’équivalence de Witt: < 1,1,—1 >~< 1 >, mais d(< 1,1,—1 >} = —1 alors que
d(< 1 >) = 1. Or, le discriminant signé I'est:

1.3. Faits. 1) f~g= di(f) = di(g).

i) di(f @ g) = (-1)FDEmNdy(f)de(9).
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Preuve. Pour (ii) utiliser; {tmimin=i) _ m(m=1) E(nz_l) + mn.
(i) suit du fait que do(< 1,-1>)=1. O

Alors I"application & : W(F) — G(F') donnée par:

af/~) = d=(f),
est bien définie et 3(0) = 1. Evidemment, d n’est pas un homomorphisme de groupes entre
<W(F),® > et < G(F),- > (par exemple, (< 1 >/.) =1, tandis que d(< 1,1 >/.) =
—1), mais sa restriction &' = d[< I(F),® > Pest par 1.3(ii). En plus:

Proposition 1.4. L’application &' est un homomorphisme de < I(F),® > sur
< G(F),- >, et ker(8') = I(F)*. Alors le groupe additif I(F)/I(F)* est isomorphe d
< G(F),- >.

Preuve. La surjectivité suit de de(< 1,—a >/) =aet<1l,—a >/ € I(F), ot a € F*.
Par ailleurs, I(F) est engendré par les formes < 1,¢ >/n, g € G(F), car < g1,92 >/~ =
<l,g1 >/ ®< =1,g2 >/~. Donc, I{F)? est additivement engendré par les formes du
type< 1,91 >/n®< 1,60 >/ =< 1,01, 92,9192 >/~ (appelées formes de Pfister de degré
2). Comme
di(< 1,ay,a2,a0102 >) =1 (a1,a; € F¥),

on a ker(8) 2 I(F)? (1.3(ii)). En particulier, & induit un homomorphisme surjectif
9" I(F)/I(F)* — G(F).

Réciproquement, pour prouver que & est injectif —et alors que ker(d') = I(F)* - il
suffit de vérifier que 3" a une inverse & droite surjective; celle-ci est donnée par:

A(@) =< 1,—a >/ JI(F)?.

Cette application est bien définie, car < 1,—1 >/ est 'unité additive de W(F). Elle
est surjective, car I{F) est engendré par les formes< 1,a >/~. Finalement, ds(< 1, —a >)
= a entraine que 8" o v = identité. O

Corollaire 1.5. Soit f une forme sur F. Alors:

(a) f/n € I(F)? ssi 4|dim(f) et di(f) € F*.

(b) Si fl. € I(F), dlors il existe une forme g sur F telle queg/. € I(F)* et f ~
gE&< l,di(f) >.

Démonstration. (a) traduit le fait que ker(d') = I(F)? (notez que I(F) consiste des classes
de toutes les formes de dimension paire).

(b) La preuve de la Proposition 1.4 montre que + est aussi inverse & gauche de 3, i.e.
v 0 §" = identité. L'énoncé (b) traduit précisement cette propriété. O

Maintenant nous sommes préts a prouver:
Fait 1.6. < W(F),G(F) >E= W,.

Preuve. (W,.i) D’aprés la définition de 'équivalence de Witt (voir 2.3(9)), il est clair que
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f ~ g implique dim(f) = dim(g) (mod. 2). Comme les éléments de I{(F) correspondent
aux formes de dimension paire et ceux de G(F') aux formes de dimension un, il s’ensuit
que G(F)nI(F)=0.

(Wa.ii) Soit f/~ € I(F)? N (G(F) + G(F)); alors f ~< @,b >, avec a,b € F*. Par la
Proposition 1.4, &'(f/.) = 1, d’ot ds(f) = —ab € F¥ et b= —a (mod F**). On a
donc f~<d,—=a>=<1,-1>,ie f/f.=0.0

Signalons A titre d’information générale quelques résultats majeurs qui peuvent étre
prouvés dans le cadre des anneaux de Witt abstraits (les références renvoient a Marshall
[6] olt ces résultats sont démontrés en détail}:

— Le principe local-global de Pfister (Ch.4, §4).

— La détermination de tous les idéaux premiers et du nil-radical de n’importe quel anneau
de Witt abstrait en termes de son espace de signatures Xg = Hom(R, Z) {Ch.4, §5).

— La détermination du groupe multiplicatif R* des unités de R en termes de G et du
nil-radical (Ch. 4, §6).

