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Un th6ordme de Harnack dans l’espace.

Daniel Pecker. Cparis 6)

A la rr.6moire de Mario Raimor\do

Le th.6orbme de Harnack afnrme qu'un.e court)e alg6brique 169119 de genre g

a au plus g.1 composantes connexes, et que pour tout degr6 d .on petIt construire

une court)e plane lisse ay-ant gCd).I cornposarttes connexes, Coal gCd) - Cd-l)Cd-2)/2 est

le genre d'une courbe plane de degr6 d ),

Dans I'espace de dimension trois, une co trIbe gauche de degr6 d a un genre

g c [(d-2)2./4] Cborne de Halphen) et Hilbert a mantr6 !'existence de courbes

gauches ayant [(d-2)2/4] . i comFnsantes mnnexes.

Castelnuovo a etendu le r6sultat d'Halphen a I'espace PrI et trouv6 une tx:)roe

effective CCd.n) pour le genre d'une caurbe de degrd d non d6gdndr6e dans Pn

Ci.e. qui n'est contenue dans aucun hyperplan)

On montre ici que pour c s CCd.n) iI existe une courbe lisse de degr6 d

non d6g6n6r6e dans PIICR), ayant c ' I compcsantes aonnexes. Notre d6monstration

consists a simplifier Ies points doubles de court)es qui or,t CCd,n) points doubles r6els

133165, et qui sent situ6s sur des surfaces r3tienn9lles r6g16es lisses. Pour i11ustrer cett9

mit:-lode. on traite d'abord Ie cas plan. car m6mo dans ce cas, notre construction diffdro

des nnst7uctions cl3ssiques de H3:nack et Hilbert CHi utilisent une r6currence sur le

Ccf [B.C.p_] page 246, [A] ou [G])



CommenqDns par une rernarc{ue:

Lemme: Si A E. B sont des polyr\ames de degr& a, e, b la murbe affine

\ect) - CBCt), ACt)/ECt)) a au plus (b-DCa-D/2 FX)ints singu}iers.

D6monstration: Les valetIrs du paramdtre pouvant donner des points doubles

singuliers sont obtertues on trouvant l’intersection des deux murbes

r(BCt)-BCs))/(t-s) a 0

\(ADE(s)-Hs)ECO)/(t-s) - 0

Par Ie th&lime de B6zout iI y a au plus (b-1)(a.e-D solutions .Par sym6trie.la

multiplicit6 d’intersection d'un point situ6 sur la diagonale est au rrloins 2 . et par

mns6went ect) a au Plus Cb-DCa-e-D/2 pints sinwhers. [1

Proposition 1: Solent a et b deux entiers premiers en he eux.

La m tube affine ect) - Ct a, (t-lP) Fnssbde Ca-D(kyD/2 @nts sinwliers CPi sortt

reels et iso16s.

D6monstration; Consid6rons I'ertsemble A - {ZEC I Cza-p)/Cz-D -a}

Si z,A za a dba (z/lz1)2a - 1 . z/lzl + II . L'ertsemble A se nmB)se dorIC des

Ca-D droites de vecteurs directeurs E , pa-1 , E# 41

De mame, I'ensemb ie B - {z€C I (Cz-Db - C=b)/Cz-D - O) se aampse de CbD

droites de vecteurs directeurs n , n2b=1 , n+ 1I

Comme & et b sorrt premiers entre eux, aucune des droites de B n'est para11ile a

une droite de A , et par mns6quent I'intersection de A et de B so compose de

(a-1)Cb-D points distincts. En ces points on a: ECg ' em - az) . Ca qui fait qua e

possdda Ca-1)CbD/2 points doubles iso16s, et par le !emme. g no petIt avoir d'autra

pint sinWlier dans le plan affIne' []
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D. Pecker

Corollaire CHarnacik) : Four taut cg cd-Dc&a/ 2 ii existe une murbe lisse de degr6 d

dans P fIR) ayant Cc.D mmFnsantes mnnexes.

D6monstration: La combe plane ecD - (td.Ct-Dd-1) possdde (d-1)Cd-2)/2 pints

doubles r6els iso16s et uno brancho infinie. On petIt simplifior ces points doubles .chaquo

point isa16 pouvant au choix gait devenir un ovale gait disparaitre Ccf.[B.R],[P2]). On

obtient ainsi une murbe ayant c+1 composantes mnnexes. rl

Pour Ie cas g6n6ra1 on modifiera la mnstruction de la manidre suivante:

Proposition 2: Si a > e ef b sont des entiers, Ca-e,b)• I . II existe des Fx>Jyn6mes Aa

ECt) et BCD de dogr6s respectifs a,e,b tels quo la oourbe affine ect)-kBCt), ACt) / ECU)

ait Cb-DCa.e-D /2 FX)ints doubles r6els iso16s. et aucun autre mint sinwHer.

Demonstration: Si f est une fraction rationnelle. d6finissons un polyn6me

Afa,y) - Add - Kd-KD/(z-D Cod z . x.iy>

Si f est d6anie au rant acR . regardons Ag avec gCz) - az) . n/(z-a) . oa n est

un "petit” nombre r6el.

On a AgeD - AK,) -- n/1,-,12 - Clz-aj2AKz) - 71)/!z-aj2

Si n est 35592 petit, on volt we { Ag-O} est uno -P9tito variation- do

{ Af n O} U {z a a} , c’est done la l6union dUne -petite variation' do { Af • O) at d'un

petit ovale auto tlr de a (si n est du signe ad6quat).
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it6rant cette mnstruction. on voit que par un choix successif des ai et des ni ,

Fx= u r f B z a e + ( n 1 / ( = p a 1 ) ) + n r + + ( 1b / ( z = a e ) ) I Of femmEon deeD vde sem kM is

autcur de ae et d'une figure qui est une ”petite variation- des (a-e-1) droites

{(za-e-1 - :a-e-1)/(z- E) - 0} (cf. figure avec a-e-5. e.2, b-4).

Si la variation est asse2 petite. cet ensemble va renmntr6r

B . {2,C 1 ((z-ae)b - ra-e)b)/(z=)' 0) en (bl)(a-e-D + 28(b-1) - Cb-DCa'a-D Hints

distincts qui sent des valeurs du paramdtre dcnnant Cb-1)Ca.e-D/2 pints doubles Nur

la murkn ecz) - (Cz-ae)b. f(z)) . Par le lemrrie. e ne put avoir d'autre mint

sinwlier dans le plan affine. n

Figure:
L'intersection de CfCd-fEd)/Cz-Z) = O et (gCz)-gCB)/Cz-D =0 oa gCB=Cz-D4

Ez)=5/c/Cz-D)<£'/Cz-al)) alg 1 .gg 0.1 / £'g o,m)25est nmFns6e da 24 bx)ints

Cela permet la mnstruction d'une murkn lisse de ci%16 11 non d6g6n6r6e dans P4
a)'ant 13 mmFDsantes mnnexes
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D. Pecker

Rappelons la d6finition de la kDrne de Castelnuovo.

Si d:n22 , d-l'mCn-D.e avce Ole<n-1 la Ix>rne de Castelr\uovo CCd.n) est donn6e

par: CCd,n)-m((n-DCm-D,2€) /2

Th6or ime 1: n exjste une murbe irr6ducUb Ie de degr6 d . non d6g6n6r6e dans Pn

Cd In>D . possddant exactement CCd.n) points doubles iso16s.

D6monstration: On a CCd.2)- Cd-BCd-2)/2 et par cons6quent le r6sultat est d6ja

d6rnontr6 si n-2 . Supposons dorIC n>3 . On a CCd,n)>0 et CCd,n)'O si et

seulement si d.n. Posons d-1'(m.D(n-k).e avec Oge<m+1 et X.n-2k.I

On a: CCd.n)-m(Cm.DX.2e)./2zO et par cons6quent X=-1 . Si X=-1 alors k=Cn.2)/2 . n

est pair et n=4 . Comme (m+!)Cn-k.D>d-l=mCn-1) ,on a: m<n/n-2 s 2 c'est i dire

m,1 . On en d6duit que CCd,n)'0 et dans ce cas le th6ordme est 6vident, on peut

donc supposer que X>O.

Soit b•m.I, a,AbI.e-d-Ck-D(rn.I),

Par 1a proposition 2 on pea trouver une oourbe affine ed)-CB(D, ACt)/E(0) aa Bd),

ACt) et ECt) sent des Fnlyn6mes de degr6s b,a,e, et qui a Cb-DCa.e-D/2 ' CCd,n)

points singuliers qui sont r6els et iso16s.

La =urbe£ Ct)=(B, B2,. . . .Bn-k, A/E, AE/E, . . . ,Uk-1/E) est une courbe de degr6 d

non d6g6n6r6e dans Cn , ayant exactement CCd,n) points doubles qui sont r6els et

iso16s. Enfin mrrLrne CCd.n) est une borne p>ur le nomE>re de pints singuliers d'une

courbe projective dans Pn . on voit que la comp16t6e projective de g . acimet aussi

CCd,n) points doubles r6els iso16s dans PnCtR) . Cela achdve la d6monst7ation du

th6or&rne I. p..



Comme la murbe cE est situ6e sur uno surface 16g16e laHonne11e lisse, on petIt

appliquer le th6ordme de Tanner\baum, et simplifier ses pints doubles de maniare

ind6pendarrte (cf. [P2] . [TI]).

On obtient ainsi le ’'th6ordme de Harnack dans I'espaco

Th6orbme 2: Sai t c un entier ccC(d,n) , iI existo une aourbe lisse de degr6 d

in6ducHble. et non d6g6n6r6e dans Pn qui pos&de exactement c.I oamposantes

corlrlexes.

On petIt aussi formuler un r6sultat CPi englobe des th6ordmes de Tannenbaum

Cct [ Pa) , [Tl] ,[T2] ).

Th6or bme 3: Soil k et c deux entiers tels que k.c5CCd.n) . 11 existe une murtn

jn6ductjbIe et non d6g6n6r6e dans Pn ayant exactement k points singuJiers isoJ6s.

c+ I mmposantes mnnexes hom6omorphes a des cerdes. et de genre g6om6trique

CCd,n)-k



D. Pecker
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SUR L’ESPACE DES R-PLACES D’UN CORPS CHAINABLE

EBERH ARD BECKER
Fachberetch Mathematik, Untversit£t Dortmund,

postf ach 500 SOO, 4600 Dortmund 50, ALlemagne.

DAN IELLE GONDARD-COZETT E
Mathemattques, UFR 920, Universtt6 Paris VI ,

4 pLace Jussieu, 75252 c6dex OS, France.

A la m6moire de Mario Raimondo

ABSTRACT.

First we remark that two orders of a real field K have the same image

in the space of IR-places if and only if there exists a 2-primary chain of
orderings of higher level beginning with these two orders. Using that fact we
we give a criterion for the separation of connected components in M(K) and

relate the number of connected components with I (K2 n E K4)' / ((E K2;2)' II

I-INTRODUCTION ET NOTATIONS.

Soit K un corps ordonnable, on d6signe par x(K) l’espace des ordres

sur K . Si P est le c6ne d’un ordre $ sur K alors
P

ACP) = ] acK I Irc Q -r s as r F est un anneau de valuation dont on
note v la valuation, k Ie corps r6siduel et F l’ordre (archim6dien)

n

induit sur k . E K2 repr6sente l’ensemble de toutes les sommes finies de

puissances 2r'-idmes d’616ments de K

On note M(K) l’espace des R-places ( de K (muni de la topologie

d6finie comme 6tant Ia plus grossidre rendant continues les applications e
de M(K) dans Ru {mF (1e ,ompactifi6 de R) qui p,., chaque a€ K sont

d6finies par ( t–> eca))

Rappelons qu’une telle R-place € : K –> R u ImF est d6termin6e par une
paire (v, P) , on note ( = X(P) et { est explicitement donn6e par :



a d ACP) €Ca) = m ,

a c ACP) ((a) = inf { r c D 1 as r F = suP { r’ e D
Des travaux de Brown [Brn] et Dubois [Du] on d6duit :

Proposition 1-1 : [L] Soit K un corps ordorrrtabLe

(a) M(K) est un espace compact s6par6 ;

(b) L’ appLication ;\ : x( K) >> M( K) est surjecttve , continue et ferm6e .

Dans [Bell Becker a d6f ini la notion de pr6ordre de niveau sup6rieur 2r1

comme 6tant une partie P d’un corps K telle que
n

P + P g P , P . P S P , -1 e P , E K2 SP . Un ordre de niveau 2r' est
alors un pr6ordre maximal de niveau 2n .

Pour la notion d’ordre de niveau exact 2n (i.e. E Kz non contenu

dans P ) on ne peut d6finir de notion de c16ture par extension alg6brique qui
permette d’obtenir une unicit6 a K-isomorphisme prds ; mais Ia notion de
chaine d’ordre de niveau sup6rieur (de niveaux 2TI) introduite par Harman [H]

permet d’obtenir une telle unicit6

(P.) est une chatne d’ ordres de niveau sup6rieur si

P_ et P. sont des ordres (au sens usuel)

Vi z 2 P est un ordre de niveau exact 21

Vi z 2 Pu -P = (P nP ) v - (P nP )I I -- O - 1- 1 ’ - -- O' - – i - 1
Les r61es des deux premiers ordres 6tant sym6triques nous dirons que

P1 forment un couple d’ ordres chatnabLes (voir [Di])

P et
0

Les caract6risations suivantes des corps qui admettent au moins une chaine
d’ordres de niveau sup6rieur (dans le sens ci-dessus c’est a dire chaine
2-primaire) ont 6t6 obtenues dans [BeI] ((i) et (iii)) et [62] ((ii))

Proposition 1-2 : Un corps ordonnabLe K est chatnabt e si et seulement si iI
sattsf att L’une des propositions 6qutvalentes suivantes :

(i) E X2 # E X4 + E X8 + ._ + E K= + __
(ii) it existe acK tel que a2 ne soit pas somme de puissances quatridmes .
( iii) it ex:tste sur K une valuation r6eLLe de groupe des vaLeur s non

2-divisibLe.

Le but de cet article est d’obtenir des r6sultats qui mettent en valeur
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E . Becker et D. Gondard

1’importance des relations entre la th6orie des corps chainables et l’espace

des IR-places de ces corps. Leur origine vient du th6ordme II1-1 et du
corollaire II1-2 qui entrainent que la relation sur x(K) d6finie par

" PRQ o P = Q ou P et Q forment un couple d’ordres chainables (i.e. iI
existe une chaine d’ordres de niveau sup6rieur commen c,ant par ces deux ordres

P et Q )" est une relation d’6quivalence sur x(K) dont l’espace quotient

peut 6tre identifi6 a M(K) . Les r6sultats principaux sont les th6ordmes

II1-1, II1-4, IV-1 et IV-4 .

II-RESULTATS PRELIM]NAIRES.

Proposition 11-1 : [H] Soit K un corps ordorrrtable , deux ordres P et Q
sont un couple d’ ordres chainabLes si et seulement si iI existe une vaZuation

v compatible avec tes deux ordres teLLe que dans Ze corps r6stduel R on

att P = Q .

Proposition I1-2 : ( IL] 2.13) So£ent P et Q dans x( K ) , at or s
X( P ) = X( Q) st et seuZement si A( P ) = 4('(?) et P et Q tndutsertt Ze meme

ordre dans Ie cor ps r6stduel pour Za valuation d’anneau A( P ) = A(Q).

Proposition I1-3 : ( IL] 12.1) Sott Pt , i c 1 , des dZdments de
valuation sur K d’anneau A teLLe que Vi cI A 2 A( Pt ) .
Sett a : K –> ku ] oF ta pLace associde a v ( Ti(x) = m st rdA et
TI( x ) = x st rcA ) , at or s chaq ue tR-pLace X( P I) se factorise untquement
via x et on a Ze dtagramme cornmut ati f suit'ant

X( P )
K

X( K ) , v une

R v ImF

n v(Fl) v {mE
k v ] m }

rn parti''Ii'r 'i X( P \) + X(Pj) d'"' Mrx) 't 'r ' x(F1) + x(Fj) dans M(h)

D6finition I1-4 : [Br] Soit K un corps ordonrtabLe , un f an T est un
pr6ordre satisfatsant L’une des propri6t6s 6qutvaLentes suivantes
(i) pour tout S 27 v6rtftarlt - IdS et S' sous- groupe d’ indice
dans K- , S est un ordre sur K
( ii) Va d - IF T + aT = T u aT .

2

3



Les ordres et les intersections de deux ordres sont des fans dits triviaux

Rappelons qu’on dit qu’une valuation v est compatible avec un pr6ordre

T si elle est est compatible avec un ordre P 2 T c’est a dire si 1 + m g P
oCr m est l’id6al maximal de l’anneau de la valuation A ; v est pleinement

compatible avec le pr6ordre T si elle est compatible avec tous les ordres
tels que P 2 T

Proposition I1-5 : [L] (p.43) Soit K un corps ordorrnabLe v une valuation

sur K et T un pr6ordre de K , aLor s :
(a) st v est compatible avec T : T est un f an + 7 est un f an ;
(b) si v est pLetnement compatible avec T : T est un fan oT est un fan

Rappelons le th6or6me de trivialisation d’un fan de Br6cker [BrI : Soit
T un fan d’ un corps ordonrtabLe K at ors it ext ste une valuation v
pLetnement compatible at'ec 7 teLI e que T induit sur k un fan trivial

Si K est un corps ordonnable on appelle ensemble d’Harrison les parties
de x(K) d6finies comme suit
Hta) = ] P e x(K) 1 a c P F ; ces ensembles sont des ferm6s-ouverts de x(K)

Proposition I1-6 : [H] Soit K un corps ordonrtabLe et x( K ) son es pace

d’ordres, on d6stgne par HCa) un ensemble d’Harrison et par X la
sur jection x(K) –> M(K) ;
(i) X-1(X(HCa))) = HCa) si et seulement st az E F K4 .

(ii) st x( K ) = X. u Xn od X.. sorrt des ferrn6s-ouverts te is que
X-1(X( Xi )) = Xi , at or S il existe a tel que Xl = HCa) .

Ill-SUR LA SURJECTION DE X(K) DANS M(K).

Nous allons donner une interpr6tation de certains faits connus
Dans [L] est d6f ini pages 21-22 un "produit ext6rieur" : soit v une

valuation sur K d’anneau A et de corps r6sidue] k ; soit n de A dans

k la projection ; soit T un pr6ordre de K et S un pr6ordre de k tel
que S 2 f ; soit TAS = n-1(S') alors TAS est un pr6ordre de K

4



E. Becker et D. Condard

totalement compatible avec v et on a T AS = S .

Si on note ( une place r6elle d’anneau Vr et de groupe des unit6s Er ,
P un ordre compatible soit TF = 3 c c EF 1 ecc) > 0 } . K2 = F Ka A F
Soit X de x(K) +> M(K) d6finie par P b> X(P) , alors pour € c M(K)

X-1(e) = z(Tr) est un sous-espace de z(K) et 1’intersection des ordres

correspondants est un pr6ordre qui est un fan ([L], p. 44) ; on a aussi

[K' : Te] = [re / 2r€] . 2 = 2 1 X(Te) 1 ( rL] p. 26)
Rappelons enf in que tout fan T est presque local, c’est a dire que

{ X(P) 1 P 2 TF is 2 ( [L] IO-12 p.82 ).

Les th6or6mes II1-4 et II1-5 qui suivent sont cons6quenses des r6sultats

ci-dessus et de la d6finition des couples d’ordres chainables,

Nous donnons n6anmoins des preuves ind6pendantes utilisant la th6orie des

corps chainables et des r6sultats 616mentaires sur les fans.

Th6or6me II1-1 : Soient P et Q deux ordres de K , X( P ) = X( Q ) si et
seuLement si P et Q forment un coupLe d’ordres chatnabLes.

D6monstration :

+ la propositions II–2 donne 1’existence d’une valuation v associ6e a

l’anneau ACP) = A(Q) telle que dans Ie corps r6siduel k P = Q ; la
proposition I1-1 montre qu’alors il existe une chaTne d’ordres de niveau

sup6rieur commen(,ant par Ie couple d’ordres (P,Q)

+ si P et Q forment un couple d’ordres chainables alors par la proposition

1-1 il existe une valuation v compatible avec P et Q telle que F = Q

dans k . On a alors A 2 ACP) et A 2 A(Q) , X(P) = X(Q) dans M(k ) et
en appliquant Ia proposition I1-3, on d6duit que X(P) = X(Q) dans M(K).

Corollaire II1-2 : Si ( P ,Q ) et (Q,R) sortt deux couples d’ordres chatnabLes

aLors (P,R) est un coupLe d’ordres chatnabLes.

D6monstration :

le th6ordme III–1 montre l’existence d’une valuation v d’anneau

ACP) = A(Q) = ACR) telle que F = Q = k dans k dorIC P et R sont un
couple d’ordres chainables (par la proposition II–1)



Corollaire 111-3 : Sott K un corps ordorrrrabLe , Zes proprt6t6s suivantes sont
equivaLentles :

(i) L’ appLication A de x( K ) dans M(K) est bt jective ;
(ii) K est non chatnabLe ;

C£ii) Va c K a2 est une somme de putssances quatridrnes d’ eLements de K.
(iv) pour toute vaLuation r6eLLe v le groupe des vaLeur s sattsfatt r = 2F .

D6monstration : les 6quivalence (ii) + (iii) et (ii) $ (iv) r6sultent de la
proposition 1-2 ; par 1-1 on sait que X est surjective ; Ie th6ordme II1-1

donne alors (i) $ (ii)

Th6or6me II1-4 : SoLent Pt Les ordres de K teLs que Vi Vj i + j
(Pt , Pt) son un coupLe d’ordres chatnabLes, aLors Le pr6ordre T = r\ P. est

un fan ; st [K:T]=2n aLors tl y a dorIC 2n- 1 ordres Pt
co-chainabLes deux a deux

D6monstration :

Le th6ordme III–1 donne v la valuation associ6e a A(Pt ) qui est compatible

avec tous les P: dorIC est pleinement compatible avec T ( si Q 2 T = n P

alors v est compatible avec Ies Ps donne que 1 + mSn PI S Q et la
valuation v est aussi compatible avec Q ) ; les ordres Pt 6tant deux a deux

chainables, Ie m6me th6ordme donne que Vi Vj P, = P, dans k., est un ordre
de kIF , f est dorIC 6gal a cet ordre et est donc un fan trivial de kxr , Ie
th6ordme I1-5 montre alors que T est un fan de K

N.B. n P1 = TF de 1’introduction de cette partie d’oa le r6sultat

Puisque tout pr6ordre contenant un fan est aussi un fan on petIt d6finir une

notion de fan minimaZ : un fan T est minimal si pour tout pr6ordre T’ ,

T’ S T et T’ + T entrainent que T’ n’est pas un fan
Un fan T est un fan de vaLuation si et seulement si iI existe une valuation

v compatible avec le fan T et telle que T induit sur Ie corps r6siduel un
ordre .

Th6ordme 111-5 : Un fan minima! T est un f an de vaLuation ou est 6 gal a
L’intersection de deux fans de valuation . St T n’est pas un fan de
valuation al or s T est 6 gal a L ’ intersection de deux farts de vaLuation de
m6me cardtnaLtt6
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D6monstration :

Par le th6ordme de trivialisation d’un fan da a Br6cker, il existe une

valuation v pleinement compatible avec T telle que dans k T induit un
fan trivial T . Si i est un ordre de k alors tous les ordres contenant

T sont co-chainables deux a deux et T est un fan d valuation. Si T est

un fan trivial intersection de deux ordres P et Q de k alors Ies deux

seuls ordres contenant T sont P et Q . Les ordres contenant T induisent

sur k un ordre P ou Q , puisque v est pleinement compatible avec T ,

et correspondent donc a deux paquets d’ordres <P1 } et { Q 1 } co-chainables
deux a deux de K . T est alors l’intersection des deux fans de valuation

T = n P. et T = n Q. . Enf in dans le cas oa le nombre d’ordres au dessus
g

du fan est f ini celui-ci est une puissance de 2 et 1’6galit6 2 P + 2 q = 21’

entraine n = n = n - 1 .
P q

Puisque tout fan est presque local on savait d6ja que tout fan T contient

T€ n T( deLlx fans carresp'rldant a de-"' places reelles e et < ; V = V€ V<
est un anneau de valuation compatible avec T , et T induit un fan trivial
dans Ie corps r6siduel ; si T n’est pas de valuation ce fan est une

intersection de deux ordres qui se reldvent en deux fans T. 2 Tc et

de m6me cardinalit6 car Z (T1) = ] P 1 P - V , F = Fn F ,,t t,1’ qu,
lx(T1)1 = 1(rv / 2 rv)"I et il ,. ,,t d, md,., P,„, Z(Ta),

T2 = T(

7

IV-COMPOSANTES CONNEXES DE M(K) .

Le carr6 d’une somme de carr6s 6tant une somme de puissances quatridmes

d’aprds [Bel], il est clair que si a2 n’est pas une somme de puissances

quatri8mes aIors a n’appartient pas a t E K2 . Par contre la r6ciproque
n’est pas vraie dans tout corps chainable

Harman a 6tudi6 le probldme de la r6ciproque de la propri6t6

a C t E Ka + a2 c E K4 " et a montr6 que cela etait 6quivalent a la
connexit6 de l’espace M(K) des IR-places de K ; plus pr6cis6ment on a :



Proposition IV-1-a : Soit K un corps ordonnable ,

a) sortt equivaLent:es Les pro prt6t6s ;

(t) Va e X a2 c E K4 + a c t E K2
(ii) M(K) est conne xe .

b) sont 6quivaLentes Zes pro pri6t ds :

( j) K est pythagortcien et sattsf att a) ;
( j j) K est pythagortcien au niveau 4 ;
( j j j) K est pythagoricten au niveau 2" pour tout nz 2

Du travail de Harman on peut d6duire des exemples de corps tels que M(K)
est connexe : O(X) , O(X,Y) , CD((t)) , O((t.))((t.)) , tR(X.,...,X ) , IR((t))

et bien sar les corps chaine-clos ou plus g6n6ralement d’aprds [63] et [64]
les corps de Rolle

Harman a en fait montr6 le r6sultat suivant

Proposition IV-1-b : So it K un corps ordonrtabLe , Les proprt6t6s suivantes
sont 6qutvaLentes :

(i) M(K) est connexe ;

(ii) M( K( X ) ) est connexe ;

(iii) M( K((X))) est connexe .

Les r6sultats de la partie III permettent d’obtenir des th6ordmes sur les
composantes connexes de M(K)

Th6ordme IV-2 : Sott K un corps ordonnabLe , P et Q deux ordres de K ,
aLor s ;\(’P) et ;\(Q) sortt dans la mame composarLte connexe de M(K) si et
seuLement si it n'existe pas B sdparant P et Q tel que /3 dEE Ka et
Bz c E K4

D6monstration :

+ remarquons d’abord que si les ensembles HCa) = 3 P 1 acP F et H(-a)
forment une partition de x(K), les ensembles ACH(a)) et X(H(-a)) ne sont
pas farc6ment d’intersection vide ; cependant si 6 est tel que /3 4 t E K2

et B2 c E K4 iI ne peut exister P c H(B) et Q c H(-B) tels que
X(P) = X(Q) : car sinon B d (P n Q) u – (P n Q) dorIC B n’appartient pas a
Pau - Pa (otl Pa ordre de niveau 2 d’une chaine de d6but Ie couple (P,Q))

et B2 d Pa d’oa 62 d F K4 ce qui est impossible : d’aprds [BeI] en effet
E K4 = E Kz n P7i oa PT pa,,,urt I'ensemble des o,dFes de niveau 4

8
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Supposons alors P + Q dans x(K) tels que X(P) et X(Q) soient dans la
mame composante connexe C de M(K) ; si il existait un /3 s6parant P et Q
tel que P e t E Ka et /32 c E K4 , alors puisque les ensembles Hta) sant
toujours des ferm6s et que 1’application A est ferm6e , C n X(H(B)) et
C n ;\(H(-B)) r6aliseraient une partition de C en deux ferm6s non vides ce
qui est impossible

+ nous allons montrer que si X(P) et X(Q) sont dans deux composantes

distinctes de M(K) , C et C’ , alors il existe p s6parant P et Q tel
que B dIE K2 et 62 c E K4 .
Si M(K) a un nombre f ini de composantes connexes on a :
les composantes connexes sont des ouverts-ferm6s qui r6alisent une partition
de M(K) ; consid6rons Ies deux ensembles, non vides, comp16mentaires C et

D = u C: oa les C. sont les composantes connexes de M(K) a I'exception de
C , C et D forment une partition en deux ouverts ferm6s de M(K) . Soient
X = X- 1(C) et Y = X-1(D) , alors X et Y sont deux ouverts ferm6s non
vides de x(K) qui r6alisent une partition de x(K) ; puisque X-1(X(X)) = X
et X-1(X(Y)) = Y ]a proposition I1-6 permet d’obtenir l’existence de B tel

que X = H(B) et Y = H(-B) avec Bet F K2 , 62 c E K4 et bien sar B
s6pare P et Q puisque Pc X et Qc Y

Si M(K) a une infinit6 de composantes connexes on peut donner la preuve

g6n6rale suivante :

On sait que M(K) est un espace compact s6par6 donc il existe un ouvert-ferm6
U s6parant les deux composantes connexes C et C’ , C gU et C’ S Uc . On

reprend alors la preuve ci-dessus en rempla(,ant C et D par U et Uc

Le th6ordme V-I montre l’importance des 616ments B tels que

62 c E K+ \ (E Ka)2 dans la determination des composantes connexes de MCK).

Dans [Be2] (1-4) se trouve un th6ordme qui donne le nombre de composantes

connexes de M(K) :

Proposition IV-3 : Sott K un corps ordonnabLe , ie nomE)re de composantes

connexes de M(K) est f int si et seuLement si E' est d’ indtce f int dans E
IE d6stgne te groupe des unites de [’anneau d’hoLomorphie de K . S’it y a
composantes at ors [ [E : E'] = 2s

On peut relier Ies deux r6sultats pour obtenir

9



Th6or6me IV-4 : Si Ie groupe I (K2 nE K4)' / C(E Ka)2)' 1 a 2FI dldments

aLors le nombre de composantes connexes de M(K) est n + 1 .

D6monstration

Soit + E –> (K2 nF K4)' / ( CE K2)zy d6finie par e –> ;2
+ est surjective : soit x c (K2 n E K4)' ; x € (E K4) + x = c q2 avec
ecE et qc E K2 (cf.[Be2] 1-9) ; comme xc E K4 on a ecE K2 et donc

e c E+ ; x c K2 entraine aussi x = y2 d’oa c = (y/q)2 ; comme l’anneau

d’holomorphie H est int6gralement clos (cf . [Be:3] p. 884), on obtient

c c Ez , x s’6crit done £’2(Eqf )2 .
Le noyau de + est 1’ensemble des unit6s c telles que
ker d = E+ u [E

On a dorIC E / E+ v E- = (Ka n E K4)' / ((E K2)2)'

Si 1 [E / E' u IE- 1 = 2'' alors I E / IE ' 1 = 2 rl'1 d’oa le r6sultat en
utilisant IV-3.

ez c CE Ka)2 done

Le th6ordme IV-2 permet d’obtenir d’autres r6sultats :

Th6or6me IV-5 : Sott L une extension de K teLLe que tous Les ordres de K
s’6tertdent a L aLor s Ie nombre de composarttes conrtexes de M(K) est

tnf6rteur ou 6gat au nomE)re de composantes connexes de M(L)

D6monstration :

Soit a c K et s6parant deux composantes connexes C1 et Co , a £ E K2 et

acE K4 , , e . T11 (aa X(T11) c C1) et -a€ n Taj Cod X(T2j) c C2) ;
tous les ordres s’6tendent donc a c n t (non vide) et - a c n T et
dorIC puisque F L2 n K = E Ka (tout ordre s’6tend) a eF Lz et s6pare dans

L deux composantes connexes ; Ie nomE)re de composantes connexes ne peut donc

que croitre de K a L
N.B. une autre preuve consiste a dire que la restriction res. de M(L) a
M(K) est continue et que donc si M(L) = u zI , oa les Zi sont les

composantes connexes, alors M(K) = V res. (zI) et les res.(Z1) sont des
connexes 6ventuellement non disjoints

Schulting IS] a montr6 que M(K) et M(K(X)) ont le m6me nombre de composantes

connexes. On peut aussi prouver :

10
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Th6orime IV-6 : M(K) et M( K((X))) orrt te mame nombre de composantes connexes.

D6monstration :

Soit L = K((X)) , d’aprds IV-5 le nombre de composantes connexes ne peut que
on

,,,it,, d, K a KC(X)) . S„PP,,,„, x =1 Em ,It! (,m+ O) t,1 que x2 cE L-
,t x dE Lz , ,. ,„ d6d„it 2,. = O (4) , ,m , E K4 ,t ,m d E Kz (car
m = O (2)) dorIC a s6pare aussi deux composantes connexes. Plusieurs tels
issus du meme a 6tant dans les m6mes ordres de L , Ie nombre de

composantes connexes de L est finalement 6gal a celui de K

N.B. Une variante consiste a dire que si un corps K admet une valuation
henselienne a corps des restes k alors M(K) = M(k) et qu’on on a donc

M(K((X))) = M(K)
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THEOREM E DES ZERos REEL
EFF EC TIF

Henri LOMBARDI
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R6sum6 Nous donnons les id6es et r6sultats csscntiels d’un calcul d'une majoration des degr6s pour le th6ordme
des 7£ros r6els effectif.

Abstract We give the main ideas and results concerning a computation of a degree majoration for the real
nullstcllensatz

Introduction

Nous rendons compte ici d'une preuve constructive du Positivstellensatz r6el et de ses
variantes (voir les r6f6rences [Lom x]). Nous reprenons ici les notations de [Lom e] .

Une formulation g6n6rale du th6ordme des z6ros r6el et de ses variantes peut 6tre la suivante
(cf [BCR] th£ordme 4.4.2) : on considdre un systQme d'6galit6s et in6galit6s portant sur des
polynomes de K[X] = K[X1,X2,,_,X„] , oil K est un corps ordonn6 de c16ture r6elle R ; ce
systeme d6finit une panic S semialg6brique de Rr1 ; le th6or6me affirme que S est vide (fait
g&om£trique) si et seulement si il y a une certaine identit6 alg6brique construite a partir des
polynomes donn6s, identit6 qui donne une preuve de ce fait g6om6trique.

L'id6e g6n6rale de notre preuve constructive est la suivante. Pour un corps ordonn6 K iI y

a un algorithme de conception trds simple pour tester si un systime de csg (conditions de signes
g6n6ralis6es) portant sur ces polynomes en plusieurs variables est possible ou impossible dans la
c16ture r£elle de K . C’est I'algorithme de H6rmander (cf. la preuve du principe de Tarski-
Seidenberg dans [BCR] chap. 1), appliqu6 de manidre it6rative pour diminuer par 6tapes le nombre
de variables sur lesquelles portent Ies csg. Si on regarde les arguments sur lesquels est bas6e la
preuve d'impossibilit6 (en cas d’impossibilit6), on voit qu'il y a essentiellement des identit6s
alg£briques (traduisant la division euclidienne), Ie th6ordme des accroissements finis et I'existence
d'une racine pour un polynome sur un intervalle oil iI change de signe,
Les ...-stellensatz r6els effectifs doivent donc pouvoir &tre obtenus si on arrive a “alg6briser" les

arguments de base de la preuve d’incompatibilit6 et les m6th(xies de d6duction impliqu6es.
Un pas important a d6ja 6t6 r6alis6 avec Ia version alg6brique du th6ordme des accroissements finis
pour les polynomes (cf. [LR]), qui a dtd a I'origine des formules de Taylor mixtes et g6n6ralis6es.
Un autre pas a consist6 a traduire sous forme de constructions d'identit6s alg6briques certains
raisonnements 616mentaires (du genre si A =+ B et BBC alors AO C ).

Il fallait en outre trouver une version "identit6 alg6brique" des axiomes d'existence dans la th6orie
des corps r6els clos. C'est ce qui est fait a travers la notion d'existence potentie lle.

Calculer une borne sur les degr6s pour le th6or&me des z6ros r6els consiste a calculer une
majoradon sur les degr6s des polynomes intervenant dans le r6sultat final (I'identit6 alg6brique
consrruite) a partir de la taille de I'enn6e (le systdme de conditions de signes portant sur la liste de
polynomes donn6e au ddpart). Les paramdtres qui controlent la majoration des degr6s dans le
r6sultat sont en fait : le nombre k de polynomes dans I'entr6e, Ie degr6 d des polynomes dans
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I'entr6e, et le nombre n de variables

Le calcul de majoration est obtenu en suivant pas a pas la preuve constructive d'existence de
I'identit6 alg6brique et en explicitant les majorations a chaque 6tape de la preuve.
C'est une majoration primitive r6cursive, donn6e par une tour d'exponentielles : Ie nombre
d'6tages dans la tour est n+4 et en haut de la tour on trouve :

d.log(d) + loglog(k) + cte
Ce r6sultat n'est pas trop mauvais, dans la mesure oil la principale responsabilit6 de I'explosion est
support6e par I'algorithme de H6rmander, a la base de la preuve effective. On peut esp6rer baser
une autre preuve effective sur des algorithmes plus performants et n6anmoins de conception trds
simple, et obtenir en cons6quence une majoration oil le param&tre n interviendrait de manidre
moins catastrophique, sans tour d'exponentielles.

Bien que nous nous placions a priori dans un cadre constructif "a la Bishop", tel que
d6velopp6 dans [MRR] pour ce qui concerne la th6orie des corps discrets, comme nous ne
pr6cisons pas le sens du mot effectif ni celui du mot d6cidable, toutes les preuves peuvent 6tre lues
avec des lunettes adapt6es a la philosophie ou au cadre de travail de chaque lecteur particulier.
En fait les preuves donn6es fournissent des algorithmes uniform6ment primitifs r6cursifs,
“uniform6ment" s'entendant par rapport a un oracle qui donne la structure du corps des coeffi-
cients du systime de csg consid6r6

si (ci)i=1 ...m est la famine des coefficients et si PC Z [(Ci)i=1...„m] I'oracle r6pond
a la question < Quel est le signe de P((ci)i=1.... m) ? ».

Incompatibilit6s fortes
Nous consid6rons un corps ordonn6 K , et une liste de variables Xl, X2, ..., X, d6sign6e par
X
Nous notons done K[XI I'anneau des polynomes K[Xl,X2,...,Xn].
Etant donn6e une panie finie F de K[X]

nous notons F*2 I'ensemble des carr6s d'616ments de F

le mono-ide rnultipILcattf en8endr6 par F est I'ensemble des produits d'616ments de
FU {1} , nous le noterons M(F)

le cane positif enRendr6 par F est I'ensemble des sommes d'616ments du type p.p.Q2 oil
p est positif dans K , P est dans M(F) , Q est dans K[X] . Nous le noterons CW)

enfin nous noterons /(F) I'id6al engenctr6 par F .

D6finition et notation 1 : Etant donn6s 4 parties finies de K[XI F, , F, , F= , F+ , contenant

des polynomes auxquels on souhaite imposer respectivement les conditions de signes > 0 ,

> 0 , = o , + 0 , on dha que F= [F, ; F, ; F= ; F+ ] est forternent incompatible dans K si
on a une 6galit6 dans K[X] du type suivant :

S + P + Z = 0 avec scaf(F, UF+*2) , PC q(Fa UF,) ,
Nous utiliserons la notation suivante pour une incompatibilit6 forte:

! [ SI > 0, ..., Si> 0, Pl >/ 0, ..., Pj ), 0, Z1 = 0,

Z C /(F_)

.. Zk= 0, NI + 0, ..., Nh+ 0 ] 1

II est clair qu'une incompatibilit6 forte est une forme trds forte d'incompatibilit6. En particulier, elle
implique I'impossibilit6 d’attribuer les signes indiqu6s aux polynomes souhait6s, dans n'importe

queUe extension ordonn6e de K
Si on consid dre la c16ture r6elle R de K , I'impossibilit6 ci-dessus est testable par I'algorithme de
H6rmander, par exemple.
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Le th6ordme des z6ros r6els et ses variantes

Les diff6rentes variantes du th6orame des z6ros dans le cas r6el sont cons6quence du th6ordme
g6n6ral suivant :

Th6orime : Soit K un corps ordonn6 et R une extension r6elle close de K . Les trois faits

suivan£s, concernant un systime de csg portant sur des polynomes de K[X], sont £quivalents :

I'incompatibilit6 forte dans K

I'impossibilit6 dans R
I'impossibilit6 dans toutes les extensions ordonn6es de K

Ce th6orame des z6ros r6els remonte a 1974 ([Ste]). Des vadantes plus faibles ont 6t6 6tablies par
Kdvine ([Kri]), Dubois ([DuI), Risler ([Ris]), Efroymson ([Efr]). Toutes les pnuves jusqu'a
([LoIn a]) utilisaient I'axiome du choix et d'autres m6thodes non consbructives.

Degr& dlune incompatibilit6 forte

Si nous voulons pr6ciser les majorations de degr6 fournis par notre preuve du th6ordme des z6ros
del, nous devons pr6ciser la terminologie.
Nous manipulons des incompatibilit6s fortes 6crites sous forme paLre, c.-a-d.:

S + P + Z = 0 avce Sc $f(F,*2 UF;2) , P€C;(FzU F,) , Ze KF= )
(la consid6ration des formes paires d'implications fortes a pour unique utilit6 de faciliter un peu le
calcul de majoration des degr6s)
Quand nous parlons de degr6, sauf pr6cision contraire, il s'agit du degr6 total maximum.
Le degr6 d’une incompatibtlh& forte est par convention au moins 6gal i 1, c'est le degr& maximum
des polynomes qui «composent» I'incompatibilit6 forte.
Par exemple, si nous avons une incompatibilit6 forte :

I [A>O ,B>O,C>O ,D)O,E=O ,F=O] I
explicit6e sous forme d'une identit6 alg6brique :

A2.B6 + C. i Pi.Pi=
i = 1

+ A.B .D E q,.Q,=
j=]

H3 a

+ E.U + F.V = 0

le degr6 de I'incompatibilit6 forte est :

suP ( d(A2.B6) , dCC.Pi2) (i = I„..,h) , dCA.B.D.Qj2) a = r„..,k) , d(E.U) , dCF.V) }

Constructions d'incompatibilit6s fortes

D6finition 2 : Nous parlerons de construction d'une incompatibilit6 forte a partir d'autres incom-

patibilit6s fortes, lorsque nous avons un algorithme qui permet de construire la premidre a partir

des autres,

II s'agit dorIC d'une implication logique, au sens constructif, nant des incompatibilit6s fortes.

Notation 3 : Nous noterons cette implication logique (au sens consFuctif) par un signe de
d6duction "constructif ' . La notation

(1 H,I et tH, J) b„„ tH, I
signifie donc qu'on a un algorithme de construction d’une incompatibilit6 forte de type

partir d'incompatibilit6s fortes de types Hr et H:2
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Le raisonnement par s6paration des cas (selon le signe d'un polynome)

Nous donnons ici un 6nonc6 d6tail16 des «raisonnements cas par cas», incluant la propagation des
majorations de degr6s.

Proposition 4 : Soit H un systdme de csg portant sur des polynomes de K[X] , Q un 616ment

de K[X] , alors
[L(",Q<o)I et I(:H:,Q>o)I] b.„, KH,Q+o) I
[ L ( IHI ) Q \< 0 ) 1 et I ( IMf Q >/ 0 ) 1 ] b„, I in 1

De m6me :

[ L ( IH ! Q > 0 ) 1 et 1 ( Ht Q = 0 ) & ] bans I ( Hp Qb 0 ) 1 (b)

[L(H,Q+o)I et kx,Q=o) I] b„ in L m
[ I ( Erp Q > 0 ) & et 1 ( Fly Q gO ) II b,ns & FI ! W

Dans chacun de ces cas, notons d1 et d2 les degr6s des deux incompatibilit6s fortes donn6es

dans I'hypothdse, le degr6 de l’incompatibilit6 forte construite est respectivement major6 par :

q,(d,,d,) = 9,(d,,d,) = d, + d,
(Pb(drgd2) = dl.d2
cp,(dl,d2) = dl-d2
CPd(dryd2) = dr-d2 + d2

Ces 4 foncdons sont major6es par 9(dl,d2) = dl.d2 + dI + d2

Enfin, pour d6montrer que :HI est fortement incompatible, on peut raisonner en s6parant selon

les 3 cas Q >0 , Q < 0 , Q= 0 . Ce qui renvient a affirmer

[I(H,Q>o)I eII(]a,Q<0) ctI(H,Q=o)&] b„, IHL (e)

(a)

(a’)

La version alg6brique d)'namique de 1’implication
D6finition et notation 5 :

Soient Hr et H2 deux systames de csg portant sur des polynomes de K[X] . Nous

dirons que le s)’st&me Hl implique dynamiquement H2 lorsque, pour tout systdme de

csg H portant sur des polynomes de K[X, Y] , on a la construction d'incompatibilit6 forte :

I I Fi,(X) , X(X,Y)1 L b.„, I [=,(x) , :-KX,Y)] I
Nous noterons cette implication dynamique par :

'( H„(X) + IH,(X) )'
Lorsque le systdme Hl est \rjde, nous utilisons la notation '( Hb(X) )'

Renwque :
On a trivialement 1'6quivalence des affulnations

tH,I et '( :„I, a ( 1 =0) )'

Fonction-degr6 dtune implication dynamique

Une implication dynamique '( Fl1 + 12 )' signifie par d£finition un algorithme fournissant
la construction :

1 [ H:, , Fl] I hans & [ Hl 9 :A ] I
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Chaque fois que nous etablissons une implication dynamique particuliare, nous devons 6tabhr des
majorations primitives r6cursives de degr6’ pour cette construction d'incompatibilit6s forges : Ie
degr6 de I'incompatibilit6 forte construite est major6 par une fonction A(d,_;k,_.) oil d est le
degr6 de l'incompatibilit6 forte initiale, k le nombre de csg dans Hb etc.... (le point-virgule
isole les 'variables’, qui d6pendent de I'incompatibilit6 forte initiale, des 'paramdtres’, qui ne
d6pendent que de Mr et IHt2 ).
Nous disons qu'i1 s'agit d'une fonction-degr6 acceptable pour I'implication dynamique consid6r6e,
ou encore, (par abus) nous parlons de la fonction-degr6 attach6e a I'implication dynamique.

La transitivit6 des implications dynamiques

La proposition suivante est imm6diate : iI suffit d'enchainer les deux algorithmes de constructions
d'incompatibilit6s fortes.

Proposition 6 : Soient HI , H2, H3 aois systdmes de csg portant sur des polynomes de

K[X] . Alors:

[ '( Hl =$ H2 )' et '( [ H1 , H2 ] + H3 )' ] impliquent '( IH[1 _+ H3 )'
Supposons que la premidre implication dynamique admette comme fonction-degr6 acceptable

A1(d;p) oa d est le degr6 de I [ H2, in ] I et p repr6sente certains paramenes d6pendant

de 111 et hb, supposons de m&me une fonction-degr6 acceptable A2(d;q) pour la deuxieme

implication dynamique, alors une fonction-degr6 pour I'implication dynamique consauite est

obtenue en composant Ies deux fonctions-degr6 pr6c6dentes

A(d;p,q) = A1(z\2(d;q);p)

La version alg6brique dynamique de la disjonction

D6finition et notation 7 :

Soient Hl , :H2 , ... , Hk et Kl , IK2 , ... , Km des systdmes de csg portant sur des
polynomes de K[X]

Nous disons que le SISI&me :=1 implique dynarniquement la disjonction Kl V IK2 V

V Km lorsque, pour tout systame de csg :4 portant sur des polynomes de K[X,Y] , on

a la construction d’incompatibilit6 forte

{I[ K,(X) , Hr(x,Y) ]I et ... et I[ K„(X) , X(X,Y) it} h„ I[ m,(x), A(X,Y)it
Nous noterons cette implication-disjonction dynamique par

'( H,(X) o r K,(X) v K,(X) v ... v K„(X)] )'
Lorsque Ie systime =1 est vide, nous utilisons Ia notation

'( Kl(X) V K2(X) V ... V Km(X) )'.
Enfin, la notation

'( [ H:1 V H2 V _ V Hk ] =+ [ Kl V K2 V ... V Km ] )'
signifie que chacune des implications-disjonctions dynamiques

'( =,(X) + [K,(X) V :K,(X) V .- V K_(X) ] )' (i = 1, ..., k)
est v6rifi6e

Remarques : Toute formule sans quantificateur de la th6orie du premier ordre des anneaux
totalement ordonn6s dicrets a param&tres dans K est 6quivalente a une formule en forme normale



Une borne sur les degr6s pour le th6ordme des z6ros r6el effectif 6

disjonctive et dorIC a une formule du type

KI(X) V 1(2(X) V ... V Km(X)
oil les Ki(X) sont des systemes de csg portant sur des polynomes de K[X] .
Les implications-disjonctions dynamiques consituent une forme de raisonnement purement
«identit6 alg6brique» concernant les formules sans quantificateur, oil la logique a 6t6 6vacu6e au
profit d'algorithmes de constructions d'identit6s alg6briques.

La fonction-degr6 d'une implication-disjonction dynamique se d6finit comme pour les
implications dynamiques

La proposition 4 peut &tre relue comme affirmant des disjonctions ou implications-disjonctions
dynamiques :

Proposition 4 bis :
'( Q + o B [ Q > o v
'( Q \< o v Q >/ o )'
'( Q >, o a [ Q > o v
'( Q * o v Q = o )'
'( Q > o v Q \< o )'
'( Q = o v Q > o v

On a les implications-disjonctions dynamiques suivantes :

Q < 01 )' (a)

(a’)

(b)

(C)

(d)

(e)

Q = 01 )'

Q < o )'

La transitivit6 des implications-disjonctions dynamiques

L'6nonc6 le plus g6n6ral est le suivant
Les implications-disjonctions dynamiques

'( t HI1 V H2 V ... V Hk in [KI V K2 V ... V Km ] )'
et

KI V K2 V .. V Km ] + [ Ll V L2 V .. V ILm ] )
impliquent

'( [ Hl V H2 V .. V nk ] + [ Ll V L2 V .. v L, 1 )'
Cette transitivit6 s'obtient en enchainant les algorithmes de constructions d'incompatibilit6s fortes,

Les fonctions-degr6 r6sultantes s’obtiennent dorIC par composition convenable des fonctions-degr6
initiales.

Implications dynamiques faciles

Definition 7 : (implimtions trivials )

Une implication Hr(X) B H2(X) est dite triviale lorsque toute incompatibilit6 forte

{ [ :-I,(X) , H(X,Y) ] I
fournit par simple relecture I'incompatibilit6 forte

1[ H,(X), H(X,Y) ]l
L'implication dynamique '( XI(X) + H2(X))' accepte alors pour fonction-degr6

Ao(d) = d .

Exemple : L'implicadon [ A > C) , B > 0 ] B AB > 0 est triviale : dans I'incompatibilit6 forte
I [ AB > o , H ] I

on relit chaque constituant AB (dans la p&tie «monoide» ou dans la parde «cone») sous forme du

produit de A par B pour obtenir I'incompatibilit6 forte
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I [ A > o , B > o, H ] I
Notez que I'implicadon 'contrappos6e’ [ A > 0 , A.B $ 0 ] + B $0 n'est pas une implication
simple.

De nombreuses implications, sans &tre des implications triviales, sont d'un traitement “rapide“ en
tant qu'implications dynamiques
Par exemple
L'implication [ A > 0 , A.B 20 ] + B 20 accepte pour fonction-degr6 :

(d;8) 1 rd + 2.8 on 8 = dCA) .
Preuve : on multiplie, terme a terme, I'implication forte par A2, en prenant soin de remplacer les
B.A2 par (BA).A

Le principe de substitution

Prop(nition 8 :
On considdre des variables X1,X2,...,X,, Ur,U2,...,Uh, Zl,Z2,...,Zk , et des polynomes

P1,P2,...,P, de K[Z]. Notons P(Z) pour Pr(Z), ..., P,(Z)
Si on a '( H1(X,U) + H2(X,U) )' @
alors on aaussi '( El(P(Z),U) O H2(P(Z),U) )' (b)

Formules de Taylor mixtes

On considdre deux variables U et V et on pose A:= U – V . On consid dre un polynome P a
coefficients dans un corps ordonn6 K ou plus 8dnemtement dans an anneau commulatif A qUI
est une It}-algabre,

Si deg(P) .g 4 , on a les 8 formules de Taylor mines suivantes

P(U) – P(V) = A.P’(V) + (1/2).A2.P”(V) + (1/6).A3.P(3)(V) + (1/24).A4.P(4)

P(U) - P(V) = A.P’(V) + (1/2).A2.P”(V) + (1/6).A3.P(3)(U) – (1/8).A4.P(4)

P(U) - P(V) = A.P’(V) + (1/2). A2.P”(U) – (1/3).A3.P(3)(V) – (5/24).A4.P(4)

P(U) - P(V) = A.P’(V) + (1/2).A2.P”(U) - (1/3).A3.P(3)(U) + (1/8).A4.P(4)

P(U) - P(V) = A,P’(U) - (1/2).A2.P”(V) - (1/3).A3.P(3)(V) - (1/8).A4.P(4)

P(U) - P(V) = A.P’(U) – (1/2). A2.P”(V) – (1/3).A3.P(3)(U) + (5/24).A4.P(4)

P(U) - P(V) = A.P’(U) – (1/2).A2.P”(U) + (1/6).A3.P(3)(V) + (1/8).A4.P(4)

P(U) - P(V) = A.P’(U) - (1/2).A2.P”(U) + (1/6).A3.P(3)(U) - (1/24).A4.P(4)

Comme toutes les combinaisons de signes possibles se pr6sentent, on obtient :
– supposons que u et v ataibuent la mame suite de signes (au sons large) pour les d6riv6es
successives d'un polynome P non constant de degr6 g 4 , notons ei = 1 ou –1 selon que
P’(u) et P’(v) sont tous deux 20 ou tous deux $ 0 , alors le fait que P(u) – P(v) a mame

signe que el.(u – v) est rendu 6vidnet par 1’une des formules ci-dessus, ce qui donne
I'implication sous forme d’une implication simple (u et v peuvent 8tre des 616ments de K mais
aussi des variables, ou des polynomes)

– si u et v n'attribuent pas la m&me suite de signes pour un polynome P de degr6 g 4 et
ses d6riv6es successives, alors on a une identit6 alg6brique qui donne le signe de u – v a paRk
des signes des P(1)(u) et des P(1)(v) : la formule de Taylor miNe a utihser est avec P(1) ( i = 0, 1,
2, on 3) oa i est Ie plus grand indice pour lequel les deux signes ne sont pas identiques

Plus g6n6ralement on a
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Proposition 9 : (formules de Taylor mine)

Pour chaque degr6 s , iI y a 2s-1 formules de Taylor mixtes et toutes les combinaisons de

signes possibles apparaissent.

Formules de Taylor g6n6ralis6es (Ie lemme de Thom sous forme
d'identit6s alg6briques)

Le lemme de Thom affirme (entre autres) que I'ensemble des points oil un polynome et ses
d6riv6es successives ont chacun un signe fix6, est un intervalle. Une preuve facile, par recurrence
sur le degr6 du polynome, est bas6e sur le th6ordme des accroissements finis. Nous pouvons,
grace aux formules de Taylor mixtes, traduire ce fait g6om6trique sous forme d'identit6s
alg6briques, que nous appellerons des formules de Taylor g6n6ralis6es. Plut6t que de risquer un
6nonc6, nous donnons un exemple

Un exemple : Consid6rons le polynome g6n6rique de degr6 4
P(X) = co X4 + cl X3 + c2 X3 + c3 X2 + c4 X4 + cs

Consid6rons le systime de conditions de signe portant sur le polynome P et ses d6riv6es
successives par rapport a la variable X

H(U) : P(U) > 0, P’(U) < 0, P(2)(U) < 0, P(3)(U) < 0, P(4)(U) > 0.
Consid6rons 6galement le systdme de conditions de signe g6n6ralis6es obtenues en relachant toutes
les in6galit6s, sauf la derni6re :

H’(U) : P(U) > 0, P’(U) g 0, P(2)(U) g 0, PO)(U) $ 0, P(4)(U) > 0.
Le lemme de Thom affume (entre auues) :

[H’(U) , H’(V) , U< Z< V] + H(Z) (1)
Nous allons voir que ce fait g6om6trique est rendu 6vident par des identit6s alg6briques.
On 6crit les formules de Taylor mixtes suivantes

a) PO)(Z) = P(3)(V) + P(4).(Z – V)

B) P(2)(Z) = P(2)(U) + P(3)(Z).(Z – U) – 1/2 P(4).(Z – U)2

V) P’(Z) = P’(U) + P(2)(U).(Z – U) + 1/2 P(3)(Z).(Z – U)2 – 1/3 P(4).(Z - U)3

8) P(Z) = P(V) + P’(Z).(Z – V) – 1/2P(2)(Z).(Z – V)2 + 1/6 P(3)(V).(Z – V)3 + ._

1/8 P(4).(Z - V)4

Posons I A1 = Z – U , A2 = V – Z

ilace PO)(Z) donn6e dans a) et on obdentDans sonon

P(2)(Z) = P(2)(U) + P(3)(V). Al – P(4) [Al.A2 + 1/2 A12]p’)

On obtient de la m6me mani substitutions

P’(Z) = P’(U) + P(2)(U).Al + 1/2 P(3)(V).A12 - PH).[A12.A2/2 + A13/3]V’)

et enfin

a’) P(Z) = P(V) – P’(U).A2 – P(2)(U).[Al.A2 + 1/2A22]

P(3)(V),[ A12. A2/2 + A1.A22/2 + A23/6]

+ P(4>.[A13. A2/3 + A12.A22/2 + A1,A23/2 + A24/8]

Les 6galit6s a), p’), y’), 8’) donnent l’implication (1) sous forme d'une implication simple. La
premi dre 6galit6 est une formule de Taylor ordinaire portant sur le polynome P(3). Les trois
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dernieres peuvent aue vues comme des formules de Taylor g6n6ralis6es portant sur les polynomes
P(2) , P’ et P

Plus g6n6ralement, on obtient

Th6oreme 10 : (6vidence forte du lemme de Thom)

Soit T une variable distincte des Ci . Soient PC K[C][T] , de degr6 s en T

al, a2, ..., a, une liste forma de < ou > . On note mCC,T) ou A(T) le systime de csg :

P’(C,T) a1 0, ..., P(')(C,T) ai 0, ..., PCs)(C,T) a, 0 (les d6riv6es sont par rapport a T ) .

Soit H’(T) le systime de csg obtenu a panir de H(T) en nlachant toutes les conditions de

signe saufcelle relative a PCs)

Soit H1(T) Ie systime de csg : PCs)(C,T) > 0, P(1)(C,T) ) 0, i = 1, ..., s–1 .

Soient enfin trois variables U , V , Z distincte des Ci

On a alors les implications dynamiques suivantes

'( [ HI’(U), HI’(V) , U a1 V ] => P(U) > P(V) )'

'( 1 Ml(U), V>U] O P(V)>P(U) )'
'( [m’(u) , HI’(V) , U< Z<V] O W(Z) )' (C)

(a)

(b)

Ce sont dcs implications dynamiques qui ne cofrtent tien ( d 1 ld est une foncdon degr6

acceptable)

Existences potentielles

Notations et d6finitions

Elles sont tout a fait analogues a celles donn6es pour les implications-disjonctions dynamiques

D6finition et notation 11 :

Soient Hl un systime de csg portant sur des polynomes de K[XI , H2

csg portant sur des polynomes de K[X,Tl,T2,...,Tm] = K[X,T]

Nous dirons que les hypoth&ses Ell autorisent 1’existence des

pour tout systdme de csg

un systdme de

Ti verDant M2 lorsque,

IE[ portant sur des polynomes de K[X,Y] , les variables Yi et Ti

6tant deux a deux distinctes, on a la construction d'implication forte :

I [ X,(X,T) , X(X,Y) 1& h„ & [ X,(X) , I-:(X,Y) ] I
Nous parlerons 6galement d’existence potentlel le des Ti v6rifrant H2 sons Les hypothEses

HI
Nous noterons cette existence potentielle par :

'( H,(X) + 3 T T,(X,T) )'
Lorsque le systime Hl est vide, nous utilisons Ia notation '( I T H[2(X,T) )'.

La notion de fonction-degr6 acceptable pour une existence potentielle peut 6tre elle aussi
directement recopi6e du cas des implications dynamiques.

Remarqua :
1) La notion d'existence potentielle est une notion d'existence faible. L'existence potentielle
signifie qu’il n'est pas grave de faire comme si les Ti existaient vraiment, parce que cela
n’intr(xiuit pas de contradiction: on peut p,rraphraser la d6finition en disant
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pour consuuire I'incompadbilit£ forte I [ IHl1(X) , IHI(X,Y) ] J

iI suffitd'avoir cons truk & [ H2(X,T) , A(X,Y) ] I

2) On pourrait 6tendre la d6finition de I'existence potentielle en remplagant le systeme de csg
M2(X,T) par une disjonction de systdmes de csg, comme on a fait avec Ia notion d'imphcation-
disjonction dynamique.

Transitivit6, principe de substitution, preuves cas par cas

La transitivit6 des existences potentielles est imm6diate, comme dans Ie cas des implications
dynamiques,
Le principe de substitution pour les existences potentielles s'6nonce et se d6montre comme pour
les implications dynamiques.
Voici maintenant un 6nonc6 correspondant aux preuves cas par cas d’une existence potentielle,
cons6quence imm6diate de la proposition 4

Proposition 4 ter :
Soit Q un polynome de K[X]

(raisonnement cas par cas pour les existences potentielles)

a) Pour d6monaer une existence potentielle

'( [H1(X) , Q + 0 ) B I T H2(XIT) )'

il suffit de d6montrer chacune des existences potentielles

'( [H1(X), Q > 0] + 1 T H2(X,T) )' et '( [ H1(X), Q < 0] + 1 T H2(X,T) )'

Si A1 (i = 1,2) sont Ies deux fonctions-degr6 des existences potendelles suppos6es, unc

fonction-degr6 pour I'existence potendelle d6duite est donna par : Al + A2

a’), b), c), d), e) : 6nonc6s analogues d6calqu6s de la proposition 4

Ltexistence implique I'existence potentielle

Un autre principe utile est le fait que I'existence implique I'existence potentielle. Il s'obtient
facilement : on remplace les variables Ti «existentielles» par les polynomes concrets Pi qui
r6alisent I'existence. On reconnait la une analogie formelle avec la rigle d'introduction du
quantificateur existendel en calcul naturel par exemple (cf. [Pra]),

Proposition 12 : ( I'existence implique I'existence potentielle)

Soient Pl,P2,...,Pm C K[X] et notons P(X) pour Pl(X), ..,, Pm(X) . On a I'existence

potentielle : '( X2(X,P(X)) + I T H2(X,T) )'
Si 8 majore les degr6s des Pi , I'existence potentiene accepte pour fonction-degr6 :

(d;8) 1 ) d.sup(1,8)

Existences potentielles fondamentales

On sait d6montrer les existences potentielles correspondant aux axiomes existentiels de la th6orie

des corps r6els clos.

Th6ordme 13 : (autorisation de rajouter I'inverse d'un non nuI)

On a I'existence potentielle de I'inverse d'un non nuI. Ce qui s'6crit

'( U+0 aIT 1=U.T )'
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Soit 6 le degr6 de U, une foncdon-degr6 acceptable pour I'existence potendelle est

(d;8) 1 1 d + d.8 + a

Remarque: La preuve de cette existence potentielle recopie ce qu'on fait, dans la preuve du
th6orime des z6ros de Hilbert, pour passer du th6orime des z6ros faible au th6ordme des z6ros

g6n6ral (c'est Ie <Rabinovitch trick», par exemple dans I'expos6 classique de van der Waerden).
La notion d'existence potentielle de I'inverse d'un non nuI est dorIC en filigrane dans les
classiques.

Th6ordme 14 : (autorisadon de rajouter une racine sur un intewalle oil un polynome change de

slgne)

Soil PCC,X) un polynome de degr£ s en X et de degr6 global a

On a I'existence potendelle d’une racine sur un intervalle oil ce polynome change de signe. Ce

qui s'6cdt, en notant P(X) pour PCC,X) :

'( [P(X).P(Y)<0, X<Y ] + IZ [P(Z)=0, X<Z<Y] )'
et, si X , Y , Z d6signent des variables, une fonction-degr6 acceptable est donna par :

(d;8,s) +) ( (2d+7) (b+1) )v’(s) oa 7(s) = 2(s+2)2/2

Remarque : La preuve du th6orime pr6c6dent "recopie" la preuve classique, par r6currence sur le
degr6 du polynome P , du th6ordme «si un corps est ordonn& et si P(u).P(v) < 0 avce P
irr6ductible, alors le corps K[W] /P(W) est r6el». Ceci donne I'existence potentielle d'une racine.
Pour avoir Ia racine sur I'intervalle, il y a de nouveau une r6currence a faire. Tout ceci conduit a
une relativement mauvaise fonction-degr6. Le probl&me semble difficile a contourner. Dans Ie cas

complexe (thdor&me des z6ros de Hilbert), 1'existence potentielle d'une racine d'un polynome non
constant est au contraire extr6mement simple et conduit a une fonction-degr6 tout a fait
raisonnabie : par exemple si P(X,Y) est un polynome unitaire en Y de degr6 s en Y et de degr6
6 en X , il suffit de tout r6duire modulo P et une fonction-degr6 acceptable pour I'existence
potentielle '( 1 Y P(X, Y) = 0 )' estdonn&e par : (d;8) 1 1 d.(6+1)

Tableaux de H6rmander

Nous donnons ici quelques majorations directement li6es a I'algorithme de H6rmander lui-mame
(cf. [Hdr] annexe, ou [BCR] chap. 1)
L'algorithme de H6rmander traite des polynomes en n variables, en 61iminant chaque variable
I'une aprds I'autre. A chaque 61imination d'une variable, Ie nombre de polynomes a consid6rer et
leurs degr6s croissent de mani dre impressionnante. Ceci est pr6cis6 dans la proposition suivante :

Proposition 15 : ('Tableau de H6rmander param6n6)

Soit K un corps ordonn6, sous-corps d’un corps r6el clos R

Soit L = [Q1 , Q2 , ..., Qk] une liste de polynomes de K[X1, X2, ..,, Xn][Y] .

On peut consnuire une famille fink J de polynomes dc K[Xl, X2, ..., X„] telle que, pour

tous xl, x2, .. x, dans R , en posant Pi(Y) = Qi(xl, x2, ..., x,;Y) , Ie tableau complet des

signes pour L = [PI , P2 , ..., PkI est calculable a pardr des signes des S(xl, x2, ..., Xn)

pour SC '[
Supposons que la liste L possade k elements de degr6 en X major£ par 8 et de degr6 en Y

major6 par s . Consid6rons Ia famine g , form6e de tous les coefficients de tous les
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polynomes de tous les tableaux de H6rmander possibles, construits sur L , en remplagant

I'op6ration "reste" par I'op6ration "pseudo-reste". Une famine 'F convenable peut 6tre extraite

de G. Alors

le degr€ de chaque polynome de g et de chaque pseudo-division est major€ par

6.(s+1)! , (sauf si n = 0 , done a = 0 , et les degr6s sont major6s par s ).

le nombre d'd6ments de la famine 9 est major6 par : (k+1)2:

Men6 jusqu'au bout, cet algorithme produit donc une explosion de degr6s obtenue en it6rant n–1
fois ( n 6tant le nombre de variables) la fonction s I I s ! . Ceci conduit a la majoration finale.

Nullstellensatz, positivestellensatz et nichtnegativestellensatz
r6els effectifs

Th6ordme 16 : Soit K un corps ordonn6, sous-corps d'un corps r6el clos R .

Soit H(Xl,X2„..,X„) un syst dmc de csg portant sur une famine finie de polynomes de

K[Xl,X2,...,X„ I . Ce systame est impossible dans R si et seulement si il est fortement

incompatible dans K . En termes plus formalis6s

Si & IHI(X1,X2,...,X„) I (dans K ) ,
alors les csg in sont impossibles a r6aliser dans

n'importe quelle extension ordonn6e de K .

Si Vx1,x2,...,x„ C R H(x1,x2,...,x„) est absurde,

alors : I Hl(X1,X2,...,X„) I (dans K )
Pr6cis6ment, si k est le nombre de csg dans A(Xl,X2,...,X„) et d le degr6 maximum, on

peut calculer une implication forte

I IHI(X1,X2,...,X,) I (dans K ) de degr6 major6 par le nombre F26(d,k,n) donn6

par la tour d'exponentielle a n+4 6tages

d.lg(d)+lglg(k)+ctc

22

Remarque : La principale cause d'explosion des degr6s dans la majoration finale actuelle r6side
dans I'utilisation de I'algorithme de H6rmander.
On peut donc esp6rer am61iorer sensiblement ces majorations en se basant sur d'autres preuves,
616mentahes mais moins longues, d'incompatibilit6.

Remerciements : Je remercie Marie-Frangoise Roy pour ses nombreux commentaires et
suggestrons
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Anneaux de Witt abstraits et groupes sp6ciaux

M. A. Dickmann

Introduction.

Cet article rend compte de rnaniare abr6g6e d’une partie d’une s6rie d’expos6s dont Ie but
6tait de:
( 1) Rassembler les r6sultats principaux de la th6orie des formes quadratiques sur les corps
de caract6ristique + 2, en mettant en relief les plus significatifs parmi eux en vue des
g6neralisations axiomatiques de cette th6orie.
(2) Pr6sentcr ces g6n6ralisations axiomatiques, notamment la Lh€orie des anneauz de LFfft
abst rails.

(3) Introduire une nouvelle th6orie axiomatique de forrnes quadratiques, la Lh£orie des
gTOupes sp6ciauT, 6quivalente en fait i celle des anneaux de Witt abstraits, mais beau-
coup micux adapt6e qu’elle a 1’6tude des formes quadratiques du point de vue des langages
du premier ordre,
(4) Enfin, pr6senter un premier r6sultat modble-th6orique concernant les groupes sp6ciaux
des corps de nombres alg6briqucs (extensions finies du corps des nombres rationnels).

Le premier point ci-dessus sera omis dans ce compte-rendu 6crit. Les r6sultats et les
constructions expo as se trouvent dans les Chapitres I-III et X de Lam [3], ct dans les
Chapitres I et 3 de Marshall [6]

Le point (4) est 6galement omis; iI fora l’objet d’une publication s6par6e actuellement
en pr6paration .

En ce qui concerne le point (2), nous nous bornons a une pr6sentation tr as succincte
de la notion d’arrneau de Witt abstrait et de certaines de leurs propri6t6s 616mentaircs
(celles utilis6es dans ce texte), avcc une discussion du sells des axiomes illustr6e par Ie cas
des corps. Les structures quaternioniques, briavement pr6sent6es dans l’expos6 oral, sont
6galement omises ici; on renvoie le lecteur int6ress6 au Chapitre 2 de Marshall [6]

Les gr-oupes sp6cinz= sant introduits au B2. Ils sont les mod&les d’un systame fini d’axiomes
simples formu16s dans un langage du premier ordre Irlath6matiquement naturel. Certains
aspects de cette th6orie du premier ordre sont discut6s briavement. Ensuite nous 6bau-
chons Ia construction de l’arrneau de \Vitt d’un groupe sp6cial et nous d6montrons:

Th6or ame. La correspondancc qui a chaque groupe sp£cial ass£gne son anneau de Witt
est une dquivalence entre ta cat6gorie des groupes sp6ciau= et celle des anneau# de Witt
abstra£ts (toutes les detr= munies cie leurs homomorphismes nature is). El

1
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L’article [4] (ce volume) contient un expos6 plus d6tail16 de la th6orie des groupes sp6ci
aux, oil 1’accent est mis sur les relations entre les groupes sp6ciaux r6duits et les espaces
d’ordres abstraits. Nous publierons ult6rieurement une 6tude plus compl ite de la th6orie
des groupes sp6ciaux, r6duits et non-r6duits, sous la perspective de la th6orie des modales.

1 Anneaux de Witt abstraits.

La notion d’anneau de Witt abstrait lut introduite par Knebusch, Rosenberg et Ware au
d6but des ann6es 70 dans le but de traiter de mani are axiomatique (ou “abstraite” ) la
th6orie alg6brique des formes quadratiques sur les corps. IIs r6ussissent a donner dans
ce cadre des preuves uniformes (et simplin6es) de beaucoup de r6sultats connus pr6al-
ablement pour Ie cas des corps; nous citons quelques exemples i la fin de cette section
Ult6rieurement, Marshall (dans le cas r6duit) et Kleinstein-Rosenberg (dans Ie cas non-
r6duit) am61iorent et 6tendent cette th6orie, L’expos6 ci-dessous suit, essentiellement,
celui de Marshall [6; Ch. 4].

D6finition 1.1. Un anneau de tY££t abstrait est une paire < R, G > oil:
(1) R est un anneau cornmutatif avec unit6;
(2) G est un sous-groupe d’exposant 2 du groupe multiplicatif RX des 616ments inversibles
de R contenant –1;
v6rifiant les axiomes (W1)-(W3) ci-dessous:
(\Vl) G engendre R additivemcnt, i.c. tout r e R peut atre 6crit (de maniare non-unique)
dans la forme r = g1 + . . . + g,, avec gI, . . . , gn e G, n ? 1.

On d6signe par TR l’id6al de R engendr6 par les 616ments de la forme a + b avec a, beG-
JR est appe16 \’id€a! fondamental de R.

(W2) i) ClaIR = q).

ii) (G + c) n /B = {a}

(W3) Pour n = 3: si g1 + - . . + g„ = h1 + - - - + h„ avec g\, . . . ,gn, hI , . . . , An e a, il existc
g, h, Za, . - - , Zn e G tels que 91 + g = /11 + h et g2 + '• ' + g„ = g + z3+• ' ' + z„ (d’oh
h2 + - ' ' + h„ = h + 23 + ' ' ' + z„). D

1.2. Explication des axiomes; exemples.
Le mod&le qui motive ces axiomes est celui de 1’anneau de Witt d’un corps, F, commutatif
et de caract6ristique + 2. Dans cc cas on pose

GLF) = FX 1 Fxl‘

(ou G(F) = FX/ E FX2 si 1’on v-cut faire la th6orie reduitc) , et

tV(F) = 1’anneau de Witt du corps F.

H/(F) est 1’ensemble des forInes quadratiques a coefficients dans F modulo 1’6quivalence
de witt,”N'”, muni des op6rations de somme et produit tensoriel; voir Lam [3; Ch.II,
jI] et 2.3 plus bas. On iderrtifie G(F) a un sous-ensemble de IV(F) par 1’app]ication
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gb} < g >/_, g e G(F). [Attention. Toutes les formes quadratiquds consider6es ici sont
en forme diagonale.]
L’axiome (W1) cxprime le fail 6 vident d’apr is la d6finition de somme de formes–que
toute forrne est la somme de formes unaires:

<R, . . @, > jn, =<% ) IN q) . . - B<K,> IN
L’axiome (W3) traduit la description inductive de l’isom6trie des formes de dimension
n > 3 en terrnes de l’isom6trie des formes binaires:

< ali ' ' • lan >=< bl 1 , 6„ > ssi iI exist;e a, 6, c3,
< a1, a > =

<cz29...9a„ > =
< b2 9 ' ' ' 9 bn > =

, c„ tels que
< 61, b >,
< a9 C39••• } Cn />9

< b, c3, . . . , c„ >

Dans l’exemple < PU(F), G(F) > ccttc caract6risation est un corollaire du th6orame dc
simplification de Witt; cf. Marshall [6; Thurs. 1.12 et 1.13].
En vue de la clause (2) de la D6finition 1.1 l’axiome (W2.i) dit, simplement, que l’id6al
IR est propre. L’origine de l’axiome (W2.ii) est moins imm6diat. Le th6or arne sub'ant est
1’un des r6sultats importants de la th6orie des formes quadratiques sur les corps:

Th6or ame. (Arasorr-Pfister) Soil j une jorme anisotrope sur un corps F. S; jI _ e
1(F)k , alors dimLf) = 2k . D

(KF) d6signe l’id6al fondamental dc IF(F),)

Corollaire. nL”=1 /(F)k = {0}. a

L’axiome (W2.ii) exprime, dorIC, la propri6t6 d’Arason-Pfister pour k = 2.

La preuve du th6orame d’Arason-Pfister utilise des extensions transcendantes du corps
de base F –op6ration sans analogue dans Ie cadre abstrait– et on ne sais pas faire
autrement. Pour des preuvcs de ce th6or arne, voir Lam [3; Ch.X, 53] et Knebusch-Scharlau
[1; 512]. Or, dans les cas A = 1, 2 il y a une preuve tras simple qui n’utilise pas de m6th-
ode g6n6rique, valable 6galement pour les th6ories abstraites. Nous donnons cette preuve
ci-apris pour Ie cas des corps

Le discriminnnt, d(/), at le discrinrinant signi, cit (/), d’une formc j sont d6finis par:

d(< a1, . Hi=1 al

(–l)"{-=-" d(/).

(al ) , a„ e G),
'4(/) =

Le discriminant est invariatIt par l’isom6trie des formes (vcrifiez) mds iI n’est pas invariant
par 1’6quivalence de Witt: < 1, 1, –1 >.v< 1 >, mais d(< 1, 1, –1 >) = –1 alors que
d(< 1 >) = 1. Or, Ie discriminant sign6 l’est:

1.3. Faits. i) i - g + '4(/) = dLtg~,

II) dILI b g) = C– II'I:mt/)dI"'lg>dIC /)dI(gI,
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Preuve. Pour (ii) utiliser: Cm+")CT+"-1> = m(";–1> + 2W + mn.
(i) suit du fait que db(< 1, –1 >) = 1. D

Alors l’application a tV(F) –} G(F) donn6e par:

aLI la =a),
est bien d6finie et a(o) = 1. Evidernment, a n’est pas un homomorphisme de groupes entre
< W/(F), a > et < G(F), . > (par exemple, 0(< 1 >/_) = 1, tandis que a(< 1, 1 >/_) =
–1 ), mais sa restriction a’ = a [< /(F),© > 1’est par 1.3(ii). En plus:

Proposition 1.4. L’npplicuLion a’ est un homomoTphisme de < 1(F), O > sur
< GLFI,. > , et ker(8/) = /(F)2. Alors te gro IIPC additif ILF)jILFj2 est isomorphe ir
< G(F), . >

Pre Ime. La surjectivit6 suit de dt(< 1, –a >/N) = a et < 1, –a >/_ e /(F), oil a e FX
Par ailleurs, KF) est engendr6 par les formes < 1,g >/N, g e CCF), car < g\, 92 >/N =
,~ 1791 >/_ or –1?g2 >/N. Donc9 /(F)2 est additivement engendr6 par les formes du
type< 17 ql >/N (a< lgg2 >/N = < 1>g1 ) 9239\92 >/N (appe16es formes de PFstcr de degr6

2). Comme
dt(< 1,a1,a2,ala2 >) = 1 (al, a2 e FX):

on a ker(a’) 2 /(F)2 (1.3(ii)). En particulier, a’ induit un homomorphisme surjectif
a" -.ItF)fItFj2 ) G(F).

R6ciproquement, pour prouver que a" est injectif –et alors que her(a’) = /(F)2 – il
sufbt de v6rifier que a" a une inverse a droite surjective; celle-ci est donn6e par:

rtal=<\l–„>1~,jltFb’
Cette application est bien d6finie, car < 1, –1 >/N est l’unit6 additive de IF(F). Elle
est surjective, car /(F) est engendr6 par les formes< ] , a >/_. Finalement, dt (< 1, –a >)
= a entraine que a11 o 7 = identit6. a

Corollaire 1.5. Soil I une forme sur- F. AJors,

(a) / / _ e /(F)2 ssi 4jd£n I.(/) et dt(f) e FX2
(b) Si jI _ e ILFI, ators U eliste une fOTTne g sur F teUe que gI_ e ILFj2 et I N
g O < 11 dEC/) >.

DEmonstration. (a) traduit le fait que kcr(a’) = /(F)2 (notez que /(F) consiste des classes
de toutes lcs formes de dimension paire)
(b) La preuve de la Proposition 1.4 montre que 7 est aussi inverse a gauche de a", i.e
I o a" = identit6. L’6norrc6 (b) traduit pr6cisement cette propri6t6. a

Maintenant nous sommes pr6ts i prouver

Fait 1.6. < TV(F), GkFl >b Hb.

Preuue. (W2.i) D’apras la d6finition de 1’6quivalence de Witt (voir 2.3(9)), il est clair que
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jh, g implique dimLf) = dinI(g) (mod. 2). Comme les 616ments d6 /(F) correspondent
aux formes de dimension paire et ccux de G(F) aux formes de dimension un, il s’ensuit
que GLF) n KF) = O.
(W2.ii) Soit //_ e /(F)2 n (G(F) + G(F)); alors f h,< a,i >, avec a, b e FX. Par la
Proposition 1.4, a’(//_) = 1, d’oil dt(n = –ab C FX1 , et b = –a (mod FX= ) . On a
donc / h' < a, –a > = < 1, –1 >, i.e. //_ = 0. a

Signalons i titre d’information g6n6rale quelques r6sultats majeurs qui peuvent 8tre
prouv6s dans le cadre des anneaux de Witt abstraits (Ies r6f6rences renvoient a Marshall
[6] oil ces r6sultats sant d6montr6s en d6tail):

Le principe local-global de Pfister (Ch.4, g4)
– La d6termination de tous les id6aux premiers et du nil-radical de n’importe quel anneau
de Witt abstrait en termes de son espace de signatures xR = Hom(R, Z) (Ch.4, B5).
– La d6termination du groupe multiplicatif RX des unit6s de R en termes de G et du
nil-radical (Ch. 4, 16).
–Une classification partielle des anneaux de Witt abstraits de type nni (Ch. 5) ainsi
qu’une classification compl&te dcs anneaux de Witt abstraits r6duits de type fini (Ch. 6)

Le th6orame de repr6sentation, qui caract6rise ft comme sous-anneau de l’anneau dcs
fonctions continues sur xR a valcurs entiers, c(xR, Z) (Ch.7).
– Le principe local-global d’isotropie (Ch. 9).

2 Groupes sp6ciaux.
Comme on vient de le signaler, les anneaux de Witt abstraits constituent une g6n6ralisa-
tion axiomatique assez richc de la th6orie des formcs quadratiques sur les corps. N6an-
moins, iI y a dans cette th6orie un point peu satisfaisant, au moins du point de vue du
logicicn int6ress6 par la perspective d’utiliser les outils de la th6orie dcs mod ales dans cctitc
branche de 1’alg&bre; i savoir, l’axiome (W1) est irr6m6diablement non-premier-ordre dans
n’importe quel langage adapt6 aux anneaux de Witt abstraits. Bien sar, cette difiicult6
ne nous emp6che pas, a priori, dc poser des questions de type mod&le-th6orique sur la
classe des anneaux de Witt abstraits ou sur certaines de ses sous-classes, mais elle peut
6tre 6galement une source de problames dans les investigations de cette nature.

Nous allons rem6dier a cet inconv6nient en introduisant une th6orie abstraite dcs
formes quadratiques qui est axiomatis6e par un ensemble nni d’6nonc6s simples d’un lan-
gage math6matiquement naturel. 11 s’av are, en outre, que cette th6orie est 6quivalente,
dans un sans assez fort, a celle des anncaux de Witt abstraits. Nous appelons cctte ax-
iornatisation at do Tie des gTorpcs sp€c iau:.

L’introduction de cetlte th6orie est motiv6e par deux observations tr as simples:
(1) Au lieu de consid6rer l’anncau de toutes les formcs quadratiques modulo 1’6quivalence
de Witt, on petIt essayer d’axiomatiscr Ia relation d’isom6trie des formes sur un groupe
arbitraire de coefficients, G, d’exposant 2.
(2) En utilisant la description inductive de l’isom6trie (voir p. 3 plus haul) –description
donn6e par des 6nonc6s du premier ordre au-dessus du groupe G– nous sommes amen6s
a donner une axiorrratisation de l’isom6trie pour les seules formes binaires.



M. A. Dickmann 6

Remarquablement, il s’av are que ce dernicr prob1 bme a une solution simple et 616gante.

D6finition 2.1. (a) Un gl-oupe spdcial est une structure < a, –1, =>, oil:
(1) G est un groupe d’exposant 2;
(2) –1 est un 616ment distingu6 de G;
(3) = est une relation quaternaire sur G;
(4) IIes axiomes SCo – se76 donn6s dans 1’article [4] (ce volume ) sont satisfaits
(b) On appele lungage des groupcs sp6ciuu= le langagc L = {-, 1, –1, =}, oil - est un sym-
bole d’op6ration binaire, 1, –1 des constantes individuelles, ct = un symbole de relation
quaternaire. On appele SG la th6orie du premier ordre de langage L engendr6c par les
axiomes Sqn – Sg6. a

2.2. Remarques (i) On aurait pu faire une pr6sentation alternative en prenant comme
primitive la relation binaire RCa, b) qui exprime Ia notion “a est repr6sent6 par la forme
< 1, b >” (a e D(1, b), dans la terminologie habituelle de la th6orie des formes quadra-
tiques), au lieu de la relation quaternaire =. La diff6rencc est minimale (pIQtot psy
chologique), chacune de ces relations 6tant d6finissable sans quantificateurs en termes dc
I’aut re

RCa, b) ssi < a, ab >=< 1, b >,
< a,b >=< c, d > ssi ab = cd A R(ac, cd)

Les axiomes sao – Sg6 peuvent, etre traduits facilement en des axiomes 6quivalcnts ex-
prim6s en termes de la relation binaire R (cf. [2; pp. 183, 186]).
(ii) Remarquez que la th6orie SG est donn6e par des axiomes universels-existentiels
(890 – SC75 sont universels; seal Sg6 cst VI). Il s’ensuit que SG est close par lim-
ites directs filtrants. a

Dans ce qui suit nous indiquons Ia construction de l’anneau de Witt d’un groupe sp6cial
et prouvons 1’6quivalence entIre la cat6gorie des anneaux de Witt abstraits et celle des
groupes sp6ciaux.

2.3. L’anneau de Witt d’un groupe sp6cial.
A chaque groupe sp6cial < a, –1, =c,> on associe un anneau de Witt abstrait H“(G)

La construction de IF(G) s’cffcctue selon une procedure bien connue; nous indiquons sans
preuve lcs pas a suivre, en renvoyarrt i Marshall [6; Ch. 2] pour plus de d6tails.
(1) A pdrtir de la relation = on d6finit, par recurrence sur n = 3, une relation binaire
(“isom6trie” ) entre 7z-uplcts d’616ments de (; (que nous appclerons “formes quadratiques
de dimension n sur a” )

a„ >=8< b,<a , b„ > ssi il existe a, 6, c3, . . . , c„ tels que
< al, a > = < 61, b >,

< a2, . . . , an > =F;1 < a, c3, . . . , c„ >,

< b2) . . . 1 bn > =Z– < 69 c3 9...9 Cn >

(2) Pour tout n = 2, =a est r6nexive ct sym6trique (pour n = 2, c’est l’axionlc saul
r6currence, pour n ? 3).

(3) Pcrmutabilit6 de =Z: si r est une permutation de {1, . . . , n}, alors < a1, . . . , a. >=Z,
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< a„(1), . . . , b„(„) > (pour n = 2 c’est 89l; r6currence, pour n ? 3; Cf. [6; Prop. 2.1]).
(4) 1 =8 g :- dCf) = d(g);
(le discriminant est d6fini comme en p. 3 ci-dessus; pour n = 2 c’est Sg3-, r6currence pour
n ? 3; cf. [6; Prop. 2.2])
(5) J =8 g :- al =a ag;
(a- < a1, . . . ,an >=< aa1, . . . , aa„ >; pour n = 2 c’est Sg b', r6currence pour n = 3; cf.

[6; Prop. 2.4]).
(6) Transitivit6 de =a pour tout n ? 3.
Pour n = 2 c’est Sgo. Le cas crucial ici est n = 3, oil la transitivit6 est assur6e par 896.
R6currence pour n ? 4
Not;a. Celui-ci est le seul r6sultat d61icat. II est utIi Ie de comparer avec Ie cas des corps,
oil la transitivit6 de l’isom6trie est banale, tandis que le th6orime de simplification est
d61icat .
(7) D6finition (6vidente) de la somme et du produit de forme$ quadratiques. On prouve
sans difficult;6 les r6sultats suivant,s par r6currence sur A pour n fixe:

i) g =Eg’ ++ fOg ='fk jCD g’.
ii) i =kG f’ /\ g =% g' + fOg =Th f'Qg'.
iii) J=kGJ' h g ='& g’+J® g =V J'®g'.

(Cf. [6; Prop. 2.7-2.9]). L’implication (. i ) dans (i) est le th6oTETne de simpliFca tion dc
Il/itt
(8) Definition (habituelle) de rcpr6sclttation ct de fol'me isotrope-.

a el)c,(< a1, . . . , a„ >) ssi Ir2, . . , , r„(< a,1,...,a„>=::<a,z2, . . . , r„ >)

Pour une forme f de dimension n = 2:

f est isotropc ssi iI existe une forme q, dim(g) = n – 2, te11e que I =a g a < 1, –1 >.

On prouve sans difiicult6

i) Dti o g> = U{I>(< =.u >) I - c DtJI 't y e D(g)}.
ii) f O g isotropc ssi il exisLe # e D( f) tel que – r e D(g)

(R6currence sur k pour n Rxe, oil dintLf) = k, dim(g) = n; cf. [6; 2.10 ct 2.12].)

(9) D6flnition (habituellc) de \' 6quivalence dc IViN:

iN, g ssi iI cxiste k, leN tels que I a b < 1, –1 > = g O 1 < 1, –1 >,

oil = d6signe “=Z” pour un n convenable (dcsormais nous omettons Ie “n” dans =a, sauf
en cas de besoin).
On prouve facilenrcnt qtle “N,” est unc relation d’6quivalence compatible avec les op6ra-
tions (D ct 8; dorIC, 1’ensemble Unc}{(7n/_ muni des op6rations induites par a ct 8 est
un anncau commutatif a)’ant < 1, –1 >/N comme unit6 additive et < 1 >/N comme unit6
multiplicativc. On l’appclle l’anneau dc Half de G, note TV(G’).

Proposition 2.4. < iF(a), a > esl un annca& de l’F£ff abst rad
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(On identifie G a un sous-ensemble de tV(G) par 1’application qb> < g >/_.)

D6monsLr'aLion. (W1 ) cst clair car toute forme cst somme de formes undires. (W3) esl
6vidcnt d’aprbs la d6finition de =Z (description inductive de l’isom6trie). Pour v6rificr
(W2) iI sufTit de r6peter la preuve de 1.3, 1.4 ct 1.6, on utilisant Sg2 dans Ic dornier pas
de 1.6 E

R6ciproqucment, on a:

Proposition 2.5. ,4 tout anneau dc }l/'£££ absLr'tlit , < R, GR >, on petIt associer un groupe
sp6cial, < GR, –\, =/?>, ot –1 est le –1 de R, et pozr a, b, c, d e GR',

< a,b >=R< c,d > { *,, a + b = c + d (dans /?).

D6lnonstraLion. La v6rification des axiomes Sqn – Sqn se fait sans difTicult6 sauf, pcut-
6tre. dans les cas suivants:

Sg3) Supposons < a1, a2 \-=R< 81, b2 \,, i.e. a1 + a2 = b1 + 62. On calcule:

(al – a2)(a1 + a2) = a1(a1 + a2) – b1 (61 + 62) = af + ala2 – bf – blb2 = ala2 – blb2

DorIC, ala2 – blb2 C /i n (C + G); par (W2.ii), on a: ala2 = blb2
SC/6) En utilisant (W3) pour 1’implication (•: ) et la definition inductive de =Z pour
( ;.),.„ -

< al, , a„ >=Z< b,, . . . , b„ > A al + ' ' ' + a„ = br + + b,,

pour n ? 3; alors, =a est transitive. D

Les notions naturelles de morphisme pour les anncaux de \Vitt abstraits et pour les
groupes sp6ciaux sont Ies suivantes:

D6finition 2.6. (a) Un homomorphisnre d ’art7reaur de IUft abstrui Fs, p :< R\, Gl >–>
< lb , G2 >, est un homomorphisme d’anneaux unitaires y : B1 –} /t2 tel que P[61] C
02
(b) Un lbomoTrtorphisrrrc dc groupcs sp6cinur, Vt :< a1, –1, =c, >–}< C72, –1, =c,, >, est
un Iromomorphisme dc groupcs VI : G\ –} a2 tel que O(–1) = –1, et pour a, b, c, de
al

< al b >=G1 < c' d > ;• < +(a) ! O(b) >=G2 < $(c) I @(d) > • a

Les classes des dnncaux de Witt abstraits et des groupes sp6ciaux, munies des notions
de morphismes que nous vcnons de d6finir, constituent des cat6gorics que nous appelerons
AWA et SG, respectivement. Nous allons prouver ensuite que les constructions de 2.3 cl
2.5 donnent lieu a une 6quivalence entr e ces cat6gorics

2.7. Notations. (a) On d6signc par \P : A\VA 1 SG le morphisme qui a chaquc
anneau de \Vitt al)strait associe le groupe sp6cial construit dans la Proposition 2.5:

Q ( < R, CR > ) = < OR 1 – 11 =R> I
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et qui a chaque homomorphisme d’anneaux de Witt p :< Rl, Gl >–}< /?2, a2 >,
fait correspondre l’homomorphisme de groupe s sp6cia,ux W(p) :< Gl, –1, =n,> ,
< (12, –1, =R,> d6fini par

W(9)(g) = y(g) (g e Gl)

(b) R6ciproquement, on d6signe par Q : SG –> AWA le morphisme qui a chaquc group(-
sp6cial associe son anneau de M7itt:

Q(< G, –1,=c.>) = < iF(a),a >,

et qui a chaque homomorphisme @ : < C1, –1, =(,, >–>< C2, –1, =a,> dc groupcs
sp6ciaux fait correspondre l’homomorphisme d’anneaux de Witt abstraiLs Q( O) :
< TV(Gl), (71 >–}< UP(62), a2 > donn6 par:

Q(+)(< gIl. . . ign > f a = < $Lg\)I...$tgrl) > 1- pour gl, . . . , gn e G'I .

[Q( P) est bien d6fini: dP respecte la relation =; par r6currence, il respecte aussi la relation
=” pour tout n ? 2; comme il respecte 1 et –1, iI respecte aussi 1’6quivalence de Witt
O($) est 6galement un homomorphisme d’anneaux de Witt abstraits.] D

Th6orame 2.8. Le foncLeur @ dtablit unc 6quivatence enLre les cat.6goTies AWA cf SG
Le foncte tLr Q est sox adjoint

Avant de faire la preuve de ce th6or ime d6montrons que la construction donn6e dans
la Proposition 2.5 suivie de celle dc 2.3 about;it a un anneau canoniquement isomorphe i
celui de d6part.

Lemme 2.9. Soil < R,Gn > un an7teau de tY£fZ absLrail. /tIers < tV(Gn), Gr: >Z
< R,GR > canoniqaement, paT t’application p r W URl –+ R dC$nie par

#(< gl,. . . , gn >/-) = gI + ' - ' + gn tda,is it)I (gll - - - ign e oRy

Avec la notation de 2.7: Q(W(< B,a >)) =,< R,G >.

D6monsh'aLion. (i) p est bien d6finic, i.e.

(#) < g\\- - . .gn >-n< g’,,....g'„. > :' gl + - ' ' + gn = g: + - ' ' +g;„ tda1. s it)

D’apras la d6finition du c8t6 gauche, voir 2.3(9), il suffit de prouver cette implication
lorsque rn = n et < g1 , . . . , g„ >=R< g{ , . . . , gl >. Ceci se fail par r6currence sur n; pour
n = 1 iI n’y a rien i prouver; pour n = 2 c’est la d6finition de =R; pour n = 3 ut.ilisez la
d6finition inductive de =%
(ii) p est un homomorphismc surjectif d’anne,lux de Witt abstraits;
par p(< g >/_) = g pour q e Gn, et l’axiome (W1 )
(iii) p est injective, i.e. la r6ciproque de (#) est vraie.
D’abord on observe:

(**) gI + ' ' ' + gn = O ave' g\,. - . ,gn e GR + „ pair.
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DorIC, gl + - ' . + g„ = q: + . . . + gl implique n = m (mod. 2). Si, par exemple, n < in, on
a 1’6galit6

gI + ' ' ' + gn + (1 + –1) + ' - - + (1 + –1) = g{ + ' - ' + g:,I

avec (m–n)/2 termes (1+–1) et le meme nombrc de termes des deux cf)t6s. Alors, on pcut
supposer n = rn; par r6currence sur n = 1 on mont;re que < g\, . . . , g„ >='R< g{ , . . . , gl >
Le cas n = 1 est gratuit, et Ie cas 71 = 2 est la d6nnition de =R. Pour n ? 3 utiliscr
l’axiome (W3), Ie cas n = 2 et l’hypothase de r6currence.

Pre true dc (##). On doit prouver que q1 + . . . +g„ + 0 pour n impair (n = 2k+ 1, disons) et
g\ , . . . , g„ e Gn. Si k = 0 c’est clair, cdr 0 ( Gn (GR g RX ). Si A ? 1 et g1 + - - ' + g„ = 0,

on a –q„ = (91 + g2) + (93 + g4) + . . . + (g2k_1 + g2k). Or, le c6t6 gauche est dans Ga,
tandis que Ic c8t6 droit cst dans IR, ce qui contrcdit l’axiomc (W2.i). a

D6rrbonstrution du Th£ortmc 2,8. D’apras lc Th6orame 1, 84, Ch.IV de Mac Lane [5] les
points (1)-(3) ci-dessous prouvent que le foncteur W est une 6quivalence de cat6gories. On
la,isse la preuve d’adjonction en exercise.

(1) Pour tout < G, –1, =c,>b SG iI existe < E, IT >F AWA tel que Q(< R., H >) =
< G, –1, =,>
Prertue. Prendre fi = IV(G) et /7 = (i

(2) W est plein, i.e. 6tant donn6s < Ri, Hi > b AWA (i = 1, 2) et un homomorphisme
de groupes sp6ciaux dJ : W(< Bl, a1 >) –} W(< /?2, a2 >), iI existe un homomorphisme
d’AWA, p :< Rl, Gl >–}< It2, a2 >, tel que W(p) = O.
Preuue. D’apras 2.7(b) l’homomorphisme dJ induit un homomorphisme d’ AWA

Q( d) TV(W(< R,,G', >)) –> TV(Q(< R„ G, >)).

Soit pi : TV(W(< [ii, Gi > )) –} Ri (f = 1, 2) l’homomorphisme donn6 par le Lemme 2.9
On pose:

y = P2 o 'b($) o Pi\ : < Rl, Gl >< /?2, a2 > .
D’aprbs 2.7(d), W(p) = O est cons6quence de pCg) = +(g) pour g e a1. Cc)mmc
p,-(< h >/_) = h pour h e fi, ( i = 1, 2), et Q( d)(< h >/_) = < $(g) >/_ pour q e Gl,

(,,(g) = (#2 . a(d))(pi1(g)) = /',2(O(t/’)(< g >/-)) = Pat< :/’(g) >/-) = $(g)

(3) \P est fidale, i.e. 6tant donn6s < Ri.. A,' > b AWA (f = 1, 2) et des homomorphismes
d’AWA, p,, p, :< R, , G, >–>< R,, G , >,

@(yI J = '1(#2) ;- ?1 = '?2.

Pmuz'c, Soit d' i = \P(pi) :< G'1, –1. =c;1 \, I < C2, –1, =c, > ( i = 1, 2). L’hypoth asc

lb\ = tbl donne 6videmment 'I(#'1) = Q(V'2). 11 sufTit, done, de prou\’er:

(3’) Et,ant donrr6 un homomorphismc d’AWA, y :< /?1, G\ >–>< B2, a2 >, soil @ =
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@(9)' Alors y = #2 . Q( d) . Pi1

Preuve de (3’). D’aprbs la d6finition de Q(p) (2.7(a)) on a pCg) = +(g) pour g e (71
Aussi on a

Q(V’)(< gl } ign > id = < $(gl)7 . . . V,(%) >1 - (2.7(b))

a(< g\B- ' - ign >/-) = gl + - ' - + gm (gl, . . . , gn e Gi) (2.9).

et

Si r e Rr, alors r = g1 + . ' . + g„ avec q\, . . . , g„ e a1. DorIC on a:

(n a Q(#) a Pi1)(„) = tn2 a Q($))(pi1(gl + ' - - + gm)) = p2(Q(+)(< gl3...3gn >/-)) =
= n(< +(gl)I. . .$(gn) >/-) = @(gl) + '- ' + d’(gn) =
= y(gl) + ' - ' + y(gR) = ?(„). D

Remarques. (a) Le point (3’) de la preuve pr6cedente montre, en fait, que le foncteur
O est plein
(b) ltappelons qu’un anneau est dit r6duit si son nil-radical est {0}. Un groupe sp6cial
est dit rCd Inl s’iI v6rifie l’axiome:

Sg ,,d) Va(< a, a /=< 1, 1 > –> a = 1).

On d6duit fdcilement de Marshall [6; ThIn. 4.27] que:

< fi, a >b AWA r6duit -+ < G, –1, =n>b SG r6duit,

et

< G, –1, =c.>E SG r6duit + < Vf(G), a >H AWA r6duit

C’est-X-dire, les foncteurs Q, Q, donnent aussi une 6quivalence entre les sous-cat6gories
des AWA r6duits et des SG r6duits.

(c) Le Th6or ame 12 de [4] montre que la cat6gorie des groupes sp6ciaux r6tluits est
isornorphe a la cat,6gorie oppos6c de celle des espaces d’ordres abstraits. D
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TIIEOItIES ASSOCIATED WITH A VECTOR SPACE

OL£a V. BELECRAD£X

In 1988 at Durham conference on Model Theory and Group8 Ulrich Felgner
posed the following problem. Let F be a field. For which c&rdin8l8 R, R1 the group8
GL(R, F) and GL(#1, F/) are elementarily equivalent? An analogou8 problem was
posed for other cl&8sic81 group8.

The 8imil ar problem for symmetric group8 was 8tudied by Yu,M.V&zhenin and
V.V.Ruin, R.McKenzie, A.G.Pinu8 and, finally, by S.Shel ah who gave a criterion
of elementary equivalence of the groups Sym(#) and Sym(#f).

The aim of thi8 talk is to report on a 90lution of Felgner’8 problem due to
Vladimir Tolstykh, a rnearch 8tudent of mine [TI,2]. Some intermediate and r&
lated rmult8 were obtained in [BT].