~Une classification partielle des anneaux de Witt abstraits de type fini (Ch. 5) ainsi
qu’une classification compléte des anneaux de Witt abstraits réduits de type fini (Ch. 6).
— Le théoréme de représentation, qui caractérise R comme sous-anneau de 1’anncau des
fonctions continues sur Xg A valeurs entiers, C{Xg, Z) (Ch.7).

— Le principe local-global d’isotropie (Ch. 9).

2 Groupes spéciaux.

Comme on vient de le signaler, les anneaux de Witt abstraits constituent une généralisa-
tion axiomatique assez riche de la théorie des formes quadratiques sur les corps. Néan-
moins, il v a dans cette théorie un point peu satisfaisant, au moins du point de vue du
logicien intéressé par la perspective d’utiliser les outils de la théorie des modéles dans cette
branche de 1’algébre; 4 savoir, I’axiome (W, ) est irrémédiablement non-premier-ordre dans
n'importe quel langage adapté aux anneaux de Witt abstraits. Bien siir, cette difficulté
ne nous empéche pas, a priori, de poser des questions de type modele-théorique sur la
classe des anneaux de Witt abstraits ou sur certaines de ses sous-classes, mais elle peut
étre également une source de problemes dans les investigations de cette nature.

Nous allons remédier & cet inconvénient en introduisant une théorie abstraite des
formes quadratiques qui est axiomatisée par un ensemble fini d’énoncés simples d’un lan-
gage mathématiquement naturel. Il s’avére, en outre, que cette théorie est équivalente,
dans un sens assez fort, & celle des anneaux de Witt abstraits. Nous appelons cette ax-
iomatisation théorie des groupes spéciauz.

L’introduction de cette théorie est motivée par deux observations trés simples:

(1) Au lieu de considérer I’anneau de toutes les formes quadratiques modulo ’équivalence
de Witt, on peut essayer d’axiomatiser la relation d’isométrie des formes sur un groupe
arbitraire de coefficients, G, d’exposant 2.

(2) En utilisant la description inductive de 'isométrie (voir p. 3 plus haut) —description
donnée par des énoncés du premier ordre au-dessus du groupe G- nous sommes amenés
4 donuer une axiomatisation de I'isométrie pour les seules formes binaires.
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Remarquablement, il s’avére que ce dernier probleme a une solution simple et élégante.

Définition 2.1. (a) Un groupe spécial est une structure < G, —1,=>, ow:

(1) G est un groupe d’exposant 2;

(2) ~1 est un élément distingué de G;

(3) = est une relation quaternaire sur G

(4) Les axiomes SGo — SGe donnés dans Particle [4] (ce volume ) sont satisfaits.

(b) On appele langage des groupes spéciauz le langage L = {-,1,—1, =}, olt - est un sym-
bole d’opération binaire, 1, —1 des constantes individuelles, et = un symbole de relation
quaternaire. On appele SG la théorie du premier ordre de langage L engendrée par les
axiomes SGy — 8Gs. 0

2.2. Remarques (i) On aurait pu faire une présentation alternative en prenant comme
primitive la relation binaire R(a,b) qui exprime la notion “a est représenté par la forme
< 1,b >” (a € D(1,b), dans la terminologie habituelle de la théorie des formes quadra-
tiques), au lieu de la relation quaternaire =. La différence est minimale (plitot psy-
chologique), chacune de ces relations étant définissable sans quantificateurs en termes de
Pautre:

R(a,b) s <a,ab>=<1,b>,
<ab>=<e,d> sst ab=-cd N R(ac,cd).

Les axiomes SGo — SGg peuvent étre traduits facilement en des axiomes équivalents ex-
primés en termes de la relation binaire R (cf. [2; pp. 183, 186]).

(ii) Remarquez que la théorie SG est donnée par des axiomes universels-existentiels
(8Go — SGs sont universels; seul SGs est V3). II sensuit que S8G est close par lim-
ites directs filtrants. O

Dans ce qui suit nous indiquons la construction de I’anneau de Witt d’un groupe spécial
et prouvons 1’équivalence entre la catégorie des anneaux de Witt abstraits et celle des
groupes spéciaux.