Let V be a vector 8pace of infinite dimension R over a skew field P. We consider
the following 8tructure8 &s$ociated with this vector space.

Denote by GL(Y), PGL(7), rl(r), PPL(Y), End(V), End(K) and P(V) the
general linear group, the projective linear group, the collineation group, the projec-
tive collineation group, the endomorpbi8m ring, the endomorphi8m 8emigroup and
the lattice of 8ub8p aca of the vector 8pace Y, rapectively.

Let V denote the vector 8pace above con8idered a8 a tw080rted 8tructure; ib first
&ort is the aeC of vectors, it8 8econd 80rt jg the 8et of 8c alan, and ita b&8ic relations
are the vector addition, the field operations and the operations of multiplication of
vectc>n by 8caIar8.

Denote by (6, F) the following tw080rted structure: it8 nr8t nrt jg the cardinal
N, it8 8econd sort 18 the universe of F, and its only relation8 are the skew field
operations on F.

For a structure a and a logic I, we denote the theory of Z in the logic I by
Th(a, I). If E is the first order logic, we write simply Th(a),

For an infinite cardinal A, we denote by La(A) the &ocond order logic with quan-
tifier8 over relation8 of power < A; Mon( A) i8 ita monadic fragment.

We denote by Th(V, End) and nI(Y, Sub) the tbeoria of Y in the second order
logic8 with quanti6er8 over endomorphi8m8 and 8ub8p aca of the vector op ace Y,
rnpectively.

Theorem 1. The following theoriw are 3ynt&ctic aity bi-interpret able (uniformly
in & and F):

,) Th(GL(y)),
b) Th(PGL(V)),
c) Th(End(Y)),
d) Th(End(V)),
e) Th(P(V))I
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f) Th(V , End),
g; Th(VI Sub)I
h) Th(V, Mon(#+ )),
i) Th(V, L2(#+)),
j) TA(('I F) , La('+)),

Note that the bi-interpret8bility of Th(PCP)) and Th((n, F},L2(H+)) improYa
the following InuIt of M.Magidor, J.Rosenthal, M.Rubin and G.Srour [MFtRS]:
for any infinite field P, the &econd order theory on the cardinal min(IPI, R) is
8yntactically interpretabIe in Th(P(Y)).

Let V and Y1 be vector 8p aca of infinite dimen8ion8 R and 61 over skew net(18 F
and F1, rmpectively. Let X be one of the functor8 GL, PGL, End, End, P. Denote
T(R, F) = Th(k , F), L?(R+)). As a con9equence of Theorem 1 we have

Corollary, H(Y) = H (V’) iff T(E, F) = T(R’ , F1),

Thi8 givu a satisfactory criterion of elementary equivalence of 8tructure8 of the
form H(Y) and, in particular, a &olution of FeIgnertg problem.

Denote the condition T(#, F) = T(R’, F1) by (+). Note that it is ” algebra-free”
as far as pmsible and in many casa can be easily checked.

Clearly, (+) implia that
(1) # = IPI iff d = IF’I;
(2) B > IPI iff N’ > IF’I;
(3) N < IPI iF #’ < IF’1;
(4) N and d are &econd order equivalent;
(5) Th(('I F). La(„+)) = Th((R’ . F'} . La('")).
If # 2 IPI, the condition (+) i8 exactly the &eoond Older equivalence of the

8tructure8 (R, F) and (sf , Fl}.
If # = IPI then (t) hold8 iff #’ = IF’I and F, F’ are uma(I order equi%]ent.
If R S IPI then (+) holds ia 61 S IF'I and Th(F, L2(4+)) = Th(F1,L2(d+ )).
It K ? IPI and F can be dacribed up to L&omorpbi8m by a 8ingle noond order

8entenoe then (+) bold8 iff d ? IF’i, F = F' and # and 61 are &econd order
equivalent. (Exampla of 8uch F are Q, R, C and finite fields.) in the case of
# < IPI the criterion don not work. For example, T(#, F) = 7(Ro, R) iff # = No
and P = R; however T(A, F) = T(Ro, C) ifF # = No and F 18 an uncountable
&Igebr&iaally clcned field of aero characteristic.

For the group8 rl(Y) and PPL(V), the 8itu8tion b more complicated.
Let S(#, F) be the thaory of the 8tructure {R, F) in the econ ci order logic with

qu8ntifier8 over arbitrary rel&tion8 of power $ 4 and over 8utomorpbL8m8 of F. If
It Z IPI, the theory S(#, F) jg in fact the 8ame a8 T(8, F). For 6 < IFl, the theory
5(A, F) i8 in general stronger than T(R, Fy. for example, S(#, F) = S(No, C) iff
R = No and F = C, in contrast with the remark above.

Theorem 2, The theoriu Th(FL(Y)), Th(PFL(V)) and KR, F) are pairwise syn-
tactically bi-interpretable.
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Espaces d’Ordres Abstraits

Arileide LIRA PEREZ

Sornnrair e .

Les cspaces d’ordres abstraits out 6t6 introduits a la fin des ann6es 70 (plus pr6cis6-
ment en 76) par M. Marshall dans son article “ A Reduced Theory of Quadratic Forms” ,
Queens paper nP46. Depuis, toutc unc th6orie fat d6velopp6e. Elle toucha aussi bien
1’6tude des formes quadratiques associ6es aux anne,lux de Witt que 1’6tude de la th6orie
des espaces d’or(ites (1’un corps. Les r6sultats Ies plus irnportants de cetlte th6oric, obtenus
essentielleIuent par N'I. Marshall, sont (lorrn6s ci-des:sous. L’6tude de l’axiome O4 , ainsi que
certaines d6nronst.rations sont des r6sultats dc 1’aut;eur,

Introduction.

On commence par introduire Id notion d’esp,lcc d’ordres abstrait. Ensuite on 6tudie
l:axionrc O4 qui apparait dtIrIS la d6finitiorr clc ces cspaces. OII eII donrr(: deux ft>rmulatiolrs
(“quivalentcs fortes lrtiles en pratique ( Pn)position 6). Da.nb la section 'Structures Asboci6es

a UII E:space d’Ordres’, on irrtroduit tr as bri&verrrcrrt quelqu(.’s constructions corrcerrrarrt lcs
(’spaces cl’orclr(_'s ; norls rrotrs I)(url(nls ilrrx ('onstru('tions I)rirrcip tIles ; (t’autres p('lrvent at,re
trouv6es dans les r(’'fC'rences

D6finition l: Soient G un groupe rrnlltiplil-at if d'expc)sant 2 f#2 = 1, Va.' e GJ avec un
616nrerrt dist;nguc< –1 c+ X C .t( G) = A orllIG . {+1} ). Le couple ( X, G ) est. un espace
d’ordres abstrait si les axiornes sui vant s soIrt v6rifi6s

Q1 ) X est un sous t:nsemlrle farIna de ,T( C)

O2) a( –1) = –1. Va e X.

oq ) Si f et g sont deux fonnes quadratiques sllr' G . alors

R.< f '+ g >= \ R( r .y /'; r e R,( t \- et u e I?< 9 '>}

(\'oir d6firririon tI(' p < ! > clans la rerrrarque (2.4) ci-dessous. )

Remarques 2:

1) Lil t(>pologic' rtc
forrrre

, T( G ) €'st Ia 1)Ins l>c't,itc' qui r<'r1(1 corrtirru(’s tc>IIt(’s les fonct,it)Irs dr la

{1. –1}
a( a )
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L'c'ns('Irrl)1(’ { 1. – 1 } est nrluri dc IiI topologic’ discrete. Cne sous-lias(' clr rette
toprilt)Ric cst (lorrnt’'c' I)hr los €’rlsc'rrrl)1('s if( r/. : ) = {a e .I’( C), a( a ) = =} oil a e G
ct : e { 1.1 } . Av€'c tx'ttc’ to1)oIt>Rio, ,\'( G ) t'st lrn gr(>lr1)€' topolc)gi(III(' ('orrrpact et
totitl('rrr('IIt (Iis('olrtirrlr

2 ) Lrrc' forrrre quadratique de dimension n sltr G thE IIrr I1-111)It’t f =< ri ] , . .. II „ >.

av('(' fIr . ... fI „ e (; . Soit q =< II\ . ... I)„, >: OII (I(qfirrit IPS op6rittioIIS de soIrrrrrc et
Dro(Irrit ('0111111(' srrit

{

f -i- q =< r/ I . .. . rr „. b1 . .,b,„ >

f . q =( r/ 1 /11 . .. . r/ I b,„ . ... a „Ill . ,.. rl nI)m )

(if =< ri ) -' f =< ar/ I . ,.. r/r/ „ >, Va e G

3) Etarrt dc)rrruit’s deux fc)rmes (lrlaclratiqlr('s .f =< rr1. ... a„ > ct ly =< br ,
G. 011 flt;filrit l:1 r(’IiIti011 (I'isonr6t.ric itirrsi

> SUI

.I- T r/
II – Ill ,t E. at„,) = X. ,r(b,). Va eX

C'('tt,(’ r('lnti011 ('st ('lilircrrrcrrt IIrr<’ r(’1:trioII (I'(“(IIli\’al(’rr('t’.

4) Si f ={ r/ 1. . .. a „ >, rr, e G. c)II (l£’'fiuit I'errsernble des 616ments repr6sent6s
I)zlr' ./ t'0111111(' slrit

[? '- / >= { b E G: I III. ... A„ C G: .f f< A. IIZ, .,, II„ -'/}

Exerrrple 3: 1,’t'xt'rrrplc' l[' I)llrb rrzLt\rrcl ( il ht'rt ccirrrrrrt’ rrlt>tivittit)11) d’IIrr ('spacc' d’ordrcis
al)strait rst 1’CSp;It'[' fl'orrlrt's (I'un cc)rps f(>rrru’llc*rrR'rLt r6i'l. C"('st-it-dirr. si F cst url c(>rps

f(’)rnr('llf'rrr(’IIt r(’'i'1. ( )I1 ])r('rr(I

G r = F /'=F': c\ .V( F ) = { SoII/J P t'st c)rclrt' rIc' f }

S g 1 1 /J : G / F 1 ; a { t 1 b n 1 } ( 1 s t : S Hf/ I / / ) ( d / Efa ) = { 1: i lieafP poll rae Pr

AloI's. ( .\’( F ). C; I' ) (’st IIII I'S;I);I('(' (I'orrlrf ’s ;It)strait

Ln I)rt'lr\l* ft('s !!:\:ioIII(’s 01 – C)3 (’st (’'ltlrrr(’rrtair'(’. si 011 rltilist’ la 11l6oric (I'Artirr-
Scllrc'ier. P in t-f>lrtrt'. I)t>llr prt)IIve’r l-tlxic)rlrt* O. I (III filit al>pt*1 all principe local-global
de Pfister.’ ( vc iiI . I)ilr €'Xt’IIII>It'. Lzlrn [t 1 ] . c-Ii. S. b4, tnt p(nrr lrrrr' v('rbi( in abstraite. XIarshall
[]/6]. tlrrrI. 4.12 )

Exemple 4: C't>lrhi(It"rr>llb ( R. GH ) tIll tLrrru'z III cl€' \\’itt al )str;lit It“(llrit ( vc)ir [I/b] , CII. I\r )
ct b( lit , I'! R \ = H dll.'l if. Z ). Alt irs ( .\- IR ) , G /r ) c'st 1111 t*sl);lc'c' (l-(>r(Ir€'s alistrait
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L’axiome O4

OII dorrrre ici IIne caract6risation de l’axiome O4, qrli est sQrement l’axiome le
nroins clair (Ict tolls c(?ux qui appara,isserrt darrs la (16firritioII des cspaces d’ordres. Le
probl alIIe. potrr obt('nir une form(: plus “parlante” de l’axiome O4 avait 6t6 po'56 par
plusieurs sp6cia.listes en forrnes qua(Ira,tiques. Or, je me :luis appergue err 6tudiant les
groupes sp6ciaux (voir l’article suivarrt ) que l’axiomc O4 6quivaut, cn fait, a identifier la
relation d:Isom6trie. \’air remarque 2.3, et celle d’Isom6trie Forte, dont la d6finition
est dorrn6e ensuite

D6finition 5: Si (,\-, G') est un cspacc d’ordres al)strait , on d6finit par r6currence sur
la dimension. la relation d’isom6trie forte polzr' les formes qua(Irati(lrres SUI- G. cc)in'
nie SUIt

< (t . b >=< c. d, >
.\

H < a. t) >=< c. d >
X

< al I .IT, ?/, :3, ..:„ e G t eIs que

< al, p >f< bl. y >

< a2, .., a„ >T< a, :3, ..:n >

< 62 ,

(Notcz que la H'lati„11 ; n’,'st pas. i pri„ri. tr„nsitive. )

C’orrsi(I(’'r< )Irs l’axi( )Inc suivalrt

Os) Va e .T( G) tel que a(–1) = –1. a e X ssi V a e it f r a, P< 1. a >g it er a

Dans [ 1/2] et [M3], X'Iarshall a d6rrrorltr(’' que cct axiome cst une rons6quence de
Or ), O2 ) et O4 )

Proposition 6: goff X g .T( G ) tcl qrlc' _\' k of. O2. Oli alors les propri6tt’ts strivantes
so Ilt 6qui\'alf'lrt cs

ii) X b O4

iiiJ ! e.t 3-r,.„siri IT, ,r 'Y b O‘

(: 3-t„„„iti,„' Vt„,t f li,. clu-.11. „t t„,n,iti vc' „,„ It's ft>rn,ps (it' di„x'„,i.n 3. )
D III I,t)it. SIT(bt,IOrI,

(i )+( ii) On fair la r6('urren(r' SIIt I = IIII Ill f ). S(>ierrt f =< a
ct h e D< f ' ! ' r/ >; al(>rs

, . (lk >. g =< at+1, ,. a„ >
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I b2, .., b„, f O> g s< b, b2, .., b„ \' ssi I r, y, ;3, .., Zn, tels que

(1) < a1, a >+< b,y >

(2) < a2, ..,an >?< z,73,

(3) < b„ .,,b„ >{< y, z„

Par (1 ), b Cp< al, r > et par (2), 1 C p< g >

e b > 1. Par ( 1 ), b e p< a1. .r b cit par (2). I: e 4? ( < a2 , .., at > ag). DorIC par
hypothbse de r6currence :

I c e la< a2, .., ak > et (1 e P< g > tels que = e P< c, d >

Mds b C I?< a1. r >gp< a1, c, d >={} ( < d > 't < al, c >)
Donc, en Ltihsant Ie ca s, A’ = 1 on a

I c e D( al, c ,>, tel que b e D< d, c >=D< c, d >,X -' ' ' X X

o''' ' e ?< “„ ' > C #< ri' . fl” .., a „ > = ?< f > et d e p< g >

(ii)+(i) Claircment, e :' e. R6ciproquemcllt, si < al, .., a„ >?< bl . .., b„ > et n ? 3

alors a1 e {) ( < 61 > O < b2, ... b„ '>). DorIC, par O4, ly e P< b2, .., b„ > tel que

a1 e P< b1. y >. Ceri 6qui\'aut a

( 1) ] .t e G, < a it y>>=< 61.\

b„ > T< g , I ',
>It

Das que y C p< 1)'z , .. . b „ >, on a

( 2 ) 1 :3 , -., ; II e Gq < 62

et par Irypotlr ds(? de r6c\rrrerrce < 62 , b„ >T''', y. :3. ''. :„ >' Alors:

< (t 1 1 •• - all >

p'„ (2)

par (r>

f <' bl. ... b„ >=< 61 > Ft <, t)'z . .., b„ >

e< bI > ") < y . :3. ... :„ >=< bl. .y > + < =3. .., :„ >
=< al. .r > + < =3. ... :„ >=< al > 'S < .c, :3, .-, :„ >

Ainsi < (12. ... a „ >q< .r . :3, ... :„ > et par hypoth ise de r6crrrrence,

a „ >;<' .1:. ::+ . ... : „ >. C(’('i proIIve gII('' < a1, ... a„ >=< b1 , .., b„ >< a2
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(ii)+(iii) Si X b a1 , alors X est un espace d’ordres. Donc, X H O3 (Marshall [M3]

lemme 4.1 ). Commc on vient de montrcr que (i)++(ii), on s,lit que g coincide avec e,

qui est trivialenrerrt 3-tralrsitive,

(iii)+(i) II suffit de prouver que ? i- i. Si ; est 3-transitive. alors par r6currence, on

P,.u„, q„, + „t t„nsiti„, (v.i, [n/,],th,n. 2.6), d.., .„ P,ut ,,n,t,„i,, i partir de 'Y
l’anneau de Witt associ6 a :. On l’appellera TV*(X). D6montrons d’abord

Lemme 7: li existc IIlle corr-esl)ondaIrre bi uni voqlle entre _X et H Ollll W'*(,\- ), Z).

D6mon.stTatiolb ; Soil X X X0711.( H''*( X ), Z) d66ni conlnl(' suit

Va e X, @(a) = 8, oil &o = E a(ai)
1

On d6signr I)nr la classe de la forme < a1, . .. a„ > dans T/F*(X), c’est-a-dire
la classe de < a1, ... a„ > modulo 1’6quiva,lence de \\;itt

Etant (lonn6 p e Holll(T'\’*(X ). Z). sc)it av : (; I Z 1’application d6finie par
av( a ) = p( m). Corrnne < a > C: < b >P< ab >, av cst un homomorphisrne et,
,.m„„ a,(,2) = „,(1) = 1, „, p„„d ,', „„I,i„ d,., {1, –1}. A„c:' O„ .n p,ut, p,,u-
ver facilerncnt quc: p e _\' (exercice). Clairement, g( av ) = &g = y, c’est-i-dire \P est
surject rvc

En reverrarrt a la preuvc de la proposition o, ( in consid arc .f =< al , .., an > ct
g =</ Al . .., b„ \,. t€'1b; que f = g. Al(>rs, a( .f – g) = o, Va e X r't par le lemmc 7.
f – ge 1< , „p. VV e H,„,( f*(x). Z). ct donc / – g e JV;/( T'i';*(X)) (voir [M6], p.85)
X.Iais OII suit que Hill T+'-*(X ) ) g t'T;*(_\-)7'.„ (voir [A’1] lerrrlru’ 3.3. p.221 ou ['IEi] uu.4.20,
p,83), AIr irs. I Il e IV tel que II( f – g ) = 0 dans T’T"*(X ). Si nl f – g \ est is€)trope alors
f – q est is(>trc)pc ( vc>ir preuvc (lu fhm. 4.27. p.89. clans [M6] ). clone / – g = 0 clans It-*(X )

c’est-X-dire / f g

Structures Associ6es a un Espace d90rdres.

Soil (_\-. G ) 1111 ('>ipa('(’ (I'ordres irl)strait

D6finition 8 (Sous-espace) : Un SOII.-l--r'spijt'f' d-IIli r.-iI ;art ' cj'r)rtlrr’s ( X. G ) est IUI couple
( )’, G/A ). r>fl ) - g _T r'f A t'st lili solis-grritzpc' tII' G. tt'ls gIjl--

(1) )-1 = A rf ( 2 ) }’ = X n LI

nl). I’l = {a e C; a( rr ) = 1 V a e l;} of Al = {a e .T( G) ; aCa ) = 1 V a C A}



Arileide LIRA PEREZ 6

Evidemment, Y n’est pas un sous-ensemble de .T(G/ A) ; mais ce petit inconv6ni,tnt
fornrel est r6solr1 a.u rnoyen de 1’identification suivante:

X(G/A)
a

.t’(G)
G

CL

{1, –1}
aCa)

Soit y = x-1(Y)

Th6oreme 9: (F. G/A) est un espace d -ordres

Une d6monstrdtion de ce th6or arne se trouve par e>temple dans [M3], thIn.2.2. Mais
dcms 1’article qui fail suite, on retrouve ce r6sultat err utilisant le th6or ame de dualit6 entre
les espaces d’ordres ct les groupes sp6ciaux.

Exernple IO: Soient F un corps formellement r6el et 7 g F un pr6-ordre de F.
Si X( F,T) = \SuIt P e X( F); CF G P}, alors tX IF,T),FjTh est un sous-espace de
(X(F), F/EF2 ).

D6finition ll (Espace Quotient) : Soient. G' un sous groupe de G, tel que –1 e Gf
ct X1 = {a1 c/ ; a e .\- } . S; ( X1. G" ) est UII espace d ’ordres. alors (X1. GF ) est appe16 un
espace quotient de (X, G).

Remarque 12: Une condition n6cessaire et suffisante pour que (Xf , G1) soit un espace
quotient n’a pas encore 6t6 trouv6e. La difficult6 est contenue dans l’axiome O4. Cependant
on a une colrdition suffisante, a savoir

V f . g forme qua.dratique sur G'

R< f > n g< q ># 0 + P< .f > n e< g > n G’ # 0{

Exemple 13: Soient F un corps formellement r6el, . une valuation r6elle de F et F,
le corps r6siduel de v. ,\lots tXt Fy). Fy FE,F:) est un esp,Ice quotient de (X(F, Tvl. F /TV)
oil Tv est 1’intersection (Ie tous lcs ordres de F corupatibles dvec Id valuation v et X(F, Tv )
est cornnre dans l’exeInple IO

D6finition 14 (Fan) : [Tn esl)arr d’ordr'es ( X. G) est IIn fan ssi

X = {a e ,T(G); a( –1 ) = –1}

Eviderlrnlent. si X est un fan et a1, a2, a3 e X alors le produit ala2a3 est dans X
Done, pour tout espacc d’ordrcs aF)strait 'Y, I'ensemble {al, a2,a3.ala2a3 }, en t,tnt que
sous-esl)are dc _Y, t'sit un fan

Dans le cas dcs corps, les fans de X(F) correspondent cxactement aux pr6-ordres
de F qui sc)nt des "falls" aux sells de Lam ([£2], d6f. 5,1, p.39).



Arileide LIRA PEREZ

Exemple IS: Sc)it F = n((r )) ((y )) et G = F/EF2; on pent observer quc
X(F) = \Pl 1 PIl Pal Pq I oi

P, : G –} {r. –1} P, , G + {1, –1}
7 +} 1 F +> 1
y +' 1 g } –1

P,\ : G ] {1,–1} & : G ) {1.–1}
7 b} –1 F
1' > 1 g

DorIC, Pq = P1 P2Pl ct (.T(F), G ) cst un fan a 4-616nrents.

Th6orime 16 (Somme directe) : Soicrrt (_Y,-. G’; ), I e { 1, 2} dclrx chipaces d'ordrcs
at)straits. Consid6rons G = Gl x G2 lc produit direct de groupes et

Yi = {a e X(G); ala; e X, et aIr;J = 1}, 1, J e {1, 2}, if I

Sr)it. ,Y = 1-1 U I-2 . AloI-s, (X. G ) r:st IIII nb:pace d'ordrcs.

Cette constructi<>11 1)cut etre g6ncqralis6r a url nombrr infini d'cspdces d'ordrcs (voir Kula.
Marshall-Sladek. [A2]. pg, 392)

Remarques 17:

1) Soicnt .f =< (al . br ). ... (a„, b„ ) > et g =< (al. b’1 ), .., (al,. b', ) > dru}= formes quadra-
tiques silt G: OII 1)cut observer quo

.f : g '''; < al''-' “n >:< al, '', a;, > ct < b'.

2) Si I'(nI icl('ntific Gi = G/G/ . ; + J . itlors ( I--,. G; ) ('st urI s(>us-(:sparc clc ( X, G )

3) DaIrs 1(' ('zls (I'tlrr corI)s. OII it 1)ar t’x('rrrpl('

C ,T( Ii). Z2 ) ' !' ( .T( 1?). Z2 } = (. 1’(#?( (X) )) . Z2 x Z2 )

I

Nn >

Problbme de Marshall.

Dans son article de rOTC. " A Rr(lured Thu)ry of Quadratic Fornrs" . I\'Iarshall d pos6
la questioll strivilrrtp

Un espace d’ordres abstrait est-iI isornorphe h l’espace d’ordres d9un corps
Pythagoricie lr ?

C'ct.t(' (Ill(’stion (’st rest&' jrrs(lrl'arrjourd’hui otry(’rt<’. XIais I)otlr qrr('lques cas partic-
rrli('rs. iI (':<ist(' tIll(’ rt“1)OIIS(’,

a) ( X. G ) c'sir IIII €'spilt•c’ firri, c"t'st Flr lirc' C' t'st fini
EII 1979. Xl. Xlarshdll ( [J/?]. lbnl. 4.10) a r6p(nI(lu par l-dfhrmatif.
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b) (X, G) est engendr6 par un nornbre fini de fans.
En r980, M. Marshall ( [Ms], tlrm. 1.6) d r6p(>ndu par l’afhrnratif.

d) (X, G) (*st. 1’ensemble des signatures d’url anneau s(InIi-lOcal r6drtit
Le r6sultat cst vrai (ct6nu>nstration pcrsorrnclle ell 1991 )

Comrnentaires :

1) En 1984 I\lula, Marshall et Sladek [A-2] ont prouv6
KTout esp?Ice d’ordres abstrait, est un espacc quotient d’un esl)ace d’ordres d’un
corps

2) Plusieurs r6sultats vaIal)les dans la th6orie (Ies espaces d’ordres d’url corps ont 6t6
g6n6ralis6s aux espac('s d’ordres al)straits. Par exen}pIe
i) -le principe local-global pour Ics fc)IInes anisotropes” ([Mb], thIn. 9.2 et [Al],
thIn.9.1 )
ii) “lo th6oranre de la P-structure”( [Ms], tlrrn.3.2)
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Les Groupes Sp6ciaux

Arileide LIRA PEREZ
Equipt! dr' Logique Mat Ir6mntique

Introduction.

L’6tuclc dcs ('tspaces d:ordres al)straits nous a anrerr6 a consid6rer certaines struc-
tures que nous appellons groupes sp6ciaux (D6finition I ). Celles-ci sont des groupes
d’exposant 2 avcr rIn 616mcnt distingu6 – let unc’ r€'1atiorr d’6quivdlence sur G2 rcpr6sentant,
l’isom6trie des formes qrradra.tiques bin,tires i, coefficients dans G. Les groupes sp6ciaux
sont caract6ris6s par url syst arne d’axiornes sinrplcs, fornru16s dans un langage de prenrier
or(Ire nrath6nratiqu('rncnt nattlrel. Lc r6strltat prirrcipal de ce travail est, que los grorrpc's
sp6ciaux avec leurs Irornonlorphisnres naturels constituent une cat6gorie duale i celle des
espaccs (l’or(Ircs aI)straits do N'Iarshall. On dorrncra deux (16rnonstrations dc ce r6sultat.
Unc’ en utilisant Ir Th6or ame de r6pr('scntati(nI (Th6or dIne 13) et l’dutre cn utilisant lc
th6orbmc dc' dualit6 de Pontrjagin pour Ie cas des groupes compacts (Th6or6me 17). Evi-
d('mmcnt . (>n pont (lualiser lcs corrstrltctic)nb conrnrcl, pour les espacc’s d’orclrt's (section
'R6sultats dans le Dlral'). Ainsi, pdr ex€’mple. i tIll s(>Its-espace d’ordres correspond un
groupe quotient sp(’:cial (D6finition 27), a un esp?I('.c quotient correspond un sous-groupe
sp(Icial complet (D6finiti(nI 23 ). etc. OII 6tudit’ cnfin les limites des syst ames (projectifs et
inductifs) (Ie £roupcs sp6ciaux r6duits (Proposition 33 et 37 ). Mais on trouve 6galement
(Ics corrstrr1('tiorrs rIotIVOII('s rrr6nle I)otlr les espaces d’ordres. Par exenrple, Ie dual d’tUI
syst arne irrdrrctif (1(' grotlpes sl)6ciaux ou Ie dll ttl projcctif de groupes sp6ciaux profilris
(relrrarqrr(’ 34). C'('pcrrdarrt. la g6n6ralisatiorr cl€’s result,ItS trouv6s ici pour Irs group(*s
sp6ciaux r(“(Irrits aIIbi HroIII)(’s sp6cia.rIX IIOII Ir6cpssair('ferent r(’'(luits est loill d’etre accon)plie
( cf. 'COII1111c'ntairc's' (’ll tin d’article )

C'.ct article c'st Ia suite (1(’ [L]. Los r6sultilts cit6s sans d6nrorrstrat,ion sc'rorlt repris
(lans IIla tIl as(' d(' (loctorat

La Notion de Groupe Sp6cial.

DrIlls c('ttt' s('('tioII o II vii d6firrir la IIoti(nI (1(' grorrp(' sp6cial ('t doIIner (luc’lull('s
(’xerrrpl('s inrl)ortu IIt, s potlr ('c't (’xl)osa
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D6finition I : Un groupe sp6cial est une structure < G, –1, = b, od a est un groupe

multiph,,tif d ’,,p,,,„t 2, –1 .. 616,n,.t di,ti„g„6 d, G ,t = ,,e .n, ,,I,tj,n I,jn,j,, ,.,
G2 telle que

sao) ? est une relation d’6quivalence

sgI) Va Vb (a, b) A (b, a)

SC/2) Va (a, –a) s ( 1, –1 ) oil –a := a. – 1

Sg3) Va Vb Vc Vd (a, b) F (c, d) + ab = cd.

Sg4) Va Vb Vc Vd (a, b) ? (c, d) + (a. –c) E ( –b, d) .

sas) V a Vb Vc Vd Vr (a, b) P (c, d) + (.ta, Ib) B (=c, Id)

SCs) (3-transitivit6) V al a2 a3 V 61 62 63 V cl c2 c3

< a”'','' >:< b' , b' , b' > A < b' , b” b' /:< '”'','' >

+ < al, a2, a3 >E< CI , c2, c3 >

On d&init sur 1’ensemble des n-uplets d’616ments de G (appe16 aussi ensemble des formes
quadratiques sur G) la relation suivante:

< al, a2 ~>=< br, 62 > ssi (al, a2) = (bl, b2)b b

< al, .., a„ >#< bl, .., b„ > ssi I # U z3...z”

,,a„ >"#1< =, z=, .., z, > A < b,, .., b, >”#1< y, z„< al , a >P< bl , U >A < a2, 9 Za >

Si une relation e sur G2 satisfait les axiornes sao – 896 on dira qu’elle est une relation

sp6ciale. Si, en plus, a sa.tisfait

sg,,d) (Axiome de r6duction) Va (a. a) = (1.1) + a = 1,

alors < G, –1, ?> est appe16 „n g,,up, ,p6,ial ,6duit

Exemple 2 : Soit. (X, G) un espace d'ordres abstrait, alors < G, –1. e > est un groupe
sp6cial r6duit ott :

(a. b) e (c, d) ssi Va e X a( a) + a( b) = aCc) + a( d)

Observon s que les axic>mes Sga – sas sora trivialement v6rifi6s et Sgt, est une
cons6quence de I'axiome O4 de la d6finition d’el,pace d’ordres (voir Proposition 6 dans
[E])

Remarque 3 : Si < G, –1. =c> est un groupe sp6cial, on peut construire l’anneau de
Witt TV( G) (voir [Dj, 2.3), qui sera un dnneau r6duit ssi < G, –1, = > E Sg ,,d.
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Exemple 4 : Sciit a un groupe rnultiplicatif d’exposant 2 avec un 616ment distingu6
– 1. On pent di’finir slrr G la relation triviale comm(! suit

(a. b) ? (c. d) ssi ab = cd

A propos (Ie c(:tt(’ relation OII perrt (lirr.

1 ) S est unc relation sp(':('ial ct cllr ost la plus grand(’ relation sp6cittk’ que 1’on pent

d( inner sur G, c’.st-i,-fli,,, ,i = .,t un, ,.1.ti.n ,1,6,i,1. ,u, G, „1.„ = C = (,„,i,
SC;3 )

2) < G, –1, ?> est un groupe sp6cial rr'’duit ssi (f = { 1 }

Exemple 5 : Si a un gu>upc' rrurltiplicatif d’(:xposant 2 avc’c un d'16mont, (tistingu6 –1,
on petIt d6firrir srm (; IiI relation fan ('onrnre srrit

( a + –b A [( a = r A b = d) V ( a = d A b = c)]

“'-'’;„“''’“'i=::–. „ ,.=–„
1 ) r= est une rrlatiorr SIMcial (la preu\r (lo re fait ne pas imm6diatc) et elle est la plus pcttite

relation sp6cialf, sur G. c’est-a-di,(,. si q (.,t u„e „1,ti„n ,p6,i,1, ,u. G .1,,.,, = g =

2) < G. –1. f= /F SG ,„,r AG / { 1} ssi 1 + –1

Dualit6 entre les espaces d’ordres abstraits et les groupes sp6ciaux r6duits.

Dans rett(' sccticn1 orI va c16finir IUI fon('t('ur cc)rrtravariant rlrtre la cat6gorie drs
esspaces (I'ordres et la ('at6goric (les groIII)c’s sp6ciaux ct OII vii rrrontrer que ce foII(:tour est
url isorrrorl)Irisrrr(' (1(' ('at(rgorit’s.

Th6orallle 6 : Il exist(’ tIll(' ('orl'csl)c)n(tel It'(' 1)irrrri\r)(lu(' ( ’rIf rr' les csI)zlccts d 'or drc's }tbst,rait s
ct les groIII)es sl)6cia\IX r(:(llrits

D ITII,On,St,TO.tI(III.

OII con>ii(li'rt' les al)I)li('atioIrs

{ Esl>'a's (1-o'd'cs 'I”t''it' } i : 1 { G„",p,, ,1,6,i,u,' ad„,it,}

(X,G) WI< G, –1.=>

(X,;. G) f $ < G. –1. =>.

oil @( ( X. G ) ) est (t6firri corrrmr darls l-Ext'rul)lc' 2 er Q( < G. – 1. =b ) = (X(;. (; ). al’ec

X(; = {a e ,Y(G); a(–1) = –1 A Va Ard e Gt(fl. b) q (c.d) + ;(a)+a(b) = aCc)+a(d)]}
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Il est entendu que dans cette d6finition Ia somme a lieu dans Z. Pour d6lnontrer que
(Xc,, G) est un espace d’ordres abstrait, on a besoin de deux lemmes

Lemme 7 : g + ; . Co qui reviellt A dire
G

< al. ..,a„ >:< bl...,b„ > –> Va e xG [ga(ai) = Ea(bi)].
1

Lemme 8 : L ’bOII IOIn orphisnr c

O : X(; I £fonr(M( G), Z)
IV( C ) Z

T ' ' Sg„af

(rE–-} a

“+
It +

est une bijection (f d6signe Ia classe de / modulo 1’6quivalence de Witt)

D6mon8tration :

Si / =< al,...a„ > on d66nit. sqn ,,/ = Ea(ai). Par le Lemme 7, a est bien

d6finie. Si 9 e Xo in(TV( G), Z) on d6finit a9 : G –} Z pdr av(a) = ?(m). Cc)mme
a2 = 1 et p est un hornomorphisme, on a. ag(a) e {1, –1}. Par d6finition de Xc, on peut
conclure que ay e xG . II est facile de prouver qur G)(av) = p

Proposition 9 : Soit < G, –1, E > un groupe sp6cial r6duitI . Alors

(a, b) ! (c. d) ++ Va C xG, aCa) + a(b) = aCc) + a(d)

D6m071,stTati071, :

C’est la c166nitiorr (Ie xG.

Consic16rez .f =< a. b > + < –c. –d >; alt)rs a( f ) = 0, Va C Xc. DorIC, par
le Lenlme 8. p(.f ) = 0, Vp e XOIII(It“(X), Z). Le Principe Local-Global de Pfister
( [1/3], Thnl.4.2. pg.76) implique que 'f e T+'-(G)7-„, (la partie de torsion de tV(G))
On consi(l&r(’ deux cas

1 ) Xc + 0. Alors /IOIn(T'F(G). Z ) + D (LenrIrre 8), et [M3], Cor.4.20 prouve que
,ViI(H’(G)) = T’T'’(G)r... Cornme < G', –1, = > est r6duit. TV(G’) est r6duit, i.e,

,ViI( II'’(G)) = {0} ( Elf3]. ThIn.4.27). On a done 7 = 0 dans TV(G), ce qui entraine

(Q) < (1.b > = < c. d > ++ < a. b >=< c. d >
G

2) xG = O. Par [1'/3]. Cor.4.20 c>n a ,Vi/(T'l'(G) ) = /( M( G ) ) = {0} , c’est-a-dire,
tolrtes lcs forrrres cIe dirrrcnsi(nI paire sant Witt-6quivalentes. Al( irs. 1’6quivalence (a)
est vraie aussi clans ce cas
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Remarque. La premre qu’on vient de faire, montre que les applications g et @ font cor-
respondre 1’espace d’ordres vide ,n’ec le groupe sp6cial G = { 1 } ( muni de la seule structure
sp6cidle possible). Renrarquez alrssi que si ( O, G) est un espace d’ordres, alors G = {1 } , et

que si < G. –1, : > F SG ,„I et 1 = – 1, al(ws G = { 1} (''’air l’exemple 5.2)

hIaintenarlt. pour montrer que (_\’a, G) est un t?space d’ordres il faut v6rifier les
axiomes suivdnti-I (voir D6finition I dans [II )

Ol ) X(, est un ferna de X( G) (par d6finition).

O2 ) a( –1 ) = –1, Va e _\’G (par d6finition).

O3 ) n K era = {–1}
ae,\
Supposons aCa) = 1, Va e Xa; alors aCa) + aCa) = a( 1) + a(1 ). Va e xG. Donc

pa.r la Proposition 9, ( a. a ) ? ( 1.1 ). et cc)mme < G, – 1, =c> est r6duit, a = 1.

O,) xG H O, ,',i ? .i ;, : (v.i, P,ol„)sitio„ 6 dans [L])

En faisant une r6currencc sur la dimension, on a la Proposition 9 pour toutes les
relatiolls ;. 77. > 3. c’est-a-(lirc. = ++ =

G – xG xG

D6nnition 10 (Nlorphisme d’esp,Ice d’ordres) : Solent (Xl , Gl ) et (X2,G2) deux es-
paces d’ordres aI)straits. Un Irrorphisme d’es;paces d’ordres est, lin homomorphisme continu
de groupes p : ,\'(G1 ) i .\’(G2 ). t el que p(_T1 ) ; 12

D6finition ll (Morphisme de groupes sp6cidux) : Un morphisrrre ent re deux groupe,s
sp6ciaux < Gl, –1, = > of < G2. –1. = > est tIll hornorphisnre de grorrpes d' : GI ) a2,

tel que
2

1) (a, b) g (': '/) :’ ( v“r',), #''(b)> # (#’(' J, a'( d) ).
2

2) y’(–la, i = –la

Th6orame 12 : La corte HipOll(laI Ice Q (iII Th6or alIIe 6 est url fonct, eur col it ravarr ant
ent.re la cat6gorit' drs csp,Ices (l-orclres ( avce morphisrrrcs donn6s pdr la D6finition 10) ct
la cat6gorit’ des groupe-s sp6ciaux rdcJuIEs (d\'ec les honronrorplrismes cIe groupes sp6craux
consid6rc: (inns !a D6finition ll ). La correspondence Q est un foncteur dans la direction
inverse. En plus. la 1)aire { \P. $ ) 6tal)lit url isoIriorplrisme de cat6gories entrc ceIie des
csI)aces (l’ordres et coIIc oppos6e atrx groIn)cs sp6ciaux; c’est-a-dire. les coIrrpos6s tPo Q et
@ o @ sold les fonctf'rrrs i(lcrrtit6 dcs cat6gorics resl)ectivcs

D 6Trton,st.Tatton,

( A ) Constr uctic)n cllr f(}n('trur Q
On ('orrstruit pour chaque nrc)rphisme cl’espace cl’or(Ires p : (,\’1, Gl ) i (X2,G2 )

un mc>rpllisln(' O( p ) = p* : < Gz. – 1. s > ' < G] , – 1. s > de grc)UI)cs sp6ciaux.

P,„„. ., f„i., .n 1,.,,t „tili„., ,I,.„* t.'I„,i,i„., ,liff6,,nt,,. t.„tX 1,s d,„,* ,bo„tiss„„t. . bien
ent,eII(Ill. all in alIIe r6srrltat . On fera la constructiorr err utilisarrt le Tlr6or?'rrrc clc repr6sen-
tatioII. OII dolrrlant crr fill clc prclrvc' urrc' corrstrr1('tiQrr alternative qui utilise un cas sirnplc
de la dltalit6 de Pontrjagin.
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Th6orbme 13 (Th6orbme de Repr6sentation) : Soient (X, G) un espace d ’ordres
abstrait , / e C( X, {tI} ) et

f : G 1 (;( X, { 11 } )
. ) eu, : X 1 {Al}

a I I aCa)

(1

a

G'2

Alors, / e Img ssi pour tout fan de 4 616Inents Y g X, on a II /(a) = 1.

(Pour une preuve voir Marshall, [A/2], tIl. 7.2. )

C\

Etant donn6s (_\’1, Gl ) et (X2,G2), deux espaces d’ordres abstraits et p un mor-
phisme entre ces csI)aces, on considarc fi : Gi ) C(,Yi, {tl } ), i e { 1, 2}, comrne dans
le th6or&nre ci-dessus,

Lemme 14 : Pour toltt a e G2, I! b e Gl, tel que cub = co„ op, c'est -a-dire Va e Xl on

a(b) = ?(a)(a)

D amon stTation

Existence : Il suffit de d6rnontrer que eu, op e ImE\. Nous utilisons le th6orime de
repr6senta,tion pour G1

Prenons un fan I/ = {a1, a2, a3 , a4 } g 11. Alt)rs a4 = ala2a3 et :

V[Y] = {'?(a1 ), '?(a2 ), ',,(a3 ), ',,(a4 )}

DorIC ?[y] est ent:c>re un fan

cas 1) jp[F]I = 1. Alors
[l '„a o y(a) = (',,(al)(„>)4 = 1.
ae V

cds 2) Ip[Y]I = 2. Alors
[I 'Pa . ,,(a) = (v,(',1 )(„))2.(V('3)(„))2 = 1
a C v

cas 3) Ip[Y]I = 4. Al.rs p(a4 ) = p(al >P(',2)P( a3 ). et

II '„n o ',,(a) = (v.(a, )(„)-g(a,)(a).,o(a*>(a))V(a, )(a) = 1
C\

Unicitd : Suppc)SOIIS que lb/ e C1 Ct' b – crbl . Alors,

Va e 11. a(b) = a(b’) –> bN e n jjrr a = {1} + b = b’
a e .\r

En revenant a la d6rnonstratiorr du th6orbme 12( A ) , d’dr>rbs le lemma pr6c6dent on
peut d6filri1

+

p*( a ) (tlg• (a) = fDa 0 b)
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\>' est url nx>rphisnle des groupes sp6ciaux. En effet, pour a, b, c, d e G2 on a

(y*(a),y*(b)) F (y*('), v*(d>) ="i Va e Xl, ','(a)(a) + ,'(a)(b) = y(')(') + y(a)(d)

Mais Va e Xl, p( a ) e ,\-2. Do llc. si (a. b) = (c, d). Ie r6sultat suit
2

II est ('lair gIro @ est url fon('t('rlr contrava,riarrt :

-Y2

1,
.Y3

Gt C2

g . i \ (g o IF T,
GB

(B ) Constructi[>ll cllr foncteur @

A chdque honromorphisme (Ie grorrpcb bp6ciaux c' :< C2. –1, = > 1 < GI, –1, = >,

on assigne l’application 'b(?,' ) = 1/'* : (_Ya,,G1 ) 1 ( _Ya, , Gz ) d6finic par t''+( a) = a o +',
p(>ur a e ,Y( Cf1 ). OII v6rifie ais(’'nrc'rrt quo k" est url nR)rplrisrrre d’espac('s d’ordre'I dans le
sells de la D(’:finit,iOII 10 et quo $ cst. OII fait, Irlr fonctetrr ('oIrtravariant

( C: ) Les fonrtc'11rs + et @ dormc’IIt tin isomorphisnr€' de cat6HC)rics

Les points ( 1 )-(4). ci-desb;ons rrRnrtrent que l€'s ('t)mpos6s g o @ t’t @ o g sold les
forrctioIrs icicntitc“s slrr lcs obj(’ts t’t >irlr les rrrorplrisrrrc's dos ca.t6gorics rc’spcctives (cf. Mac

Lanr. [If.]. PH.14 )

(1) @ o IP(X. G ) = ( X. G ) pour tour csipaco cl-ordr(’s ( X, (T')

Pret 1 yr : D6siRnc)IIS par G(_\’ ) Ie gr(>upc sp(;cial < G. – 1. = > D'apr6s la d6finition de @

et c} (Th6€)raInt' 6 ) on (I1)it nrontrc’r (Inc X = Xc : ,
Or. comill(' lil r('l:ltioII = est (1/’filri(' par\

< a. b /, = < c , fl ~>': :- ya e X(aCa) + a(b) = aCc) + a(d) ).\

il en r6slrlt(' (1(' la (lc’'finitiorr (1(' Xr; (111(’ _T g IGv .

Pour I'inclusic)II inverst' 011 lrtilist' lc Lcmnrt' 4.1 (lc' NIarb;hall [n/2], pg.511. EtaIrt
(I(>nrr6s itn rspzl('(' (I'or(Irc's ( X. G ) t’t a C . I'( G). a + 1. si a sdtibfait la conditi(>n :

(t) .I' e Kf rIa \ + D \t < 1..1' > ) C /\-r7'(a)

aIr)rs a C _\

Sc>it a e Xr,' ,. . Commc a( – 1 ) = 1. ( in zi a + 1. Porrr rrrorrtrc'r (lu€' a v6rific' la
COII(lition ( +). st)i('nt .r e it r rIa) t't // e D \ 1 < 1. .r > ). i.c'. < !y , 11.r >q< 1. r >. Alors

a e \ ,, „ cnt,ni,„. a(!/)( I + a(.r)) = 1 + aCr). ct coIn„IF 1 + a(.,) #'0. iI s'cnsuit que
a( ?/ ) = 1. On cr>rrcltrt rjlrt' rr e _\-



Arileide LIRA PEREZ 8

(2) @ o $(p) = p pour tt>ut nrorphisme p : (Xl, C1 ) 1 (X2, a2 ) d’espace d’ordres.

Preuve : En d6codant les d6finitions clc g et @ sur les nrt)rphismes, on doit prouver 1’6galit6
des fonctiorrs p’ et p, toutes les deux d6finies sur ( _\-1, Gl ) = (Na(x, ), a1 ). i valeurs dans
(-\-2IG2) = (-\-a(x,).G2)1 Qf1 pf = Q(p*) (et P* = $(P>)

Or. p’ est (16firrie par

(t ) ,,’(',) = a .'? I>oRr a e .T( Gr ),

et p* :< G2 , –1, = > 1 < Cf1, –1. = > est d6finic par les 6quations fonctionnelles
2

(tt ) C’IP P+ ( fl ) – ( t)a 0 + pollt a e C2

On a dc)nc d’url c6t6. pour a e C2 et a e .t’( C1 )

fpa o p = CUrt ( P( a ) ) = p( a >( a ) '

et de l’a,utre
'„,,t„>(a) = '(#*(a)) = (a . y*>(a) = y’(a)(a>

L’6gdlit6 cherch6, p’ = y, suit alors de (tt ) et (f ).

(3) (W o $)(< G, –1, F >) =< G, –1, : >.

Preu ve : D’apra b: les d6finitions de @ et @ sur les ob jets, ceci r6vierrt h, pouver l’iderrtit6
des relations = et g , ce qui est le c(>ntenu de la Proposition 9

G

(4) ( Wo @)( d') = d' pour tout hc)nromorphismc IP : < a2, –1, = > 1 < 61, –1, = > de

groupes sp6claux
2

Preu vc : En (16codant les d6firrit,ions de @ et 'b srlr les rrrorphismes, ceci revient a prouver
1’6galit6 des fonctions V'f ct d'. toutes les deux d6finies sur < G2, –1, = > a valeurs dans

< GI, –1. = >=< G'l , –1. = >, IEt a'1 = g(d'*) (et V'* = $(d') ).
C•

Or. d'/ est d6finie par Ics 6q\ratioIrs fonctionnolles

2

(tt’) f Flb,I(r1 ) = f t’a O I,- potlr a e 62

et I'* est d6firrie par

(t’) (t’) q’*(a) = ' Q C' pc,tl- a e X(Gl )

Le meme calcul qu’du (2) nrontre

{

' ''„, t„)(a) = al k''( „>)
t r rl o u’+ta ) = rFu ( a'+( CT ) ) = f I'nt rJ o V' ) = a( #1 )( a ) )

Pour a e a2 fixc Oli a doll(' a( 1.'1 )(a ) = a( 1;' )(a ) pour tout a e .{’(G1 ). d'c>a #''(a) = e/,(a).

II en r6sulte 1’6galit(' clrerch6c, t.’1 L’
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Observation 15 : On n d6m(>ntr6 rn particulier, l’identit6 d** = a d,us!-i bien pour les
morphisnres (Ie grotrpes sp6ciaux comme pour ccrrx des cspa,ces d’ordres.

Remarque 16 : Cc)IISt r\rctiorr alter rIa tivo (iII fOII ('t, ( tIll @

Etant dorm6 un grolrpe topolo£irlue cornnrutatif F (not6 multiplicativement), on
d6signe par , t’'(F) l’rnsc’nrl)lc (lcs horrR)rrrorplrisrrrcs corrtirrus dc F a valeurs clans {+1, –1}
celui-ci nnrrri de la topologie discr ate.

L ’application

G ).\’.(.t'(G))

g 1 > rt’ q : . t’( G) {+1.–1}

a(g>

identifie G avce un sous-groupe de ,T'( ,T( G ) ). Ol>scrvon'•; que eu,/ est une application
continue. cdr cl'i1 [{ 1 }] = {a e . t'( G) : a(g ) = 1 } cst url ouvcrt-ferrn6 dc base. pal
d6finition de la topologie de fT(G)

Le r6sultat dorrt lrc)us a\r)rls best)ill est

Th6orbme 17 : Soft G' Tm Al-oil/)e [l-expr)sant 2. Alors 1-application eu est uil ibomor-
plrislnf' dc gTOUJ>CS I'IJt It' C; rt ,T,(. I'(G) )

Note : Ceci cst url czls patti('ulier cla Tlr(’'c)ri'rnc de dua.lit6 clc Porrtrjagirr pour les groupes
compacts, cds oil la preltve c'st assez silnl)Ie ; von Porrtrjagin ( [P]; C'lr.6, Section 36 et
37). Remarquez que cc)mme G est un groupe cl’expr)sant 2, tout homomorphisme de G ;I
valeurs (lans 1(’ gro III)c lrnrltil)li('atif (1(’ ('orrrl)I(’xt's (1(' Ino(tIllo 1 rr(' 1)rerr(1 valerrrs qrr€’ (1ans

{+1 1}

En rev('rrarrt a la ('orrstru('tioII (1(' \P, url rrrorl)Irisrrrc d'c:spaces d'ordrcs
; : ( 11.61 ) –> ( 12.62 ) est. ('n parti('ulier. IUI hornorrrorplrislrre continu cIe .T( Gl ) dans
.T( G, ). Soit ?* : ,T,( .T( C;2 ) ) i .t''(.T( G 1 ) ) 1’application d6finie par

F' Cl ) = 1 o p p(nrr -. e 't’c('t’(G2 ) )

XIanifestemerrt. I o P e . I',( .T( Cf1 ) ). Pitr lc Tlli'or&'nre IT, OII a que les applicdtions
tri : Gi –} . I',( .\'( G 1 }) ( ; C { 1.2 } } s(nlt dcs isc)rIX)rphisrrr€’s. L'lrornorru)rphisme clrerclr6
(ISt (loII('

IP( p ) = r t’;] OF* o c ?'1

R6sultats dans le dual

Dalrs ct' qui srlit OII r(’giIr(IPta (lz11rs la ('£lt(’'goric’ (1(’s grouI)es sp6ciaux r6duits les
(lua,les de ccrtail.les ('olrstrrr('tioIIS irrtr'o(lrtit(’s 1)ar X'larslra11 dans la cat6gotie des espaces
d’ordrcs al)straits ( \r>ir s(’ctir)II -Strlrc'tlrr('s Associc’'es i un Esl)ace (I'Orclres' dans [E] ) et
lorsqu'011 s(' r('str('irr(Ira I)olrr < G. –1. = > i (1('s grouI)es sp6ciarrx r6(luits on utilisera

l’a1)r6\-iation g.s.r
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D6flnition 18 (Sous-groupe sp6cial) : Soil < G, –1, e > un groupe sp6ciaI et if g G,
tel que –1 e A. On ,fit q„, A ,'t „„ ,,„„-g,,up, ,p6,i,I d, (, , i < H. –1, = > ,,t ,u,

IH

groupe sp6cial,

Remarque 19 : Not;ez que la sous-structure < if , –1, = > v6rifie automatiquement
IN

les axic)mes sao – Sys car ceux-ci sora des 6nonc6s universels du langage C = {., =, 1, –1}
des groupes sp6ciarlx. De rrrame, si < G, –1, =(,> est r6duit, < H , –\ , = > 1’est aussi.

1 11

Seul l’axionle sao ne passe pas forc6ment aux sous-structures (il est un 6nonc6 VI),

Proposition 20 : < A . –\, = > est. un soIls-groupe special de < G, –1, =r,>, ssi
In

Va b c d e H [P< a. b > n P< r. d > nH + O –+ 12< a, –d > n ?< r. –b > nH + O]

C:olrsid6rons les a.xionres suivarrts:

Sg7 ) Va Va’ Vr Vt Vfl Vy [ (a, a' ) g (r, f ) A it . t1 ) E ( 1, y) ]

;. I „" ' s' [ („., „,") F (y, ') A (', „) F (r, „) ]
C'est-a- dire U DG < =,t > = U DG < y,s >

fC Dc; <1 ,g> y eDc, <1 ,1>

Cet 6nonc6 a 6t6 introduit par Marshall dans [Ml], pg 160

Sg8) (Axiome de la 2-simplification) V a a2 a3 b2 b3 V /1
de dirnension 3 :

< a, a2, a3 >: f r E ... : /„ :< rt. b2. 63 > + < a2, a3 >

fn formes quadratiques

Proposition 21 ( Caract6risation de Sg6) : Soil. G un groupe nrultiplicatif d’exposant
2 et = unc relation Irinaire stIr (;2 v6rifiant san – Sg,,. Alors on a

S F– SC76 ++ R k Sql A SCi8

Lenrnle 22 : Suppc)SOIIS que F sa,tisfait Ja condition sui va.nt e

(+) Vf, g formes sur II,

Alor-s. <' H, –1, = > est. un sous-groupe 1)6ciaI de < G. –1, =c>
IH

D6finition 23 (Sous-groupe sp6cial complet) : Si la relation = satisfa.it la condition
IN

(+). on appelle < A.–l = > url sous-groupe sp6cia1 complet. de < G, –1, =c>
1 II

Th6orame 24 : Soit < G’. –LE> url soIls-grotrpe sp6cial coInplet d ’un g.s.r < G, –l e>,

,I,„ (xG,. G') ,'i „„ ,.p,,, q .'.t i„,£ d, (,\-' ,G). R6dp,,q.„„,nt. 'i (X’, G') .n „I;,,,
quotienf d ’un esl)acr d -orrIres (X, G): alot-s < G’. –1. F > est IIn sous-groupe sp6cial

col nI)let do < G. –1. = >
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Soil < G, –1, B> un grc)upc sp6cial ct A C G. On considi'rc sur G/A la relation
sulvant,e

< R, b >=< Z. c/ > ssi I (I 1 . ... (1 „ e A, < a, a >(
oil f =< 1, a1 > b)...C- . < 1, a„ > t*st rrru' fc>rnr(' de Pfist,el

Remarques 25 :

1 ) La relation rT\ ne (16finit pas nf’cossairenrcnt unc structure de gu)upc sp6cial sur
G /Ai ,. ,ff,t, I’,*i..,. Sg, n’„t 1„„ t.„j.„„ „„i

2) La faqc)n naturcllc (lc (16finir rule rt’lati(nl cl’isom6tric’ sur G/A cIc’ rrralrii lrc a ce qu’cllr
soit pr6serv6e par l’applicat i( in (-alronicjKC G –> G/ A, est

< a. i > = < 7, a > ssi I a’. b'. cf. d' e G. oil
( IIb

-a = cr.1. b = t)1. 7. = (''1 . (1 = (it et <: a,. b -....,=„''’_ c. d -/>(

M,i, _;~ n. ,166„it p„s „6',',s,i,e„„nt une ,t„„tu,, d, g„„,P, ,pd,i,I P.„, qu’.n
.e p,„it $,„,,nti, I„ t,„.,itivit6 d.„, SG „ „i 1, „,hdit6 d, SG,

Des CoII(lilions 1)otlr qlle I(’s r('latiolls = et = soiellt des relations sp6ciales sont' ' (; I x (; 1 x
donn6c's ci-d(’ssoIts

Proposition 26 : Sf if < G. – 1, R> IUI Hro III)t ' SI)(’'('ial . LI's (:orrdit, iorls sir ivar Ites sc)IIt

6quivalcr Ites

i) T \ rst unc relation sp6cialc

ii) A r’st lIIr sous gII)III;c .-inf Tjrtr dr G. c p.-ir. i rlirc A = U{Dc( /) F .f Pastor sur A}

iii) Les relations = ct = coIncident
(; 1 x (; 1 x

iv) Va e G [a e A + Dr;1 < 1. a > ) E Al

D6finition 27 (Groupe quotient sp6cidl) : Si < G. –1. = / est un groupe special.

OII l’appellera un grotrpc (juotif ’nt sl)(’'cinl

Th6or ame 28 : Si < G. –1. .= > csf tIn Arollpe {jllotient sp6rial d’un g.s.r < G. – 1, =>

alors Ie dual (X(;/ A. G/A ) CHr Ini HOt,S-CHI >.rr d'.,d,ps ,in ( X„,. G). R,;,ip,o,ju„„,nt, 'i
( I’. G/ A ) rsf url xc Ill,-if '.-p?jc'l' (/'ini f '-1)art ' d'or-r/l-rs (X, (T' ) alor-s. < G, – 1. q> cst tIll g.s.r

cf < G/ A, – 1. f > rsf lui qrr)Irl)t' qlloriruif six’'ri ill [ll' < G. – 1. f >

Proposition 29 (Produit direct des groupes sp6cidux) : Sdf {< G,. –1

une falllille (lc g.s.1: C( nIsi(1(’'1-( )lis G = TT G, if ' 1)ro(lllit (lirp('t (Ie grc)111)PS . AloI's la rc'lati011
e/

sui\'ant(’ est till (' rclatioII spc''t'inle r(“(Irrit e silt G

< ( ai )Ie/. ( bl ),c/ >+< ( r, ),e/. ( dl ),-c/ > ssi Vi e 1. < at. b, > P < ci. di >
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Th6or ame 30 : Le dual d 'un pI-Odllit direct de groupes sp6ciaux adults est. Ja somme
directe des duaux de chaque groupe sp6cia! et r6ciproquement

D6finition 31 (Systbme projectif des groupes sp6ciaux) :
des groupe.s sp6ciaux est la dc>und dc {(/, $ ), < Gi, –1, F. >, PO } , od

UII syst dIne project;if

1) (1, $) est un enserrrble filtrdrrt

2) Vi e I. < Gi, – 1, s > cst ItII gTollpc,' .-ip6cial.

3) V i Sj , v>ij : G j I Gi est un morphisme de gmupes sp6ciaux,

4) Ni gig k , Vik=Vij'Pjk

Corollaire 32 : Le dual d ’un syst. ame project if de g.s.r est. un syst6rne inductif d’espaces
d ’ordres e& vicc’- versa

Proposition 33 (Linrite projective de groupes sp6ciaux finis) : Soit un systdme

projectif de groupes sp6ciallx finis {< G„–1,?>,p£j } ,JC/ ; alors G1 =lint Gi (limite
projective de groupe.s) lnuni de t'616111ent rHstfngt Id –1 = ( –16, )ie/ et de la relation donna
gi-dessous est un groupe sp6cia/

< (ai)Ie/l ( bl >ic/ >E< (cl- )i-c/l (di JI-e/ > ss iVf e /1 < aIIbi >F < ci. di >

D6monstration :

S'it < G = II G„ –1,F > 1' g''"p' 'pd'i'1 p''d"it di”'t d'' g''"p'' Gi. Al'”,
6/

clairemcnt = = = . La d6molrstratioII ('orrsiste alors i, nrorrtrer que < G’. –1, = > est un
C;1 C;1/:/ 4 ' Gt

,ou,-g,.up, ,1,6,i,I ,.n,pl,t d, < G, –1, = >. P.u, ,,1, on d6„„„,t,, que < G', –1, = >
satisfait la condition ( + ) (lu lernme (22)

Remarque 34 : Si on d6finit itn “groupe profini sp6cial” comme 6tant un groupe
profini G munit d’une relation sp6cia,l€’ RG ferrrr6e dans la toplologie produit de G4, on
petIt d6nrontrer alors que la limit;e projective de groupes profinis sp6ciaux existe.

D6finition 35 (systame inductif de groupes sp6ciaux) : Un syst dIne inducEd de
groupes sp6ciaux cnnsiste de {(I, g ). <' Gi. –1. F >. d,I} or~1

1) (1, $ ) est tIll cnserrrbJe filtrant

2) V / e /. < G,'. –1, # > est un gr-oLlpP sl>6cial

3) V i g j . (+>ij : G , –} Gj est url nrorphisnre de groupc' sp6cial

4) \d i $ 35 k. Gti = ojk ooH

Si en plus, I'axi<)mc ( 3) ci-dcssous est satisfdit . on (lit que ce svstame est un systbme
inductif conlplet

5) Vi S ; et pour tf lures Irs forrnrs quadratiques f et g (16finies sur cf. on a
f # g ==i oi,tfl s oij(gI
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Corollaire 36 : Le cf ual r/'un s)=st >nu' inductif (k’ g.s.r est, IUI syst.elIIe projectif d -espace',
d’ordres et r6ciproquernent, Si d'aillcurs ce s)'StanIC satisfait, l’axicime (35.5) on peut mon-
trer auc
t) Wig j . Diy est inject.ive.

ii) V ; $ ), e:j(Xj> = it

Proposition 37 (Limite inductif de groupes sp6ciaux) : Consi(16rorls un syst.elIIe in-
duct.if dc grnupes spc;c;arrx { < Gi. –1. = >. p,I } ,-,je/ i alors. (; =linl G,-. Ja limite inductive

de group( is est tIll grotIP(' sp(’'('ial

D €Trtorl.stTut.lorI

La (16Irronstrati011 est inrrrr6diatc (Ill fait gIt(' les axionrcs des groupe sp6cial sont des
6nonc6s dr Id formt* VI du langa.ge C = { ', =, 1, – 1} des gr(>upes sp(’'ciaux

Remarque 38 : Orr a montr6 qrre la lirrritc (I'rlrr system(' inductif de groupes sp6ciarrx
r6duits ( pas rr6ccssair€'rrr('rrt c(>lnplc't ) t'st un group t' SI)t’'cial rt’'(luit . h'Iais Itt linlitt’ dc's cluaux
(Ie cc s)-st?'rn(' n’est 1)as II(ic('ssaircnrerrt, 1111 csI)ac(' (1’or(Ir('s. OII sait d’apr as hla.rsha,11 quo
l’axic)mr ( 33.5 ) est url(' condition n6ct'ssaiu’. En fail. on peut toujours con'-iid6rer les espaces

d’ordrc’s (tuaux cl’url(' linritc irl(luctivc' (1)its rE3cc’ssairenutnt conrplt't ) (Ie group( IS sp6ciaux
r6drlit.s. rrrais OII II(' 1)('lrt I)as asb;liter (111(' ('(-'t esl)ace syst?'nrc est la linlite projective d’espaces
duau3<, car il est p<>ssible qu(' cot t.e limit(’ ne s(>it pas url t’space d’ordres. Cependant
rIotire s)’st&nIC est tIll s)’stanrc corrrplct OII il le r6strltat strivitrrt

Th6orbme 39 : St)it < G =II Ill G,-. – 1, = > Ic gTc>rIP(' spl’'rinl firnitr' incluctif d’un syst arno

inductif corn!)let dr g.s.r. '4 lol-s (la. G) cbt la lirnite projt'rtive du s)-st&me projcctif des

esl)aces tI-or(IIes fluatrx {Xc; . ;=y } ,.jc/ . c est a rlirf' Xa =II Ill Xc 1 . R6ci;x'oquenrc=It. si _V
est I'es;pac(' (l’ordrc's lirrritc project,iv(' (/ ' IIrr .'v-sf &Ill (’ proj('ct.ive des csl)aces d'or(Ires. alors
grill dlral t'st Ie gI-ri11/>r ’ spat-inI linrit€' intluctiw (III sr.st&rrrr' fIIIal

Remarque 40 : SILl)pc)sc>Irs (Ill(' pc irlr t(nlt ; $ J (lans I. p,J( G; ) cst un sous-gu)upc
sp6cial comI)Ict dr Gl (cc'ci 6qrrivalrt a clirt’ que lc’ systalIIe inductif cst complet ). Soit
; C J. collsid6rt)IIS Ir 1110rphismt’ cal1(>11iqlle pi : G, I G; alors fi( Gi ) cst un sous-groupe

c-oml)let rIc G. Dr plus. pc)tlr t(nlt ;, P: : ,I’( G ) I .T( G, ) v6rific p:( X(; ) = X(;1 . DorIC
X(;, est tIll (’space (jlroticrrt (IP .Ya

Corollaire 41 : TrIll r gl-flll})I' sl>1"ri ill I'st 1;I /irrr;fr' irrrJtlr'ri\r' rl-1111 svsri'rlu' ilrrl11r rifrornl)ll't
dr sous-groupe spr it 'i/it ix d6ncnrrl>Tai)It's. En pirrticulit'r ( rf. XIarshall [X’I4].Thrrr.4.T. pg
612), tout t'spilcc (I'or(Irc's zllrstr21it cst la linritc prt}jcrtivr ri'Ini sr,sf&nrr’ d’espacc ll cl'ordrcs
(16nonrbr al)It’s

D dIII,OII,St.TO,tI,OII.

Irrrrrr(’'(liat.('. it I)artir (Ill Tlr(’'or?'rrr(' (1(' Law('rrlrcilrr-Skolt'rrr

Proposition 42 : Soif'nt { < G, . – 1. = > . ; e /} llIIf' fallri11c' dc grIll II)r's sp6riaux ef U tIn

„it „,Hlt ,I' HI,„ /. Air„'s 1-I,it„,1,„I>tIl,ir G1/ = IIG,/// f.st g,Til,1„' 51)nrl„I .\l't- Ja jl'liLt i( III

< ( a, ),-e/. ( b,' ),e/ > + < ( ci ),c/. tr/, ),e/ \, ssi { / e /. < a,. A, ># < c,, di >} e &/
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Th6orbme 43 : Solent {< Gi, –1, # >, i e /} unc farrlille de g.s.r. U un ultrafiltre sur

1 et G U i, g,.„pf spm'i 1,it,,p„„It,i;. Al,,. X ,',. .'r l’„it „,,,„,m. d, xG.. , ,'e,t.-a-di„p

Xc;„ = n xJ , xJ = EdNa
ICU ie .I

oi X, = :+ xG.. ost I, sn„„„, ,.„„.x,' d„ „,P,,.. d’„,',J,-,,
iEJ

Comment aires

( A) Ld cat6gorie des espaces d’c>r(Ires abstraits est 6quivalente i l’oppos6 de la cat6gorie des
annea,ux de \Vitt aI)straits r6duits et cette derni dre cat6goric est 6quivalent(’ a la cat6gorie
des groupes sp6ciaux r6duits. Orr a (lollc. Ie sh6nra srlivarrt

Esl)a('('s (l’ordres aI)straits

(1) / \ (2)

Groupes sp6cia.ux
r6(tuits

Group(IS sp6ciaux
non-r(’trluits

(3) Annea.ux de Witt
r6duits

Anneaux de Witt
IIon-r6duits(4)

• (1) c’est le Tlr6or bme 12, do cet article.
• (2) est prouv6 dans le ch.IV do [ 1/3]
• (3) c’est le Tha)reme 2.8 dans [D]
• (4) c’est le Th6or ame 2.8 dans [D]

(B) Il y a dos diff6rences consid6rablcs entre le groupes sp6ciaux r6duits et le groupes
sp6ciaux non n6cessdirenlent, r6duit,s. Par exenlple, soient G un groupe sp6cial tel que
G l= 21' et R( I1 ) It' rronrbre clr relations sp6ciales srrr C'. On a

i) Si G (’st r6duit rt
• 1 7 = 1 + R( ll ) = 1
• ll = 2 + it( I1 ) = 1
• II = 3 + it( I1 ) = 2
• Par dualit6, it( 71 ) est lc IIOIIII)re des espace s;; cl’ordres contenu dans , I’( G). Sa valeur
a 6t6 calcu16e par Bra(-ker clans [B] , S2.2, pg.459

ii) Si G n'est pas n6cessairerrrerrt r6duit. pdr 6qnivalence de cat6gories nrl a que RCn )
est le nombre d’anneaux de Witt R. avce I(fRI = 211. Pour II $ 3, Marshall [A/3],
Ch. V, pg.122. a calculc“ les valeurs de R( 1l ) :
• 71 = 1 :• R( n ) = 3
• rI = 2 :, R( I1 ) = 6
• II = 3 + R(I1 ) = 17
• Ell 8611(;ral, la valour (le :R( n } n e’st pa C( )111111(
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Le tableau suivaIrt d(>IIne les r6sultats corrrnrs

15

Cas r(’'(llrit

R(„)=1

R( n )=1

W(n)=2

Br6clicr [B]

Cas g6n6ral

RCn)=3

W( n ) =6

W(n)=17

W(n)= ?
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THE DOWNWARD LOWENHEIN-SKOLEM
THEOREM

Francisco Miraglia (*)

1. Sheaves and Presheaves over Topological Spaces.

If X is a topological space, O(X) denotes the collection of opens in X;
Q(X) comes equipped with the usual partial ordering by inclusion and the
operations of finite joins and meets (U, n) as well as the infinitary operations
of union (U) and meet (/\), given by

Ale/ ui = int(nic/ ui))

the interior of the set theoretical intersection. If S g X, nCS) denotes the
induced topology on S, OCS) = { v n S : v e n(x)}.

We can consider Q(X) as a category whose objects is Q(X) itself and
whose morphisms are given by

Mor(u, v) =
u Cv
otherwise

Let L be a 1’c order language with equality and Mod(L) be the category
of L-structures and L-morphisms.

Definition 1 : A presheaf of L-structures over X is a conttavariant
fIn(IOT Q : Q(X) –+ Mod(L), that is, for each u e n(x) tue have a L-
stTuctwTe Q(u) and if u g v in Q(X), we bme a L-morptrisTn
q,v : Q(v) –+ Q(u) such that the foltov)ing contlitions aTe veTiRed jOT aU
ug Ii g w in Q(X) .

e ) Instituto de Matematica e Estatistica
Universidade de sao Paulo
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V Q(„>

qUIt

It Qr„) $9- 1

[ ]P 1 ] : 1[1 t L Ia = 1 1[1 (2 (t O ;

[ a]P 2 ] : 1(1 1 v 11 = 1[]L v u 1C) 1(1 u 1 ) ;

[P3] : Q(b) = {+} , the one element L-stT%ctzre;

[elt] : Let d(ul, . . . ,vR) be an atoTILic foTTrb zIa hb L, sl, . . . , Sn C Q(tb)

and {ui} g Q (I1) be an open covering of a. Then,

Q(\1) b cb[s\, . . . ,Sn] ifI \d ie I, Q(ui) b (b[qUI„sI, . . . ,qUI.Snl.

Notice that in particular we have, for s, t e Q(u),

s = t iff la covering {ui} g OCu) such that q„„i s = q„„1 t , V i C I.

Notation : a) For each u e O(X), Q(u) is called the structure of
sections of Q over u and an element of Q(u) is refered to as a section
over u; Q(X) is the structure of global sections of Q. The maps q„„ are
called the restriction maps of Q.

b) in general we abuse notation and write, for s e Q(u) and v C OCu),
sF„ in place of q„„.
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We now introduce an important simplification in notation, due to Dana
Scott. Let Q be a presheaf over X. Define

IQI = II„,Q(,) Q(") = U,,Q(,) Q(1=) x {=1}}

the disjoint union of all structures of sections of Q over X. An element of
IQI will be referred to as a section of Q.

For t = (s, u) e IQI, put Et = extension of t = u. We may identify
each Q(u) with its copy inside IQI by the map s A (s, Es). We shall thus
consider Q(u) g IQI

For each s e IQI and u e O(X) define a restriction (s, u) A sF„ by the
formula

sIu = qEsEsnu s

Notice that sjE,n„ = sI„, for all s e 1(21 and u e O(X).
In this notation we may rewrite properties [Pl] and [P2] as

i) sIEs = s ii) slulv = Slunv.

For g e IQln and u e Q(X), define E: = nhl Esi and q„ = (sll„,
s> 1r1 1 L1 ) p

The condition [ext] (extensionahty) can be rendered as

[ext] : Let @(v1, . . . , v„) be an atomic formula in L, u an open set in X
and g C IQj11 be such that Esi = Esj, 1 S i, j g n. Let {ui} g OCu) be an
open covering of u. Then

Q(") E +[q iR Vi e I, Q(„i) b @[qu].

When dealing with sheaves or presheaves one of the basic ideas is that
of germ of a section at a point of X. Let v, be the filter of open
neighbourhoods of x e X. If Q is a presheaf over X, let

IQI(*) = LI„,„, Q(") = {; e IQI : E; e "x}.
If s, t e IQI(x) put

s == t iff Ive q, n O(Es n Et) such that sI„ = tI„.



This defines an equivalence relation on IQ!(x). The class of a section
s with reb;1)ect to this equivalence relation is called the germ of s at x
and indicated by s*. The set of these equivalence classes, IQ!(x)/ er , is
the stalk of Q at x, to be indicated by Q,. Observe that for any finite
set al , . . . , a„ e Q, we can select u e A, and sr, . . . , s„ e Q(u) such that
si, = ai, 1 < i < n

There is a natural way to make Q, in to a L-structure :

i) if c is a constant in L, define its interpretation in Q, as the germ of
the interpretation of c in any Q(u), u e h. Note that since restriction is a

L-morphism, we h,ive cE(u> = cQ(") for all v e OCu) n K. Thus, the above
assignemcnt is independent of the u e w,

ii) if u is a n-ary operation symbol in L and a1, . . . , a„ e Q„ choose
u e w* and sr, . . . , s. e Q(u) such tIrdt si, = ai, 1 $ i $ n. If we define

'.,Q'(-1, . . . , ;n) = ('.,Q(")( g))x,

this is independent of representatives and gives an interpretation of w in
Qx

iii) if R, is a n-ar)' relation symbol in L, put

Qx b R[a1, . . . , a,] iff 1 u e w, and s1, . . . , s„ e Q(u) such that six = ai
and Q(u) F R[sl, . . . , s„].

With these definitions for any atomic formula d(vI, . . . , v„) and any
al, . . . , a„ e Q, we have

Q, b @[a1, . . . , a„] iff I u e h and sl, . . . , s„ e Q(u) such that si, = ad
and Q(u) b @[s1, . . . , s„].

We have natural maps Q(u) I Q„ s b} s,, that become L-morphisms
with the definitions given al)ow. In fact, the stalk of Q at x is precisely the
inductive limit of the system of L-structures indexed by the elements of the
filter K.

– 4 –
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It is natural to define equality of s, t in Q as the set of x where they
have the same germ :

[s = t] = {x e Es n Et : s, = t*}.

Simple calculations will show that [s = t] is an open set in X and in fact
we have

[s = t] = U {u e O(Es n Et) : sI„ = tl„}.

Similarly, for an atomic formula @(v1, . . . , v„) and s1, . . . , s„ C IQI, we

may define the value of d relative to Q as

[ d(sI, . - - , S„)] = {X e Eg : Qx b @[SIx, . . ', Snx].

Again, this is an open set in X and we have

[d(;1, ...) ;n)] = U {'1 e Q(Eg : Q(") b #[;IIu, . . ., SnFu].

It’s also easily verified that the extensionahty condition ([ext]) can
be stated as

Eg = [ d(sI, . . . , Sn)] iff Q(Eg) A @[sl9 . . . > Sn].

For the equality relation this comes to

Es = Et = [s = t] iff s = t.

Perhaps the very basic example of the sheaf of continuous real valued
functions on a topological space can help the reader to grasp the ideas
succintly presented above.



\Ve now present the notion of morphism. Let P and Q be presheaves
over X.

Definition 2 : a morph£sn1 P q 1 (2 is a nat&raJ tTa7tsfOTmation of con-
tTUvuriant furtct,OTS that is, jOT each u C O(X), a L-Tnorphiswb
n„ : P(I1) –} Q(1) such that for v e 9(a) Ive have q„, a n„ = n„ o p,„
where pu„ is the appTopTiate TestTiction map of P .

P(IL) II Q(„)

puu 1 1 g„.

Q(„)
Rg. 2

The comwtutcLti'ui.ty of the (iingTaTrts in fIg. 2 can be e=pTesse(1 as

('7„s)Iv = '7„ sI„,

for all & e n (X), v e OCu) and s e Q(I1). In short, a morphism is a natural
transformation that ’contmutes' 'utith restriction.

If P q 1 Q is a morphism define IPI ? I [QI by

TIS = 7/ Es s.

It can be shown that the map q :
for all s, t e IPI and u e n(x) :

[mor 1] : E77s = Es

[mor 2] : [s = t] C [as = at].

[rest] : ,/(= II1) = (,1=)ILI

IPI I IQI has the following properties,

– 6 -
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Conversely, a map IPI q ) IQI satisfying the above properties induces a
unique morphism of presheaves as defined above. In fact, it sufBces that 77

satisfies [mor 1] and [mor 2] as [rest] is a consequence of these two properties.

The notion of sheaf arrises when we require that all compatible family
of sections of a presheaf P can be ’glued’ to a section of P. The formal
definitions are given below.

Definition 3 ; Let a be a pTesheaf OIler X and S g IQI a set of sections
of O. We say that S is compatible in IOT all s, t e S we have

SEEtnEs = s IEt = tFEsnEt = tjEs•

A pTesheuf is said to Be complete or a sheaf iII IOT all compatible

Sq 1(21 there is a (ZTbique) t e IQI such that

V Et = Uses Es

a) FoT all s e S, tIE,

This an£gae t e IQI will sometimes he indicutetl by a (S).

A moTphisrrb of sheaves is simply CL wbOTphism of the Ibn(lerlyirg pTesheuves

If q : P –} Q is a morphism and S C IPI, let 77(S) = {TS : s e S} be
the image of S by a. One can verify that

i) if S is compatible in P then ?(S) is compatible in Q.

ii) if aCS) exists in P then a(77(S)) = Ta(S).

It was realized by Dana Scott that one could profitably treat the objects
described above in a context similar to boolean valued models, except that
the complete boolean algebra had to be replaced by a complete Heyting
algebra. We shall adopt that point of view in what follows. The ba-
sic intuition however originates in sheaves (or presheaves) over topological
spaces.

7-



2. Complete Heyting Algebras

If A is a lattice, we shall use the symbols A and V for the finitary opera-
tions of meet and join, respectively. The symbols A and V will denote the
corresponding infinitary operations. The least element of A and its largest
element will be indicated (whenever they exist) by 0 and 1, respectively.

Recall that a lattice A is said to be complete if for all T g A there is
v T and A T in A.

Definition 4 ; A complete lattice Q is said to Be a complete Heyting
algebra (cBa) if for all p e n and all S g O the following distTibutive law
is verifIed :

IN>\II : 9 NN T =N .c „ v N q.

In particular, all cHa’s are distributive lattices with 0 and 1. There are
manY interesting examples of cHa’s. An important proper subclass is made
up of the Idtti('es of opens of a topological spaces, with its usual operations of
union and interior of the set theoretical intersection. Of course, all complete

Boolean algebras (cBa) are complete Heyting algebras.

In any cHa we have an operation of implication, p –> q, given by

p –} q = max {r e Q : p A r $ q}.

Thus, p –} q is the largest element of Q that satisfies modus ponens
relative to the hypothesis p and conclusion q that is :

rApS q iff r gp –} q.

We also have an operation of +} which can be given as

p +} q = (p –} q) A (q –} p) = max {r e Q : r A p = r A q}.

In particular, ’we nra)’ define a negation (–I) on 9 by

a p = p –> 0 = max {r C Q : r A p = 0}.

– 8 –
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In the algebra of opens of a topological space X, the operations of im-
phcation, negation and double negation can be described as follows :

i) u –> v = int (X - u U v)
ii) –1 u = int (X - u)

iii) –' –' u = int a, where int is the operation of taking interior and T
that of closure.

Note that, in general, p g –I –1 p, but they may be distinct. An element
of a cHa Q is said to be regular precisely when a –lp = p.

Frequently a cHa is refered to as a frame or locale. We will however
stick with the older terminology.

Definition 5 : Let A be a complete lattice.

a) A subset B g N is asia to be a basis for N if jOT all p Q & UreTe is
S g B such that p = \f S. DefIne the weight of 1\ as

u(N) = min { caT(hunt(B) : B is a basis IOT A}.

b) An element q e N is said to be compact iB jOT all S g N if
qS \g S the% theTe is a fInite subset C g S StICk that q ': \f C.

In all that follows, Q will denote a complete Heyting algebra.

3. Sheaves and presheaves over Q

We begin with

Definition 6 ; Let Q be a cHa. An O-set A consists of a set IAI (the

domain of A), toget.heT with a map [. = .] : A x A –+ (I satisfging, for
all z, y, z e pAI,

[= 1] : [* = q I = [y = * 1.

[= 2] : i„ = y] N [y = , 1 S [„ = , 1.

- 9 –



The Tn(LP [. = -} is called the equality Tetat,i,on on A. When there is need
to registeT the Q-set to which an equality 'relation refers to, we shall Ime the
notat£07& [. = .]I

FoT / e FAI, the extent of x is defIned as El = [r = =] . It’s cleaT that
[= = ]] $ En /\ Eg.

We TefeT to an element in IAI a.s a section of A. FoT p e n,
ACp) = {2 e 1.41 : Ez = p}, is the set of sections of A over p. An
element of A(1) ix called a global section of A,

In Q -set is said to be extensional ill it satisfIes

[ent] : FoT aU r, y e \ A\, E= = EN = [= = y] implies = = y.

In what follows, unless explicit mention to the contrary, all
Q-sets will be extensional.

Clearly, if A is an O-set and FBI g IAI, then IBl is the domain of a Q-set
obtained by restricting [- = -] to IBl x IBl. Furthermore, if A is extensiona1,
the same will be true of B. The symbol A g B will always indicate the Q-set
structure induced by A on 1131.

Definition 7 ; Let a, B be Q-sets. I morphism X t\ B consists of a
map IAI a IDI s-„,h th„t. f ,„ ,it ,, t C IAI

[moT 1] : E:131 s = EAs

/mar 2/ ; [s = f]a $ [/s = /f]B.
WILeneveT cleo,r front content, all TefeTences to the names of the Q-sets

iII corr(litiorts [inc)T 1] WIld [TILOT 2] tutU be OTrbitted.

By the remarks in section 1, all presheaves P over a topological space

X give rise to a Q(X)-set-. also denoted by P, with IPI = 1Iucn(x) P(u) and
for s e P(u), t e P(v),

[s = t] = U {w e Q(u n v) : slw = tlw}.

Furthermore. the nrorphisms there considered are precisely the same
when they are treated as £2(X)-sets.

– 10 –
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An important notion when dealing with presheaves is that of a compat-
ible family of sections. With this in hand one can then define various forms
of completeness and the concept of sheaf. We also introduce the notion of
finN;ely complete Q-set, a convenient category of objects to work with.

Definition 8 ; Let A Be an Q-set, Sg IAI a set of sections of A and p an
element of Q.

a) S is said to compatible over p in

\d s, t e S, p r\ {s = t] = p r\ Es N Et.

We saI S is compatible if it is compatible oveT 1

b) A is said to Be finitely complete (fc) if for all pe Q and a//6nite
Sq IAI, if S is contpatible over p tlteTb theTC is t e IAI such that

i) Et = p r\ \f { Es : s e S\ and a) N s e S, p h Es = p A, it = s].

c) A is said to be complete or a sheaf over o if fOT all pe Q and ali
Sg IAI, if S is compatible over p then theTe is t e IAI satisfying conditions
(i) and (ii) of item (b).

It is easily verihe(1 that the element t satisfying cos(litions i) and h) in
items (b) and (c) is unique. It shall be indicated by a (S).

Lemma 1 : Let A be a ftnitely complete a-set. Then there is a map
'I. ; IAI x Q –} IAI, called restriction s wch that IOT all 3, y e IAI and
p, q e CI ive ha8e

[Test, 1] : #11-, = =
[Test 2] : zlplq = =lpA q.

[T';t 3] : ["\, = y\,] = P & q h [z = y].
[Test 4] / 7l[,=d = g/1[£ =y] '

[Test 5] : Them is a &nique + in \ A\ szch that E+ = 0 and slo = +, IOT

all s e IAI.

We now introduce the notion of presheaf over Q.
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Definition 9 ; An Q-set A is a presheaf over Q if theTe is a map
#1, ; IAl x n I IAI, called restriction, srLt.isfuin,g properties [Test 1] -
[Test 5] in the stateTneTLt of LentTna I. A moTphisTn of pTesheaves is simply
a rnorphisTn of their &nderlying Cl-sets.

Thus, all finitely complete Q-sets and all sheaves over Q are presheaves
over Q.

Let A be a preshcaf over Q. We register the following observations :

1. It’s clear that presheaves, finitely complete Q-sets and sheaves over
Q, together with their morphisms dre categories, denoted by pSb(Q), fc
Q-sets and Sh(Q), respectively.

2. A subset S g IAI is compatible over pe Q iff

SIp = {s up : s e S} is compatible (over 1) iff

V SI t e ST sjEtAp = tIE,Ap'

In particular, S is compatible iff V s, t e S, sIt.t = tIE,.

2. If A E B is a morphism of preshea\-es then

a) V s e 1 Al -"d P e Q, /(;h) = (is)I,.

b) if S G IAI is compatible in A, the same is true of /(S) = {Is : s e S}.
Further, if aCS) exists in A then a(/(S)) exists in B and /(aCS)) = a(/(S)).

c) f is a monic in pSb(Q), fc O-sets or Sh(Q) iff f is an injective set
map from IAI to jBl.

d) f is an epic in the above categories iff

V t e IBl Et = Vs€1/11 [t = /s] iff
1 S G IAI such that Et = v ses Es and tIE, = fs.

The definition below- describes a basic notion
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Definition 10 ; Let X be an Q-set and Sg IAI be a set of sections in A.
We say that S is dense in A in IOT aJJ t e 1,41 we have

Et = N ses [t = s].

If A is a presheaf, then this is equivalent to :

V t e IAI 1 a g O and {sp : p e a} g S s&ch that
v a = Ft and tIp = sl, V P e d.

DeRne the density of a as

dCA) = min {caTdinal(S) : S is dense in A}.

Note that we can always fInd S q \A\ with cunhnal(S) = d( A).

A is said to be separable if dCA) $ No.

Let A be a presheaf over Q. For ( d IAIn and p C O, define

+) E : = A:=1 Esi;

++) [: = ] = A::1 [si = ti]; thus, E: = [: = q,
+++) ilP = (sllP9 ' ' '9 Snjpy

We describe the notion of product in the categories we are considering.
Let A1, . . . , A. be a finite collection of Q-sets. Define an O-set II:=1 Ai by
the following rules :

i) III;:IAil = {(s1, . . . , s,) e 1-1;'=1 IAil : Esi = Esj, 1 S i, j g n}.

ii) For a, in In:=11 Ai, [: = [ = A::1 [si = ti] (as in (++) above).

iii) if e,ich Ai is a presheaf, put qp = (sllp, . . ., s„ip) (as in (+++) above).

With these definitions II::1 Ai is an extensional Q-set which is a presheaf,
finitely complete or a sheaf iff the same is true of each component. More-
over, we have n,rtural projections zi : 1-1 Ai I Ai given by sI, . . . , s„ A si,
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1 Si $ n, which are morphisms of Q-sets. This construction gives the prod-
uct in the categories we are considering and, recalling that Q is complete,
it’s clear that in fact these categories have all products.

To be able to deal with subobjects as well as to define the value of
formulas with respect to a preshe,if, it’s convenient to introduce the notion
of characteristic function.

Definition 11 : A characteristic function on an Q-set a is a map

IAIn I> Q, n 20 a positive integer, szch that foT aN f, y e IAIn

[ch 1] : hCI) $ ER.

['t. 2] : h( E) N [= = $ 1 g h( 1).

FoT each nZ 0, Ch(n, A, n) denotes the set of chaTncteristic junctions
defIned on IAIn. Whenever cleaT fTOTn conte rt, the TefeTence to f) will be
omitted f Tom the notation and we tuTite Ch(n, A) IOT Ch(n, A, a).

It is simple to verify that [ch 2] is equivalent to

[ch 2’] : /'(f) n [f = Y] = h(Y) n [f = Y]7

for all h e Ch(n, A) and aII g, y c IAIn.

Notice that if n = 0, a characteristic function h : IAIO –} Q corresponds
to a map from {#} to Q that is, an element of Q.

As maps from IAIn to Q, characteristic functions inherit a natural partial
order :

/, < A in V : e IAIn, h( g) g k(!).

In fact, it’s easily seen that if hi, i e I, is a family of elements of
Ch(n, A), A an O-set, then

A£€/ hi : IAIn ) Q, defined by [A1.e/ hi]( f) = l\ic 1 hi( X),

as well as
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Vie/ hi : IAIn –> Q(X), defined by [Vie/ hi](1) = Vie/ hi(!),

are characteristic functions, respectively the inf and the sup of the family
h-, in the poset Ch(n, A).

Straightforward computations will show that for n ? 0 and A e Q-sets,

Ch(n, A) is a complete He),ting algebra with the operations described
above, that is, for all k, hi, i e I, in Ch(n, A)

k hN h, =N „, (k h /'i).

Notice that in the cHa Ch(II, A), we have 0 as the characteristic function
identically equal to 0 e Q and 1 as the characteristic function f A E f,
the largest of all characteristic functions on IAIn.

With the operations of implication and negation (or pseudocomplemen-
tation) one cannot directly translate from the operations on Q to
Ch(n, A), for this will not preserve the quality of being a characteristic
function. Nevertheless, it’s readily checked that if h, k e Ch(n, A) then the
implication h –> k and the negation = h in the cHd Ch(n, A) are given,
respectively, by

[h –> k](1) = Eg A (h(g) –} A(!)) and

[–1 h]( f) = Eg A = h( f),

where the symbols –} and T in the righthand side of the above formulas
correspond to the implication and negation in Q.

For a sheaf A over Q and for each n ? 0, the cHa Ch(n, A) is
isomorphic to the cHa ofsubsheaves of the power An. For presheaves
there is a similar isomorphism, except that we cannot take all sub presheaves
but only those that have certain closure properties; we omit the details.

If A is a presheaf over Q, one should keep in mind the distinction between

IAI11 and IA111. N,t, th,t, i„ g,.,,.1, $'! i, n,t ,qu,I t, I
As a matter of fact,

1IEX is always in IAnl and fIEf = f iff : C IAn

5-



The vector notation introduced above is a very convenient way to deal
with products and characteristic functions. The basic properties of char-
acteristic maps and its relation to the concept of density are described in
the next Lemma. It also includes the fact that morphisms are uniquely de-
termined in dense sets as well as a result on extension of morphisms (item
(e))

Lemma 2 : With notation as above, let ,4 be a pTesheaf over a,
h, A e Ch(n, aJ and 1> g IAI a dense set of sections in A. Then

a) FoT all F e IAIn and f) e On,

hf„It„7 . . .P -;nI,„ ) = t„(8 ) A A:=1 Pi.

In part£culaT, h(E\EI) = h(E\h(1)) = h( E).

b) Let S U {4 S IAI and PC Q De s&ch that P = v ses [I = s] . Thes,
jOT all d e IAIn – 1,

p /\ h(-, a) = \J ,., (h(;, a) N 1; = ' 1).

Iq paTticutaT, if pi, i e I, is such that p = \g icI pi, then

h(=\p, a) = N leI h(=\pi, ay

c) Suppose :F g IAnl is dense in An. If h and A coincide in IF then
h = k. In particular, if h and k coincide in Dn , then they are equal.

d) Let hQ : Dn –} a be a map such that IOT all a, f G Dn ,
hQ(a ) g E: anti ho(E) h { E = f] $ hQ( g). Then them is a wniqwe cttuTac-

teHstic junction h e Ch(n, A) such that h\Dn = ha.

(e) Let B be an n-set. If i , g : A –+ B aTe moTpt&sms such that
/Ir = gIl-, th'" i= g.

FuTtheT, suppose B is a sheaf oveT Q and f : T –+ B is a map such
that for all s, s’ e T

I Efs = Es 2. [' = '’].4 S [/' = /;’]B.

Then there is a unique Q-set 7rborphism g : A –} B ertenthng f.
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4. L-structures in Presheaves over Q

Let L be a lst order language with equality and n a cHa.

Definition 12
towing data :

: An interpretation of L in a Q-set A consists of the job

1. FoT each %-nrg operation w in L, a TnoTphism cvA : An –+ A;

2. For each constant c in L, a global section cA e A(1);

3. FoT each n-uTg relation symbol R, distinct hom =, a characteristic
map [R(. . . )]4 : IAIn –> Q. The equality relation shall he interpreted by
the chaTUcteTistic map [. = .] .

Whenever cleaT ITem conte=t, all Tejerences to the name of the Itn(leT-
lying Q-set shall be omitted. We refer to A as a L-strvctzTe in pSh(a), jc
Q-sets or Sh(Q) if A belongs to any of these categories.

It can be shown that presheaves of L-structures, as defined in section 1,
are instances of the general definition given above.

Let p C Q and suppose that A is an L-structure in pSh(Q) such that
ACp), the set of sections of A over p, is not empty. ACp) inherits a natural
L-structure from A as follows :

1. If w is a n-ary operation symbol in L, since it is a morphism we know
that for all Sr, . . . . Sn e ACp), Eu(s1, . . . , s„) = p; thus, u(s1, . . . , s,) e ACp),

giving the interpretation of the n-ary operation u in ACp). Observe that
the interpretation of u in ACp) is simply the restriction of the morphism
„,A t. (ACp))- g IA"

2. If c is a constant symbol in L, then ch e ACp) is the interpretation
of c in ACp).

3. If R is a n-ary relation symbol in L and 51, . . . , s, e ACp), define

ACp) b R[sl, . . . , Sn] iff [R(sl, . . . , s„] = P.

Notice that in particular, condition [ext] guarantees that the interpre-
tation induced by [. = .] in ACp) is the identity.
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4. Note that if pS q in Q, then the restriction map A(q) –} ACp) is
a L-morphism. This is quite clear for operations (they are morphisms!) and
constants. For relations, just recall that Lemma 1.(a) yields
[R(sl1,9 . . .1 Snl.)] = P A [R(sl, . . . , Sn)], V sI, . . . isn C A(q).

By the usual induction on complexity, one can show that for each term
r(\’1, . . . , v„) in L we can associate a morphism rA : An –} A, its interpre-
tation in A. Just as above, for ea(;h p e O we have that the interpretation of
r in ACp) is simply the restriction of the morphism rA to (ACp))n g IAnl.

Definition 13 ; Let X be a L-stT\IctILTe in p sh(n ) . By i7tdaction on com-
pIe=itu, we defIne the valtIe of CL fOTTrurta dd\, . . . ,Un) in L with respect to
A as a characteristic function

[@(.,...,.)]A : IAI" , Q,

its inteTPTetation in A, as follows :

FoT a e IAja

[atom] : if Tj (B), 1 $ 3 % m are terms in L and R e Tel(m) then

[71 = r2 (d)]/4 = ITt (a ) = Te (a)I
antI

[R(rl(F)I ' ' ' T rm(tT)) (cT)]/4 = FA (Tt (a ), ' ' ' J Ttl(a))1 '

[conn} : if o is a binaTy connective in L then

[ d . d, (d)] .4 = Ea A nd(a)] A . [@(a)] AJ

and

[- d (d) in = Ed A - [ d(d)]A,

wheTe the o and a in the r{ghthand side of the above equations are operations
in Ct pTesented in section 2.

P] ; []“ d(”; F)(a]A =d. J [3“ dCa)] A = v,.I'I [@(f ; a)] A.

N] ' [V- d("; #)(d)IA =d'J EV.”#(d)]A = Ea A A,,I'I Zf + [@(f ; a)]A.
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As ahvays, the name of the underlying Q-set will be dropped from the
notation when ctecLT howl context.

The extent to which existential assertions have witnesses in our context
is described in

Theorem 1 : (The maz£mzlm pTinciple) Let I gb (v; (1, . . . , (nu)), n ? 0,
be a fOTmula in L and A an L-stTuctaTe in Sh(Q ) . FoT all a e IAIn there is
be \A\ such that [4)(b; a)] $ [3v©(II; a)] $ n–\ [(b(b; a)].

We now define the different notions of L-morphisms.

Definition 14 ' Z,t ,4, 8 b, L-,t„„,t„„„ i„ pSt,(Q ) ,„d A XB , ,„,,-
pttisTn of prestLea,ves. If i e \A\n , write fi fOT (fs\, . . ., fsn). We saN that
f is

a) A L-morphism iS jOT all Fe IAIn,

i) FoT aIt n-cl,ry opeTaM,ons w in L, u (f (i\t.i)) = f (w (i\IS));

h) FoT each constant c in L, fcA = cB ;

hi) For tIll b-UTy operations R jq L, [R( i)] $ [R(ii)].
b) A L-monic in it’s a L-ntoTphism sadr that jOT all n-nTU relations R

in L urtd uU ; e IAIn , [R.(g)] = [R(fi)].
c) an elementary monomorphism iII IOT all jormwlas $(v\, . . . , u„)

in L and uU i e IAIn , [6(;)] = {+(Ii)].

Whenever A g B and the natural L-morphism is an elementary monomor-
phisrn we say (ds usual) that A is an elementary substructure of B and write
A < B

The following siInple result is important.

9-



Theorem 2 ; Let X be a L-st,TUcttLTe in psh(a) . Then areTe is an E-
structime bA in fc Q-sets url(1 a L-stT&ctuTe cA in Sh(Q), togetheT with

elementary monomorphisms ,4 61 AA, A c I ca and 6 X 71 ca stICh
thtLt,

A 6 8,4

1. The inrage of A by 6 and c are dense in 6 A and cA, Tespectiuely.

2. 6 o I = c; conseqwent,h the image of 6 A by I is also dense jq cA

The L-structures aA and cA are called the finite completion and the
completion or sheafification of A, We shall always consider A C aA g
cA and so we have A < 6A < cA.

Let A„, n ? 0, be a sequence of L-structures in pSh(a) such that
A„ g A„+r. A moment of thought is enough to convince oneself that
IAI = Un>o } A„I is the domain of a L-structure A in pSb(Q) such that
A„ g A. FTrrthermore, if each A„ is finitely complete, the same will be true
of A. We write Un>o A„ = A (the union in pSh(9) or fc Q-sets of the A„).

If each A„ is a sheaf it will no longer be true, in general, that A will be
a sheaf. However, the completion of A, cA, will be a sheaf and in fact, the
’least’ sheaf containing all tIle A.. We still write cA = Un'>o A„, with the
understanding that, in the cdtcgory of shea\'es, the construction of taking
the union of the domains of the A„ is followed by that of completion.

\Vith these preliminaries we state
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Proposition 1 (TaTski’s union of chains) ; Let ,4, be a seqzence of E-
stT&ctuTes in pSh(a) (fc Q-sets, Sh(Q)) such that An < An+ I, nZ o. Then,
IOT each n ? 0, we /&due A, < Un>o A„.

It will be important to discuss substructures generated by a set of sec-
tions hs well as the density of these.

If A is a L-structure in pSh(9) and S g IAI is a set of sections,
S* denotes the L-substructure of A generated by S.

Since it’s easily verified that the intersection of the domains of any
collection of L-substructurcs of A is the domain of a L-substructure of A,
it’s clear that the term ’generated by’ makes sense. The question is to
describe S* in a explicit form.

Let Ct be the set of constants in L and op(m) the set of m-ary operation
symbols in L.

Given S g EAI, define by induction on n ? 0

So = {slp : s e S or s = cA, where c e Ct and p e Q}.

S,+1 = S„ U {u(:IEq) : w e op(m) and : e S:1, m ? 1}.

Lemma 3 : Let ,4 be a L-st,TUcttLTe in pSh(n ) and S g IAI. Then

a) S* = U„>o S”
b) Let D g 1.41 b, s„,/, th't

i) {cA ; c e Of} g D;

h) N n t O. V (y, i) e Dn + 1, we have U\E: e D;

in) N : C Dm , N v e op(m), we have w (;\\, i) e D;

iv) D is dense in S.

Then, D is dense in S*
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c) Let K q \ A\ be dense in S IIlith cardinal(K) = dCS). DefIne, by in-
(izctio'n on n ? 0, tIVO sequences Kn and Dn as follows .

I. Ko = K and Do = KU {cA ; c e a}

2' Kn+\ = {Y IE; ; hJ gJ e DE+1 . 1 ? a}

D„+1 = K„+1 U {u(.qE.J ; g e K:n+1 and u e OP (m) , m ? a}
Then D = U Dn satisfIes the conditions in item (b) and has caTdinatity

not greater than mas {d(S), cardinal(L)} .

d) density of S* = d(S* ) $ maz \dCS), cardinal(if } . TheTefoTe,

d(bS* ) = d(cS* ) $ ma£ \dCS), card£naJfl;)} . MoTeoveT, we halle
cardinal(S* ) $ ma: {card(S x n), caTdinnl(L)\

For compact elements of Q we can state

Lernma 4 : Let A be a L-stracture in pSh(9) and p a compact element in
Q. Let ACp) be the stTVct'uTe of sections of A over p and in(Q) the weight
of Q as in Def . 5. Then

a) caTdinal (ACp)) $ cardirtal { Amite SIIt)sets of d( A) x tu(Q)}.

b) 6 ACp) = cA(p), that is the fInite completion and the completion of A
have the same set of sections oveT p.

5. The Downward Lowenheirn-Skolem Theorem

In order to prove a sheaf theoretic version of the downward Lowenheim-
Skolem theorem, we shall have to impose certain conditions on the cHa
Q, described in the definition that follows. To simplify exposition we shall
assume that the language L is countable.