2.3. L’anneau de Witt d'un groupe spécial.

A chaque groupe spécial < (3, —1, =¢> on associe un anneau de Witt abstrait W(G).
La construction de W(G) s’effectue selon une procedure bien connue; nous indiquons sans
preuve les pas & suivre, en renvoyant & Marshall [6; Ch. 2] pour plus de détails.
(1) A partir de la relation = on définit, par récurrence sur » > 3, une relation binaire
(“isométrie™) entre n-uplets d’éléments de G {que nous appelerons “formes quadratiques
de dimension n sur G”):

<@y, .. 0y >=< by, ..., by > 551 ilexistea, b, c3, ... ¢ tels que
< a1, > = <bl,b>,
g ...,0,> =51 <a,c3,...,00 >,

<y by > =FY < beay...cn >

(2) Pour tout n > 2, =% est réflexive et symétrique (pour n = 2, c’est 'axiome SGo;
récurrence, pour n > 3).
(3) Permutabilité de =2: si 7 est une permutation de {1,...,n}, alors < a1,...,a, >=¢
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< Qp(1ys - -+ Or(n) > (pour n = 2 c’est SGy; récurrence, pour 1 = 3; cf. [6; Prop. 2.1]).

(4) f =& 9 = d(f) = d(9);

(le discriminant est défini comme en p. 3 ci-dessus; pour n = 2 c’est 8Ga; récurrence pour
n > 3; cf. [6; Prop. 2.2]).

(5) f =& g = af =G ag;

(a- < ay,...,a, >=< aay,...,a0, >; pour n = 2 c’est SGs; récurrence pour n > 3; cf.
[6; Prop. 2.4]).

{6) Transitivité de =% pour tout n > 3.

Pour n = 2 c’est SGo. Le cas crucial ici est n = 3, ot la transitivité est assurée par SGs.

Récurrence pour n > 4.
Nota. Celui-ci est le seul résultat délicat. Il est utile de comparer avec le cas des corps,
ot la transitivité de I’isométrie est banale, tandis que le théoréme de simplification est

délicat.
(7) Définition (évidente) de la somme et du produit de formes quadratiques. On prouve
sans difficulté les résultats suivants par récurrence sur k pour n fixe:

) g=hg = fog="fog.

i) febf Ag=hgd = fhg=E"fad.

i) f=Ef Ag=Rkgd = [®g=k 07

(Cf. [6; Prop. 2.7-2.9]). L’implication (<=) dans (i) est le théoréme de simplification de
Witt.

(8) Définition (habituelle) de représentation et de forme isotrope:
a € Dg(< ary...,a, >) 850 Jza, v ,2a(< ar,. 00,00 >S< 4,80y Tn >).

Pour une forme f de dimension n > 2:
f est isotrope ssi il existe une forme g, dim(g) = n — 2, telle que f=fgd<l,—1>

On prouve sans difficulté:

D) D(f & g9)=U{D(< 2,y >)|z€D(f)etyeD(9)}
ii) f @ g isotrope ssi il existe z € D(f) tel que —z € D(g).

(Récurrence sur k pour n fixe, od dim(f) = k, dim(g) = n; cf. [6; 2.10 et 2.12].)
(9) Définition (habituelle) de I’équivalence de Witt:

fr~gssiilexistek,leNtelsque f @ k<l,-1>= g & l<1,-1>,

oli = désigne “=” pour un n convenable (desormais nous omettons le “n” dans =%, sauf
en cas de besoin).

On prouve facilement que “~” est une relation d’équivalence compatible avec les opéra-
tions & et ®; donc, l'ensemble |, cyG™/~ muni des opérations induites par & et @ est
un anneau commutatif ayant < 1,—1 >/. comme unité additive et < 1 >/. comme unité
multiplicative. On Vappelle I'anneau de Witt de G, noté W(G).

Proposition 2.4. < W(G),G > est un anneau de Witt abstrait.
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(On identifie G & un sous-ensemble de W((G) par lapplication g — < g >/..)

Démonstration. (W)) est clair car toute forme est somme de formes unaires. (W3) est
évident d’apres la définition de =7 (description inductive de Visométrie). Pour vérifier
(W) il suffit de répeter la preuve de 1.3, 1.4 et 1.6, en utilisant SG, dans le dernier pas
de 1.6. O

Réciproquement, on a:

Proposition 2.5. A foul anneau de Witl abstrait, < R,Gpr >, on peut associer un groupe
spécial, < Gp,—1,=gp>, ou —1 est le —1 de R, et poura, b, ¢, d € Gp:

<a,b>=p<e,d> <= a+b=c+d (dans R).