Definition 15 A cHa Q is said to have

I. countably determined meets (cdm) in IOT all Sg Q there is a
cornt,able T g S such that f\ T = [\ S.

2. countably determined joins (cdj) ill fOT all S g O there is a
countabte T g S StICh that~] T = N S.

– 22 -



F. Miraglia

3. countable caracter (cc) ill it has cdm and cdi.

4. the countable chain condition (ccc) iB loT all S gO - {0}, if
s N s’ = 0, jOT s ( s’ in S, then S must be at most countabte.

If X is a topological space, recall that X is separable if it has a countable
dense subset. It is said to be Lindeloff if all open covers of X have a
countable subcover. If P is a property of topological spaces, X is said to be
hereditarily P if all subspaces of X have P.

Lemma 5 ; FoT a cHa Q we have

a) if n has cdm or cdi then a is ccc.

b) if B is a complete Boolean algebra (cBa), aTe equivalent :

i) B has cdm; A) B has cdi m) B is ccc.

c) Let X be a topological space and Q(X) the cHu of opens in X. Then
Q(X) has the ccc iII X has the ccc. FwTther, are equivalent

i) Q(X) has the cdm (cdi);

a) X is heTediturity sepaTabte (TeST., heTe(htarilg Lindeloa ) .

Remarks : 1. Every second countable space is, of course, hereditarily
separable and hereditarily Lindeloff. The converse is false even for regular
Hausdorff spaces.

2. The properties cdrn, cdj and cc are not faithfully reHected by Stone
duality. As an example consider the cBa 2w (parts of the natural numbers)
which is clearly ccc and so has cc. Its Stone space, Ou, the Stone-CecIl
compatification of the natural numbers is neither hereditarily separable nor
hereditarily Lindeloff.

Theorem 3 : Let Q be a cEa with cc and L a countabte fIrst order tan-
gxage with equality . If A is a L-stTtLcture in psb(n ) and Sg IAI is a count-
able set of sections in A, then theTe is a separable elementary substructure
B < A s wch that SG FBI.
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Corollary 1 ; Let Q and I be a5 in Theorem 3. If A is a L-structure in
sh(n) (fc Q-sets) then for all separable (resp., countable) S g \A\, there
is a separable subsheaf (Tesp., hThtely complete) B such that S g \B\ and
B < A

Theorem 4 : Su,I)pose that Q has cozntable weight (Def. 5) and that L is
countable. Let {pn : n ? o} be a seqzence of compact elements in a. Let
a be a L-st.TUCttLTC Zn psh(a) and Sg IAI be a cotrntable set of sections in
A. Then there is an elementary substr%ct'ure B < A StICk that

1. I? is separable and S E IBl ;
2. For each nZ 0, B (Pn) is a countable classical elementary substTUctzTe

.f ACp„),

Theorem 5 : Let Q, Z and p„, m ? o, be as {71 Theorem 4. Let X be a
L-structure in Sh (n ) and S g 1,41 a separable set of sections in A. Then
theTe is a sepaTUbte L-structuTe B in Sh(9 ) such that

1. SC B and B < A

2. For all nZ 0, B(Pn) < ,4 (Pn).

For sheavcs over topological spaces we can treat any sequence of com-
pacts, whether open or not. This includes, of course, stalks at points of
X

Theorem 6 ; Let X be a second courttable space and Pn, n ? a, a segaerIce

of compacts (not rl,ecessarily open) in X. Let A be & sheaf of L-stTuctuTes
over X and S g \ A\ a co'untable subset of the domain of A. If L is a cozntable
language, there is a sepaTable elementcLTy sabsheaf B g A such that S g \B\
and BCp„) < ACp„). nZ 0.
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Back-and-forth for systems of antichains

D, GIrls('llalrkof *

Introduction

I'llrollgllollt tIIis 1)ap('r "root-s.\'st(’lll" stall(is frJr iI I;art iall.\' or(l€’1't’cI s('t stl('ll t,Irat tlrc
set of b;IIrr('>;soI's of ally eleIn('Ilt is t otaljy order('(1. Ill otll('r \vor(is. root -s\=st('nrs are the
ord('r-dlla is c)f t lix's

In [21 ('c,llrarl, llarv(')- aTltl llollallrl I)rr,rc'c! t}lilt IIII.\’ al)cIiiI II l£l{fi€'r-tirtl€'1’c'(1 group can
1)(' 1-cpr('St'tIt ('(I its ?I lattice-sIll)gl'oIIl) c)f tIl(' IIill111 1)tJ\\'('l' tJ\’f't' il I'ti(Jt-S.\'sl('Ill of col)i(’s of
the real line \viI. Il its t,ot ally OI'(Icl'(’rl gl'0111) sll'llct IIrr. \IoT'('o\'cr. thor(' &ll'(' 1)articlrlar bIrt.
interest iIrg (' tis('s of lat tic(--ol'(I('l'(’cI grc)tIps \vII('l'(' t 11(' II it)t -s.\'st c’Ill ('all I)(' (I('tcrlrlillat.ed. set
[1 ] , Ill a fortllr-olllillq papt'r, s€'t' [3]. it is pro\’c'(1 ttlilt tll[' rlrIIrcllt dry tllc'ory of a Hahn
protlllct of tlivisilrlt' totallv or(!('r('(1 allcliall groll lis is clc'tc'rr]lillt’cI }JV tIle olcrll('lllar}' theory
uf tlr(’ Talt i(I' of allt i('IIaills of it.s rotJt,-s.\’st('Ill. Ill tllis I)al)('l' \\’(’ 1)rovt' I,llnl. t,llis last tlleor)’
is d('torlllill('(1 1)\' t II(' ttl('ol'\' t)f its llllfl('rl\'illq tr)ot-s\'st('tII. So. \v(' <'all ('(Jll('lll(lc~ tllat thc
tlreor}- of SII('ll a gl'( JIll) is (Ict('rllliII('(1 1).\’ tIl(' tIl('t)r.\' o[ its t'tJOt -b.\'St<'Ill

III fa('t . t l1(' 1)I'c)of (if I I'allsf('l' f(il' t'l('Ill(’Ilt iIIy ('(IIli\'&llt'll('t' tif I't)01 -s)’st t'Ills t.o t. II(’ir respe('-
live lattirf's of a llti('llailrs. gives it Ist> t 11(' tl'a IISt('r I'ol' (']('Ill('Ilt ar\' rlrrt)(-rl(lillg. ('olrc(’rning
1110(leI-tIl('(Jr('t i(' 1)ro])('rt ics. \v(’ ('llf 1 111) \vii 11 solll(’ ( t I'i\-ial ) r('lllarks al)CJllt llllstal)ilil}- and
t,II(' III( IOI)('I1(]('I1('(' 1)I'OI)('rI.\' fOI' t II(’ t IIt'OI'It’S bf b.\'St<'IIIS. tIf IIrII I('IIIII11S

Ill ;tIlt)tIl('I tll'\r'ltll)t:1€'nt . iII I 1If i[1 1)iI \u)r\vfl1 ( s('[' [3] ) I>rDV(xI tllilt tIlt' systc'm of all
tichaills t)\-('l' a litIit (’ 1)1)scI )las a st I'll('tltl'(' tJf (listl'il)llti\'t' liltt i('(': lllt;rc't)\'('I'. tIt' pro\'cd
tlr&It, ally lillit (' (list I'il)IIti\'(' lat li('t' il(lIIlit s SII('11 ll 1'('])1'('s('lltalitJll. Ill g('ll('l'ill, fOI' irlhrllt('
OI'(Icl'orI s('l s tIl(' (’cJrl'('sl)till(liII.q s.\'>'.t ('IllS c)f ;IIlti('llaill-i (10 110t a(llrlit iI f list I'itrllt iv(' lattice

str11ctllrc' tillt l>lll}- a slII)st'milattit't' tlllt' !bc'c' [T] ). llci\vt'\r'r, lirr vt'ry SIr('I-ial orclc'r€'d sets.

c.g. rt)(it-s.\'slr'111s ( tri- tIlt'ir t)rtlc'r-flllil tb. Irc't'b ) all illlillc)q cif tllr' I)il\\'til-III I't'slllt lloltIs. In
tIlis I)al)('l' \\’t' jil't’st'IIT t III’s(' syst('Ills t )f a lITi(-}lilill> lis ;I ll;ltIll'al g('ll(’l';IIizat ioII t)f th(' not iOII
of all at (Jttti(' 13ool('all ;IIg('1)I'tl

Let .\’ = (S. g) Irt' iI II>ot-h.\’Stt'Ill. \rt' sllall (lc'llt>It' II'v ,'1( ,',' ) = ( /1 r,SJ.5> t,llc' sct tIf all
aIItICII;IIIIS tIf . S’ t'IIfItI\Vt'(1 \VII 11 tIII ' 1)III;It'\' I'(' IItt it)11 gI\'('I1 1).\

-’TIlt' ittlt.Itt)I' \\- iIb 1);Irt i;III) sIIl)I)t)I't I'll . fltlritt J.I lltt' f'l;tl>tlt' iIt it )II t )f tllis tIal)or, I))' it I't'llc)wsIlil) of tllc
('rJllbl'.if ) .\at'it IIliII fIt Ill\'l'stiu,;jl'i( IIIf *s ( 'i('lltilil' ils )' ’I f’'t'lljr' ils Ilt' lil l{l'lllll)Ii f' it Arpjt’lltillit
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D.(;lllsc ll all kt)f 2

r/ 3 /1 if illlrl t>IIjy if V,I' e ,/1// e Ill .r $ # ).

Definition 1 I;t>1' a IIItIt -blist t III S. uv All tIll XII // tllnt 'l = { A ,3) ;s a pre:syst,cn1 of an-

ticllaiIls vvcr S if ;I C .,\ ( ,q ) . tIlt OI'dt l- Il taI ioll is tIlt II str-irtioll of that of A (S) , and
S C rl iII tIlt sr IIst that rlll tIlt unficllai IIS forlllt tl by only nnt tIc mr.IIt Irtlong tn A

Definition 2 IL+l- a /III sljsl t lil of ant il'lltli IIS /I our/ a, A e . I. II-l sa.I/ ttlllt h is a quasiconl
plc'rll('IIt of cl if II U iI is II nia,rilllnl tllllirha in .

(Olrst'r\r' tIlat . in gotlCIal. all alltirllniII call llavt' lllally (111asicoIIIpIerIrc'nt,s)

Definition 3 III sa// 1 llnl t Ira all tirll ai IIb u lind b II II ortllogorral if arId nulII if an b = t
and tI U b is tin nnt trIlulu . TIlt SI t of all ant icllui IIS orthogonal to u nlill be denoted by al

I,t'l ,q In' h II)t)t-s.vstt'lt1. 'I a I)rc's,\-stem bf a £lli(-llaiTIS t)ver .q allrl {r£1, . . . . an} g .4

Sirlrc' cnt’II illITirhaill is a slll]st't tif ,S. L'all h'( {r/ 1. . . . . a„ } ) thr llllicitl c)f t llc)so antichairls.
antI (’Ilclc)\v t IlltI st't wit }1 tIl(' rc'st rirtiun of the ortlt'r c)f ,b'. SiIlrc any chain iII S( {a1, . . . . a„} )
llas at 111(ist // ('l('llr(’rlts tIlt' fOlltJ\Villg (lc'lillitioll is IIt)t \’oi(I

Definition 4 C 'llll ,LI {a 1. , . . , a„ } 1 o r/rr sr / nj all Ill iII ilIInI points oj

X( { al. . . . . a„ } )

Remark 1 .U { a 1, . . . . a„ } is all atlticllait

Remark 2 a, b .td { r/l. . . . . r/„ } ( 1 $ ; $ 11 ). wllc'rc' a b & itF V.r e al.I/ e hl = ? y).

Definition $ 1,1F a tlr all ulllirhai ll rllltl r a point of tIlt root-systc Ill. ive dtPne a( 1) as
thr UII ign I point 11 C a bItCh thur .r $ H if tllut poilll I.rists c1 IId O if not (obuiousty there is
at lllost Olll slit-Ii pvillt y )

Definition 6 /.f t pCI'1.
tUll Itt't i (Ill

I'„ ) br (I

0 11

f/

II IIII IIli jie l--frI r jn I'Ill ul it . 1 >tf nr Ip[a1, . . . , a„]I by

[t’, 3 t’/ [a 1

[f A ';'[HI

In pFa 1 -

r/„]] = {.r e , t4 {a 1

.„„]] = K;[„]

II„ } I a,( .r ) + A &- rI i( .r) + O & „:'(„) $ „j(„)},'

a„]]n[r."[a1

tlr' } \ R /[al

„„]];

„„]].. r/„ ]I = .U {r/ 1

Ill I)tII't;('lli(lj'. Il’f
fAr .Hr /jr' S r', [Ill,

t-tIll ;( r', [r/ 1. . . . , an] )

r/ „ ] ] = {.1' E , vi { a 1

{t+It plrtjtr11oll of it,
q r / r 1 } / f / I =/11E4 a }

.U { at . . . . . a„ } ;

Rer11drk 3 [;Fri 1, . . . , r/ Ell is a 1\VItVb a slll>alltit-llaill t)1- .LI { r/l

Remark 4 a, 3 III if a11cl tully if [r', J r) jal. . . . . rIn]] = =( c-, [a1. . . . . a„] )

(\\'1lt'rf ' { r/ 1. . . . , rr , } is all.\- scI r(illtaitli11g rl, aIlcl II , .)
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Definition 7 1)t fi Ilt .UP{ r/l. . . . . a„ } ab ttlt partition (lrhr rc sr>Int of its clcllttnts lung

bt t lll pIll) iII Il II(irl OII .t4{rr£ , . . . , r/„ } by.

( ; Irl II C ' C ,LI { a1. . . . , a„ } , u-r srI.r/ lllnl f ' e _\4P{ r/l. . . . . a„ } if arId on/// it

Iht lr f .ri.-1.s u q ucl lllijil i-fri I fOI-III r//a h'( r'1 . . . . , r'„ ) .,' r/r-/I f/l r// ( ’ = [U' [r/ 1 . . . . 1 r/ rL]1

and .FIlj- a// ljlrtljllijil i--fri r .Frll'ill lilub r-(I'1. . , . . I-„ ) . [ r,'[r/ 1. . . . . r/„ Il C k[cl 1....1 aIL]I or

[y'[a 1. . . . , rl„]l C [–';[r/ 1. . , . . r/„]] An/r/x

Renldrk 5 it is r'lt'ar t}lilt c'\r'r.v r ' e .U’P{ al
forIrl :

tI „ } is rIc'finc'cl I)\- a condition of 111('

F( A P't''’1( 1’f. 1’, J[ul- ' - . . UII Il
J

II } I =, r-O( r, , 1'j ) is T(r', 3 I'y } antI +1 ( r',, ny ) is ( r, 3 1b ).wIl('I-C' r : { 1 n } X {

IJ<'t y''(r'1. . . . . I'„ ) I>[' A:'./= 1 £'tF'’l(I', . rl/ ). alltl F„ = { /' / [ e 2tl"-"''tx{1'--""} } . (Jlearly,

F„ has ('ar(iitla lit .\' Z''- , all(I llt'11cl' =(.V{'P{r'1. . . . . I'„ } ) $ ="‘

Remark 6 (;i\'t'll anti('llaills 111. . , . . ,I„+1 allrl I;- e F„ . let {t'1. . . . . 1,''2,„+, } be t llc.

stllisc’I of F„+ 1 ('t)llsist,('Ilt wit II I.': tIl€'11 \vt' IIar(' [i.'I[a 1.....arl+1]1 3[y'[alq..,qaTl]I
( 1 S A' $ 22"+1 ) allt1

EL '[(II. . . . . an ] ] b U K r. •k [(II, , . . . (frI+ III

IInt .L4'P{l'1, . . . . r'„ +1 } '-rt'lill€'s" .L4-P{l']StI , \\l ' CitE I SaY

DefInition 8 lair rl pir x list I III of IIII tit-IItt ins 'l . dr fin r u bin urII full(•lion R1.,1 ( . ) qi1.r 11

tIl at ih. tIlt st + of IIII IIt III t 11 th of u c'0111 pn 1-nhl t lrill1 b . \\'t sh 1111 nIst) cIt not 1 Rt st ( n .b) by

b I/

/ fr .s/(r/. A) = {.1' e rr / II/ e // ( .r $ // t)r // $ .r ) }

tI F h ( it shall Ill thought of us tI - Il strict ion I'nllct inn-- ) .

Remark 7 ( Ii \'I'll IIt , . . . . ,/„ ilrlrl ( r.i.( r.t . . . . . ,. „ ) ) ( 1 $ /.' : 2f!£ ) tllc. lkjr111ulas c>f Fn . if \vr,

call a,-(k) the s€'t r/, r BY-1-[r/ 1. . . . . a„]F. \r€' 11a\'(' t IInt , for l’actl A' the srt {a1( b). . , . . an(k) } ot

zllit lrllil ills (wllc'l-c' srllIIC' tIf t III’ a,rk) lllil.v 1 it' I'ltll)t.v ) is ttlt£1]1.\- orclt'r('€1. .,\nalog011sly. si11cc.

/?rbI( . ) is a tllllc't iciiI. \a' \vl-ite r’,(c) = /fr ,sf (r',.[+#[r'l.....I'„]]) ( 1 $ f $ 11 ) u-here the
I’; s al-(' \’aI'ial)1('s. OI)b(’l'\'(' IIliit . illtl('1)('ll(I('Ilt.1\’ t)f ally t'(JII('r('t.c Illtid(,1. t,11(.r(' a,re ; all(1

A' sllt-Il t iII it a,[k1 i\ iII\va.vs t'llll)ty. la Il- t'xa]III)It'. t-ollsjrjt'r lllt' ft)rlllllla T;1 (c'1. r'2 ) given by
T ( r’1 S r’: ) X- =(r'= $ r’1 ) &' –1(r'1 $ 1'1 ) X- r": 3 I-2 . III tIl is case a 1 ( 1 ) = O for i1.ny at b11t

r/2( 1 ) (It'I)('II(IS tIII III(' IIIt)€1('1 111111 t 11(' 1)III'tI(-IIIIII' ('It'III('IIt
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Definition 9 /,r / p/, e E, (’<)llsiclt I' tIl( sct

{ A' 1 ( 1 $ X- $ n ) anrl PS /\ y r\( b) + D}

u:hr II /’S'I is Iht' theory of pIr xlyst€ 111s of ulltirllnins. Set.n as a SHbsrqILtn.ct of \
uritt iI as 11. . , , , //,. DeBnt noir the jorIn ul(i p-k(r\ , , , , . r?) of the language ($> as th(
total Olrltr ilnplird by pk on tllr nnI ic-lrnins (t',-, . , . . , o,-p ) .

In tIle sc'qllc1, \vc refer tIl(' rt'acler to ['l, ( III. XI] for details. Now, recall that,
for the lallgllab(' {$> . \ye can cl('tine indurti\rly tIle back-arId-fort,II equivalence classes

(o„,,„,,- )„,„,cw.(1,\,-r,,r1.m) (wllcrt' A„.m is their (finite) number). for any ($>-structure (in par-
ticuldl- for a root -system) iII tIle foIIo\yjng \va)

For III = o : (.r'1. . . , , ,1-„ ) =„n ( ,r/l. . . . . .I/, ) iff tIle t\vo n-trIples arr isc)Illorphic for $;

For III + 1, tllc class of (.I'1, . . . . .r„ ). denoted bY Cn.„,+ 1 ( .r 1

<$)-fonnula
. .r„). is defined by the

/\ (I'1'„+ IC„+ 1.,„ ( rI .
ieI\

-r„+ 1 ) = rt„+1.„,.i it /\ ( nI.I'„+lCT,tl,I„ (-rl-
iC /2

I x„+1 ) = J„+1.„,,i)

\\;IIt*re (r\„+ 1.„,,- ),e/, and ( ,i„+1,„,., ),c/, are all ( n + 1 )-ar)’ classes of dept,h nI separated
by thc fact that t,herc’ exists or not, all .r„+1 snell t,Iral (.I'1, . . . , r„+1 ) satisfies it

Let, IIS ('ompllt,c $„,.„ . T"ol' Ill – 0. t,he isoIIIorl)llis111 classes are Hiv('1 1 1)y the cornpletc
formulas ( if IIlo form

H(tll('(' b„.u $ 2"2 . Ol)gory(' t}lat, t}le abo\'(' (I(’nnitioll of a class of (1( I1)tIl liz, + 1 as a

f\rnctio II of t.11(' ('la>;srs of del)t. II III Hiv('s b,,y„ $ 2'S”+'.“'–1. So we Ira.ve tlrat, 6 „!n, is bounded
by all Iryl)('r€'xp011ential flln('tioll of llcight Ill + 1 all(I last exporrcrLt ( 71 + 71&)2.

ltsillg I IIe 1)ack-arId-fortll r(?latiolr on root.-systcnrs. we shall define a IIe\v back-and
forth rt'lat i(nI OII pl'esvstclns of alltichains.

Definition 10 1.1 t .4 br a pl'tbljst t Irl of all/ /c'/la ins or’r I' b'. a1. . . . , a„ e /1 and Ill > 0
Call A„,((II . . . . . a„} thr st t fI11'11tl tI by all tht sits of 2"'– I -tu pIr b of pcI iru'ist orthogonal
ant icllu ills snrh tltnl tIt[ it' union is orthogonal with .U {a1. . . . . rr„ } . Say that
(c1.....t'2ln-i ) e ,4,„ (a1. . . . . r/. ) ;s r(luival€'11t fo (r/l.....(/2lnl ) e ,A,„ (al. . . . . an ) ;/ and

only if. frlj' I rich i (1 $ i $ 2"–1 ) rt ltd fOI' Inch unury class r\1.„, _ 1.1 of depth

IIt – I (of tllr root- sy,sIt in } tllr stIs c: n r11 ,„_ 1. , and d, not ,„1 , IIU re thc. same canli-
until y ( identifying nulllbr rs gII utf 1- or crIual //I all -22l7:+1 >tnl–1 J+t r" –1)2 ) . (’all Am(al. . . . . a„ )
the srI A„,(cl \ . . . . . a „) quot ir ntlll by this cquiralrncr rtlntion . So. tacIt clem,tnt of

A„,jal. . . . . (I„) is cotlr Ii by a 2'11–\-lnplr vj 6\.„,_\-luplr s of inttqrr s brtulten 0 and
92(n+ 1 ) ( III – 1 ) + ( 111 – 1 )2
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Definition ll 1,t t -I an ll Ii in pII .\!i.\trtlts tIF it 11l11-IIII ills rrl'r r- S it llrl 'I' ( root-systl'Ills)
II spl t'l}t'l Itl. I' I) :- IIli II. III ( IN , ( r/ 1.....1/„ ) (i . I" tI nrl liII . . . , . h„} e 13" , dl.nut
(r11. , . , , r/„ 1 + „ „1 tIll , _ . . , h„ ) iII I III .hIlltllri II tl u'll II,

;J /./- F„ = { r- 1, . . . . r-.,„: } , //it II .I-Ilj' r II I'll X- e { 1.

ib kIlt II ri 1 !! tIF tIlt Fllj'Ilt nln ;; ) . IIII hits

N„ ) =„,„ ( /,

. I"- } ani/ I e { , a,/,„ } ru'/Irlr (I

{ ( .r 1. . . . , .I' r ) / fIll t'vt'r.\- /. ( I = / : r/ ), .r1 C Il ,1 il£lcl tlu'r(' is .I- e [Pk [r/ 1, , . . , rr„]]

bIll-II //la/ .I- $ .rt II IIII ,q F ;i.{ .I' 1. . . . . .r.1 ) ,k C 1.„1 .I' 1, . . . , .IV ) = rI,I,„,.j }

a II f/

{ ( //1. . . . . //7 ) 1 [tlr I'vt'r.v /. ( 1 S / : if 1, //1 C /I,I tlllrl tIlt'rt' is // C R;[[61 . . , . . bn]I

Ntlt'l1 IIlol !1 $ 111 u llcl S b pi.( !1 1 . , . , . 11,1) &' Cl.„, ( //1, . . . . 11,1) = rl.r.„,.I }

}lurt 1 tl+ .11 1111 11 11111l11 r tIl ! it 1111 11 t , ( itil lltiF11111s1 IIt rtlllllllit it s grt ntt r or t qUIll lllult 22l'“'+'Fl-£ J,
It'II t II II . . . . . ; I Ib III f bU IISt rI Ut III'f tIf I . . . . . // IIII PFI tII hII I>1.FInItIOII g

1 ur/. iF ' /I/ '- II
ii ) 'l'Ill ll i) tIll I>rljrlrl:-llll ib III IIt rll•it 11 FIIP hI I .\ A„, tr/ 1, . . . , II „ ) ItII tl I,„ ( hl . . . . , /in ) in tht

ht11bl { 11111 1: G I,„ trl 1.....1/„ ) 1'11 1-11 >ln111 iib it) II e A„,IIl\ . . . , , II„\ if and only if F and II
11 II rCUIIII tI 11 tIt 1 5111111 tU PIt 1) 1 in it tIII-> Iht I IIIjIIIIIIt IIt III )

ReI)lark 8 1)IIi IIt i ) I it' III(' I't)I'l'qt)iIlg I)t'lillil ic ill -;litt ('s Ill;It . f( It' A' ;IItf I ; (ix('(1, tIl(’ lllIIll-
li('1- ( II1) t t J ?!'’ “ h’' ' ) t it' f/-lllj>It's tJI' tIlt' I't'sI)<'f't i\’t’ I't)ol-s.\'st t’Ills silt istyitlp; ;i all(1 r17.„,./.

a1111 1111151 it !1It', I I,.\ in,illt b illltlvt' [lr-i[,/ 1. . . . , ,r . ] I ;IIjI I I /c [61, . . . . b„]]. is I Ilt' sat llc' for I)otll
S\'>;t t ’IllS

Sill('t' tIl(' 1)I't JI)[ c)I' I II(' ft)IIli\vitte I)!'l)I)tJSit it iII is st)Ill('\vllat iIIVC)I\’('(1 \\'(' sllall illt(’rsp('rs(
bLllljf ' C'tJllllljf'111 \ ( iII iI ill it'- I III giVE ' llll' illtllilirt' lllt'allillq l]1- \vIIiIt \vr' all' rlt)illg.

Prop(>sitioll I > IIjI IIII be .\ / . 1 . It $ all r/ // = . It' / ) . 77 lr 1/ // lr ll / r// /on (=„ , „ )„. „,c_

i.\ II lltl('k-IIn cl- II}I-III rr Irlr 11111 III t Irl f II 'I arId Ii

Ill'llfl f: I III ' rr ;I rT (-lnbxj'h c>1' fl€'1rT II II tlil' £'tjlj1 -s.\'slc'lllb. ilrt' t’xat'I I.v Tllt' $-ist)nlorl)llislll
<-lilsb,'.\ ;ttltl l='£lt'" = 1. St), hIll)jltjhc' \vt' llzl\r' (r11, , . , . r/„ ) =„u ( //1.....6„ ) alltl. for ('xalll

IiI[', fr 1 < II : . -I Ilt'll, II Jr r'ilt-Ii ;, (- F,. \vc' ll&l\-l'l'illlt'r rr 1(, 1 = O ur A + a1 (,) 3 oz(,). So. \vt'
lid\a' ,T,/ I :; a: [r/ 1. . . . . f/„ Il + n. IItt/ / 3 111 1 A a( f/ 1 3 rl: } )[a 1. , . . . rl„]] = O all(I

h ( ( r/ 1 S IIl ) A 1( II: d r/2 ) ) [rr 1.....11 „ IH = O

Sitjf't' WE' }lll\r'. III FIll rt it tIlIIr 1 rr 1. fr: ) =/E1 t //1. /1: ) illltl tllis illlj}tic's tIlat Ill(' r'orrcs])ond

illq c'lt'tllt'Ilt b ill- _ LIP{ /11, . . . . /1 } lllllsl Ilt'. lr'sl)c'c-ti\'c'l.\'. lltill t'tllj>t .\-. c'llll)t.\' allrl (’Irrlit}’. \\rc'
IIII\'(' tIlIIt /11 :: //=. 11.\' I'('1)('£llillg lllib ;\l'qlllllt'Ilt ft)I' (';1('11 1);lil' t)f alltit'llaills. \v(' roll('1ll(1(

t IIa t ( ,1 1, . . . , fl ,1 ) a< ( /11, . . . , h„ )

( )hDt 1-rI 111111. [tII Ill-:> Ii r.-t bIt jl. irt IIU rt nIlly tri-ill t II tIlt order -3 on tIl( systems of an-
tIt-It tIll is lil 11 1-III > II [ itII rI rt it I' - tIll tIll I'rlt tt -> !1.\t 1 Ills I hIt tIlt IIt q inning ol- this al•lirlt }

,\’ci\\'. It't I it' ( II b„ ) illlll rr „ + 1 C .'l. I,c'l F„ = { P 1. gz„, } . SiIlc'c
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MP{t;1, . . . . u„+1 } rennes MP{t?1, . . , , u„} , for each i = 1,

(Vi, ("1, . - - , „n+] )) (1 $ i $ 22"+1 ) “renning” v,'

That is, all the fOI'rnulas oJ f„+1 consistent with Vi

2"

an }

there exists formulas

For each ; = 1.....2"2 and J = 1. . . . , 22"+1 call (a„+1 ),-1 the antich,lin
{" e an+1 / lg e jyE-, E„1, . ' . 1 „n+1]Ky $ -)}
(a„+1)£1 is the subaTttichain of a„+1 consisting of atI of its elements comparable with
B'f'G F“II ' ' . ? “n+1]l.

For each i = 1, . . . , 2"2 call (a„+1 ),- the (disjoint) union of all (an+1)£1 ( 1 S J $ 22"+1 ) and
(a„+1 ); the antichain Epi[a1. . . . . a„]] \ (a„+1 ),-

(a„+1 ),' is the subantlchaln of a„+1 consisting of all of its elements comparable with
[p,-[a1, . . . , a„]] and (a„+1 ); ifs rontplPnl crI I rfI ali rc to tht. same set

Call a’ the antichain a„+1 \ U=1(a„+1 ),'

aF is the set of all elements of an+1 Intlicit are not comparabte
,/LI {a1, . . . , a„ } , and tv( baur,

with arty elemewt oj

2T 1 1

a„+1 = af UU (a„+1 ),-
t=1

tohere the union is d'is’ioill+

If a’ is not errrpty we have two possible cases:

If nz = 1, since a’ is (>rthogorral with M {a1, . . . , a„} , we have that a/ e Hm(al, . . . , an )

(see Definition 10). Let F' be the class of a’ in Hm(a1, . . . , a„ ). By property II (ii), there
exists if e JL„, ( 61, . . . . b„ ) coded by the same tuple of integers that codes r, so take a
representative b1 e /7.

A1 (a1, . . . , an) is the srt of all mtichains orthogonal to M\tIl.

If nz > 1 then consider all (cl, . . . . C2m-1 ) e A„,(a1, . . . , a„ ) such that a/ = U==1–2 c,. If F
is the equivalence class (in Hm (a1, , . . . a„)) of such a (c1, . . . , C2nl–1 ) then, by property 11

(ii), there exists an element H e am(61, , . . . b„ ) coded by the same (2’"–1 x 61,m_1 )-tuple
of integers which codes F’ (see Definition 10). Choose a representative (dl . . . . . d2,„–, ) of

the equivalence class it and set h' = Uf:1–= d,

There erist many non-rgu iral(,nt 2'n–\-tupIt s in Hm (a1. . . . . a„ ) satisfying a' = U:={2 ci ( it
sufIIcts to £nFrr a pt rmutat ion ) . Hou'r,I:rr any of them g tues unit)ocn ity
#kcl1 rl a1.m_1.,- ) for c ach i $ 81.„, _1 (identifuibq atl nurrtbr.rs greater or equal than
22(n+1)(m–1 )+(ni–1)2 )

Consider the ; = 1. . . . . 2"= and J = 1.....22"+1 sllch th,it (a„+1),'J is not empty. In that
case we Ira\'e that. if the arit)’ of f: 1 is q, then it applies to q-tuDles (r1, . . . . =q ) (7 / e abi )
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wllt'rt’ k ,/ = it + 1 alltl tllc' arit}- of iT is Il – I (see I)('li nition 11 (i ) ).

>;iII<1' \r(' IIa\'c' (a 1, . . . , rI„ ) +„,„ i 111. . . , . A„ ) t]lc'll. t>v 11 ( i ). for c'acll (r/ – J )-aIF class of

tIt'l)III Ill . rt„.„,.„. I ht' llllllll>t'r tIf tq – 1 )-tIll)I('s of tllat r]ass (.r1, . , , . .I-,1_ 1 ) (.r/ e aki e .4 )
aILtl ( //1. . . . . y„_ 1 ) t /// e /hI e /i) is tIle salllc' (iclc'lltif.villg tllllllllt'l-s great('[' or ('qual tIlaIr

+ )

Sillt-c' ,''' = -1- , tll€'11 tIlt' I)a('ka11rl-Fort Il ( fl)I- root-s.\’sl<'ills ) llolcls, illll)lyill}{ tllat if one
of t llc'sc' (r/ – 1 )tIll)It's is t'xtt'll€1t'tl lo a r/-tIll)It'. t}lt'll lllt' ot.Ilt'r trill lic' ('xlc’lldcd ill it wa)-

t IInt IInt h r/-1 III>1('s \viII Ilt' c)f t 11(' S?iI]It' c]ass ( ftir root -syst('ms) tif al-itV el a11tl deptl1 III – 1

Fnl' rrqIn III( . Hit’tII .r,1 e S tIl[ II r .ri.sts II,1 e I' surFl that C,1.„,_\(.r\.,,..rq_1. =q)
c„.„Il (.1/1- - . - . li.–, . y.)

('ttllsl(It'r. foI- t'ac-II class rtl.„,_1.,, 1Ilt' t'lc'lllt'Ilt s .rv e (a„+1 ),-1 sIIt’II tIrat
C.,.„, _ 1 (.I-1, . . . . .r„_ 1 , .r . ) = rr7.„,_ 1,,. SInce I'at'll (']clllr'll1 of the l>arI,it ion _U-Pt 1.'1, . , . . r'„ ) is
ref illt'cl liv I"J ('lc'lllc*llts t>f tIl(' 1>art it ion .UP{ r'1 . . . . . r'„+1 ). \w' call find (llli to cardillalitv
22""'+“''/2’1: = 2=t"+llf ’" – II+t"'– II’ ) tIlt' sa111t' 1111111lic'r t)t' r/-t11lilc's ( //1. . . . . //7 ) e CI,1,n,_ 1,,

tllat \vc' IIa\' c' t)f c/-tIIT)I('s (.I'1, . . . . .r,r ) e II.1.„1 _ 1 .

Klltr\vilIB tllat trl„+1 ),F = {.1' / .r = .rv for strlllt' tIf tllosc' r/-t 111)It’s } . it call I)c' c'xprc'ssc'cl (in
,'.') lllil t tIIC'il- t'lc'Ill('Ill s all' I)airwisc' c>rtllt>Rtillill atltl scr tllr' salllr' lllllst Itolcl ill 7', Drfinc'
Ilt)\\' ( b„+1 ),1 as tI It' (tillitt') ;tIlt it'll;till { // / // = //7 for stilll€' of tllost' v-t upI{'s }

FIt is srt ran in nssulltt d ]illit t bt I'll ust our llltck-and-forth I'ttutioll identi lit.s { qt this stage}
22t ’' + 1 >1 '"II+t f" I >' trItII III FIII it U.

I)t'fillt' IIO\\' b = U( /;„+ 1 ),p ( 1 S ; $ 2"- , 1 S .i $ 22''t 1 ). liV tllc' sdlllt' rorlsitlc'rations aI>out
tJI'tIIt)gt)IIIIIIty III ,','. \\'(' I111\'(' tII;It b IS ;111 IIIItI('II;IIII aTI(1 it IS tJI'tII(JgIJII III 1 (J if . SO. fI('fIIr(

I)„+\ as II U if
I II(’ ('1)IISt I'll('I it)II ilIII)lit'b. t 11111 III(' 11111111)('l' tif f/-t 111)It’s ill t'a('Il ('l('Ill('Ilt. CJf t.II(' 1)arti-

tit)it 'Ll'P{ Al, . . . , /l„+ 1 } is tIlt' biltll[' li(It'lllif.vi£lg Ill<' t'alrlillalil it's Hr('att'r (>r e(jlral than

22C"+ II(" – 1l-tt "'– 1l- ) tt) t Ilt' c-t)rrc'sj>tilltlillg lllltllbrr iII .tIP{a 1. . . . . a„+1 } . L'’ol' tIle pro!)c'rty
1 ( ii ), iI is t'iib.v t t> \'t'l'if.\- lllilt f ' is iI clntlsirolllj>lt'lllt'Ilt cif .VI (a] . , . , . r/„+ 1 ) if a11(1 Olll}- if it

is iI rjllflsicc]llll)lc'ltl(’IIt riF .U( rr I , . . . . tI „ . a’ ) ( rcx-all tllal a’ \vas rlt'litl<'tl as tIl(’ “partH of a„+1
i:lc\tllll)arill)It' \viI Il .U 1111, . . . . tI „ ) ) . So, wt' llilvc' t tIal Jt,„ _1 { a1. . . . . rr.+1 ) ('£>IrsisTs exactjy
t)f tIlt' ='"£-tIll)lc'b cit' t Ilt' hn-III (£'=nl't1....,r'£rMl ) wIll'll' ( r-1. . . . , r-2,rI-I ) e A„,(r£1. . . , , rI„ )

ft)I- st)111t' I);lil'\\'ist’ c)1-1 lltJgtJllal ,rllli('llaiIls f'1. . . . . ('.rn – 2 e . 1. 13\' tIl(' (' II(ii('(' of if it I'('slllts

tI1111 t Ilt' istilllt)l-l)lllslll I)c'twcr'll /I„, 1 (a 1. . . . . r/„tI ) allcl /1,„ _ 1 ( 61. . . . . A„+ 1 ) is v('ri[it'cl. U

Corollary 2 /,1 / . S' tIll a . b’ ' in I lrrl 17ir//-A//s/l Ill.x. ;/ ,b' a ,q’ //Ir II .-1( S ) e . 1( S/)

ReIlrark 9 ( )1 JS(’r\' t' tIlIIt . ill lllt' I)I't)tif tIf I)I'tJI)tJSititill I \\'(' ll iI\'(' tIcit fllll\' IIse(1 t 11(' fact

Fla 1 .’1 aIIrl /? \vc’rt' , ir ,-,' ) allcl 'I ( -/' ) rt’sl)['r'ti\r'lv. \\1' lla\-c llstxl tllat tFl€'v arc 1)resTs-

tt'Ills t)I' allti('lltlills ('lt)-it'(I lllr(I('l' (lisiotIlt ttttit)tIS all(1 tIltIt I)II tIlt'111 tIl(' firlllilv of r('latiolrs
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(=n.m)(„1,„)eu, gives a back-and-fort,h with .4(S) and A(7'), respectively. Since, given such
a family of relations. \vc have that t\vo models Af and N are element,ar)' equivalent if and
only if. for c'ach III e N all(I / e A/ (?/ e IV) there exists # e iV (r e M) such that
r =1.„, ,1/. \\'e have that .4 = .4(b') if alld only that last I>roperty holds between them. In
order to make t,Iris I)oillt, (’xI)li('it., let its rcsta,t(' 1)efinitioll ll for 77 – 1.

We have that. 71 = {.rl 3 =1, .1:1 i /1 } and the set, [(a1 + al )[al]] is empty for any
a1. Also [(a] 3 a1 )[al]I = a1 = M(a1 ). So \vc have, for a e /1 and b e B, a +l1,„ b if and
only if

i) For any i C { 1. , . . , 61.„, } #(n n a1,„,,,-) = #jb n a1.,„l1 ) (identifying the numbers
greater or eqltaI than 2’FI ("1+2) )

A IId . if n\ > 0

ii) There is an isomorphism bettrccn tht sets JIm ( a ) a'ltd Am(b)

Since the isomorphisn1 of ( ii) is Hiv('ll by the un,try classes (of the root-system) of depth
In – 1 (see Definition 10) and the existence of alltichains colnpose(1 by a. gi\'(’n number of
elements of certaiII class can be expressed for the root-system in terms of orthogonality,
we call give the fOlloWiIlg

Definition 12 /1 pre srIstent of 11111 ich uins r>tTrl' a root -systr'. in ,S is a system of antichains
over S if it is closcd un (icr disjoint IIn ion and admits all t.lbc untichains compatible lottE
the theory of S (in thc sells(' of Remark 9)

So we call st,atc

Coronary 3 1,ct A and B b(, systtrlr.s of nlrtirhains oct r S and T respectively. Then
S = T ilr\pties A = B

Remark 10 Observe that the t,yI)e of an element in a presystlent of antichains is given
by the number of elements of each llnary class (of the root-system). So. if A is a system
of antichains over b'. we have that for each a e .A its type is the same when considered as
an element of A(b'). ArIa.logously. if ,V is an cl('m€:rrtary submodel of :f. since the back-
and-fort II classes of tIl(, elenrelrts of .q are the sallre when considerc(1 as elements of T. and
the type of the ('I('lllt'IIt s of .4(,q) arc' given by tIlt>se classes. then tIle types are the sanre
when corlsidcrc'(1 as elemc'Ilt s of .4(7'). llence \vt* can coIICllrde

Theorem 4 Lc t S br a root-$yste'iii II IId A II slystt'III of unI ichains orc'r S, then A -3 At b’ )
( A i$ tIll elemcllt.arg subnlodcl oJ I (S ) )

Theorem 5 Ltl S and ’r br root-stINt ms such that S is all tIe lllentary submodel of T
and A and B slystr ms of an tichains nrr r S and T rtsp€,cti rely. If thr cmItt dding of S in T
can be crtended to all cmItI rIding of A into B , then this embedding is also elementary. In
part -tr ular _4( ,C,’) 3 .4( 7’)
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Definition 13 i,tI 'I tu tI prt s}ystr III of a ILlirll(rtTts Ol,rr S: defi-IIt the fotlouring binurry
o p( Ilt ! I o ItS

( { IIla.r{ a(.r). b(,1') } / {/ } 3 n r>1' {.r} $ b} ;/ a + a 7£ h
II V b = { a db = O

I & ;/ a = 0
r/ 11 r/

aA A = { £““"{“(")' h('")}/ {-"} 3 “ k {"} 3 b} gZ : gIL = a

Proposition 6 '1'Flr OFr i-at ic)lis V . A and thr I mpI y a IIt ichain O qi rr to any presystem of
t111t it'll IIi Its II stI'llt't tII't ol' tlist I'il) IIt irt Itltt I('I lritll tr 1( (Ist tIt IItt Ilt

I>111111-: 1,ct !>(' r' = { IIla,I'{a(,1' ). A(,1')}/{.1' } 3 rl or {,I' } 3 b} . l"irst we shall prove a 3 c.

1.t'1 .r' e a. thr II .r = rr(.r ) ( i//a.r{ur .r ). A(.1' ) } e c impl.vilIE a 3 r ( in a.n analogous way we
pro\-c' b d r) . No\v SLr]>1)t>st' rr, A 3 r/. -l'IIen. liv (lc'finitioll of the order OII /1, we have that
for t'ac-II }>oillt ,I' e nUll tll€'rc'c'xisl s n !>t>iIll y C r/ su( II tt lat / $ //, 1F .7- = lila.t{a(r), b(.r) }

\to all' <lol]c. Sc) SIll)!)tisc’ tIla I .r is sI ric-1 1.v slrlallc'r tha.t IIla.r{a(.1- ). A(.r) } and, for example,
.I' e II . ’L'hell tIlt'r c' c'xist s = C // SIIt-II lllat .I' < = = b(.r ). I.c'l y’ e r/ such that : $ y’. Since

tIl(' 1)oillt s foI'Ill a I'oot -s.\-sI (’III. \\'(’ IlII\'(' tI1111 // allrl /// ;ll' t’ ('oIrtl)al'a})]r iIIIpl.ying –because
r/ is all allt.iclraill tllat Ill(’)’ coill(’i(1('. so \v(' IIa\'(' that fOI' (’very I)oirlt in (' there exists a
!)oillt ill (/ \vIIi(-II is gr(';lt('l' t)r (KIll iII. -l'll(’II \vt' IIa\'(' tllat f' is tIl(' lat ti('('-t,}l(’oretic joiIr of a
aII(1 II . For tIl(' lII€'('1 ol)('l'at ioII Ill(’ broof is siTllilar

l- br t IIe disl ril>lltivit \'. \vt' IIa\'c'
( a V b) A r = {rllr/./' { a( .1- ) , b( .r ) } / {.r } $ a or { .r } $ h} A r

(a A c) V (bA r) =
= { /Ira.r { in;il { a( .r ). rt .r ) } . r/?;/l{&(.I'}.r'( .r ) } } / ( {,r } $ rI ,V {.I' } 3 r or {.I'} 3 b & { x} 3 c).

SlIIf'(' tIl(' Ill('('t is ll('iill(’fl ill T('l'IIls I)f t 11(' lllillillrllIII c)f a tt)tall.\' or(lere(I set and logical
('OlljllIIf'l ioll. t II(' joIll is (l<'lillt'f I iII tt'l'Ills t)f t Ilt' lllaxilrllllll t)f a totally c)rdered set and logical
flib.illll('t ic)11. ;III(1 sill('(' (lib,t I'il)IIli\’iI.\' ft it' tllc>st' I)£lil's IltJl(is. \\'(' IIa\'(’ t.I1(’11 ( list,rit)lltivity for
ollr lilt 1 ir('. O

dtI(I

Rerrrark 11 Ol)s(’l'\'(’ t 1l;It . sill('I ' ;IIIy I)I't's}-st (’ill of allt i('llaills a(llllit s a rrniqll(' (]istribllt,ive
latlit’€' qtulr'tlllr' c-c)lllj>illilllc' wit II :; . wc' ll?l\r' lllat tIl(' t>1>c'rati(nls V all(i A are definable

III III(' IaIIguag[' < 3, D>

Proposition 7 ( ;irt II tI pII hiihrc III rif cllll it'ItII ills A nrt I' rI r(lol -sIIhrc Ill S, I FIt IInt I(-tIlt ins
of tIlt fornl { .r } (.I' e .q ) urc t.ructl II tIll jni II-i I'll durlblt lint irhains

1>1'r IIII: I,c'T li€' r' = II V /I = { 1/rr/.r { a(,1'),b(,1' ) } / {.r } $ ,1 or { ,r } $ h} and suppose
II 7/ r' 74 h. ’l'Ilt'll rr all(1 b ;lrc llclt cl>Ill Dara I)It'. \v]licll illlpli(’s lllat tlrere exist elemclrts
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Za e a &bIrd go e A such that .ro (rc'sp.. go) is incornparable with all .I/ e b ( resp., r e a)
Hence. b(.I'u) = O. and IIla.I'{a(,I'o). h(,ro )} = a(,rn) = .ro e a V b = c. Sil11il tIlly, yo e c, and
c has at least t,\vo poi111 s
For tIle collvc'rse, if {r. y} e r ( / + // ), \ve havt' r' = {.r} V (c\ {.c } ) rwll('r(' (c\ {.r} ) + 0. D

Remark 12 Ol>sc'rvc tIltlt ill a systf'111 of alrticllaills t,llc r('ldtion ".r e rI" ( where x
poirlt of IIlo rool-syst('rll) can I)(' ('xprt's lied iII tIle langllagc' of systellrs of arlticllains

I)ointjr)&c..r 3 abcVu( PO’iII Fjy)& .r + y –} T ( .’I' $ y 3 a ) )

where PO;IIl (.r ) states that .r is ioilr-irreducible

Corollary 8 (; /re n a prI.s IIst t ni of nil lirhuins ;1 = <'\, 3> orlrl' a IVO t.-syst tIn
S = (S, g , tll€ 1r t .rists n dtFnnblc subs( t S( X) of A such that
(SCA), 3> B <S. S>

For a pr('syst(rn of dntirtlaills /1 over a root -systt'lrr .S' \ye shall idclltify b' and Sf/l )

Theorem 9 i) Let A ullll 13 lw systt ms of ant irlluins ortr S and T. rt sptrtil?ely. Then
S = T if and only if A = B

ii) Let. S and T be root-systtrn.it. then .4 ( ,S’ ) 3 A(’1') if and only if S 3 : I'
iii) Let B tIe cl. presystern oj [rlttichrtins over S. Then B = /1 ( S ) if and nItty if B 3 ALS\
if and only if B is a systc III of antichnins out r S .