Démonstration. La vérification des axiomes SGg — SGg se fait sans difficulté sauf, peut-
étre, dans les cas suivants:
8Gs) Supposons < aj,az >=gp< by, by >, l.e. a; + ¢z = by + b;. On calcule:

(0,1 — ag)(al + Ctg) = al(a1 + Cn‘.z) s b]_(bl + bg) = CI? -+ a1as — b% - blbz = @149 — b1b2.

Done, ajas — biby € I3 N (G + G); par (Wa.ii), on a: araz = bybs.
SGs) En utilisant (W3) pour I'implication (<=) et la définition inductive de =g pour
(=), on a:

< lyyennyly >F< by o0by, > = artctan =04+ by,

pour n = 3; alors, =% est transitive. O

Les notions naturelles de morphisme pour les anneaux de Witt abstraits et pour les
groupes spéciaux sont les suivantes:

Définition 2.6. (a) Un homomorphisme d’anneavz de Witt abstraits, ¢ :< Ry, Gy >—
< Rz, G, >, est un homomorphisme d’anneaux unitaires ¢ : Ry —— Rj tel que ¢[Gy] C
G,.
(b) Un homomorphisme de groupes spéciauz, ¢ :< Gy, —1, =g, >—< Ga,—1,=g,>, est
un homomorphisme de groupes ¥ : G; — Gy tel que ¥(—1) = —1, et pour @, b, ¢, d €
G1'.

<a,b>=g<e,d> =3 <(a),¥(d) >=q,< ¥(c),¥(d) >. O

Les classes des anneaux de Witt abstraits et des groupes spéciaux, munies des notions
de morphismes que nous venons de définir, constituent des catégories que nous appelerons
AWA et SG, respectivement. Nous allons prouver ensuite que les constructions de 2.3 et
2.5 donnent lieu a une équivalence entre ces catégories.

2.7. Notations. (a} On désigne par ¥ : AWA — SG le morphisme qui a chaque
anneau de Witt abstrait associe le groupe spécial construit dans la Proposition 2.5:

U(< R,Ggr >) = < Ggp,—1,=p>,
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et qui a chaque homomorphisme d’anneaux de Witt ¢ 1< Ry, Gy >—< R, G2 >,
fait correspondre ’homomorphisme de groupes spéciaux ¥(p) :< Gy,—1,=p,> —
< Ga,—1,=pg,> défini par:

U(p)g) =¢lg) (9 €G).

(b) Réciproquement, on désigne par & : SG — AWA le morphisme qui a chaque groupe
spécial associe son anneau de Witt:

d(< G,-1,=¢>) = < W(G),G >,

et qui & chaque homomorphisme ¢ : < G;,—1,=g,>—< Gi,—1,=¢,> de groupes
spéciaux fait correspondre ’homomorphisme d’anneaux de Witt abstraits @(i) :
< W(Gh),G1 >—< W(G2), G2 > donné par:

B(P)< g1y--0 90 >/) =<P(g1),...9¥(gn) >/~  poUT gi,..., g0 € G,

[®()) est bien défini: ¢ respecte la relation =; par récurrence, il respecte aussi la relation
=" pour tout n > 2; comme il respecte 1 et —1, il respecte aussi I’équivalence de Witt.
®(1)) est également un homomorphisme d’anneaux de Witt abstraits.] m

Théoréme 2.8. Le foncteur U établit une équivalence entre les catégories AWA et SG.
Le foncteur ® est son adjoint.

Avant de faire la preuve de ce théoréme démontrons que la construction donnée dans
la, Proposition 2.5 suivie de celle de 2.3 aboutit & un anneau canoniquement isomorphe a
celui de départ.

Lemme 2.9. Soit < R,Gr > un anneau de Witt abstrait. Alors < W(GRr),Gr >=
< R,Gpg > canoniquement, par Uapplication p: W(Gr) — R définie par:

P gy stn >/n) =1+ + g (dans R), (g1,---,9n € GR).
Avec la notation de 2.7: ®(V(< R,G >)) =,< R,G >.

Démonstration. (i) p est bien définie, i.e.
(*) <gla"'7gﬂ>~R<g;7-"7g:’n>=> gl+"'+gn:gi+“‘+g:n (danSR)

D’aprés la définition du c6té gauche, voir 2.3(9), il suffit de prouver cette implication
lorsque m =net < g1,...,9n >=r< §1,---, 9, >- Ceci se fait par récurrence sur n; pour
n =11l n’y a rien & prouver; pour n = 2 c’est la définition de =pg; pour n > 3 utilisez la
définition inductive de =%.