Proof: i) One direction is (:orollary 3. th(' otll€'r is a collsequell(-c of LIlo dehnability of $
over /1 and tllat, of T over /3.

ii) One dire('tioll is Theor('Ill S. tll c' ot,her is also colls€’quell(l’ of the clcfillability
iii) One dirtx'tion is 'L'llcorem 'I. For the other, if /i = ,4(S ), since \v(' IItIve ,S' = S(B) and
all sentences stating the cxisLcIr('c’ of t,he antichaills whose corrstrtlctiorl was indicated as
in Remark 9 are true for /1(X). then they must be true for B, and applying Theorem 4,
we conclude that B 3 kS). D

Remark 13 IIa\’illg I)ro\'c’(I tllat elerrrelrtary ('(IIli\’al(’IIce and elelrrerltary (:Irrbedding are
tralrsfer(1(1 froIll root-sVstc’IrIS t u s\’st elIIS of altI i('llaills. it is natural to look at the stabilitY
fInd ind('petl(IPnrp properly. 1ll [6] Parigot prov€'cl that a lhc,orr of trees is stable (and
supel'stal)Ie) if all(1 OIII.v if its IIlo(I('ls are of t)OII IId('(1 Irciglrt all(1 tllat Ilo theory of trees
has the ill(1(’1)en(lencr' I)I'ol)('rty. SiIrce a tree is t 11(' order-cllral of a root.-svstenr, it is
obvious tllat tIle same holds ft)r ihrc)lies of root-svstt't11s. However. e'vt'II for a system of
dntictrains over a root -s)'S+C'111 of l>o1111ded lleight . if it is inhrlitc. tlrerc’ are dntichains of
any fillite carclirlal. irlrT)I.\’illg t tIat tIlt' theory of t IInt system of antirhairrs IItIS the strict
order prc)port)’ and tIl(’ll. ttlat it is lrnstabIF (see [9] ). The unstabilit,y results also from
t,he iII(leI)eII(I('llco I)roI)crty \\’tli('l1 Ilt)1(is ill ally ill(’or\’ of a,Ilt.ic}raiIrs o\'(:r a. root-syst.elll of
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lltllit>ullclctl \vi[lt it. ('t>IISitl('r tIlt’ ( SVstr'Ill of ant icllains) forllnlla f(.r, P ) = :r e y; t,Irerr for
It e ,,’ ;\lltl aIIy SII('ll a III('I it'\' of ;lllti('llaiIIS 7'. tIl(' fo11owill Ii sent('ll('c IIO1(ls:

I.rt). .FrI–I . I( //.. ),icr( „ I( F\ t [\ gt-r \. H,Jk F\-'vtrl-u,An
1 CP ( I1 ) iCt I zen

Remark 14 111 [(i] is tr'k'rlr'c! lllc' I'c'stl II of [8] at>ollt al'l)t)r('scc’nt structures, where it is
bro\’('(1 III(' illl('1'1)I'('tal)ilit \’ of tIlos(' st I'll('t tlr(’s iII tIl(' t 11('ory of trees. Sill(r! tIle theory
of root-s)-stC'Ills (atlrl ]l€'11t'€' t]lat of trl'('s) is inte'rpI'(’laI)Ie in thc theory of systems of
allt it-II iiitIS. it is a :liltllral l>r(Jl>lt'Ill tc> kIlo\V wilc'tIlt'r a s.rst cllr of allticllail is is all arl)orescent
st I'll('tllr€'. -1-11€' alls\rt'r t llrlls Olit tII bc' IIO. tit'('a11sr' arl)or('src'nt structures arc characterized

bY the abseII(l’ of a I)artiallv dr(I('r('(I set, of follr clcnrcllts sllc ll that a < 6; c < 6 and c < d.
It, sllf Ii('('s I (> ('oIISi<ll'l' zi t'tJ(Jt-S\'Slt'111 ll;l\'iIlg t}ll'('(' ill('ollll)aralil(' (’l('llr('Ilt,s .r. . II , : and take

lhc a11tirhaills rr = { .r} , h = {.r, // } . r = {// } antI tI = {//. : }

Renrdrk 15 \\'c' ll£l\'t' tIlat I IIt’ llc)lit)II cif a s\'st£'Ill t)I- alltirlltlills ( over a root-syst,('rn) is a
IIa tllral gell€'1'alizat iI)II of t Iral of all ;ttc)IIli(' F3tJol('all alg('1)I'a. Ill lllis case t,llc root,-syst,em

is tIlt’ srt of all)Ills \\'it ll lilt' t ri\-ial cirllt'r allc!. For a givt'll sc't ,'.' of atoms. A(b') = PCS)

({itt' pc)\t(*r-st't cif S ): ill bart irlllilr, 'P(X) is iscilllorpltic to t llc roIllj>Ict(' at Olltic distributive
lat ti('(' wit 11 s('t (JI' :lltJtttS .'.’. l{('('all tllitt iI lat t.i('(' is call('(I /a/r /v///# ('0711p/r/r if ally subset
of Dail'wist' t)rt}ltigt)llill ('l('lllt'Ilt.s il(llllit,s it it)wt'sl Ill)])('1' 1)otIll(1. It is easy to verify tlrat,
foI' ;IIly IIiot -S\'St<'Ill ,','. .'I( .q) is l;Itt'l'ilII\' <'olrll)I('t <’

111 OI'(1(’r to illllst t'aI t' t,IIis \va\' of tllillkillg tIl(' s.\'st€'111s of anticlraills. I,llc list below
sIlt i\\’s IIo\v st)lllt' of t 11(' 1)roI)('rt i('s t)[ s.\'stc'Ills c)f &tIlt i('I la ills bro\r’cI iII t llis paper g('n(’ralize
\vcll-klro\\'ll I)I'ol)('l't i('s (>f atoIlli(- 13ot)I('all algt'tJras

J,('1 /? 1)(' IIII IIt.C)III1(' 13tJC)1(' IIII III,g('1)I'II \VIIII S('I. Of IItt)IIIS 7
ovcr a roof -s\'st('Ill .s‘

'1 a s\'sl,('111 of a.Ilt,iclla.ills

B\

[;=

B-

B.I :

.I/( B ) = -I

If /i is ('t)Ill!)I('tt', tI It'll /? = Pl 'I- \-.

13 < Pt'l'\
/? ('olllaiIIS IIII lillil (’ &t 11tI ('(ili]lilt' SIll)st't s of 'I

J,
/1=

/1.

,4,

,','(.'1 ) z ,',

If .'I is l;\lt’l'illl.\' t'l)llljil('tt'. tIlt'll .'1 3 .'1( .',' )

+ 3 ; i( .\' }:

t;or t'tlcll t)trsitivl' illli'g€'r Ill. a lltl A1,„,-tIll)It' (/'1. . . . . rE,, 1,1 ) of posit.ivr illtcgcrs less or
('lllla] 1ll;I tI =’"(’"+=> . , 1 c-tllltaills IIII allt il-IIa ill ft;!'tlltq] 1>1- 1- 1 pt)tllth c)f r'lass n 1 .„.j (or
boss.il)I\' Ill(JI't' it' /', – 2“' t““:I ) if iIII(1 c)III)- if tIl(’ (’:';ist.(’ll('e of SII('ll aII a,Ilt,ichain is
t-ollsisl('Ill \vit II III(’ tIl(’(JI'\' t)I' . S'
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III fact, t.II(' ])oint,s 132 and d2 ('a,ll 1)c strengtlrcrled:

82,: if B is a corllplete at,Ollli<- clist,ril>lILiv(' la,tt ic(' with set of atoms T, t,Iron B 3 FIT ',

A2,: if .4 is a laterally complt'tc' pres\-stem of ant,ichai11s over S. theII A = .4( S)
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ElcIIrr'rltarv e(jlriva,lence of IIa,Irn-l)owers of
cji\rjsil)1(t tot,ally c)rd(lred groIII)s oil a root

sys t,eIn

IP. I,II(- iIS

1 )61> it I t t'lrlpltt, tlt’ N Tilt 1l6111;Itifjllt'S
tTlli vf’rsiit 6 (1' A lIRf'rs

2. IiI 1. 1,;rvf)isir'r
Ino'I.s All}\f'rs (:(’(It'x - FIIAN('E

Introduction:

Definitions:
A root–system (1,<) is an ordered set, such that for all icI the set

{j / isj) is totally ordered
If I is a root–system and (Gi)iCI a family of totally ordered groups, the

Hahn product of the family on the root-system I: A(1,(61)iCI) is the subset
of the product TTGi given by the elements g such that any nonvoid part of the
support of g (supp(g)) has a maximal element. It is easy to verify that this
subset is, in fact, a subgroup. If we define g to be positive when for each i
maximal in supp(g) g(i) is positive then A(I,(Gi)leI) is lattice-ordered
If for all i and j, Gl=GJ=G then A(I,(G1)iCI)=A(I,G) is called the Hahn power
of G on I. Such Hahn powers have been considered by Conrad, Harvey and
Holland [C.H.H. ] who proved that any abelian lattice ordered group is
isomorphic to an 1-subgroup of a Hahn power A(I,IR)

The maximaZ support of g: ms(g) is the antichain of maximal elements of
supp(g) .

I is a root-system and A(1) the set of antichains of (1, s), A(1)If
partially ordered by: a«b iff (Vt€a It’cb t£t’ ) as defined in [R.1].
(« can be defined by the same way on PCI). )

Define P’ (1) to be {PcP(1) VQgP Vt€Q It’ t£t’ t’ maximal in Q)

is

exists k such that k<i and jrk.
A root system I is a dense branching root system iff for all j<i there

The Feferman-Vaught [F. V. ] theorem on first order theory of generalized
products can be applied to Hahn products : if (1,5) and (( J, 3) satisfy
(P’ ( 1), g,n, « )=(P’ ( J) , S,n, « ) and all the Gi and Gi are divisible then
A(I,(G1)1€1)=A(J,(Gj)jeJ. Here we are proving the same result using only the
hypothesis of 61bmentary equivalence of the partially ordered sets of
antichains and a partial converse

Theorem 1: Let I and J be dense branching root systems, and for each icI,
(j€J), Gi, (Gj) is a totally ordered group, we can interpret (I, s), ( A(1),«),
and each Gi in A(I, (Gi)iCI) and
if A(I,(G1)1€1)=A(J,Gj)j€J) then (A(1),«)=( A( J),«)

Theorem 2: if (I,s) and ( J, s) are root systems, for all ieI, jeJ, the Gi and

Gj, are all divisible, and (I,g)=( J, s) then A(I,(Gi)1€1)=A(J,(G)J€J)

For this we use a first order transfer result between root systems and there

I



systems of antichains, proved by D.Gluschankof in a forthcoming paper [G. ]

Theorem : ( A(1),«)=(A(J),€) iff (I,s)=( J, s)

O) Some remarks and definitions

-about root systems and branching properties:

We have defined dense branching root systems. The following will give a
better understanding of this notion

Definition: in a root system I, i is a branching point if
(lj,k<i)(Vx)((jsx<i & k$y<i)+xIy) (i.e. tj,i[nIk,i[=o )

Remark: if I has a dense subset of branching points then

branching point or I has dense branching, with a dense subset of branching

(Vu,v; u<v)( Bac]u,v], a is branching ). I is discrete and each point is

points. A root system I without branching point can be dense branching

-about antichains:

Let (I,s) be a root-system and ( A(1),«) the associated set of antichains:
( A(1),«) is a lattice ordered set. A(1) has a smallest element, the empty
antichain:a. (1, 3) is definable in ( A(1),«) as the set of sup irreductible
elements
The infimum A and supremum v for the relation «, and the relativised
orthogonal alt’={tea, trb} are definable in A(1,«)
If bCa then a\b=alb
we have alt)Vc={tea, tr(bvc)}={tea, tA(bvc)=O}=aIbAaIc, albAc=albvalc,

Definition: for each n-tuple (al,. . . ,an)cA(bn let T(a1,...,an) be the
substructure of A(1) generated by a1,... ,a„, in the language (A,v,I,n).
T(a,,. .. ,a_) is finite. We can also define T( A) for an infinite substructure
A of A(1) to be the substructure generated by A in the language (A,v,1,n}

Definition:for a,bcT( A) and a«b, define bCa)={tcb, It’ca, t’ st}

Definition: Let mp(a, ,. . . ,a„) "min– partition" be the family of minimal
antichains for « in T(a, ,. . . ,a_);
Remark: in the infinite case T( A) such a min–partition does not always exist

Remark: if a€mp(a1,. . .a,), and x€T(a1,
{x(a),x€T(a1,. ..,a„)> is totally ordered

, ,a„), for each a,

Now we give some definitions following [G. ]

Definition: Given al, . . . , a„ in A(1) ,
M(a1,. . . ,a„)={icI, i minimal in alu...uan}

consider a,u. . . va_gI and define

2
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Remark: M(al,. . . ,a„) is an antichain;

Definition: For each quantifier free formula +(xl. . ,Xn) in the language
and any n-tuples of antichains a1, . . . , an, define Id(a1, ... , an )] , by
induction

r ;ii:,i- :,:IT#’(E:::::.-J=)t:'t(; i:::.?i:3TrTb?::::IST
[=+(a1, . . . ,a,J]=M(a1,. . . ,a,)\[+(a1, . . . ,a,)], (in this last case,

M(a1,. . . ,an)gI+(at,. ..,a„)] and if agb a\b=alt’ )

Remarks: [ P(al, . . . ,a,)] is always a subantichain of M(a1, . . . ,a,)
+ can always be writen in a conjunctive form +=A(+1l1 (a1,aj))
+l9J(al,aj)=ai£aj or @itj(ai,aj)==(aisaj)
cb is complete if for each (i, j) aigaj or a(aisaJ) is in the conjunction.

where

Definition: MP(a1, . . . ,a,)={[+(a1,. . . ,a„)] with + complete }

Remarks: MP(a1, . . . ,amis the set of minimal [+(a1,. . . ,an)]

[alsal] =(tcM(al,. . . ,a„), a1(t)+0) is the projection of a1 on M(al,. . . ,an)

If a1 sai is one of the conjoncts of $ then for each tel+] a1(t)+a
If + is false , [@] is the empty antichain
If + is true , then for each i, al([+1)=ai, (for simplification
notations we shall use al[+] for a1([+])
ai[+]={t€ai , it ’ cAf (a1, . . . , a„ ) such that a1(t’ ) , . .. , an(t’ ) satisfy
a,(t’)=t.} i.e
alP]={tea, there is a branch going through t and satisfying + }.
a[n+]={tea, there is a branch going through t and satisfying a+ >
a-a[-Id]={tea, each branch going through t satisfies + )
a–a[+ l={t, each branch going through t satisfies a+ ).

of the

+ and

Lemma: T( a1 , ,,an)={Vk=1)...m alk[+ik(a1,. . . ,an)], +ik quant.free).
Proof:1)Let T’= {VI,,1,...m aiD[+ib(a1,. . .,a,)], +\b quant.free):

for each a„ a,cT’ and
if a and bcT’. avb€T’
aAt)cT’:al[+}Aal[f/ 1=ai [+API,

al[+])Aaj[@]=a1 1 pAPA(al=aj)]vaj[+AP/\(ajga1)],

: I e :7:j I ( C : y :)+a) :£ : : : r :1 ! ] 1 :a : b ) 1 cj= a 1 b v a :
alt)={tea, on each branch going through t, tlb>

=a-a[ ( asb )v( bsa) ]
at p]lb[ P l=a[+ InCa-a[(=( #A( ( asb)v( bsa) ) ) ] )
(avb)nc=((a[ a( asb) ] )nc)v( (b[ a( bsa) ] )nc )v( (a[a=b] )nc) and
a[+]nblPJ=a[(a=b)A+A+]
hence T(a1,. . . ,an)gT’
2) for each + and each al, ai(+)e T(a1, . . . ,a,),
a1([aisaJ])=aln(aIAaj) and ai([aj£al])=aln([alvaJ]),

!:}Eijilltjill; ii:(’t;::,Iiy;(au ::::'(rip;:j; ii
a1( In+])=al\a1([+ 1),hence T’gT(a1, . . . ,an).a

Corollary: mp(a1, . . . ,an)=MP(a1 ,a„)

-about Hahn products

Definition: if M is a subset of A(1,(Gi)iCI)

3

shall consider ms(M) the set



of maximal supports of elements in M and if M is finite mp(M) his min-
partition

Definition: T(G)=T( ms(G) )

Definition: For each g=(g1) and each a£ms(g) define gja to be ChI) with
hJ=gJ if ( j)«a and O if not
Remark: if a1,, . . ,an is a partition of ms(g) then g=gI a1 +.. .+g jan.

2) Definable maximal support and interpretability

Definition: if G is an 1-group define the relation
R(g,h) iff hIggI A(Vx,y; (h=x+y A xry))(Ix’,y’; g=x’ +y’ A x’€xII A y’€yII))

(if h=x+y and xry we shall denote this later by h=s©y),

Lemma: if G=A(I,G1) where I is dense branching: ms(g)«ms(h) iff R(g,h)

Proof : a) if ms(g)«ms(h), then hIggI,
suppose h=x©y , define a=ms( x ) , b=ms( y ) . We have aab=a

ms(g)=ms(g)Ams(h)=ms(g)A(avb)=(ms(g)Aa)v(ms(g)Ab)=(ms(g)Aa)u(ms(g)Ab) ,

a’=msCg)Aa and b’=ms(g)Ab then g=(gI a’)@(gI b’), (gI b’)€yII, (gI a’)€x11.

b) Suppose R(g,h) is satisfied and consider u€ms(g). There is a v€ms(h) such

that usv or vgu. There is no v€ms(h) such that v<u: if there where such a

veIns(h), v<u consider the two following cases: first case v is the only
point satisfying veIns(h) and v<u, then I being dense branching , there is a

w such that w<u and w cannot be compared to any point of ms(h), hence there
is a k such that supp(k)=w, k€hl and kdgl; second case, there is v’, v’+v,
v’cms(h) and v’<u, consider a partition of ms(h): ms(h)=aub such that v€a

and v’eb, h=(hja)+Ch [ b); for each g’ and g" such that g=g’+g'' , we cannot

have g’c(hja)II and g"€(hIb)II , because uems(g) and therefore u€ms(g’) or
u€ms(g"), say u€ms Cg’ ) for example, but v<u and v’<u hence g’d ChI b)1 and

g’d(hl a)II.a

and

put

As a corollary we obtain

Theorem 1: Let 1 and J be dense branching root systems and for each icI,

(j€J ) , Gi , ( Gj ) is a totally ordered group, we can interpret ( I, s),
(A(1),«), and each Gi in A(I,(Gi)iCI) and:

if A(I,CCi)ieI)=A(J,Gj)j€J) then (A(1),€)=(A(J),€).

Proof : Under the hypothesis ms(G)=A(1). Let S(g,g’ ) iff R(g,g’ ) and
R(g’,g) . S is definable , A(1)=G/S, ms(g)<ms(g’ ) iff R(g,g’ ).

From this we can interpret (I,s) in G, because (I,s) is definable in A(1)

Gi is the quotient of two definable convex subgroups:
4
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6l=(g; ms(g)«i)/{g; ms(g)«i and ms(g)+i).a

We can also interpret (1,5) directly:

Definition: Let G an 1-group, g' denotes the set

{X€gIly ly)'Z( y)zegII) yII+gII & ZIl+gII & X=y+Z) )
(x€g' iff it is the sum of two elements wich are not weak units ).

Facts:

If geg' the convex subgroup generated by g' is the lex kernel of gII as
defined in [C. ]

If x€gIIand g is not a weak unit in gII then x€g': ( take y=x and z=O).

If x€gll and xII =gII,then xc g' iff jms(x) F 22

Lemma: Let G=A(I,Gl), x€gII and ms(x) having at least two elements then
x€g'.In particular x€x'

Proof: for acA(1) define x [ a=(x’1) where x’i=xi if {}}«a and x’i=0 if
not. Then if ms(x) has at least two elements it is a disjoint union :
ms(x)=aub, x=xIa+x 1 b where neither xIa nor xI b are weak units in xII and
gII. L]

Lemma: if G=A(I,Gi), g' is an 1-ideal

Proof : let x€g', y€g', let a=[ms(x)«ms(y ) and ms(x)#ms(y ) ] ,
b=[ms(x)=ms(y)], c=[ms(y)«ms(x) and ms(x)+ms(y)],

-if neither x nor y are weak units, then x+y €g';
–if x is a weak unit, if two of these a,b,c, are nonvoid, the maximal

support of x and then that of x+y is the union of two nonvoid orthogonal

parts, then x+y eg'

–if x is a weak unit and only a is nonvoid then y is also a weak unit and
ms(x+y)=ms(y) has at least two elements, and x+y €g'
-if x is a weak unit and only c is nonvoid, ms(x+y)=ms(x) has at least two
elements,and x+y€g'

–if x is a weak unit and only b is nonvoid then ms(x)=ms(y), ms(x) has at
least two elements and x is a weak unit and ms(x+y)«ms(x), then either
ms(x+y) has at least two elements, or x+y is not a weak unit: x+y€g'
-if 0 Sz<y and y€g' , if y is not a weak unit z is not a weak unit, and if y
is a weak unit, ms(y) has at least two elements. Then either ms(z) has at
least two elements or z is not a weak unit.a

Definitions: Let g_g’ iff gIl=g’II and R(G)={g, geg', gcC},

5



Lemma:If G=A(I,(Gi)1€1), where 1 is a dense branching root system, then
R(G)/-~ I

Proof : if icI and g€G and supp(g)={i), then g€gll but g€g'. I being dense

branching, if supp(h)={j}#i, hIl#gIl: we have an embedding of I in R(G)/-.
We prove now that this embedding is onto. For each g such that gll+g' and
g€g', ms(g) has only one element: ms(g)=i, therefore the embedding is onto.a

We are now looking at an 1-group G’ such that G’=A(I,(G1)1€1)=G where I is a
dense branching root system. We come back to the foreward define equivalence

relation S: S(g,h) iff (R(g,h)&R(h,g); We know that S is first order
definable

Definition: Define A(G’ ) to be the quotient set G’/S and dms(g) the
equivalence class of g. Define dms(g)«dms(h) iff R(g,h)

Remark: if G’ is G then A(G)=A(1) and dms(g)=ms(g).

Lemma:(A(G’),€)=( A(1),«), the relation « is an order on A(G’ ) and for this
order A(G’ ) is a lattice

Proof : by interpretability.a

Definition: Let I(G’ ) be the set of sup irreducible elements of A(C’)

Lemma: I(G’ )=1 and A(G’ )gA(I(G’ ))

Proof : We can define i€dms(g) iff i«dms(g) and Vk k«dms(g)+(k«i or kIi ),
and then for all i,j€dms(g) i+j implies irj.

We now restict oursef to the divisible case

Embedding lemma: Let G be a divisible Hahn product G=A(I,(G1)1€1) where I is
a dense branching root system and G’=G, then G’ can be embe bed in the Hahn

product A(I(G’),(G’i)1€1(tJp))

Proof: for each ic(Ims(G’ ), G’i is defined C’i=(g;dms(g) gi}/{g;dms(g)s#i).

Consider Cl={g€G’; dms(g)=i) and Bi a maximal CD-independant subset of B1

such that for all b and b’ in Di dms(b-b’ )=dms(b)=dms(b’ ). Let D1 be the
Q–vector space generated by Bi, we have Gi={cI(g), g€Di}. Let D be the
direct sum D=@(Dl, icI(G’ )) wich is contained in C’. Let D’={gcC’; Vi€dms(g)

gI i€D1 } and D'' the Q-vector space generated by D and D’. For each O-vector

space A such that D’'g£ISG’ and gcC’, gdl\, g is immediate on A in the

6
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following sense: for each TeA there is a T’cA such that dms(g-7)=dms(7’) and

for each ie dms(g-7) cIC(g-7) ii)=cI(7’ Ii).
Now we can construct an embedding of G’ in A(I(G’ ),(G’i)iCI(c+)). For ge

D1 define f (g) by (f (g)k=O if k+i and f (g)i=cI(g). It is easy to extend the
definition to D’ and D". The property of G’ to be immediate on D" unable us
to extend the definition of f by induction: if f is defined on A, g€G’, gdA,
if there is a ?’cG’ such that dms(g-7)«#dms(g) and i<dms(g) and there is a
j€cIms(g-7) j«+i , then define (f (g) )1=(f (7 ) ) 1 , and in the other cases

(f (g))i=O. We can verify that if another 7’ satisfies the same properties

for g and i then (f(7’ ))i=(f(7))i because this corresponds to a formula

whichis true in G. We have constructed a group embedding but this embedding

conserve the maximal support and the order in each quotient, then it is an
order embedding.o

3) r-projectability

Definition

following:

1) (Vx,y)( lz,w)( x=z©w A (Vu,v)(( w=u©v)+(udyI A v€yI)))
2) (Vx,y)(lz)(ms(z)=ms(x)nms(y)).

An 1–group GSA(I,(Gi)iCI) is r- projectabLe if it satisfies the

Examples: if for all
projectable:

The Hahn power A(I,(Gi)i€1);

The Hahn sum ©(I,(Gi)1€1) i.e. A(I,(Gi)i€1)n(©G1) the subgroup of elements

of finite support;

The narrow Hahn product N (I,(Gi)i€1)={g€A( I,Gi)iCI); all antichains

supp(g) are finite} as defined in [R.2].

GI is totally ordered the following 1–groups are r–

Remark: 1) The first condition of r-projectability could be considered

any 1–group, the second one needs the notion of maximal support

Lemma: if G £A(I,(G1)i€1) satisfies that for all x, ms(x) is finite then G
satisfies the condition 1) of r-projectability

Proof : given x and y, y define a partition of ms(x), ms(x)=a©b a maximal

orthogonal to ms(y); let U be the set (may be empty ) of ucC such that
ms(u)Sa and u=x jms(u), since ms(x) is finite there is an v€U such that ms(v)
is maximal in {ms(u), ucU). For this v we have x=v©(x–v) vly and if (x-

v)=s©t then s€yI and t€yI by the maximality property of ms(u).a

7



Lemma: (unicity of r-projections in a Hahn product) if G=A(1,(61)iCI), x,y€G

xIY=(x’i), x,y,=(x"i) where x’1=xi, x"1=O if ilms(y), and x’i=O, x"i=xi if
not

Proof : the defined xIY and xy are orthogonal and if xy=t©t’ then for each
i€supp(t) (resp.t’ ) i is not ortogonal to ms(y). On the other side let z’
and z" satisfying the condition 1) of r-projectability, z"i has to be O if
iIms(y), and z’1 has to be O if idms(y)I.o

Remark : Let G£G’ gA( I, ( Gi)iCI ) satisfying the condition 1 ) of r–
projectability , and x,y€G we can have different r -projections when
considered in G or G’ . Consider for exemple G’=(IRIR)x(R>R)xR where x is the
product and I is the lexicographical product. Let G be the 1–subgroup

generated by x=( (O, 1 ), ( 1,0) , 1 ) and y=((1,O),(O, 1 ), O) , in G’ we have

xIY=((0,O),(O,O),1), but we can prove that this element does not belong to

G. An element of G is given by VI AJi aijx+bijy. Suppose that

VI(AJ1(aijx+bljy ) = ( ( O , O ) , ( O, O ) , 1 ) then using the fact that the third
projection is strictly positive: There is an i such that for all jl€ Ji
aijx3+bljy3>0 i.e. aN>0, and using the fact that the second projection is
negative: for all i’ there is a k€Jlsuch that altkx2+bipky2SO, let i’=i then
al+k>o but al9k(I,O)+bitk(O,1)SO wich is impossible in the lexicographical

product .

Definition: A subgroup G of A(I,(Gl)icI) is r–projectabLe in A(I,(G1)1€1) if
for each x,y€G xIY€G and xy€G and there is a z€G such that
ms(z)=ms(x)nms(y ) .

Lemma: A subgroup G of A(1,61) is r–projectable in A(I,Gi)iCI) iff for each

x€G, and each seT(G) such that s£ms(x), x [ s belongs to G
Proof : a) Suppose that for all x€G and seT(G) with sgms(x), x 1 seC

-G satisfies 1), given x and y, let s=ms(x)mstY) then sEms(x) and (xls)ly,

let xIY=x is and xy=x-xjs, then each point of ms(xy) can be compared to a
point of ms(y) , hence if xy=u+v with UIV, ms(u)gms(xv) and ms(v)Sms(xy),
thereby ueyI and vdyl

-G satisfies 2) with z=x Fms(x)nms(y)

b) if G is r-projectable and seT(G), xco we shall prove by induction on the

length of the formula defining s in T(G) that xls eG:

-if s=ms(g) and ms(g)Sms(x) then xjs=xg,
-if s=slvs2 and sIIs2, where sl=ms(g1 ) and s2=ms(g2) , we have

8
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ms(x 1 slvx I sz)=slvs2=s and then x 1 s=x 1 slvx I s2;

and in the general case s’vs"=s’Is"vs"ls’vs’[s"£s’]vs"[s’<s"] with each term
is orthogonal to the others;

-if s=slns2 the answer is given by the condition 2),
-if s=s’IS' and sgms(x) then s=(s’ nms(x) )is
x 1 s=(xl s’nms(x))IY .a

if sl'=ms(y ) then

Lemma: if D is a divisible 1-subgroup of A(I,G1), there exists a smallest

divisible and r–projectable l-subgroup of G containing D: D,, with the
cardinality than D

Proof : D, is obtained by composition of fonctions.a

Lemma:{E1,1....,n(xi Isi), xieD, sl£ms(xi), sl€T(D)}

= {El=1 _. ,(xiJs1), xi€D, si£ms(xi), sleT(D), sirsj if i+j)
(each finite sum of such elements is equal to an orthogonal one)

Proof: Let x=x1 1 51+. . . +x, 1 s,, sl€T(D), xi€D, take T(51, . . . Sn) and

mp(s1, . . . , s,), for each a€mp(sl, ... , Sn) let Ka)={i, l£isn; a€sl} then
x I msCx)(a)==(xi 1 ms(xi)(a), icl(a)), x=E(xI ms(x)(a), a€mp(51, . . .s,) ) and this
sum is orthogonal because if a+a’ then ala’

Lemma: (+) D,={Ei,1,...t„(xii 51), xl€D, slgms(xi), sl€T(D), sIIsJ if i+j).

Proof : Let S={Ei=1,...g„(xiI si), xieD, sigms(x1), si€T(D), siIsj if i+j},
we want to prove that S=D,.

Obviousley if xeS then -x€S. Let x,yeS: x=x1 1 51+. . . +x, 1 Sn and

y=y1 ltl+...+yk I tk, si,tj€T(D) xi,yl€D, sigms(x1), tigms(yi)
1) z=x+yeS by the previous lemma

2) u=xvy€S and v=xAy€S

take T(s1,...s,,t1,...t1, ) and mp(s1,...,s,,t1, . . . ,tk ), for each

a€mp(s1,...,Sn,t1,.. . ,tk) there is at most an sl , and at most an tJ such

that a<s, and a«t,,

case 1): a«si and for all j, a does not satisfy ae:tj:
ul ms(u)(a) = xi Fsi=vms(v)(a);

case 2): a«t1 and for all i a does not satisfy a«sl:

ul ms(x)(a) = yj E tJ=v ] ms(v)(a);

case 3): a«51 and a«tj then t1 and tj are comparable and

u 1 ms(u(a)=(xivyj) f ms(xivyj)(a), v=(xiAyj) 1 ms(xiAyj)(a)

3) S is r–projectable: let heS, x=><1 151+. . .+x, is, , seT(S) such that
sEms(x), then x E s=x1 F sr,s+. , .+x, 1 s,ns. We shall prove that for each i

9



x1 1 slns€S. Let Sf£S be a finite set such that seT(ms(Sf )) , consider

mp(SN{xi Isi))=m, then xi lsi=E(xiI(slns)(a), acm) belongs to S.

4) S is divisible since each xi is divisible.a

Corollary: T(D,)=T(D)

Lemma: if D is an r-projectable l–subgroup of A(I,Gi) then:

ms(D)=T(ms(D)), (wich is denoted by T(D)).

Proof : 1) ms(D)gT(D); 2) if seT(D), s is generated in T(D) by a set
{ms(7), 7€F, r fini, rED), for each ac(r) there exists a 7(a)er such that
sCa)Sms(7(a)), from the fact that D is r–projectable it follows that
7Ca)is(aJ€D and s=ms(E( rCa) is(a), a€mp(F)))eT(D).a

Lemma: if D is a subgroup of G and A the 1-subgroup generated by D then
T(A)=T({ms*(g), ms-(g), geD))

Proof : A is the lattice generated by (g+, g–, geD).a

4) Transfer results on elementary equivalence.

In this part we shall use back and forth arguments between r-projectable
substructures. First we prove some lemmas.

Lemma: (++) if D is a divisible r-projectable l–subgroup of G and y€G, yeD, A
the divisible 1–subgroup of G generated by D and y, then the divisible

pro jectable l-subgroup generated by D and y is:

D"={Ei=1)..+n(qiy+di) Isi, sieT(A), dieD, qi€Q, sl£ms(qiy+d1), siIsj if i+j),
Proof : The divisible r-projectable l-subgroup generated by D and y:<D,y>,

is the divisible r–projectable l-subgroup generated by A and by lemma (+)
this is: {Ei=1+...1,(zi Isi), slgms(zi), si€T(A), sirsj if i+j, zi€A}.

1) D"g<D,y>, because each qly+d1 is in A,

2) if xeD" and z€D" then u=xvz€D" and v=xAz€D" : Let
x=(qly+dl) 1 sr.. .+(q,y+d„) 1 s, and z=(q’ly+d’1) ; tl+.,.+(q’ky+d’k) I tk,
s1,tJ€T(A) d1,d’1€D, qi,q’1€Q, slgms(qiy+di), tigms(q’iy+d’i).

Take T(sI , . . . s,,t1,. . . tk) and mp(s1,...,s,,t1,...,t1,): for each

a€mp(s1,...,Sn,t1,...,tk) there is at most an si , and at most a tj such
that a«s, and a«t,

case 1): ae:51 and for all j, a does not satisfy a«tj:
ul msCu)(aI = (qiy+di) 1 si=v 1 ms(v)(a);

10
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case 2): adI and for all i a does not satisfy a«s
ul ms(u)(a) =fg’ Jy+d’j) 1 tj=v jms(v)(a);

case 3): a€s1 and a«tj then si and tj are comparable and

ul ms(uCu))=( qiy+dl) 1 ms(qiy+d1)(msC((qi–q’j)y+dl-d’ J)vO))

+(q’ Jy+d’ j) jms(q’Jy+d’J)(ms(( (qj’-qi)y+d’j–d1)vO) )

v Ems(vCa))=C qiy+di)jms(qiy+d1)(ms(((ql-q’j)y+di-d’ j)AO))

+(q’ jy+d’ j) jms(q’ jy+d’ j)(ms((( qj’ -qi )y+d’ j-dI )AO) )

ms( ((ql-q’ j)y+dl-d’ j)vO)cms( A), ms( ((qj’-qi)y+d’j-di)vO)cms( A)

3) D" is r-projectable: let xeD", x=(qly+dl) i sf. . .+(q„y+dn) 1 Sn,

seT(D")=T(A), such that s£ms(x), then xI s=(qly+dl) I slns+...+(q„y+d„) js„ns,

for each i, (qiy+di) I sins cD". Let DfSD" be a finite set such that
seT(ms(Df ) ), consider mp(Dry{(qly+d1) 1 si})=m, then

(qly+d1)lsl=E((qly+di) I (sins)(a), aeml belongs to D".o

Lemma (toward Theorem 2): if (I,s) and ( J, s) are dense branching root
systems and for all icI , jc J , Gi and Gj are all divisible, and
(A(1),«)=(A( J),«) then A(I,(G1)i€1)=A(J,(G)j€J)

Proof: Let Gl=A(I,(Gi)iCI) and G2=A(J,(Gj)j€J) and A(1,<)=A(J,€)

Let G’1 and G’2, a>1-saturated such that G’1=G1 and G’z=G2,

By the embedding lemma G’lgH’I=A(I(G’ 1), (G’1)i), (resp.

G’29H’2=A(I(G’2), (G’2)i). Recall that A(G’1) (resp. A(G’2)) is the quotient

of G’ 1 (resp. C’ 2 ) by the definable relation R(g,h ) &R(h, g ) and that
A(G’1,<)=A(G’2,<)=A(I,€)

( A(G’1),«) and ( A(G’2),«) are c,)1 saturated. We have a family F of partial
isomorphisms between count able substructures of ( A(G’ 1 ), «, A, v,1,n) and
( A(G’2),«, A,v,1,n) with the back and forth property. Using this we shall
construct a family of partial isomorphisms F’ between 1–subgroups of G’1

(resp. G’2), countable, divisible and r–projectable in H’1= A(I(G’1),(G’1)i)

(resp.in H’2= A(KG'2),(G’2)i) ), with the back and forth property.

If DlcG’ 1, (I-esp. D2cG’2) are divisible, countable, and r–projectable in
H’1 (resp. in H’2) and f ’ a partial isomorphism from Dl to D2, say that
f ’cF’ iff there exist an f cF such that for each g€D1 and g’€D2 if g’=f ’(g),
ms(g’ )=f(ms(g) )

F’ is not empty because of the trivial isomorphism from {O} to {O>. We

want to provc that F’ has the back and forth property. Let y€G1, y€D1, and
f’ cF’ from D1 to D2 and f€F given by f ’, from ms(D1) to ms(D2). Let A be the

divisible subgroup of G’1 generated by D1 and y. By the back and forth
argument on F, f can be extended to T( A) wich coincides with T(D"1), where



D"1 is the divisible r–projectable l-subgroup of G’1 generated by D1 and y,
by lemma(++) we have Dl"=

{£1=19..p„(qiy+d1 ) 1 s1, si€T(A) , di€D1, qi€©, sl£ms(qly+d1 ) , slrsj if i+j)

and ms(D"1)=T(D"1)=T(A)=T({ms+(qiy+di), ms-(qiy+d1), dl€D1, ql€©}).

We want to define f ’cF’ with dom(f)=D"1, f ’ has to be a group isomorphism

and to verify for each xeD"1. ms(f ’(x)=f(ms(x)) and f ’(x)SO iff x£O.

n xeD"1, x=£1=lt..In((qly+di) I s1), f’(x)=:i=lp..pnf’((qiy+d1) 1 51),

f ’ (qiy+d1 )=gif ’ (y )+f ’ (d1 ) , s1 and ms(qly+d1 ) are in dom(f ) and

f(s1)£f(ms(qly+d1))=ms(qlf’ (y )+f’ (di) ) hence

f’((qly+d1)ls1)=((qlf’(y)+f'(d1) jf(51)). Therefore f’ has to satisfy:

El=11..In(qlf’(y)+f’Cd1)) 1 f(s1)sO iff £1,11..1,(qly+d1) 1 slsO and

ms+(qlf ’ (y)+f’(d1))=f(ms+(qly+d1)) and ms-(qif ’ (y )+f ’ (di))=f(ms-(qiy+d1) )

i.e. for each d€D1 and seT(A), (f’(y)+f’(d)) jf(s) sO iff (y+d)lsso, and
ms+(f ’(y)+f ’(d))=f (ms+(y+d)) and the same for ms

For each seT( A) let g’,eG’2 satisfy f (s)=ms(g’,), and for each dc Dl, g’d
and h’deG’2 satisfy f(ms+(y+d))=ms(g’d), and f (ms-(y+d))=ms(h’d)

For each d,g,g’, ((g+d) jms(g’ ))SO can be expressed as a formula
6(g,d,g’), ((g+d)jms(g’))20 by a’(g,d,g’), ms'(g+d)=ms(g’) by PCg,d,g’) and
ms-(g+d)=ms(g’ ) by 7(gld lg’ )

Consider the following set 0 of formulas:

O={6(t,f’(d),g’,) for d,s such that GF((y+d) is)so , a’(t,f'(d),g’,) for d,s
s.t. G F((y+d)is)zo, PCt,f'(d),g’d), 7(t,f’(d),h’d) for all deD1 and seT(A))

We want to prove that each finite subset 0' of O can be satisfied.Let D'
and S' be the finite sets of dand s (respectively) occuring in $'
Let T'=T( {f ’ ( d ) , g’ d,h’d,g’ , ,d€D'u{O) , s€S'} ) and dat (D' ) the formula
expressing the conjonction of all true atomic or negation of atomic formulas

in T', For each f’(d),g’d,h’d,g’,, d+O, wich appears in $' define variables

xd,ud,vd,w, and let V be the quantified formula:

Vxd,,..,Vud,...,Vvd,...,Vws,. . . ,it ( dat(D') & A(+, pc$')).

We shall prove that this formula is true in the Hahn product C2 and then in
G’2

6(t,xd,w,) (resp. a'(t,xd,w,)) says that (t+xd lw,)sO, (resp.=0)

Pd,xd,w,) (resp. 7) says that ms'(t+xd)=ms(ud), (resp. ms-(t+xd)=ms(vd))

Write T'=T({xd,ud,vd,w,,t+,t-}) and a cmp(T') then (sCa), a€T'} is totally
ordered

If ms+(t)(a)#ms(xd)(a) (respectively ms-(t)(a)+s(a)) can be deduced from 9
for each d€D' then define tIa to be any positive (resp. negative) element of
the Hahn product on the given support,

If not, there is a minimal Ins(ud)=ms(w,)(resp.ms Cvd)). Then define tIa to be

12
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any element of the Hahn product such that for each i€ms(w,) t+xdlZO iff
ms(ud!)=ms(w,) and t+xdt sO iff ms(vdl)=ms(w,)

This can be done without contradiction because by the definition of 6 and

a’, the formula is satisfied in G1

Now @ is true in G’2, each finite part of $ can be realised in G’2, and
since G’, is o,-saturated, 0 can be realized.a

We can obtain Theorem 2 as a corollary:

Theorem 2: if (I,s) and ( J, s) are root systems and for all icI, j€J, C1 and
GJ are all divisible, and (1,s)=( J, s) then A(I,(G1)1€1)=A(J,(G)j€J).

Proof : if a root system I is not dense branching then we can define an
equivalence relation iRj iff Vk kgiok£j. The quotient I/R is always dense

branching and if Gi=A(i,(Gi)icT) the Hahn product of the 61 for i in the
equivalence class i then Gi is a divisible totally ordered abelian group and

A( I, (GI )ICI)=A( I/R, (GI )TeI/R ) '

If (1, s)=( J, s) then (I/R,s)=( J/R, s). Since each Gi is divisible, each Ci is
also divisible. To end we use theorem [G] of the introduction

(1/R, s)=( J/R, s) implies ( A(I/R),«)=( A( J/R),«).o
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Abstract

Let X C Rn be an irreducible algebraic set. A semialgebraic subset S C X
is called m-basic if it can be written as S = {z ( XI /1( z) > 0, . . . , fm(#) > 0}
for some polynomial functions /1 , . . . , f„,. The Br6cker-Scheiderer criterion asserts
that a semialgebraic S is s-basic if and only if it satisfies the boundary condition
S nS \ S- = a and S n I’ is s-generically basic for all irreducible algebraic sets Y C
X . In this paper we show that it suffices to check this condition for dim(Y) = s + 1,
which is, in fact, the lowest dimension at which it may fail

\laLhcrnaLics Subject Classification: 14P10, 14Pf)5

Introduction

Let A’ C R" be a real algebraic set, and let P(X) denote t,IIe ring of I>olynomial functioIlh
on X. Recall tIltIt a SIll)set S c ,Y is called SCI/zia/qrb7'afc if tlrere exist polynomials
I,j . gi e P(X) sucll that

F

S = U {:': e X : /,-1(„) > O. ..., fir,CE) > 0,g;(#) = 0}
1

As is well known, if S’ is open the g,'’s iII this expression can be omitted. Recall also that
an open semia,lgel)raic set is called basic open if furt.llermore p = 1. These basic open sets

' Partially supportt.d by DGICY’I PB 89-0379-C02-02
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ha\'(' alt ra('t I'd a loI t if illter('st ill rc'('('Ilt. tilll<'s. till tIle proof of the beautiful theorem that
st,at ('s tIIirt. a I)asic ol)('ll sel, S’ IIiIS alwa.\'s a l1('scril)1.ioTr

,q = {'r C ,\ J-\ ('1' ) > O. -.-' .f-.sCr') > 0 }

vitll h $ cti in( .\- )' scl' [tire.3,4]. [Scll]. [XIII], [All BrI{zl]. Howev<’r. the problem of under
stall(liII,g \vllell II gi\'('ll s('llrii\lgoIJrili<' s('I, is I)asic ol)OII all(1. ill that case, how Ina.ny irrequali'

ti('s all' ncrrl(’rI tt) gc'Ilt'l-ate it is \viclr' clltt’ll. All iII]llkc'diatc' r('lllark is that S n (S \ ,5)' = 0
if b' is l>dsic- c> Ii(II. \r]l('rt' – st i111cls Fctr tllc* us11a,1 clos11re, and –Z for the Zariski cIo
sul'('. 't'tl(' 0111\' flITI ('lIFlract('rizatioll availal ile is dll(’ to Rr6cker and Scheiderer. To statc
it I)I'ol)('l'ly. 1('I ils say tIl tIl a s€’1rlialg('1)r£lic s('1 b' is s-basic if tllcre are s polynomials
I-1. . . . . /, e P( .\' ) sljf-li I hill b' = {./-1 ) o. . . . , f. > n} , atrd t,Irat .V is ge nr.r lcally s-basIc it
it is s-l>asic' 11l3 to cutlitlteIlsiorl I. that is. there are x pojynomials /1, . . . , /, e P(X) and a
rIo\rhrl'r' clenst' algol)lair SIll)set Z C .\- SIIt-II tllilt b' \ Z’ = {./'1 /, 0. . , . . f, > 0} \ Z. Non

Ict ,q be all open s('llliaIH(’l>raic set s11rl1 tllat X n (R \ .S)' = O. The Br6cker-Scheidercl
(:tit (_'rioll for tIlt' g('Ilt'l-illiOII of 1)asi(' s(’ts rearls its follows

Theorem 1. I'll r sit S in s-llllsic if rllld only if for trrrv irrrduc iDle subset Y E X tIll
111l1 1\-t t'lioll S fI \- is (I( lit I'ic'tIll ly s-1)(1.-tic,

SiIICf' tIlt’ (Tillr(’IISiOtl I JC)tIll(is tI1(' 11111111)('l' of ilrecjllalit,ies needed to generate any basit
s€'t . \\’f' se(' that ill ('\'('l'.\' SIll)s(’t or ,\'. I)cillg I)asic is equi\'alent to being d-basic, wher'('

il = dillr(X). Fl('nt'<' 1 IIl’ pr<'violls tIn'orr'm llas I IIe following corollary

Coronary 2. -1'tIt slt S is bnsic if allr{ only if for every irreducible subset Y C X t.llc
tnt.t I'S('f'tioll S n \’ is !yr'll('l'ic[IIly btIsi(

’l'Tltls. it apl)cars tIl(' 1)ro1)1(-III ol' wIl('t,ll(tl' it (':'lists a. (listillguished fa.rrrily of suI)va.ricti('s
wlliclr sutUres t,a cllarac-tcrizc' l>ilsicll('ss. Ill fact , ill [A11Rzl] w(' proved

Theorem 3. '1'11 r b€ t S is busic iF alltl Olllu if for errry i-rreducible surface Y C X tIlt
;Ilt(I's(('tioll .c,' n I ' is 1)tIS}('

SiTI('(' ill (lilrl(’llSitJ11 1 p\'('l'}- s(’lrlialg('1)rai(' se'l is t-l)asic, tlris \vas the best possible result,
coll('('l'llillg dilll('nsio11. 1111(1 1 11(' IiI'sit sllggcst ion t Ilat obstruct,ions to the generation of basic
sets sIloIl1(1 al)I)(’ar iII tIl(’ slllall('st ])r(’(lictal)le dimellsiorl. According to this idea., if a basic
ol)c'lr s(’t 1-('(lrlil't's .- ill('(jllaliti t’s. \\'(’ sIl0111(1 rPcognizc' it ('xact,ly iII (lilrrension s + 1, 1)ccaus(

III (liIllt'llsicJll $ h iI ('('l't ;1l111.v (';III 1)(' g€'1r('I'atc'( 1 1))- s illequaliti('s. The goal of tlris pa,p(-1

is t }II_' ct)lrflrlllat i(ill ot' t llis ('cJn.it'('tllr('. \\'(' will Drove:

Theorem 4. Supp[ist lllcl t .\' jb basic. Th[ 11 S is s-basic. if und only if for every ir’reduc{bIb

subsrt I- E X III III Irl I ii.sin it D + L I FIt illttl'srrf ion S n }’ is gtnrrica tty s-basic

I'Ilt' I)I'c)Dfb; tlf tll€’s'' t't'sttlt s arc al\\’;l.\-s a ('olrrl)ilratioll of tIl(' theory of fans in spaces
c)f tJI'fi('I iII,gs of ftIIIt-tiLJll fl('ltls aII(1 tlrt' tIle(>ry of tIl(’ real SI)(’ctrllnl. Fans are special sets

of c)rrl('l'1IlgS ot' lilt' tic'1(1 \v}licll qllito s11rl)risillgly play a (Irdnlatic role in the previotls
CItI('stlt)IIS all(1 r(’slllt \. Its (lf'fillit i(ill all(1 ltasi(- 1)roI)(’rtl(’s at(' collected iII Section 1. \Vllal
nriII<cs I)ossil)If' lllt' illll)I'cJ\'t'rrl(’lli s ('tJllt'('rrliIlg (limcllsioll ill ’Fhcorelns 3 and 4 is a bet;tel
allill.\'.-iis of t Irt' vniljiLtiLJll tIl('or.\- l;€'tlirlcl Ill(' sc('lle. For illstancr-. in [AnRzl] Ive dealt with
rillll< 1 \-£tillat ioIIS to til It;Iii I 'l'll('t'JI'(’Ill :i all(I ils a 1)yI)ro(lllct we also got Theorenr + in
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the simplest case s = 1; iron', to study the genera,1 case, \ve IIa\’e to d(?al wit.11 va.IIla,t.iolrs

of arbitrary rank. The first step is, it1 both cases, the reduction to discrete vallrat,iorls,
Then if the rank is 1, we obtain through corrrplction pon'er series in one variable. Tlris
is not, so if the ra.Ilk is arbitrary. However it can be done in a suitable way, so that tIl(
final consequence is the substitutiolr of arbitrary fans by a very geornetric type of tlrerrr
defined through power series in several variables. This is a conseqrlcnce of wllat we call
the app rol'.imal ion th tortnr for fans: any fan can be arbitrarily approximated by \\rhat \tc
call an algebroid fan. that is, one coming from a power series field and associated to it
discrete va.luatioll of ma.ximulrr rank

Thc interest in valuations is not new in real algebraic geometry, see [An], [BrScll]
[Rb], [Rzl] and the forthcoming [AnRz2]. Here \ve exploit sistcmatically thc notion III
compatibility of a fan wit,Il a valuation. that is, the simtrlt,aneous coml)atibilit,y of several
different orderings, as well as the gcIreral irlterplay bet\\'cell valua,tiorrs and falls. T\\-u
essential tools in 011r proofs are resoltlt,iOII of singrrlarit,ies and Bert,ini’s theorem. As a
matter of fact the failure of the latter in tIle Nash or analytic category is tIle reasoll
why our results do ILOt extend to those categories (see the cou11tcrcxample in [ /\nR.zl] )
Despite tlris faiTrll'e. nrany interesting things can be said in the Nash and analytic cas('
using the techniques of t Iris paper. Ilo\ve\’er, here we work Olrly in the algebraic case and
refer the reader to [AnBrRzl], [Rz2] and the forthcoming [ArIRz3] for tIle other t\v o

The paper is organized as follow's. Section 1 contains the (icflnitions and sol'ne gclreril.I
facts concerning fans rreeded later. Section 2 describes the trivia,lizacion of falls througll
rea.1 valua.tiolls all(I t,11(' c01111(:(:tion wiLl1 pourcr series. Section 3 is (I('vot('d to t]I(' appl'ox
inration theoreln for fans of hlnction fields over the reals. whicll is the key ste 1) towarcls
'l'heorenr 4. Ill S(’ctiorl 4 \\’e review tIle tlrcory of tIre real spectrullr tllat nrakes tIle COIl-
lrect,iolr I)('t\vecn sl)aces of ordcrilrgs tIll(1 algol)ra.ic varieties. Finally. S(’ctioll 3 corrtaiils
the proof of Theorelrr +.