(i1) p est un homomorphisme surjectif d’anneaux de Witt abstraits:

par p(< g >/.) = g pour g € G, et 'axiome (Wy).

(iii) p est injective, i.e. la réciproque de (*) est vraie.

D’abord on observe:

(%) gi+--+g,=0 avec g1,...,9. € Gg = n pair.
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Donc, g1+ -+ + g, = g1 +- - + g, implique n = m (mod. 2). Si, par exemple, n < m, on
a l’égalité

gttt +-1)+ 4+ QA+ - =g+ +g
avec (m—n)/2 termes (1+—1) et le méme nombre de termes des deux c6tés. Alors, on peut
SUpposer n = m; par récurrence sur n > 1 on montre que < g1,...,gn >=H< J1y- -5 Gh >
Le cas n = 1 est gratuit, et le cas n = 2 est la définition de =g. Pour n > 3 utiliser
Paxiome (W3), le cas n = 2 et ’hypothése de récurrence.

Preuve de (**). On doit prouver que g +- - -+g¢, # 0 pour n impair (n = 2k+1, disons) et
J1s--29n € Gr. Sik =0C%st clair,car 0 € GR (GR T R*). Sik>1letgi+---4+g. =0,
ona —g, = (g1+¢2)+ (g3 + ¢a) + ... + (92k=1 + g2x). Or, le c6té gauche est dans Gp,
tandis que le c6té droit est dans Ir, ce qui contredit ’axiome (Wa.i). a

Démonstration du Théoréme 2.8. D’aprés le Théoréme 1, §4, Ch.IV de Mac Lane [5] les
points (1)-(3) ci-dessous prouvent que le foncteur ¥ est une équivalence de catégories. On
laisse la preuve d’adjonction en exercise.

(1) Pour tout < G, —1,=g>F SG il existe < R, H >= AWA tel que ¥(< R, H >) =
< G,-1,=g>.

Preuve. Prendre R=W(G) et H=G.

(2) U est plein, i.e. étant donnés < Ry, H; > AWA (¢ = 1,2) et un homomorphisme
de groupes spéciaux v : ¥(< Hy, Gy >) — Y(< Ry, G2 >), il existe un homomorphisme
d’AWA, ¢ :< Ry, Gy >—< Ry, G, >, tel que Y(p) = .

Preuve. D’apres 2.7(b) ’homomorphisme # induit un homomorphisme d’AWA

oY) : W(E(< Ry, Gy >)) — W(¥(< Ry, G >)).

Soit p; : W(¥(< R;,G; >)) — R; (i = 1,2) Phomomorphisme donné par le Lemme 2.9.
On pose:
w = pgo@(v,b)opl_l 1< R, GL>—< By, Gy >

D’aprées 2.7(a), U(y) = o est conséquence de p(g) = ¢(g) pour ¢ € G;. Comme
pil< h>/.)=hpour h € G; (i = 1,2), et ®()(< h >/) =< ¥(g) >/~ pour g € Gy,
on a:

w(9) = (p2 0 ®(¥))(pT'(9)) = p2(B()(< g >/~)) = pal< ¥{g) >/~) = P(9)-

(3) ¥ est fidele, i.e. étant donnés < R, H; >= AWA (i = 1,2) et des homomorphismes
d’AWA, Y1, i< Rl,G1 > < RQ,Gz >,
(1) = V(p2) = p1 = .

Preuve. Soit 9; = V() :< Gy, —1,=g,>—< Gq,—1,=¢,> (¢ = 1,2). L’hypotheése
¥y = v, donne évidemment ®(yy) = $(2);). Il suffit, donc, de prouver:

(3') Etant donné un homomorphisme I’AWA, ¢ :< Ry, Gy >—< Ry, Gy >, soit ¢ =
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U(p). Alors ¢ = ps 0 ®(9h) 0 p1*.
Preuve de (3'). D’aprés la définition de W(yp) (2.7(a)) on a (g) = ¥(g) pour g € G;.

Aussion a

S(UN< G151 90 > /) =< (g1), - (gn) >/~ (27(D))
et
Pi(<gla---:gn >/~)=gl+"'+gn (gla"‘agneGi) (29)
Sir€ Ry,alorsr=g¢y+---+g, avec ¢1,...,9, € Gy. Donc on a:

(P20 @(P) 0 p7)(r) = {p2o ®WN(pi (g1 + -+ + 9n)) = p2( (W) g1, .-, 0 >/~