1 Fans and basic sets

The abstract theory of spa,('(:s of or(I('rilrgs u’as developed b)’ N’Jars+hall in tIre series ot
papers [Xlrl-5]. A so]f-contained no\v presentation xviII appr'ar irl [AnBrl{z2] . Here \u
Ollly Ollt line sorlr(’ basic fa('I s

Let I< tIe a hcI(1. and consiclc'r its space of ordcrings = = b'pc:(,(it ). Givt'n .f e /\
and a C E. \re can see a as a signature a : /f –} {–1, +1 } which maps the element ./
to +1 or – 1 according to whether f is positive or negativ€' iII tIle or(lcring n. To kcc'l)

a gconlr'trical meaning iII the llotatic)II \vc will write /(a) > 0 instead of a(/) = +1 allcl
/(a) < 0 instead of a( f ) = – L. A cortslrllcLiblt subset of E is a set of the form

f: = U {a e = : .f,'1(a) > 0, ..., .[i„,(a\ ~, 0}.

where .f , i e I< . Sucll d st-t ( ' is called llcl.sir: if p = 1, TIle basic scI s fornr a liiLSiS of tIll
Harrison topc)logII of \

A (Fn itt ) Inn o/ I< is a finite set F C = such that for any tt tree ordrrings a1 . az, a3 e J",
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their I)r£)tlllr'T rr 1 = a1 - nj - al is il wt'llcleFillt'cl ortlori11g aIt(1 t>('loll.tis to l-' ( \vt' llrullilil.\
orc!('riTlgb its signatlll'c's ). ’l'lllls suEls€'ts ['ollsistirlg tif Ollr' Ol- t\v o o!'clcrillgs are al\rays faTls

ant] nrr’ t';Ill('tl /I' /r’;a/ /7/IIS. .'\ I)ilsic !hrt is tlltlt a fall F Iras a str u('tur(* of affine space o\'c' I
tt It' Fit'l'I bf t \ul €'1['111ellts F= = { -- 1. + 1 } , or ccluiv;tl('lltl y. for ally ao e F, the set a I" is it
\-('I-t tir SDilc-t' cl\'er F= = { – 1. + 1 } \villl tltc' 1>ro(]ll('t c,t' sigIlaturt's as inller operatic)II antI

tllc' ll£ltllrill scillar 11111lti1)iicaticln. 111 1;ilrliculilr, it follows that #(F') = 2k, where k is tht
a.mrIf I/ flrif US;tIll tif l-’ ’, tllat is, A' + 1 is Lllc' lllinillral lr11ml)cr of ('lcmrnts ao, . . . , ab e I'
stI('ll tlrill itII.\' a C F is tIl(' 1)ro(111('I of ;III t )(Id lrrrmt)('l' of al’s. /\II irnportant I)ropert,y is
tllat if I'-1 is all afFillc SIll)spa('(' of F tllc'II ['’1 is agai11 a fan

Ill f't)IItI('('t i011 witll I)asi(' st'ts, I('t ils r(.lllarl{ t 1)(' iIl]lr]c(liat(. I'act t,llat. for (’verY 1)asi(

spt f ' C E. t hr int c'rscct ion /’V = /'' n f ’ is again a fa11. and so #( F/) = 21 for some / S A'
1*II(’ fIIlr(laIll(’IIt ill r('slllt ('ollcerlli lrg Ollr l>rol)I(.'nr is

Theorem 1.1 1.tt ( ' bI u const rucl iI)Ir $ullbr { of E . ’l’hr foIIc>tring ussr'rt-ions are tq
/e 11 /

( rI) 'I-IItre alt b ti€111r nts .fI. , . . , f, E K such that C = {f1 > O, . . . , /, > 0\ ,

(b) For € rt rD jun F cE, with #LF) = Ik and F n (' + qb vf halle #LF nc) = 21

O $ X' – / < s

Solrl('Ilo\v sit rI)risilrgl.\'. 'l-('l('rll('Ilt falls are (’rrotIFIh to cllcck wIl(,'i.11(:r OI' lrot a set, is 1)asi

Theorem 1.2 LIt (' Ill a collstl'uctibll snl)srt of \: , 'Fllr, fnllou'ing asscrtions arc equit Ia-
le IIt

(Cl ) C ' is basic.
(b) For r ut ry fall F cLI \rNII #LF ) = 4 irc IL€rut' #LF n C) #3

\\\' \vill Irl)I IIS(' 'l'Ilt'or('Ill 1.2 11(’r('. since \vc ar(' int.('rest,('(1 ill t he quantitative quest,ioll
Let, us r(’lllal'k IIliIt 'I'll('otonI 1.1 is Olrl\' a I't'forlrllllatit)11 of t,llc Ils;ual sta.tcIne11t, a.IId \\’('
st,ill nec(1 a fIll't,]l('l' lrrc)rliTicat,iolr

Coronary 1.3 f.tIC ' lit u llasir' ronsfl-uclilllr sllbst t of E. TIlt foilou=illy assertions all
CgI/ /l’a/r // /

( n ) 1-111 rr al-t .- Ill III[ tItS .t-1, . . . , f. e if snrll that (' = {fl ) 0. . . . , f, > 0}

(II\ l' l)I' t rt ry 11111 1-- CE lrillt +LF) = Ik IInd #LF n f ') = \ lot +intc k $ s

Pl-n'If- : Hint-r ( b J is a [>arlir-lllitl- c-asc I>f 'l-llr'orrIll 1.1 (b) \ye Ol]ly rnust prove (b) + (a ).
For 1llis. hlr[il)c)sc' I--’ ( E is a fall. Fiillt\’ (' is 1)asi('. the intersrct ion FF = 1-- nC: is a fan, sa.\
gen('!-att’cl i))- 'r1. . . . . rr,'+1, ;!ilr] # i /’“ ) = 2/. .\o\v \ve c-an arlrl to these a,--s some others 1 o
get g('llf't'at(.I'- a1. . . . . a..b1 c)f /". Filrilll\’ ct)IlsidC'l' the fan /"" Hellerate(1 1)v al+1, . . . , ak+1

wi1 II +l( iv/ J = -!k–1 . ('lc' ill-1)' /''"n(’ = ["’OFV = {a/+1 } t>e('a11sc t hoy are affine subspaces ol

// c)f c(Jllll)It’III('Ilt ;ll':\' fliIIlt’llsic)Irs \vllirll g('Ilt'rat(' /'’ aII(1 c'tJlltaillilrg t IIe point ak+1. IIen('(’
#{ /'-'’ 'I r ' ) == 1 ;illrl IIV ( I1). I / < b. .\o\v tilc' result foIlo\vs from Theorem 1. 1

a
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2 Fans and valuations

Let 1< be Held and E its space of ordcrilrgs as ill Section 1. Let 1 lte a SIlt)ring t>t I< allcl
P an iclcal of ,1. All orclc'riIlb c7 e E IIla#r s p roll Itf.I- if fr(>Ill 0 < .f < g, / e /I. r/ e p it
follows f e P. This implies that a ill(lucrs, a unique ordering r in the rrsidue fi('III /,-(p) cit
P such that I nlnd p >, 0 if .f >, 0 for every I e /! \ p. ’l'll€' 110t.dti(iII for this is a –} r
and we say that a ipr rirrli=t'$ in r or tllllt r is a sprcia Ii:at toll ofa. TII(' proper sc't,t,illg fcr I
this specialization relation is tIre tlreor)' of the real spectrtlnl as we will see iII S('ctioll I
However t,llis notioIr \\’as first, studied iII t,he colrtext of valllatioII t}lc'or\' \\']ric]I \\’ c' flis('llss

here. A valuatioll ring v of A’ is COII Iput tbl.c IL’it 11 an ordPri11g n e = if a mak('s COIl\'t'X

tIle nraxirna,I ideal mI, of l'’. 'l'hen a SI)ccializes to all ord('rillg r ill tIl(' residue I'icI(1 k\, ( iI
v: a > 7. 'Fllis kill(1 of SI)ccializat.ions are \v(’ ll 1111(torsit,oo(1 1)y ill(’alls of the F3;r('r-KI'IIl
theorem ( [BaR] )

Theorem 2.1 Lt I I' arnott tIt[ ralut group of V , und T tin ordering of kv , -l'llc11 thr Il
is a bijrct ion bct went tht set of ordering s of 1( conrpatiblt trith V and speciut::ing to T
arId thr srt of gr(;ap Itonlonlol-pltislll.s & : I' –+ {+ I . – 1}

Not,e tllat, t,Iris irnplies tlrat. I/ is coltrpatible wit Il sorne OI'(I('ring if all(1 onI)’ if its I'csi(lllt
HcI(1 is forIllall)’ I'('al. III t, IlaI cas(' \\'(' \viII saY t.llat, I ’ is a ITa/ l’a/l/a/;o'll /';ng.

,'\ 1)art i('rllar sit,llat i(III ill \vlli('1l 13a('1'- I<1'11 Il t,]l('ol'(’III (’all I)(' s(’(’II t II(' fc)llowillg: Exar IIpl('

2.2. 1 J('1 /3 1)c a local rc’glllar ring wit 11 rcsidrle fi('1(1 /. all(1 qlroti('Ilt. field /\’. 5lIDPOS('
(11111( B) = 71/ all(1 consider a system of pararrrc't( irs r1. , , . , T„, . 13\- indllc-tion OII ?71, \\r:
(I('fillc a \’aTllat ic)II I’ „, ill tIl(' (IIIoti('I II. fi('1(1 1( of /j \vlti('ll llils rcsi(111(' field I zlll(1 val11r'

group Z
In(Ie('(1, if 1/2 – 1. therl li is a dis('rett’ valtlatioII rillg aII(1 \\’(' llzt\'(' tIle ('orr(:spolltl

1118 discl'('i,(' ralrl< Ollc \-alllat iOII I'1. For 772 > 1, \vc' COIls;i(it'r tIl(' (Iis('r(’to \’alllat,iolr rill,q

It' = Bt„ n\\ . \vIIos(' \-altlatiort \\’(' d('llot(' 1))- it'. ’l'llc' resi(Ill(' ficlcl I< ' of It- is tIl(' cjllOtit_’Ill

field of tIle it)cal Il*glllar ritlg /i’ = B F (,I',„ ). By iII(Inc-t intl \n’ IIa\r’ ill 1\: 1 a vdluilt it,11 r'„, _
\vitll reb;i(IIlo field T. all(I vallr(' grolrl) Z'’: . Tlr('I I ?',„ is tIl(' f'ol IIposite of it' and I’,„_1. \\\
(I(’lrot(' its \n]tIal it)11 rillg IJ)’ \ ’„,

No\v \v(' fix all OI'(I('riIlg r ill /. all(1 it)c)k for tIl(: sct F of OI'(lol'illgs a of I< t'(Jllll)ittilll('
\\’itIl Ii„ all(1 sl)('('iaIizi IIg to r. \\ t (']ail II that tIl('l'(’ are ?'’' . and ('\-('r\' 011e is COIltl)I('tc’I.\
fIt'tt'l'lllill('(1 1))' tIl(' siFtIIS bf tllf' \'arialil('s .I' 1. . . . . .I'„, . III(1('('(1. 1)\’ tIl(' lia('l'-It11111 tIlt'ut'('Ill
( -I'llrol'c'tIt 2.1 ). \vt’ (tUIl)' IIa\r' to ox Itil>it 2f" orclel-i]IHS spcrializitlg to r dull llavilIB tlilfrl-rIIt
signs at t ]le para111t't crs. .\gaill this follows by iII(111(-ti( ill ( nI- IIst' t IIt’ llc)tat ions tIlt roflllr'tq I
it!)orr). If I is all ortjr’ril lg of I< 1 c-ulll[>at ii;Ie \viI II i ;„_ 1, \\-c' call liFt it to t\vtl t)£rjc'ri [Iq-
-r+ . l_ of I< coltIItat,iI)Ir witll BL' ,n\ as foIIc>\vs: ever.v .f C F31 „,n\ cnll I)€' \\'1'it tell as ./' = II .

\vIr('re it is a rlllit CJf /?(,.111 ) . all(1 \vc (1('fill(

l+ (/) = 1 (T)-

-/– (./') = -,’ (T)( – 1 )"

(llcrc T stall(is for tI1(' 1-('siclu(' cIass of u in /\“). Sillcr lj„ is tIle rolllp(isite of 1';„_1 alltl
B(,,,„). -/+ and -1 _ are ('orlll)atil)le witlr \';„ all(I specialize to ’)



In ca,11 b(' ch('('ke’d (lirect, 1\' t,llat, }" is a fan. wtric Il can be iderrtified with the afnll('
space wllose associated vc'c'tor space is { –1 , +1 }’" . In fact, since any a e F is cornl)let,ely
(]('t('rmined I)y thc vdltlc' bi a(.r1 ), . . , , a(I'm), if \vc denote by au the ordering cleHncd by
ao(i:1 ) = ' - - = ao( iI,„ ) = + 1 , t,Ireil

p : aoP –> { – ] , + 1 }’"; aoa b> (a(71 ), . . . , a(z„,))

is all isotrrorphisrrt. \Vith tllis icl('ntilication, the elements ao, al, . . . , am defined by t]IC
following table forrlr d minimal system of generators of F. Here + can be either +1 or – 1

11f)r 1 1 1 1 H][

Tillrle I

In other words. keel)ing in mitlcl tIl;It in F2 = {+1. – 1 } , + r is the zero and – 1 is tIlt'
unit. geometrically wt' are taking au as the origin of F and the matrix of coordinates ol
aua1, . . . . aoa„, is triallgular. so that. they are a basis of noF . All this can be seerl as iI
particular case of a geIleral sit,ual ioll \vIric]r \ve describe now very briefly.

\Ve say t,llat Ill(' valrlatioII rillg \'’ is colrrp(rtible IIlith a fan F C E: if y is conlpatibl(''
\\’itIl cv('ry or(1('rillg a C F. It is casilv ch('cl<ed that the specializations of the ordcrings
of I" forlr1 a fan iII k\' . postsil)1)- trivial. Ill fact,, the nrain result concerning falls allcl
v,tluatioIls is 1 he so-called ll-iriali inl ion tIl('orcm ([BrI], [AnBrRz2])

Theorem 2.3 Lc t F bI a fan of K . Tht Il tIlcrc exists a ualuation ring V of K compatibll
tvith F such that thr ortIt rings oF F IIntle at most '2 distinct sprciah=atiorrs in the rrsid,ul
fIeld kv o \

(-:olrversf'l}’, gi\’t'n a faIr I" iII k\’ . tIle s(’t of orderings of I< wich are compatible \vitll
I'' alld speci;tliz(' to all orcI('l'illg of /’ is a fall some times called the pull-back of F. Tllis
is ('xtl'('lrlely usefltl foI' tIl(' c'(JllSl I'll('ti011 (if falls starting from trivial ones. For iilstalr(:(
Ex:11111)Ie 2.2 sIlo\\'s tltt' cullst I'll('I it)11 (if tIl(' pull-back of the trivial fan consistirrg of tIl(
OI'rlc’riTlg r oF L. . \\\' cl('vt'lol)(' IIt J\r a sr'collcl cxalrlplc' whi('ll \viII be of utrnost inll)ortanc-(
in tIle r€'st of the jlapf 'I

Example 2.4. 1,(’t /. 1)c’ it fl('Irl alrfl rl . . . . . .r,„ i11deterlrlinates. Consider tIle rillg ot

fOI-lllal I)o\ver seric's /,[[,I'1......1',„]] alld its quotient field it (.r 1. . . . , r.„, ) ). We set, m =
(/1. . . . . ,r„,). LeT \ :„ I he villuat ion ring of /,((.r1. . . . , r.„, )) constructed as in Exalnplc
2.2. tltat is, I ;„ is t tlr’ I'tl1111),tsitc' tif tllt' dis(-rotc valuation rillg £[[r1. . . . . .rm]](r1) with tIlt
valllati(nI riIlg \ ;„_ 1 of I llc' rr-si(lltc' hc'Icl L((.-r2. . . . . .?'„, ) ).

n) Fix all tirrlt'rill.u r iII L dllcl Jt'l f, be the set of ordering?s a of K cornpatible
with II„ . \Vo mrlltilillt'rl iiI ]:x;llllplt’ 'I.] that these a-s are completely determined by r

(i
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and tIle sigjlls a(,1'1)....,a(.t',„ }. Irrclcc'd. let us nrakc this prc'cisc in c)11]- situat,iolr. I Jet

/ e /,[[71, . . . . .r„,]] . \Ve look at .[ as a series in r] witll coefficients in £[[r2, . . . , r„,]], sa)

/ = .,'T" tg\o + Eg/„{ )I
r>1

with 0 7£ fbu C /,[[.r2. . . . . rr,„]]. In 1>arl icular glo + E' gc.rR is a llnit ill £[[i.'1
namely coincides with glu (IIIO(1 xl ). It follow's that

) :1r 1 7 1 ] ] ( J H 1 )

a(/) = a(--1)""r(glo>

wlrere 'I is the specialization of a ill L((.r2, . . . , r,,)). Now, to detertnine ?(gro) \vc look
at it as a, scri(’s ill /2 an I)rocced as above. Tlris \yay, by iIldrlction it is clear t.llat,

cr( ,/') = a( iF] )NIO cr( 72 )no ' • ' a(Xrib )Nr"Or( Un )

\\’here II ., xII' . . . il:::"o is tlr(' initial form of .f when we corlsicler in N“& the tr.=i('ogrrrp1 Ii r
07'derf IIg. In other words. the sign of f is completely determined by the sign of its initin
fortn. It follow's that if /7 = f (rrlocl nl"), For // llig;h cn011gh so tllat they have the sanlc

initial form, then a( f ) = aCh ).

b) Set non’ in = f – 1 and hx t.\vo distinct orderings -11 , -12 in L. Let 3 stand for tllc'
set of all orclcl'ings of I.(1.1'1, . . , . .r',„ )) \v]lit-ll arc compatitrl(' \dtlr t;, and specialize to
eitllcl' of tlr(' ’'i i s . T]leII J is a fall \\’itIl 2 . 2”* – 2k c'Ioments. Ill fact 3 is the union of tIl('
t\vo falls [-.1, and I?.. , descril>ecl ill a ). In particular it, follows that if I"., is generated II)
ao. . . . . ak_\ all(1 ok C F_, , . t}l('ll B is g('llf'r;tt,ccI I))' at), . . . , ok_ I . ak

After this I)rel)ara.tiorl \\’e illtrodll('(' a key Irot,ion for orlr' wol'k

Definition 2.5 1.ft 'l C I< a su//I'/rlr/ of 1< und f a jan o/ A- II:-It h #(F') = 2k , I’ll
say that F is uigcbroid if there is a rt embedding K L+ L((=1. . . . . = k_ II) into a po’ut I
sericb jield such that I" is tIle restriction to K o.f tht' Icr'n $ of Erum'ptu 2,4 b) . \Vt uist1

say that F is purum,ttri zed Ollc.r -/1 , -r2 in L . Finally. irt say that F is blUr on A lj
I C L[[/1, . . . . .re_ i ]] Itn dr r rAc abort t 111 bell ding

A typical sitllatioIr wllcrc \vc ('all colrstrtlct algel)roi(1 falls is tIle t'ollowlng:

Example 2.6. 1,(’t /? IIt' a 10(-al r('gtllar rilrg \\’it II I’Csi(111(' fi('KI /, all(1 (luot,iellt, ncI(1 1\
Suppose dim( B ) = A' – I and consider t\vo ordering>; -11.-r2 iII /.. Fix any systclr1 of 1)a
ram('tt'rs .r] , . . . . .r;;I , 1-Il(’II tIlt' aclic- rolllplc+ ion /3 of /3 is isolllorpllic to L[[2'1, . . . , .rk1 ]]
aIr(1 this gives an rnII)c'rlrling 1< L} /,((.I'1. . . . . .rk_1 ) ). Ill thp latt tlr hrld \ve have tIle fan R
of Example 2.4 bJ anfl its restrictiol I /’' to /\' is olrviously IIII algcl)roicl fan para]rrctrizt''1
over -1 1 . -/2 in /.. ('lc;11']\' f- is finite c)11 /?

3 Approximation of fans

'\gain. Ict it be a formaljy real field and = = .g/iec„( /\’ ). Fix an integer A- Z 0. Any fan c,
A

I< witll 2A elelnents cali be seen as a 2k-tllplc in the product E:k – = x ' ' ' x E. No\v t.II(

I



s(’t cI);; (Jf all falls of I< wIt ll 2;' c'l('Ill('lrts (’an 1)(' s('('ll as a 5111)set of EA. ’l'his idelILincatioll
is IIOt t)i.i,'('t.i \’f ’. 11111('ss \\’(' i(It'Ilt iIb’ tIl(' tlII)1('s iII EA. III) to perl1111tat.tolls, but, \\’c \Till llot
car(’ al)OIII tllis t ('('}IIli(' iIIit \’. I)€’('iltls(' it is irr('Tcvalll, for otlr I)rlrposes. Anyway, the set
\:k (-al'l'i('s tIl(' 1)I1)(lllct foI)I)it)g.\' <;f I II(’ llarrisolr I o I)ology of each factor space and, lrlrdel
oilr icl('11t iII(’atiolt . t, llc s(’t <DI is ('11(lowccl \Tit it 1.11(' ('orl'(’sI)OII(ling SIll)set t.opology, whicll
\vc still call /hr ll111'1'isf)11 /o/JO/ogg. ’l-lltls fa11s \\’it 11 21 ('lCIllents fornr a topological spac(',
lrarll('ly ok. 1111(1 \vc ('a11 <list'll bis ztl)1)ruxil]laLioll I)roI)erties. In this paper we mainly (1(’ iII
with tIle’ t'as t' I< is a limit('lv gc'llc'rat c(1 ('xtc'llsiolr of R; then \vc call K a fHnr:Lion fi'lll
all(I its tr £tlls('('ll(1('II('(' (It'gr('I’ o\’('l' it is ('aTlt Icl r/ /r/Ir IISii o II . ’l'Fl('sc are (:xactly tlrc fields oI
rat,iorlal hlllc-t ions t>f r{'al algol>raic- varieties; a Ill oil[ t of I< is a]I irrc’clllcil)Ie real nIgel>E-ait

bet X surll lllilt h’ is tIlt' tit'It I A'( ,\- ) of rational Fl111t'tiolls of X. and 1\i has a rlroclel if allrl
c)III \' if it is it fllll('tioll fit' 1(1. '\s is wt'll kIIOWII. b;inc(' 1< is forluall\- real. t 11(' dinr('lrsiolr of /\

as clt’'fin('(1 al)LiV(' c'oiII('i(if 's \viI II tItt’ tt)I)ological (lilll('llsioll of ever)’ IIIOdel of 1< . Atrot'lr(’l
Ils('fIll fac't is Ill;It \\'(’ I'all al\\' ii.\’s liljf I t'OtIll)at:t rllt)(It'ls c)f I< . ’Flris is inrInediatc I)y takllrg
tlrc' ])rojc'cti\-t' t'lt)stIr(' cif all\’ gi\'('ll lllti(I('l: allot Ilt'r \vay to see it is to take the orle-polllt
corrtpa(-tifiratit;II. whi('ll is lit)ssilrlt' irl the rc'al casc' ([li(''R] )

In tllis Sc('t i011 \\'(' \viII sIIt)\\' IIl(' ft)l]owillg:

Theorem 3.1 1.rl K lu rt InTI('tion fit III of dimtllsioll II and X a compact ntodtl of K - Lt I
k > 2 und [ e Cbk bt u flirt of h- tritlt Ik cIc Irlr 11 ts. TII rn F can br arbitrarily approrimatt d
in tIlt IIu l-ri.soil topology by VII algt I)l-oili fIIrt F1 jin it r on P( X ) antI ptll'ametri:rd our r ct
jnltrt inn jitttt oj €1illlt11hitlll Il – k + \

Prrlrlf : SitIll' .\- is cot11l>act , <'vt'r\' I)oly110t11ial is I)oullcled OII .V , horn wlriclr it fo]lo\vs
tllat ('vc'r\' l-c' iII va]11;it i,ill rillg c)F I< r'o]ltains tllc' lilIE P(X) of polynolrrial functions of .\
Let h' = ( rr,- : 1 S ; $ it ) bt- t 11(' givt'll fall, an(1 1 ’ = f"1 x ' ' ' x I’ll arl open neigllborhoorl

of F- in cI)o. wit 11 f :, = { ./',-1 > o....,J';„1 \, o} , f,j e P( X ). After shrinking the Iiils \vt
may alisu:11(' ttlal tll€’\’ at(' 1)air\vis(' disjoint. and \vr \viII say that the f-iI’s st paluf r t'Ilt
(Jrtl('rill£is of /". R\’ ’l'Ircol'('Ill ?.:i tIl(' faIr I? trivializos alolrg a valllatioll ring t’' of I< '. tIlt
al's art' ('t]11) 1);l1 i IIII ' witl1 \ - r111(1 i11€111('(' t,\vo OI'(l<'rillgs 71, 72 in Ill(! ICSi(luc ficlcl I;\' of \

(])ossil)1.\' rl = r= ); ils II'ltl£lrk('(i I)('fcrrt', 1/ 3 P(X)
NI)\r \vt' ;lj>IIly rc's,]ll]titlll tif si£lglllarit irs i illlcl ll ( [Hk] ). so tllat aft,cr finitely lrlall\

tilII WiILgh-111) \r(' 111n\' £lsslllllt' tllil1 .\' is tIan-sing11]al' aII(1 all the .Aj -s are normal crossIIrg;s
I_r't p c -P( .\- ) tlr. tll£. ('r'11tc'r 1)[ 1 ' 111 P( X ): p = ml' n P( X ). wllerc nil- is the rnaxilnal
iclc'al of t '. -I-l1,’11 .1 = 'Pr .\’ )r is a rr'g11lar local rillg t>f dinlellsion say d, and has a regulal
s.\-st('nl ( if I)al-alllt'ters .r-1. . . . , .r / sllcll tlrat for all -l. ,j

fij = u , j.r it Jl . . . raycl

\\']1('1'(' tIl(' I/ . , ;tl'(' llllit s (Ji' .' 1 ;11111 tIl(' (Ii,A. £l]'c lroll-ll('gati\'e lrltc-bers
III tllib sit 11,it it)II llbl’ l-t'SiCllIL' fit'Ill h-( p ) cif . I is a sllllhc'1(1 of tIle 1-('si(lllc' fIeld k\' of \ '.

a11tl nr. (lc'11(+r1. al.,i I,\' 71. r, lllt' rr'strictitrll tu r,-(p) of rl . 72. '\otice tllat as above it call
ila!)pc-11\ lllilt 71 : 7:. iilt,I t 11;11 rc ir t'i1,-l1 /? = 1.2Tllc sig11s of tIle ('lclrlent s fiy in an orderillg
a –} Tp £II'(' ('tJllll)It'l t'l.\' fl('tt'l'lllilt('(1 1 ).\' tIl(_’ siglls of t II(' paralrr('t(’I's .rl ill a arId tIle sigrls t)f
the lllli1 s (or rllurt' I)j-cII)t'l-1)- 1 if I 1lt'il' rt'siclllr class('s) in rr.

NText \\’(' s])lit /:’ illtf) t \\’( J (lis.i(>illt sets /' 1 . FL as foIIo\\’s

S
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• if 71 = 72, pick g('Irerators ao, . . . , aA of F, and choose as Fl tIle fan gencra,ted IJ.\'
ao, . . . , rik_ I . and Fa = F- \ a. Note that #(fl ) = 2k–1 = {#( F)

e if 71 7£ Q. take as F1 tIle faII F,, coItsi?sting of al] ordcrings of F specializillg to 71
and FL = F,,. By the Bder-1'irnII theorem (Theorem 2.1 ) there are as many ordering;s
specializing to 71 as specializing to a, so that #(Fl ) = #(f2 ) = !#(F) = 2h–1. As
above \vc nia)- assrrme that Fl is gclr('ra,t('d by ao, . . . . ak_1 , and tlrat ab C F2, so tlrat
ao . . . , ak_1 . ak generate the whole I

C:L AIM: After some additional bIo\yjng-ups, we find a regular local ring B dolnirlat'illg
A, n'itIl the saine residue field arId a svst,em of parameters Ty I, . . . , yd of B suclr that all

fi j's are normal crossings in B \nth respect to them and for all i = C), . . . . k it lloids

„:'(n) = { it for I'S j 'gd – +
if j = d – i + 1

(compare Table 1 ).
In fact, first, after changing .rf by –rj if lleccssary, we Inay assume that ao(xi ) = + I

for all j. Now'. notice that since the functions fi , separate the orderings of f1 and all
these ordering IS specialize to 71. two differclrt a, a' e F\ ('anlrot have t,llc galIIC sigIr at all
the paralrlet,cl's :l'1. . . . . ,I' d . III otlr(’l' words, tIle lrlap

~p : aLI F\ : {+ ] , 1 }’f:

d('fitr('d I)v

'L)' : ( „(:„]) ....,'(.-d)),

is a. lrronomorl)Irisnr of' F2-\’ector spaces.
I'lUIS. IIIcrc is soInt' j s11ch tlrat a1 (.rl ) 7£ cro(,rj ), Wc reorder the pararnctcr.- so tll£lt

for a1 (,1/ ) = + 1 for 1 $ ! < 1- and a1 (.rr ) = – ] for 7' $ / g d. (’:onsider the extcnsilan

If 1 > = ,4[2'./1-,1. , .I'd– I /.rd]( 7.1 .J'r –I -r r 1 :r d , . ..,J’ d– 1 1 r d.J'IA

\\-r set .rj1 ) = ,r , for 1 S j g I' – 1, .r(11 ) = .r , I .I',/ for I’ $ ./ $ [1 – 1 and .rFi = .r“
TII(iII .4(1) is a I'cg\llal' I'i11g ([orrlinali11g 'I. the t'csicltle fIelds of botll rings coillci'--le ant
rj1 ). . . . . .z'S?1 . .rtl ) is r('g11lar s)’st(’111 of IJ£lra,111('I c'rs of .'1(1). Ftlrtllerlllc)r(' t.II(' cxprt'ssi011

f,, = u ,; ,t':f -*

call aIso I)(’ \vrit t(’II

Fi / = uil( rjl1 )'-1 ( .'S?, )'"'“'-:'(.-f,1))''“’+"'+- “‘

I=his mealls IIl ill tllc' f , i arr’ still 110r111al crossings ill _,it ] >. so that all c-ollditiorls vr'rifi(ul
!>y /1 arc silllilarl.v rc'riFI('cl IIV .'l€ 1 ). Xlor€'ov('r. \vc’ Iia\’c a1 (.rJt > ) = + 1 for 1 S / < '1 –
all€1 a1 (.1'5/1) ) = 1 . StI tllat \vc ila\l' c’otlstrljrtccl t}lt' firs! stop in the itlcluction r)l\)(-ct'ss
\st$1illie rIo\v t hat \v(' llav(' alrt_'aclv fo1111([ a local regulal' I'illg /\('') clornina.ting .' I wit II t.Ilt'
gallic r(ISi(IIlo ficlf.1 t.llat tIl<' latt(?r all(1 witll a svst('Ill of 1)arttIll(’t('rs .I'i/). . . . , IrS ) sucll 1.1l; it
the fiy are llormal rrossings for lllclll ill ,l€“) and for all 0 S / g / it ho]cIs a, ( rj'> ) = + :

for all 1 S J $ (/ – ; iIIId a, (.rEi+ 1 ). \\h construct .41/+1 J as follows:

()



(lollsiclc’r a,+1 . \VcI ('lairll tIlIIt tIlt'r(' is ./ S r/–(sllch that ac+1 ( ir; ) = – 1. For c)t llorwist
a look at t,llc ’Ihl Jl(' I sIlo\vs at. OII(-(' tllat aba,’+1 u’orllfl be ill tIle SIIt)sl)ace gellt'l'itlt'(1 ll.\
r'ual, . . . . a,Ja,'. agitilrst otlr £lsslllrrl)I ioll tIlat, no. . . . ak were affine independent. 'l'll('ll ilft('
ret)rderillg .rfi, . . . . .rE,. \vc 111:1.\- ;lss11111r. t]lat al ( rj ) = +1 for I $ 1 < 1' and ,71 (I: 1 ) = – 1
for ?' S J $ (/ – I. ('ulrsi(I('r tIl(' ext.('nsion

J ( / 1 + 1 ) = 4/ 1 ( t ) [ I I I fH Ir )I F 1 : f/ ) q p H H B g PEr 1 / rEf ] ( rr ) prr a prE 1 yrS ) / rEf raPP TEll / TV ) IEE ( Fn pq # ) ) )

an(I s('I .rS'+1) = Fy 1 f.„ 1 $ J $ „ – 1. .„y+1) = ,„}') I„ d_, f,, „ $ J g d – 1 – 1 a„tI
rS/+1 i – .t\{\ for d – (' $ J g it . 'I=llcll all ilIIrl('(liate computat ion show’s tIlat for OS / $ £+ I

it holds a,-( .1-!'+1 )) = +1 for all I $ J $ 11 – ; and a,(rFIt.T1 ). so that \ve havc' dc>IIe rllt'
st('1) r + 1 allcl tIl('I'cfol'(' tIl(’ Cl;liIII is ('olr}l)lc't(

OII('(' tlris is cIc;II('. ('c)llsi(I('l' ;IIIy a C I" ’. 'I-IIrr(' iII(' t \vo I)ossil)iliti(’s:

• a e I' \ . -I’ll(-II a = a,, ' ' ' a,. \viI,1l 0 $ /1 < . . . < ;, $ A' – 1 and necessarily J is
od(1. Let 1 S I S II – A' + 1 : SiIIC-C' a,-1 ( gr ) = ' . . = ai. (#1) = +1 u'e get a(#/) = +1

• c7 C Ft . ’l'll('n a – ai, ' ' ' o,, ' al willl t) $ /1 < . . . < ;, $ k – 1 and nc('essirri Jy .-
is erc’n. I.c't I $ / g II – A' + 1 : \vc gt'l al !11) = a,', (gl) ' ' - a,. (.1/1) - at(g/) = a/;(yr )

In c-ourlusic>n. for all a e f1 \n* tlave cr(.I/j ) = +1 for I $ j Sd – 1 + 1, vllilc' Fur

all a e l": \ye IIa\'o a(.i// ) = at( J/.I ). I'll is it111)lies that \\’e llav(' two hiject,ions +'1, : /’L .
{ – 1 . + 1 }h– 1 giVC'II ]))’ a b> (a(//,/_#+= ), . , . . a(//d) ). /; = 1.2. In fact, since thc' fU11CtiOIls

t-,' sc'l)nl'at c' tllc' orrl('ri£lp{s c)t- CiICh t' b,, Tll€' al'gurnc'Ilt al>ov€’ show's that pp is injt'c- tivo, all(1
sill('c all s('I s ill\'ol\'(’(1 IIa\'(' 2/;– 1 f'l('Ill('Ilt s. t,11(' lllap1)i11gs are biject,ive

No\\' \\'(.' COIISi(1('1' tIl(' foIIo\vilrg (liagl'alrl

/?

I
/i/ ( //f/–k+2.

I
A'B

C' = 13t IIII–k+2,....Un C 1\
1

Prr) ; kc

\vllt're kB . k(' st ;III'I fIJI- t Ilt ’ I'(’si(lllt' fi('lf is 1)f /?. C' r('sp('ctivplv. By construction. tllcse t \vo
r(’sirlll€' 1i('I(is ill'(' liIlilt'ly g(’llt'l' itt(’(1 CJ\’(’r R. No\\’ 1(’t k'B I)c a quasico('fficient (i('Irl of /3
tllilt is a sill)Ii('1(1 klb ': /i. sljf-Il tllat tIl(’ ('xt('lrsioir klb <- IB irrdrlced by the callorlicit1
IlolnoIIlcirpIllsIII /i –, A-n is cllgel>raic- (ev('n fillitc' in our case). Then. since lc' is tllc
rjllOtiC'Ilt hcl[1 of tllc' rillg 13 rt y.1_k+l, , , , . //,/ ). n'llicll is local reglrlar of dime:nsiolr r/ – A- +
auf1 bB = Ix = h’( p ). \vc' g('t

tl'.'l('g.[A'," : R] = t r.dog.[A'r- : A’b] + tr.deg.[A’b : R] ?
tcl t + I ) + t r.drE.[I,’(p) : R] = ( r/ – A- + ] ) + dim(P(X)/p) =

(r/ – k + 1 ) + cliln CP( _\- ) ) Ilt(p) = ( d– A' + 1 ) + dirn(it) – dim(B) = n – k + 1

No\v. \re rllas€' cn-rlrrilIHS tIIrt:+11 gIl IItr rliagra Ill. starting in A-B = h'(p) with our 71

0
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• Si11(-c B/( F/d_k+2 . . . . , //d) is local regular wit,II param('tcrs 1/1. . . . , y,lk+\ , \\r ' cnTI lil'1
71 to an or(lerilIF, -1 1 of Ak. sucll that 11 (r/ ) = +1 for 1 g I g d – A- + 1 (1':xaln IJIt'

2.2). Also \ye can lift 72 to all or(lcriIlg 12 of h' such that -/2(rr) = a/,(.rr ) ftJI
1 < / < d – I' + I

• SiII('c C' is local re}{Illar with parallr('tors yd_k+\ . . . . , ?/d, \ve call brlilt, up all nIgel)roicI
fan f’ of A- parametri2icd over IIlo t \vo orclerings -1 1 . -/2 in kc (Example 2.6). 1.II
I" 1, 1)(' tIl(' s('t of or(lcrillgs of l"’ sl)('cializil lg to ip, for /; = 1, 2. Now wc' illso Iril\'(
two bijections pI : F; –> { – r . + 1 }k–1 : a1 b} (a/(gd_k+2 ), . . . . a’( I/d) ), p = 1.2, iInrl
consequently \ve obtain bijectiolls Fp –> F: : a b} a’ sllc Ir that

(a) a( gr) = aFUll) for d – A: + 1 < / S d,
(b) if p = 1, then for a e I; I \v(' ha.vc a( gr) = + r = 1 , IIft) = a/(r/l) for 1 g / g d– A'

If p = 2. then for a e Ez \ve IIa\’e a( gr) = ak(yr) = 71 (91) = a’(.r/l) fc JI
1 < / < d – A' + 1

(c) ', a’ –* 7,.

Fllis gives allother I)ij('ctiorr r.' : I" –} l"1 ; a b> a’, such tllat, a(gl) = a’(yr ) I'IJI'

1 g / S II and cr(u ) = n/(n ) for any lrnit t/ e B. Consequently, a(/if ) = a’(.f,'., )
for all i , J, and sillce’ t]IC fij-s donne tIle ncighborllc)od f; C ok of F fix(’tl at TIlt
I)cgirrnilrg. \v€' ('olrclrl(1(' F1 e (F, wlliclr colrrl)I('t,cs t,Irt' I)I'oof

n

\\h [iIlish ttlis st'('tiolr I))' I)oilltillg out IIlat t,IIe restrict ioll to colrrpact. luo(I('ls ill tIl(
last, tlrool'(’nI is ('ssc'llcial. as Exalrrl)1(' '1.3 \till sIlo\\’

4 Review on real spectra

Ill orclc'r to progress furtlrt'r \vc' ilec'cl t llc.' 1lleor\' of tIl(’ real s])cctrunl. Here \\'t' j list re\'lt'\\'
tIle Inc)sl 1>asi(- facts. I'r']'\-iItg t>II [[3('1{] as gcll('ral rc'fc'rt’llc'c'

1,rt /I I)c' any tIlltllllllt a1 ivr rillg \tit iI unit. 'I*hr rcal SI)rrtrtull ,qpr c„(,4 ) of _-1 is tIlt
set of all I>airs a = (p., . $„ ). where p„ is a prirrre ideal of /1 arId $. is an orclrrirlg in lllc
rc'sicl llc lit'l€1 h-(p„ ). \\1' (1(*IIOt [' by h-(ct ) tIl(' r('al closurc' of h'(p„ ) \dt it ll"specI tc> $. , all(I
can vic\t a as a hollllrllrorl>])ism a : /I –} A/p„ C h’(p„ ) C h-( a ) : .f b> /(a ). No\v It'I
a, ,J e b'/tcc„( '1 ). \\'r sav that a spr t: jqji=f s /o /i or that , J is a spl r inIt:at it)IL of rl allrl
writr n –> /? if .f( ,i ) > tJ itIl];1:CS /-((1 ) > 0 for .I- e /Ii i]lorr' algc'l)rllir-alt)’. rl –+ .i if all(I
only if P. C p,j all(I the c-alir>tlical majI .4/p, –} ,4/Pr/ sell(is clerII('nts ?. 0 to c'lenl(IllS
2 ,3 0. Of (-ollr's('. lllis is tIl(' salll(' SI)t'cializat ion iIlt rodtI('('(I ('al'lif'r ill S('('tioll ?,

Ill t.Itt' sett.iII}\ of Ill(' rrill sl)(’('tt'lllrl \v(' ('a.li iIIII)oso siRI I ('olrdit iOIIS OII tIle (’l(’llre111 s ( iI
I and u-;c' lrotatitJlls like { ./-1 > 0. . . . . /' > C)} C b'pcc,.(.'1) for {a C S'pcc,(.4) : /1 (a ) >

1



0. f.(„) > o} Tllclr \v(' (I('fillc ill the obvious \va\’ co IISt r'uct ibt e set,s

1)

“ = U{/,'l ' 0,
i=1

.\ fir, > Oh gI = 0}

b(Isle opc it SItS

f t = {.fil > a. - - -, fir, > 0} 1
and the llal'l'iso ll t o pc)log ty g(:ll('rat ('(1 by these basic OT)eII sets. In terrrrs of this topolog.v.
the spccializat,i011 rclat,ioll i11tro(111('(id above behaves as a limit. For instance, if C' is OJ)eII.

$ e C' all(1 a –> rJ, tlleTI rv e (I
We also define the Za I'i.ski topology by analogy with the Zariski prime spectrlull: il

subbasis consists of all scts of tllc' form {/ + 0} ; \ve distinguish the operations in tllis
topology with all index Z

If ,-1 is a field \vc fincl ag£lill tIlt' spacr’ of or(Ic:rings described in Section 1, it is c]t';ir
from tho dcfillitiolrs that

sl„ '„t 'l) = U S I„ ';„(/„(p)),
P

where tIle p's 11111 anrollg tIre I)riIll(.’ i(lea is of .'l. ’l'llis silnple relrrark supports the idea (iI
pat cllillg t IIe illforIrrat iOIIS ol)tilillt'(1 ftoIll tlrc residtle fields of .4 to learlr about /1 its('i F.
Act Irally. it \yorks to pro\'(':

Theorem 4.1 Lc t A br II coIl-llllutatil’t ring u'it it rrnit and (I am open constr'uct'iblc sub.st 1

of Spec,(A) such thut SU C \ C.' )" = D . Let s bc u positiue integer. Suppose that for err'rly
prime ideal p of 'I thc re lirr gI . . . , . g, C A sur tI that (; n Spec, ( K(p)) = {gl > 0. , , . , g, )'
0} n IS'/7r r,( RCp)) . Th 1 17 f/lr II CIIT fI , . . . , ./', e /t sur/l th nt CJ = {/1 > 0, . . . , f, > 0}

’1-Iris tllt'or('ll] has a lolrg history. It \vas first ol)tdiIletl by Br8cker, [Brl] , in case .4 wils
all algel)ra lillitPl)’ bell(?rate(1 o\’('r a real close(1 ficl(1 Ii . 1)ut he corrld rIot control cornpletel.\
thc nuIlll)('r of (’quatiolls invo]v('(1. ’1'tlis \vas solved by Scheiderer in [F;chl, \\’ho aIred(1.\

remarke(I tllat, tlr(' argrrIllCllt \vorko(1 for any excclleIlt ring A. At the same tinre Brac-k('I

found a proof t]lat only rc'quirt'(1 /1 to be rloetherian, [Br3]. Finally, Marshall (liscovcr('tl
how to mIO(lify illl thc)s(' proofs to obtain the result for arbitrary A, [N’lrG]

Now' It't /I = ’P( .\- ) br ttlr' rillg of polynomial hlllctions of a real alg(’1)raic set .\- C R"
Tllell \vc defillc t}lc til(la (JJ)('1';It.i011 .q 1 > .q. It nlaI)s a semialge1)rajc sct S C .\' to t]le
rolrstrllrtiblr sr't .q C S pc c„( ,4 ) (1('Fillc'cl bv ailv form11la that also defines S. This dcfinit ict1

IS coirbistc'Ilt aIlrl gives a I)ijr'(IioI] t IInt present’s iIIClllSiCins and topological operations ( II.\
the ’FarsI ii princil ilo). -l-llis Ti]cla ttpc'rator is main tool to translate selrrialgebraic I)rob]onI+
all(1 st atel11cllt s ill terllls t)f t IIt' I'(_'at spectra

l''iIlall}'. hi111)T)use tlltlt ,Y is it’r('rltlcil)Ie and let 1( = A-(X). Then S'prr '„( it ) C ,S'pcc„ ( '! )
allcl tltI’ til(la c>1)('ratioII illrlur-rs a mapping S F> S' fI ,Vp( r,( it ). which is gPnel-i call:
inject ive: if S. 7' C X arr srlllialgel>raic sets snell that ,q n S prc,( it) = 7 n ,Ypcc,( /\- ).
then .\' \, Z’ = -1' \ Z ft)r sonrt' lic>wllere dellrie algebraic set Z C X. In this way \ve call
nrix rllc' pc'tilllr't rif- allf I tIl(' a !ql'llrair srttings to st tld\- our prol)lerr1. For all of this \vt'
r€’fr'l- to [ll('II J. [13r tl . [,\1113l-liz 1 ,2] . For illst aIIce. TlreoreIn I of the introduction is just a
trallSl;\tioII of 'fIjl'orelll .I. I. \\\' also use this strategy to cIe(luce directly from ’1-heorrtII
1.2 thc fo]lo\vitlg statc'tllt'Ilt
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Coronary 4.2 Lrt S br rl srminlIIt bra ic subst.f of tIll iI-rcd'neil)Ir rr-a.I algrllrair sr I X C
R" . Then the fotiouling asscNions (Irc equivalr-nt

(CI) S is gc'n ericully basic,

(b) For CI:cry fan F of thc Ft-Id LT(X ) with +LF) = 4 we hate #LF n g) # 3

1=11is \vas Olrr starting point ill [AnRzl] to prove Tllcorern ] of tIlt: intro(luctit,£l. Ilr'rl'
\\'(' \\'ill \york silrlilarl.\’ to 1)ro\’e TIl('orclll '1. llsiIlg tlr(' followilrg conso(lucnc(' of ( 'oroll£\l'.\
1.:3

Coronary 4.3 Lrt S bt a gcnr rica IIu basic semiatgcbrnic subset of an irrcduciblr_ mal
ulgcbrnic set X C R". Then the following assertions are eqriualent:

(ct) S is gcncricntl I s-basic.

(b) For curry fan F of the $cId AT(X) with #LFI = Uk aId #LF ng) = \ \re hqrt
k < s

TIl(' Ilt'Xt st.(' 1) to\vilrrls t.II(' broof of ’l'll('orctII '1 of t.Irc' ilrtrodrrct.i011 is

ProposItion 4.4 Lrt S br a gcnrl'ically basic sr711.ialgebrqjc subset of a, comjlurl iI'!1-
(luciblr real ulgrbrair sct X C R" of d.ilnrnsion rI, Then the folloulin.g asscl't ions all
c(lu /na/c'/7t ,

(a) S is g['ncricalky s-bude
(bl For crr ru atIIt I)rnid fan F of thc fIeld AT ( X ) fInite orlrr P( X ) and pal'nrnt tri:1 tl

f]r'r r rl function Feld of di lnrnsion d – k + \ such that #LF) = Ik End #LF n S ) = \ n,
IIII t’( k < s

i>11)n.F -; \Vc onI.v llavc' f.o I)rove ( 1) ) + (a J. So. slII)pose b' is not genericaljy $-b;l.sic. II.\-
('orollar.v 'l.:3 tIlt'rc is a fall I" of tllc tic]d A'(.\- ) wit Il #\ r ) = 2+ and #(r 11 j) =
I)tIt I > s. No\v let .[1 . . . . . f-, be the fllll(-tiolls appearing in a description of ,q, laIr

a\’cry a e f \vc put :'i = a(/,-). 1 $ f $ r. arId t -, = {:a1/1 > 0. . . , . Sa„/, > C)} . ’Fhc'll
I' = [1,Er (-, is a tlciglll)or IIoncI of I'- allcl bv Tlloor€'111 : 3.1 tIl(’rc' is an algebroid fil11 Ff e f
fi11itc over P(_\' ) aIr(1 l>arametrize(1 over a hlncti011 field of dimeusi011 r/– 1+ 1. It is oli\'i,)ii.
from our dCfinitic>TI t)[ f ' tllat #( l"1 n S) = #( /.' n ,q ) = 1. Sitlc(' A' > s. \vc all' cIc)111

a

Exarrlple 4.5. \\'t' €'tJllbl I'll€'t iI s('IIli;tlg('IJI'iIi(' s('I .q C R2 \vIIi('ll is llt)t g('11('ri('zlll\' I)ijsif
1)11t tIl(' ol)stl'll(-ti(iII call (JIll.\' bc I'c’it(I tllrollglr falls conrl)al,iblc witlr valuatiorls of A'(R2 ) =
R{'1', J/ ) that ill-t' not Ii]lit(' OII -P(R2) = R[.r. //] . (:ollse(Ill('nt ly those fans ctlllllot llc
approxinratcd II)' ot II('I-s fillit (' OII R[.1-. //]

Fo clr'fine , b' corrsi(Ir'r t IIt' sets t B’;gKII /)

S'1 = {.r# ? 1 }. ,qf = S'1 n {.t ? o}. Xi = S'1 n {.r $ 0}
SI = { .r// $ – 1 } . .V = .q2 a {.I' ? 0} . S; = ,q2 n {.I' $ 0} .
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all(1 1)ut .S – ,$1 U SJ. \V(: will denote by ,Sl the c011strllctiblc subset of tIle sIJac(' tIl
orderingis of K:(R2 ) defm('tl by the salrle equations as ,q1, and similarly Sf , ST . ctc.

No\v to prove our previous rlailn . let F = {a1, a2, a:+, al } be a fan with #( F n X ) == :i
Sillt:c .','1 is generically 1-basic, #( F n .S'1 ) = 0 or 2; analogously, #( F n .S'2 ) = 0 Ol

2. Sincc: Si is generically basic, #(Fn iJ ) = 0, 1 or 2. Hence #(Fn ,S'1 ) = 2 ;11111

#( /'' n ,V ) = #( F’ n S; ) = 1. sdy a1. as e il, a2 e S{ and a4 e gi . Suppose no\v tILtlt

t]lc'l'(' is a valuat,ioIr t-’ ol- R(ir. !/) c-o111patiblt’ with F such that R[a:, y] C V. Then tIIL'

maxilnal ideal mr’ of v lic's over a real prime ideal p of R[.t, y], and the ai ’s malic p conv€'\
and spc'('ializ€’ to at most t,\vo ordcrings 71, 72 in the residue field rc(p). Now we \viII arEnt
using tlrc’ real spectrum of tllc ting R[.r, g], We distinguish tu'o possible cases:

• Irt(p) = 2, Then p is a Irlaximai ideal, that is, the ideal of a point : e R2. It
: q Sj . sillc€’ Sj is closed. no ai would be in Sj. Hence : e S'1 n ,52 = O, \rhiclr ib
al)b;utd. 'l'hlls tIlis ('ase is inll)ossible

• IIt(p) = 1. Then p is the idc’al of dIr irr('dlrcible curve Z. Then suppose that. sa.v.
a.1 } 72. 'I'llcn 72 is 110t, a11 i11ner poi11t of S, for otherwise, since the interior til
S is an ci1)r'll const rucTibl(' sct . the gr*11t’rizdti011 cr4 would belong to S too. A]sil.
\ye have a,' –> 72 for sonIC ot Iler ai, saY a1. Since al e ,S’1 and Sl is CltJSC'd, it
follows tllat 72 e .q1. Altog(tt,l1('r \ve have that 72 belongs to tIle boundary i) S \ of ,q1
wlrich I)y construct ioll is the llyperbola .tg – 1 – 0. ’1'his means that xu – J C p, OI
rcjllivalc’Iltl}' that ,7 C {r// – 1 = 0} , N(>\v \ve hdv(' a2 –> r1, and arguing as al)o\r
\\P get r1 e 0,q2. or ('quivalt’lltly Z C {.rF/ + 1 = 0} . Since the two hyperl]ol£ls :ll'l
disjoint, w'('' get a ('ollt ra,dirt,toll. The rest, of the cases are tredted sinri]arly
Ill concltlsion tI1(’1'(' is not SIIt-l1 a p. \\’hat sho\\’s tlrat t. Ilet(' is not, a valrlat,ioll t
compatil)I c' with f' alt(I [irli It' over R[[.7'. ,r/]].

11

/' ; // it / V Fi (I \rl't J

I'inally \r(' tIa\r I o l>1-o\’r thtlt li does exist if \vc do not r-('quirt' the finitenrss con
clition. ']b (Io t IIi.s \vc work ill tIle projective p]anc with coordinates (/o : r1 : ,I-= )
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wllc're .r = ,1'1/.t'o, // = ,1'2/ro. Ac'tllally, we work at 1.llc’ point (0 : 0 : ] ), (tr I)cttt 'I‘
in tho afFirlr r]lart. /2 + 0. \V(' 1)Ilt II = raF III, n = =1/#2 and our sets ill'c" givt':
(1)irationally ) 1>y tIle si Fjll collcIiti(ills that foIIo\\

St = { 1' Z 1/2}, b'f = Sl n {u ? 0} , ,qi = S’1 n { u $ o}
St = {7' $ –u2} . St = ,92 n {u $ 0} , ST = Si n {u = 0} ,

all(1 of cc>urs(' b' = .q1 U bJ L l"ilju 11 e). No\r \vc obtain th(' faII f start i tIE wit II
a valuation colnpatiblc with it. Natrle]y. t}IC discrete rank 1 va]11atioII Ii [I/ , r)(„).
whose residll(' Held Rd') has t\vo ordering;s: 71. wit.h r' positi\'(' and illiillit('sIIlla
witl1 r('spcct to R, all(1 72. \tit 11 1' ncgat iv(t and infiIlit,osinral with r('sl)('c't to R
'l'l-Ion 7? will consist. of tIle fotlr lifl.ilrgs a1, art and a2 . a.1 of 71 and 72 (It'liII(:fl 1).\

a1 ( f ) = al( i ) = + 1, a3( / ) = a2( / ) = – 1. ( I]early a1. a2 . al e S alld a.1 g ,',‘

I'\rrtllormorc'. t,here arc t\vo valllat.ions compatible with F. One is R[u. r’] f„), all'I
tIle other is tIl(’ ('onlposile of lllis \dtlr R[u](.). The crItters of this valuat il)Irs nI"
rcsl)octivcly, t }I(’ lille II – 0 all(1 t.II(' 1)oillt ?/ – I' – 0. In I)rojo('i,i\’c' coot(liII iI.t('s t.11('.\

are the line .ro = 0 ,Ind tIle point ( 0 : 0 : 1 ). in both cases infinite when w' \york iII
t Irc affine (.r. # )-p]anc,

5 Proof of the main result

I'lr('ore11r 'I c)f t IIe illt.I'o(Irlctioll \yjII tic all illllrrcclial,c coIIse(jucl)('(’ of tIl(' fullc)\\'irlg

Theorem 5.1 1.rt S bc a qt nr ricqjl ly basic srmintqr,brute sul)sct of all irlr llbcilltt
I't'(it ttlg(bl'(Ii(' st t X ( Rn . I,t't Z C X I)t' tIlly pl'opt'l' lrlgebI'(tit' sul)srt t'oIIt tIll till 11

tIlt singular torus of X und tllr bouvdqr ly of S . as = R\ SQ . Thf n tIlt .{rllintrill 11

useit I'tiolls tII't t qIIiI'(IIeut :

(ct) S is g€'ncricntlu s-basic
(b ) For any irrrduriblr nlqrbrn ir srt }’ C X of rl+rnfnsion s + I . IInt contui tlr rI iII /
tIlt intc I'sfction S n \' is IICIt( I'ictlll ly s-basic.

P rrItIl : .\ssil11tt' first tllat S' is g('llcricall}' s-l)asir. and let }’ C ,X be an irlr'cllrcililt-
bIll)srI not c-,)lltai11r'(1 ill Z. ])t'llott’ br p C P( X ) tllc' idc*al of }'. Sillct' \-- is IIt)1
('olITai11c'r] in t ]l(' sill,gIll ill- loci is of .\- tIlt' localizdtit)n P( X )p is a local rt'glllar ring
of (linlcnsioll sa.r II wIlt)sc' rc'sirlllc' Field is I = CIf('P( .\- )/p) = K:( 1’ ). Nu\\' sllpl)ost'
tllat .',’ n I’ is IIt)t a('ll('ri('all\' s-l>asic. 'l’ll('11 1)\’ ('ol'ollar\' I.:i tllcrc’ is it fall I" –
(a, : 1 S ; $ Jk ) of /. such that #( Fn ,q) = 1 altd # > s. This f' lift.s to iI
fall 1:1 = ( a: : 1 S ; $ 2A ) of A:(X ) witl1 a: –> al. Illdt-t'd. as \vc c'xl>]ilillc'rl ill
Exlllll])Ie 2.2, llsilIH it rt'glllar svst('III of parat11rt€*1's .r 1. . . . . .I'd c)f P( X )1, \\'l' call lil'l

ally or(leriIIg rr (if I to Id rliffcrC11t orclcritIgs of 1{ . ea('lr cor Ii’s bOII(lirlg to a ('Jloit'(' ot
si.!1IIS for t 11(' gi \'(’11 1);Irt1111('I (’I's. ll('ll('(’ \\’(' fix all pal'all)('t('rs I)osit iv(' alrd lift (’\'cr.\’ al
to a:. It is vol .v c'ils)’ to r'll€'rk tllal tllc' a:-s forlll a fan arId of course #( F/) = 24;. \\'c
rl;lilll that fi ( l"1 n ,\') == 1. Irr(lcr'cl. suppose a,- C , S'. Silla’ Z docs not ct)III iIill > - u't'
llil\\' a, g /. iillcl lllr'rt'ft)I-(' ni g /iS'. lit'calls<' a.q C Z. 'I-l1115 \ve llavc cr e .in. \vllirll
is c011stl'llct iI)IF 1,11(1 o})('11. Si11('t. a; –> af , \v(. get a’ C .S" (_ S. 011 the otll(’r halltl
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suppose a,' g S. Again \ve havc a,- g Z, Then ai ( Z U ,q, and we get ai g S, whicll
is constructibl(' and closed, it follows that a; e .S’ either. Whence, #(P n S) = 1
and ,ST is not gcrleri('all}’ s-basic, as claimed. Note that, for this inrplicatiolr wr cIo
not need any special type of fan

III order to I)I'o\’e t,he converse iInplication, we can substitute ,Y by it.s Olle-poilll
conrpactifi('al.iolr or. in other worf is, dssunre that X is colnpact.. Now suI)1)ose ,q is
rIot, generically s-1)asic. By Proposition 4.4 there is an aTgebroid fan F of 1,11c ficl(1
A = X:( X) finite OII -P(_\-) and parametrized over a flrnctiolr field L of dimensioll
d – k + 1 buell that, #( F) = 2k, #(Fn S) = 1 and k > s. This means tllat F is
defined throltgh an embedding a : it L} L((#1, , , . , ze_1 ) ) and t\vo orderillgs 11. l=
in L. and that the ring P(X) of polynomial functions of X- is containccl in tIll
ring £[[r1. . . . , .rb_1 ]] via @. Non'. since I is d function field there is an irreduciblt
algebraic set IF C R"’ whose field of rational functions A"( I1“) is L, that is, £ is t llc
quotient, field of the ring 'P(I1'’) of poIYnomial functions on it
Now let // stall(1 k)r a generic h)’perplane section of It“ and p for the ideal of // ill
P( 1’1/ ). By Berrini ts theorem ( [Jn] , [BC:R] ), H is a nonsingular irreducible suI]st:t ol
II'-, and p a real pl'illr(’ ideal. Note that the field E( I1 ) of rational functions of A is
the residue field of p. that is. tIle quotient field of P(I1/)/p. With all of this \ve have

the followirlg dia£raIrr

P(X) C l- d > C(11")[[r1,
U

Pt tT'-)p[[rll

1 Tk–1]]

, „kl]] ’ , C(A)[[„1: . 1 rA–1]]

u'hcrc tIle llOIlronror])Irisrn p is tIle obvious extensio II of the canonical lnap I)ing
P( I1/)p A A’( II ,
Since tlrc' ri11g P( X ) is an algebra hnitcly generated over R u'e carl pi(:k finitcly
many g('rlerators /1 . . . . . Iq ill P(X ): we add to these the equations, say f',1+1, , . . , /,

in\’ol v('(1 ill a clcscril)tioir of tIle scIrria,lgcbraic sct , ST all(1 an equation of Z. All tlrcs(
functions /,- art' in k-( 1'1“)[[r1, . . . , /k_1]] . and so they have power expansioILS .fi =

/,-(r) = E-,(g,-,/h,-„ ),r“, where I/ e Nk–1 and gi„, hi„ e P( tF). As our hypcrplallt'
srctlon I! is hcnrric. wr can suppose no tIt,, /Ii, vanishes on H (dlthough there art'
infllrit('1)’ lrlany g;, . /z ,'„'s. t]leir lrrrrrr1)eI' is courrtat)le, and working over the rea]s \vt
carl IIse Baire’s thc'orcnr). In particular h ,-, ( p inrplies that the /,-(#)’s are \veII
defIned €'1emcnts of P( I1 ' )r [[.r I , . . . , ##_1]]. Finally, since the .f ;'s generate P( .V ) \vc:
g('t d(P( X ) ) C P( I1 ' )r[[.1-1. , . . . .r&_1]] and consequently we Il avc the map

'' = ,’o : ?(X) + t:(//)[[„l, . . . , „k–1]]

Xlorcov(’r g,„ ( p i111l>lirs that tIle coefficients of the /,-(r )'s are llnits in P( 1’S -)b, and
so ?:’(/, ) = ft .f,I / } \ = Er(g,-.//?„ ).r' is a non-zero element of C(//) [[=1, . . . , .tk_1]

(here – stall(is nrr I IIe residue class mod p)
No\v \\’(' cc)Illl)if ’t (' t IIe cIInic(' of the generic h}’l)crplane section II , To do it . \\’(’ s('t
F = F\ U 1:2 . \\’tIer(' 1; '/, colrtaills tllc or'(I('l'ilrgs of t' tlrat specialize to lb, 1) – 1.2.
I'ilc't1 ('\t'ry tirclering a e PL is dctcrnritlc(1 by a sign condition : : { r1, . . . . .uk_1 } +
{+ 1. – 1 }. .\Istt u-c' kllov fruIt; Ex?iII]i)le 2.4 aJ tIl,it tIle sigll of li in any such order
Inf IS rolnr)It'tt'l.v ttc'terrllinrd I)y its initial form (with respect to the lexicograpllic
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ordering irl tIle exp011('11ts). say yi,LIl h,-,,,1,I'“'" . I,et (;p c ,qpr r,(k:(W)) be t.llc opt'll
nrighl)ortloc)d of Ir rlchncd I>y {gt,m1//71„01 -> o, . . . . g,„o. F h ,„nz /- o}. Tllen \vc hat('

tI-lat for all.\= OI'(lcrilrg li C (_; /, its lift.ing a’ ('orrcsI)on(ling to tIl(' sign conditiolr : Irils
at tIle .f,'s thc’ salllt' Sij{IIS 1l1111 a. 'l-llis inll>lit’s lllat for any two ordc'rings li C f /1
alld l; e f/2 t II(' hIll ff 1)ari1111etrizc'd ov['t’ thc’111 verili('s also #( F’ n i) = 1 all(I
b > s (cf. Exa11rplcs 2.2 &trIll 2.(i)
N(;\v. \vc (lcnot,(' by C: \ . C/2 t llc t.\vo ol)en s(’llrialg(?1)r'aic SIll)sets of T’t/ corresponrlitlg
to the rreigbol'hoods jrlst collstructed. 'I'}res€’ sernia,lgebraic sets are Zariski dense iII
l't'’. \vlllcll gllarallt (x's tllirt \\-(' ('all CIIOOsc tIle gellcric hyl)('rplaIle section // I,o Ill('('I
I)oth of tllerrl. 'Fhis illll)lies tllat tIIpr(’ ill'e -/{ C (-: 1 arId -/; C G'2 \v}lich rIrakr tIl(
idea.1 p of 11 convex. Ill ot]l('r \vol'(is. -/{ all(1 -lb indllce t\\’o ordcrilrgs 71 all(1 a ill
t,llc rc'si(lllc' fic'1[1 of p. wllic'll is AT( // ). -l'll('ll \vc paratll('trizc over 71 and 72 a fall
l"11 of k:(//)[[.T1, . , . . .rk_l ]I. \\h hay(' 1)ij('t•tiOIIS /" –> 1"1 –> 1'-1' : a p> a’ +} a" SIr(-II

tllat cr. a’ and a" arc' aII cl('£illtvl ll.y t ]It' salllc SigII collrlit tOII : : {.rl. , . . , rk_1 } 1

{+ }
After tllis I)r(rl)aratit)11. \vc IIa\’c tlr(’ foIIo\villg (liagralrr

„ P(.\') ,,
/ \

-'bl]] , ~:(//)[[.'1....
I

A-( // )

p( I'S ’ J?[[/] '
I

P( TI-),

„k– 1 ]]

\vll('l'e a’ £llrrl a11 all’ floHII('rl I)\’ t 11(' same sign COII(litioll Ja. as explained at)(J\'€'.

.\ti\\' CtiIlsi(I('r Ill(' kt'l'II('I q (if t II(' Ilt)lllt)lllc)I'l))lislll t,' . Its z('ro sc't is all £llgt't)Fair st't
I- C .\- wit II P( }’ ) = P( .\' }/,1, allt1 clilll( 1 ' ) = rliIll(X) – 1l: ( q), F11rt Ilt'rmort'. tht' fall
F’11 consisTing of thc a"-s restricts to a fall F- iII A:( 1’) such that #( /''- n S) =
I)c'c-£hust' IIV t-ullst rl Irl it)IL t ] it ' sig] IS t)[ aa at tllc' I,'( .f/ ) -s c-oi lit-i(Ir \vII}] t Ilo,so of rrb

(-'c)IIse(Ill(’lltly, t,Ilt' scnlialg(’1)I'aic st’I ,g n )’ is lrot generically s-basic. FurtlrornroI'('.
sillce anlollg tIlt' .f='s tllcr(' is all €'(1rlat iCIII of Z. and IIO I,'( f,') is z<'ro. \’ is IIt>I

('olltaiIrc(1 ill Z. Flclr('(' it till I\' r('lllitiIIS I o sllo\\' tIlat \t(’ call ilrll)ost’ tIl(' ful'tIl('I
CtillditiOII ciirJI( >’) < rlim(X) and fII)IiI Ill?It the 1)roof \viII cnd by irlcllrctioIr.
IQ>r tll£tt \vc' \\-ill al)Drt+xilllzltt' I. ' illgc'Flrllicillly. 1 tIltIR]ll_v SI)raking notice tllal siljl-t
FI . . . . . ./-. gr'n('r iIt t' P( .\- ), lllt' lloltlt)1110rl)llistrr r.' is cc)InT)left’IF deterlrrirlc(1 1)\' tIjl

illlilges r.'(./'1 1.....1 '('/-. ). J,t't a1 (.1' ). . . . , r/,(.r ) e h-(p)[[.I'1......1'b_1]] I>e st'ric's slll-Il

tIll it a,-(.1' ) = 1,'( f, ) (lllr>tl nI" ) fclr il slliTitlll t’ II C N all(I sllp]>(tst' thaI \to IIla\- tlclillc
a Itolnolllot'pllisl11 1. '/ : P( .\- ) –} K(p)[[.I'1. . . . . .rc_1]] by ’I,'’(/,' ) = r/,(,r ). 'I=hell. it
II is largt' c'llollgll bl) lllilt tllc' illil ial fortIIS of tIl(' t-( /} ) -s c(rillcicl(’ with t]lt' illil iiII
fr>trub of tIlt' l'’'( .f,)-s. sillt'r tllc'st' initial f(iI-ms r]ctr'rminc' tIle si,LtIIS of tllc'sr rl€'mcIlt s

it FoIIo\vs rca(lily t ]tilt tIlt’ fall /''' ill(Ince(1 iII P( X )/q by tllc' fan I'-1' ’. v€'rific's tllat
#( l"- n S) = 1. III ttt]lt'r \vc)Ills tllc' al)roxilllat intl 1,-1 t)f I," givc's risc' to a $111iv;lrir't }
I’/ i11 \vIIi('I! ,c,’ n I’/ is 1101 1);ISi('. \\\' \viII s('(' tllat t.IIiS I.',/ ('all I)e colrstl'uct.ed so tlr ill
II(' ai:s ;l!'c' alg('ill'i1 ir- st'l-it’s, wIl iIt \\'ill ;tIll)IF tIltIt (lirrl( 1--/) < clilrl(_\' ).
1’n rIo tIlllt it 'I n = r, ' 1 ( .r 1, . . . ' .r/;_ I ) a,11(1 ('c>11si(:c'r ttlr' localizdti011 rl = P( X )"

I-lie holll(illl<rrlbllisl rI r. ' t'xt('llcis tu t llc I1('11s(:lizatioll Ah . No\v. P(X ) is a quoticlll
\if a jlol.\-IIt >ITliill rillq. sil'\- P( .\- \ = R[7'1. . . . . 7-,„]/ 1. \Vc (I('ll(>to 1>y Dt tIle irlcal (>t

R[7'1. . . . . '/',„] r'c)rl-c'sj>c)llrli ng to n, all(I ilssllme thaI Z] . . . . . Z, is a nrininra1 systel11
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of g€'rrcraTors of 91. It follows that lh = (R[ II , . . . , IL, I.n)h/a/l. Thus, \ve IIa\-c

(R['/’1, . . . , '/;„In )h = K(Tl)[[Z/1. . . . , /,]]dK, so tllat, /lh is a qtroticllt of all algelirail
Iio\ver series rillg. III fact tllis ('all I)(’ s('(’ll as follows: Ry No(:t,ller’s norlrralizatl011
I,('nrm,t, \\’c IIlay asslIIt I(' that R[7'] , , , . . 7;„]/Dt is nnit.c over R[7'1. . . . , T„,_,], so I,]liII
tIlt' field h'(n) is an algc'l)lair t'Xtt'IISi011 of A- = R(--/'1 , . . . , F„_, ). Thus \ve 1111\'e

A: [/1 Z. C R[7'1. /;„].n C (R[7'l . • 1 7’„,].)1)' = h-,( n)[[Zl, /„]]
\vller(’ the first extellsit)11 is algol)raic, all(I

A'[71 . , Z„] C K(n) [71, 1 zHI](71 „z, ) C „(„)[[Zl. , Z,]]

TIll_IS rlsirlg thc chara('t('rizatioII of tIl(' ll('Ilsc'lizatiorr as the algebraic closllr(’ of tIl(
rillg ill its ct)lnpletiuII, it follows that

(R[Tll- ' ' . -f7„]'JI)h = 1.-(n) [[Z’1, Z„]]alg

as clairrre(I

I.ct L’ : r,-(n)[[/1. , , . . /„]],lg –+ h-(p) [[.1-1. . . . . .rk_1]] be the conlposition of (’ told tIll
canonical cpiIlrorpllislll f,-( n)[[/1 . . . . . /,]],.,1g –} Ah. and let g\ . . . . . gt be a s)'stern ol

generators of tIle ideal lh . \Vc follow’ tl1(' nrcthod of [’Fg, Chap. III, secti011 1, pitgI
61]. Set :,-(.r ) = i,’( /i ). Then \vc’ II,Ive

yi(;(„)) = O for all ; = 1, IT?

RV N’I. Art ill-s apprr)xilnat,iOII t,lleorem, cf. [B( IR, Theorem 8,:3.1. page 154], thc:re a
rc* .1/1 (r). . . . . y„, (.?') e h-(p) [[/1, . . . . .rk_1]] arbitrdrily close to :1 ( it:), . . . , 3,„(r) in tIlt
m-adic topology of /,-(p)[[.rl, . . . , .rk_1]] su(-h that

yi(y(r) ) = 0 for all i = 1 777 .

Tllis tlreans that t llc llomomor1)llism I/,’ : h-(n)[[Z1, . . , , Z, I],Ig –+ / iCp)[[r1, . . . , #k_1]]
(I('fi11ed by Zi b> F/, (.r ) fa('tors illrollgh .'Ih . This \yay \ve can dp])roximate arbitr ar iI)

I/', I>y O’ : /1/' –} NCp)[[,r1....,.t'#_1 ]],18 ds claimed. Hence. substituting ?/, by 1[1' vi
Inay suppose I/'(P( .\- )) C RCp)[[,11, , . . , rk_1 ]].18.

It follows it lat d' irlduc('s an aInt>ectding Po') L> #(p)[[ a1, . . . , at_1]],18, which ex
tends to the (luoticrlt fic'lds L( 1’) L} h’(p)((r1, . . . , .1:k_1 ) ).18. Counting transrcndell€'c
(I('grees ov('r R \vc fillrl

dim( 1’ ) = tr .dog.[A:(1'-) : R] $ tr .deg.[h-(p)( (11, . . . . i'k_1 ) ),1& : R] =

\ A' – 1 ) + tr.d(' I,.[t,-(p ) : R] = ( A' – 1 ) + clitn( H) < ( 1 – 1 ) + dim(I1'’) = dinI(X )

as \vanted . a

\\’e finish tllc' pap('l' wit II the foII(Jwirrg

1) rc)of of 'I-heorerl I J: it is cl('ar tllat if .q is s-1)as;ic anY illtcrsection S n \’ \viI II
all irredllcil)le slll)s('t }' C ,\’ is also s-basic. and so generically s-basic. (:'orlverscly
suppose ,C.' is llot .s-Iii Isir. By tllt' Br6cker-Scheidcr('r criterio]1 (Theorem 1 ) there is
all il'l'e(Irlcilrle sul)s('i. .\'’ C _\’ SII('ll that ,q n .\'’ is tlot generically s-1)asic. TIreD, IJ)
'l'llec>rem 3.1 tlr€'re is an irrt'tlucilile subset )’ C .\1 of dinrension s t ] such tIll it
.b' n \’ is not gell ri(' tIll\’ s-bas;i(', all(1 \ve ar(' done
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Measuring similarity of models*

Jouko vaananen t

Department of Mathematics
University of Helsinki

Helsinki, Finland

We describe an approach, introduced in [HV90], to measuring similarities and
differences between uncountable models. A central concept in this approach is
the concept of a transfinite Ehrenfeucht-FraTss6 game together with the concept
of approximating these games with trees. The study of such games is closely
linked with infinitely deep languages, introduced in [HR76], a generalization of
the usual infrnitary languages IN A. We give an overview of recent work on the
Ehrenfeucht-Frafss6 game and on the infinitely deep languages.

Abstract

1 Introduction

The so called fInite quantiBeT languages I,w and their fragments have given rise to
a rich and interesting de$nabiLiLy theory. This theory works particularly nicely on
countable structures and in the case N = h/l. The obvious generalisation, the inBniLe
quantifreT languages Ln\, have given rise to almost no interesting mathematics at all.
In particular, the generalisation Eu,w, of Eu,w has led to no general theory of models
of cardinality Wr .

Hintikka and Rantala introduced a different approach to generalizing L„„, [HR76]
They considered so called constituents of mathematical structures and were led to
the following idea: Rather than allowing transfinite sequences of strings of existential
quantifiers and transfinite sequences of universal quantifiers, one should allow transfi-
nite sequences of quantifier and connective alternations. This leads to powerful logics
which extend not only the infinitary languages L'>, but also extensions of L'x by the
usual game-quantifier

-The full version of this paper will appear as [via]
tPreparation of this article was supported by Academy of Finland grant 1011040
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Karttunen realized that while it is essential that the new infinitary expressions of
[HR76] have infLnite descending sequences of subforrr,ulas, an important distinction is
made, if no uncountab le descending sequences of subforrr,ulas are allowed [Kar84]. This
(list.inct,ion is of the same nature as the distinction between a game-quantified sentence
of Lw ,c and its approximations in L,*,u .

Most of the work on the new infinitary languages has centered around the problem
of distinguishing models with infinitary sentences. This problem can be formulated
in terms of a transfinite Ehrenfeucht-FraTss6 game, in Section 2 of this paper we
describe the relevant notions related to this game. A central concept in this approach
to infinitary logic is the concept of a tree with no uncountable branches. These trees
are used as measures of similarity of two structures. We find strong parallels between
the role of such trees in the study of uncountable models and the role of ordinals in the
study of countable models. Section 3 is devoted to a survey of the structure of such
trees. Section 4 builds on the contention that the most fundamental mathematical
properties of classes of models of cardinality t,71 are really topological properties of “’1 ul
viewed as a generalized Baire space. We survey the basics of descriptive set theory
in the space "lb'1. Section 5 gives an account of the analysis of isomorphism-types of
uncountable models using trees. Finally, in Section 6 we introduce the infinitely deep
languages and survey their basic properties.

2 The Ehrenfeucht-Fraiss6-game
To see how the new powerful inhnitary logics behave and help us study uncountable
models, it is not necessary to introduce the languages themselves at all. We can go
a long way by studying EhrtnfeuchL- Frrttss6-games only. This is also in line with the
approach of [HR76], since consituents are descriptions of positions in Ehrenfeucht-
Fraiss6-games. The new feature, analogous to allowing transfinite sequences of quan-
tifier alternations, is that we study Ehrenfeucht-Fraiss6-games of length > o. We use

E F.(.A, 6)

to denote the Ehrenfeucht-FraTss6-game of length a between ,4 and B, which we now
define. There are two players, called 1 and V. During a round of the game V first picks
an element of one of the models and then I picks an element of the other model. Let a{
be the element of A and bi the element of B picked during round i of the game. There
are altogether a rounds. Finally, 1 wins the game if the resulting mapping ai b> bi is
a partial isomorphism and otherwise V wins. We say that a player wins E Fa(X, B) if
he has a winning strategy in it

I trivial but fundamental observation is:

Lemma 2.1 if A and 23 hat'e cardinal ay $ h, ttleTr
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1. 1 wins EF,(A, B) if and only a J = B.

2. V wins EF,(A,13) if and only if A #B

One consequence of the above Lemma is that E F,( A, B) is determined whenever a
and B have cardinality $ h. For models of cardinality > 6 the game EF,( A, B) need
not be determined, as the following result shows:

Theorem 2.2 ([MSV] ) TheTe are models a and B of cardinahty hb so that the
game EFa,(A, B) is non-determined. It is consistent relative to the consistency of a
measurable cardinal, that EFw,( A,13) is determined for all models of cardinality $ nz.
It is consistent relative to the consistency of ZFC , that EFa,(A, B) is non-determined
for some models of cardinatity $ wI

In the case I$ = w we have the notion of a ranked game. To see what this means,
suppose r is a winning strategy of V in EFw(A, B). Every round of the game, V playing
r, ends after a finite number of moves at the victory of V. So we can put an ordinal
rank on the moves of V and demand that the rank goes down on each move. In this
way we get a rank on the triple ( J, 6, r). The Scott Tank of JL is the smallest a such
that if 13% X then for some winning strategy 7 of V in E Fu( A, B), the rank of (a, B, r)
is at most a

We shall now introduce a similar concept for EF,(A, B). Of course we cannot use
ordinals to rank the moves of V since the rank may have to decrease transfinitely many
times in succession. Instead we take an arbitrary winning strategy 7 of V and form the
tree

sx,B

of all possible sequences of successor length of moves of 3 against r so that I has not
yet lost the game. We get a tree with no branches of length it and we use this tree
itself as a rank for ( J, B, r)

Rather than taking first a winning strategy of V and then the tree of all plays of 1,
we may also directly consider winning strategies of 1 in short games ([Hyt87]). Let

A A,B

be the set of winning strategies of 1 in the games E F.LA, B), where a < it is a successor
ordinal. We order the strategies as follows. Suppose a is a winning strategy of 1 in
EF.( A, B) and 7 is a winning strategy of 1 in EFa(A, 6). Then a $ 7 if a $ B and r
agrees with a for the first a moves of E FB( A, B). This ordering makes Kx.8 a tree. If
this tree has a branch of length x, then I can follow the strategies on the branch and
win EF,( A, B).

3



Starting from the concept of Scott rank, we have introduced two different measures
of similarity of structures. Before we can compare these two measures to each other
and to other trees, we have to develop tools for comparing trees. The big difference in
using (non-well-founded) trees to estimate structural differences, rather than ordinals
is that the structure of ordinals is well-understood but the structure of trees is not.
This explains why we have to investigate structural properties of the class of all trees
before we can proceed in our study of the transfinite Ehrenfeucht-FraTss6-game.

3 Structure of trees

A tree is a partially ordered set with a smallest element (root) in which the set of
predecessors of every element is well-ordered by the partial ordering.

We can think of ordinals as u)eII-founded trees, i.e., trees with no infinite branches
For example, we may identify an ordinal a with the tree B„ of sequences (a, al, a2, ..., a„),
where a„ < ... < al < a and the sequences are ordered by end-extension. It is easy

to see that if we assign ordinals to nodes of B. in such a way that extensions of nodes
get smaller ordinals, then a is the smallest ordinal that can be assigned in this process
to the root of Ba. In this way we can assign an ordinal o(f) to any well-founded tree
T. So there is a nice correspondence between ordinals and well-founded trees. On the
other hand, we can think of an ordinal a as a one-branch (non-wellfounded, if a ? w)
tree. We use a itself to denote this linear tree

We order the family of all trees as follows: 7 S T1 if there is an order-preserving
I : :F –> T’ (i.e. # < y implies /(r) < /(y)). Note that this f need not be one-one.

The strict ordering T < T’ is defined to hold if F $ T1 and T’ X T. Finally, T = T’
if :F $ T’ and T’ S T. We use aT to denote the tree of all ascending chains from T.
Kurepa observed that T < aT. With the a-operation we define a stronger ordering of
trees: 7 « 7/ iff aT $ 7’. The following properties of these orderings are fairly easy
to prove:

Lemma 3.3 ([HV90]) I. aT { T , i.e., if T «T1, then T '_ T’ .

26 < and « are transitive relations

3. T <, aT but there is no T1 ulit}\ T <, T1 <, aT

V. The Tela,tion « is well-joxnded

5. For well-founded trees both T < T1 and T « T1 are equivalent to oF) < oLT'I

The reason for introducing the relation <' is that it comes up very naturally in
applications. Also, proving T « T’ is a handy direct way of achieving F’ % T
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The ordering of trees can be defined also in terms of a comparison game CIIT, T'),
There are two players I and V. Player V starts and moves an element of T’. Then
player I responds with an element of T. The game goes on, V playing elements of T1
and I playing elements of 7, both in a strictly ascending order. The first player unable
to nrove loses.

Lemma 3.4 ([HV90]) 1, T1 ST if aId only if I u;itis GLT,T1).

g. T «T1 if and only if N wins GLT,T1).

We need some operations on trees. Let T and T’ be trees. The tree T O T1 consists
a disjoint union of T and T’ identified at the root. So TO T1 is the supreTnum of IF and
T1 relative to $. The tree T R T’ consists of pairs (t, t’), where t e T, t’ C T’ and t has
the same height in 7 as t’ has in T’. The elements of T%T' are ordered coordinatewise.
Clearly, TB :F’ is the inBmum of T and T’ relative to g. The operations ©£er and ®icl
are defined similarly. We can also define “arithmetic” operations on trees. The tree
T + r’ is obtained from T by adding a copy of T’ at the end of each maximal branch
of T. With this definition, Ba + Bp = Bg+.. The product :F . T’ consists of triples
(g,t , t’), where t e r, t’ c T’ and g is a mapping which associates every predecessor of
L1 with a maximal branch of T. We set (g, t, t/) $ (g1, fl, fl) if (L1 = t{ and t $ fl) or
(tF < ti , g coincides with g1 on predecessors of t’ and t C g/(t1)). Again, Ba - Bp = Ba.o.
Intuitively, r . T’ is obtained from T’ by replacing every element by a copy of T. Since
-F is likely to have branching, there are different ways of progressing from a node of
T1 to its successor through the copy of T. This is why the elements of 7 ' T’ have the
g-component . If we limit the way a branch of T - T’ can pass through T’, we arrive at
the following variant :r . T’. Let G be a set of maximal branches of T. The tree T 'G T’
consists of triples (g, t, f’) C =f - T' such that, if t" < t’, then gd") e G. The ordering
is defined as in T . T

A tree T is rejier ioe if F $ {s C T : t $7 s} for every t C T. Every tree T can be
extended to a reflexive tree in the following way ([Huu91, HT91]): Let ECT) be the set
of finite sequences (to, ..., tn) of elements of T. We can think of this sequence as a linear
ordering which starts with {t e T : t S to}, continues with {t e T : f $ f 1}, then with
{t e :r : ( $ f,2}, etc. until t„ comes in the end. In this way RCT) gets a natural tree-
ordering: if s and s’ are elements of n(7), then we define s $ s’ to mean that as linear
orderings, s is equal to s’ or is an initial segment of s’. It is easy to see that IF $ BCT)
and that RCT) is reflexive. It is also interesting to note that if T has no branches of
length x > n, then neither has E(F). We can split RCT) into parts that are called
phases in [HT91]. Namely, if s = (to, .,,, tn) e RCT), we call the number n the phase
of s and denote it by p(n). Elements of phase 0 form an isomorphic copy of F. Each
element (fa, ..., I„) of phase n extends to an isomorphic copy {(to, ..., t„+1) : t„+1 e T}
of T



We can picture the mutual ordering of the two types of trees that arise from ordinals
as follows:

B. < B, < ... < B„ < ... < B„, < ... < to < Cd + 1 < ... < w, <

Note that u has a proper class {Ba : a e On} of predecessors. The predecessors of bh
are all the various trees without uncountable branches. An interesting example is the
tree Tp = (Oa<ul a) - u, introduced in [Huu91]. This tree has the remarkable property
that

Tp $ TorT <. Tp

for any tree :F of height h71 ([Huu91]). So T? has a very special place among predecessors

of c,11. The whole picture of the ordering of all trees is quite complicated. We shall now
show that some trees are mutually $-incomparable.

Let A C c,?1. Recall that A is closed unbounded if it is uncountable and contains
the supremum of each of its proper initial segments. We say that A is stationary, if
it meets every closed unbounded subset of ul . The complement of a stationary set is
co-stationary. Finally, a stationary and co-stationary set is called bistationary. It is a
not-too-hard consequence of the Axiom of Choice that there are bistationary subsets
of ul. In fact, there are b/l disjoint stationary subsets of ur and hence 2"1 bistationary
subsets Aa of ul such that A, \ Aa is bistationary whenever a + p. Bistationary sets
can be used to construct interesting trees without uncountable branches. If /4 is a
bistationary subset of a/1, let T( A) be the tree of sequences of elements of A that are
ascending, continuous and have a last element.

Lemma 3.5 ([HV90, Tod81])

1. If A is bistationary, then T( A) is a tree of height ol with no uncountable branches

2. If A, B and B \ A are bistat£onary, then TLB) { T(A). If also A C B , then
T(A) < Tt B]

3. If A and B are bistationary, then T(Al #,TLBI

4. If T is an Aronszajn tree and A is bistationary, then T$TLA)

Proof. Every stationary set has closed subsets of all order-types < ul . This implies
that T( A) has height ©1, An uncountable branch in T( A) would give rise to a closed
unbounded subset of A contrary to the co-stationarity of A. The first claim is proved.
For the second claim, suppose f : F(B) –> T(,4) is order-preserving. For countable a,
let f, be a function on T( B) so that F,(s) is some s’ > s with max(s’) > a. For any
countable limit ordinal a, let S, be a countable subset of F(B) containing O and closed
under every Fa, where a < a. Let C- be the closed unbounded set of count;able a such
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that if s e S, , then max(s) < a and max(f (s)) < a. Let a ea n (B \ A). Let (s„)
be an ascending sequence in Sa with a = Supn max(fn). Then Supn max(/(fn)) = a.
Since a e B \ ,4, we have a contradiction. The second claim is proved. The third and
fourth claims are proved similarly. Q.E.D

By combining the above lemma and the fact that there are 2"1 bistationary subsets
A„ of b/1 such that A„ \ Ap is bistatianary whenever a < p, we get the following result:

Proposition 3.6 ([HV90]) There is a set of bees {T„ : a < 2"1} such that IOT all
a < a

(1) Ta has height ul and cardinality 2w

(2) Ta has no uncountable branches.

(3) Ta and To are incomparable by $

The claim Temains tTIIe if condition (3) above is replaced bu one of the foitowing:

(3’) T, < T,,

(3”) T, ~, Ta.

So there is an explosion in the hierarchy of trees between the trees of count;able
height and the one-branch tree nl. This is in sharp contrast with the situation between
trees of finite height and the one-branch tree w, where we have all the well-founded
trees in nice linear order one after another

We have observed that the class of trees with no uncountable branches has ascending
chains, descending chains and antichains of cardinality 2w1 . All these chains arise from
the trees F( A), ,4 bistationary. Several questions suggest themselves. Maybe these
trees are essentially all there is in this family. Or maybe there is some relatively small
number of “representatives” of these trees into which everything else can be reduced.
As to the first question, H. Tuuri has pointed out, that if T is the tree of one-one
sequcnces of rationals such that the sequence has a last element, then :F $ FCA)
(proved like Lemma 3.3 (3)) and F( A) g T for bistationary X (as T( A) is non-special
by [’Fod81]). So this F is an example of a tree substantially different from the trees
rCA)

We approach the question of “representatives” with the notion of a universal family
of trees. A family &/ of trees is unitersat for a class V of trees if i/ S V and

IT e PIS c tIIT $ S).

If we want to find a universal family for the class of all trees with no uncountable
branches, there is an obstacle; if the universal family is a set, as it is reasonable

7



to assume, we can apply the a-operation to its suprernum, and obtain a tree which
contradicts the universality of the family, So we can only hope to find universal families
for restricted classes of trees

Let in, be the class of trees of cardinality c,21 and with no uncount,able branches.
If CH holds, then there cannot be a universal family of size $ c,21 for L, , because of
the function a. On the other hand, Hella observed that if 2" = 2”1 , then an upper
bound for t, is obtained from the full binary tree of height w by simply extending
all its branches by different elements of L, . The resulting tree has cardinality 2". It
follows from –'C A + MA that there is a single tree T e L, so that T’ S T holds for
all T’ e T',, ([MV]). So here we have a universal family of cardinality I.

Theorem 3.7 ([MV]) The statement “There is a universal family of cardinatiLu c,12

for TH,” is independent of ZFC+CH+2"\ Z v3

We may also ask whether the trees T(,4) can be majorized by one single tree. In
[MS] a tree :F is called a Canary tree if it has cardinality 2”, has no uncountable
branches, and in any extension of the universe in which no new reals are added and in
which some stationary subset of a1 is destroyed, T has an uncountable branch. This
is equivalent to saying that T has cardinality 2", has no uncountable branches, and
satisfies 7 ( A) $ =F for each bistationary A ([MV]).

Theorem 3.8 ([MS]) The statement “TheTe is a CannTy t.I-ee” is independent from
Z F C + GC H

The structure of trees with no uncountable branches is far from being understood
even in the light of the above results. More investigation is needed. It is now quite
clear that Z FC alone is not sufficient for deciding questions about these trees. The
Continuum Hypothesis, for example, makes a big difference. It would be interesting to
find new axioms which would fix the structure of trees more or less completely.

4 Topology of the space Af1

There are properties of countablc models and infinitary formulas which are so basic
that they can be formulated in purely topological terms. To arrive at these one iden-
tifies countable models with elements of the Baire spact X = "w, whereby classes
of countable models are identified with subsets of X. D. Scott established the basic
relation between the space X and Lu,w'. An invariant subset of N is Bare1 iff it is (in
this identification) the class of countable models of a sentence of Ew,w ([Sco65]). R.
Vaught developed further the connection between model theoretic properties of Lw,u
and topological properties of the Baire space ([Vau73])
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A characteristic example of this connection is the undefutabUity of well-order in
Lw,w, proved in [LE66], which can be seen as a consequence of the relatively simple
topological property of ,jf, that the codes of well-orderings is a non-analytic set. Sim.
ilarly the interpolation theorem of 1, w, w may be thought of as a logical version of the
topological fact that disjoint Ei sets can be separated by a Borel set. Finally, the basic
topological property of the Baire space, that every closed set is the disjoint union of a
countable set and a perfect set, and its elaboration that the cardinality of an analytic
set is either $ ul or 2’, appear behind many results of model theory. We have in
mind examples such as the result in [Kue68] that the number of automorphisms of
a countable structure is w or 2", and the result in [Mor7C)] that the number of non-
isomorphic countable models of a sentence of Lu,w is either $ ah or 2“’. In such cases as
the above we feel that the underlying topological fact reveals the actual mathematical
construction behind the logical result

We may analogously identify models of cardinality wr with elements of a generalized
Baire space M = "lc,11. A basic neighborhood of an element f e Xl is a set of the
form

Ntl.. a) = {g e A'-1 : g(P) = /(P) f.r P < a}?
where a < b,11. Note that the intersection of a countable family of basic neighborhoods
is still a basic neighborhood, and that there is a dense set of the cardinality of the
continuum, namely the set of eventually constant functions. The space M is what
Sikorski calls wl-rn etrizable space ([Sik49]).

In this context we are mostly interested in properties of analytic and co-analytic
sets of this space. These concepts are defined in the standard way, which we now recall:
A set A g X1 is analytic or E+ , if there is a closed set B g M x Xl such that for all
f : j e X if and only if Ig((/,g) e B). A set is co-analytic or III if its complement is
El. and A} if it is both II} and E!

The standard example of a co-analytic non-analytic subset of X is the set of codes
of well-orderings of w, This may be rephrased as the statement that the set of codes
of countable trees with no infinite branches is a co-analytic non-analytic subset of V.
Analogously. the set of “codes” of trees of cardinality c,21 with no uncountable branches
is a prime candidate for a co-analytic non-analytic subset of A. To arrive at this set,
we introduce some notation. Let T be a bijection from ul x ol onto c,11. If i e vI,
let $1= {(a, J) : /(nCa, #)) = 0}. We may think that f “codes” the binary relation
g/. Clearly, every binary relation on c,71 is coded by some j e N\ in this way. Let
TI = (b/l, g/) and

T O = {/ c Xl : TJ is a tree with no uncountable branches}.

Lemma 4.9 ([MV])

1. The set TO is co-nnulytic
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2. if A g TO is analytic, then there is a tree W of cardinality $ 2w u]itE

uncountubte branches such that Tg $ W holds for ali g e A.

3. If CH holds, TO is nox-uuatytic.

Proof. The first claim is trivial, so we move to the second claim. If / e M and
a < a1, let T(a) be the sequence (/( P))pra. Let it be a closed set such that i C A
holds if and only if lg(f, g) e A. Let U (n be the set of sequences g(a) = (g(a)(<.a
such that N((J, g), a) n R + 0. Now U(fl is a tree and it is easy to see, that

fe A -: :' U ( /) has an uncountable branch

Let LV be the tree of triples (/(a), t, hCa)), where I e M so that Tj is a tree, t is an
element of Tf of height a and iCa) C U(f). Any uncountable branch of W would give
rise to an element j of A\,TO. Hence TV cannot have uncountable branches. Suppose
now i e ,4 is arbitrary. Let (iCa))a,\D1 be uncountable branch in U (n. If t e Tf has
height a, let @(t) be the triple (/(a), t, hCa)). The mapping # shows that Ti $ W
This ends the proof of the second claim. For the third claim, we assume that TO were
analytic, and derive a contradiction. We consider the second claim with the choice
A = TO. Since we assume CH . we can find I e TO so that a(W) is isomorphic to T f.
We get the contradiction a( IV) S Tf S TV « a(PF), Q,E,D

A subset a $ N\ is 11}-complete if a is co-analytic and for every co-analytic set
A there is a continuous mapping @ on M such that for all f '. i e ,4 if and only if
+(/) e C. Assuming CH , the set TO is II}-complete. Without ON the set TO need
not be IIj-complete:

Proposition 4.10 ([MV]) if MA + –.C A hoLds then TO is Ai ,

The proof of Lemma 4.9 can be elaborated to give a more general result. Let A be
a co-analytic set. If we assume CH , we can use IIj-completeness of TO to construct
a continuous mapping @ so that I e .4 if and only if +(/) e TO. Let

Ad,g = if e Xl : dCf) $ 79}'

The proof of the following result is essentially contained in the proof of Lemma 4.9.

Proposition 4.11 ([MV]) Assume CH . Suppose X is co-analytic and d is as above
Ther

1. A+,9 is analytic for each g C TO

2, if B E A is analytic, then there is a g e TO such that B g A+l9 (COveTing

Property/

10
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3. A is Ai if and only if there is a ge TO StICh that TAn STg for all I e A

An interesting analytic subset of A/’1 is the set CUB of characteristic functions
of subsets of ul which contain a closed unbounded set. Respectively, we have the
co-analytic set ST AT of characteristic functions of stationary subsets of c,11. The
continuous mapping p associated with this co-ana]ytic set, assuming CH , can be chosen
to be the following very natural mapping: if j e N\ and A = {a : /(a) + 0}, let d(/)
be a canonical code of the tree T( A). Now f e STAT if and only if d(/) e TO.
Hence, assuming OH , the set ST AT is A} if and only if there is an f e TO such
that T( A) $ 7/ for all co-stationary a. In Section 3 we called such a tree a Canary
free and we noted ('Fhcorern 3.8) that the existence of a Canary tree is independent of
Z FC + CH. The following Proposition follows from Proposition 4.11:

Proposition 4.12 The following condiLlons are equiunlenL:

1. CUB is A{ .

2. ST AT is E}

3. There is a GQnary tree

So we cannot decide in Z FC + G A the question whether CUB is A} or not. The
best that is known at the moment is that CUB is not Eg or II: ([MV]).

Proposition 4.13 ([MV]) Assume CH. Let A and B be disJoint analytic sets. There
is a Ai -scf C such that A CC and (T n B = O. (Separation Property)

Proof. Suppose O is continuous so that f ( B if and only if d(/) e TO. By the
Covering Property there is a g e TO so that A C C, where C = (–B)do. Clearly
On B = O. Q.E.D

The Separation Property becomes more interesting if we can generate the Ai-sets
via a Borel type hierarchy analogously with the Borel hierarchy of the classical Baire
space Jt-. In fact, such a generalized Borel hierarchy, called Borel- hierarchy, can be
defined for A’1 ( [X’IV] ). Then A+-subsets of Jb: will be exactly the so called determIned
Borel*-sets ( [Tull, MV] )

The C:Qlttor-Bendi=son Theorem says that any closed subset of V can be divided
into a perfect part and a scattered part. The perfect part is empty or of the cardinality
of the continurIIlr. The scattered part is count;able. The corresponding result for
analytic sets says that any analytic subset of X contains a non-empty perfect subset
or else has cardindlity $ b-1, We shall now address the question whether similar results
hold for ,\F,,

1



It is easy to see that every closed subset of Af1 can be represented as the set of all
uncountable branches of a subtree of Xl. So the possible cardinalities of closed subsets
of Xl are limited to the possible numbers of uncountable branches of trees of height
ul . There are trivial examples of trees where the number of uncountable branches is
any number $ ul, 2“’ or 2'’1 . Nothing more can be said on the basis of Z FC or even
Z FC + CH , alone. An analysis of the Cantor-Bendixson Theorem for Xl is contained
in [vaa91]. The implication to the question of cardinality of closed subsets of V1 is:

Proposition 4.14 ([vaa91]) The statement “Every closed subset aS N\ has cardinal-
itV $ nl OT = 2“’1 ” is independent of Z FC + C H+ there is an inaccessible cardinal.

A similar result holds for analytic sets ([MS I).

5 Measuring similarity of models
In this Section we return to the idea introduced in Section 2 of using trees to measure
similarity of models of cardinality bh. For this purpose we introduced the trees sA.B.,
and K A,B . We are now ready to compare these trees to each other. Let x be the
common cardinality of JL and B and

sAP = (8){sI,6,, : r is a winning strategy of V in EF.( A, B)}

We let Sx,n consist of just one branch of length it in the special case that JL = B.

Proposition 5.15 Let Jt and 23 bc two sLructuTes of cnrdinality it and of the same
vocabutary. Then KAT 13 S sAP. If KA.B is well-founded, then KATB = sAP.

Proof. Suppose a e K XB . If a 3 B, then sA.13 has a h-branch and K AB $ sAD
holds trivia11y. Suppose then r is a winning strategy of V in EF,(A,131. Let /(a) be
the sequence of moves in E F, CA, BI when V plays r and I plays a. Clearly, /(a) e
sx,B,, and i is order-preserving. Suppose then Kx.13 is well-founded but there is no
winning strategy 7 of V such that sA,8 ,, $ KA.13. Note that A # 6, for otherwise
Kx.B has a branch of length h. Let Sx,61,(ao, bo, . . . , an_1, b„_1) be the tree of all
possible sequences of successor length of moves of 1 against r so that I has not yet lost
the game, and the first n moves of the game have been (ao, bo), . . , , (an_1, b„_1), Let
/(ao, bo, . . . , a„_ 1 , b„_1), n ? 0, be the set of such winning strategies r of V in E F„(A, B)
that the sequence of first n moves (ao, bo), . . . , (a„_1, b„_1) in E F'( A, 6) is consistent
with r. To derive a contradiction, we describe a winning strategy of 1 in E PH(A, B)
Suppose V starts this game with co. If there is no bo such that for all r e /(ao, bo) we
have Sx,B,,(ao. bo) g K A.13 , then there is r e /o such that sA,13,, $ Kx.B, contrary
to our assumption. Hence I must have a move bo with the property that for all

12
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r e /(ao, bo) we have Sx,6,,(ao, bo) X I< A.13 . Next V plays (e.g.) bl. As above, we
may infer that there has to be a move al for 3 so that for all r e I (ao, bo, a1, bl) we
have Sx,13,,(ao, bo, a1 , 61 ) g Kx.13 , Going on in this manner yields the required winning
strategy of 1 in E Fu( A, 131, Q.E.D

So if the difference between ,4 and 23 is so easy to detect that Kx.13 is even well-
founded, which is the case if ,4 +LTU B, then Kx,is = h,8. We shall see below
(Proposition 5.21) that for non-isomorphic models JL and B with a =Lma B, there
may be a huge gap between K A.B and sH,B.

A basic concept in our closer analysis of similarity of models is the following ap-
pro£imate.d Ehrenfeucht-FraTss6-game: Let T be a tree. The game E F.LA, B , T) is like
E F,(A, B) except that V has to go up the tree IF move by move. Thus there are two
players, I and V. During a round of the game V first picks an element of one of the
models and an element of r, and then I picks an element of the other model. Let ai
be the element of A, bi the element of B and ti the element of T picked during round i
of the game. There are altogether a rounds. Finally, 1 wins the game if the resulting
mapping a,- b> bi is a partial isomorphism or the sequence of elements ti does not form
an ascending chain in :F. Otherwise V wins

Proposition 5.16 ]. 1 ruins EF,IA, B, T) if and only aT $ KA,13 ,

2, Y wins EF„LA, B, T) with strategy T if and only if Sa,8,, « T

Proof. The point here is that while V goes up the tree K A,B , he reveals longer and
longer strategies for 1. Player I can simply use these strategies against V. At limits
we envoke the fact that strategies in KA,B are of successor length. The strategy of V
in E F„( A, 13, aSi,B,,) is to play in aS A.13,, the sequence of previous moves of 1, and
otherwise follow r. Q,E.D

We call a tree F of height a an equiualencc-tree of ( a, 6) if I wins the game
EIF„ tA, 8, F), and a non-equiualence tree of (A, 6) if V wins the game E Fa( A, 6, T).
Proposition 5.16 above implies that KA.13 is the largest equivalence tree of ( a, B). The
tree KA.13 is unsatisfactory in one respect, though: there is no reason to believe that it
has cardinality $ h/l even if CH is assumed, A tree T e TH, is a K arp tree of (,4, B)
if it is an equivalence tree of ( X, B) but aT is not. Respectively, a tree T e %, is a
Scott tree of ( A, B) if aT is d non-equivalence tree of (A, B) but IF is not.

Theorem 5.17 ([HV90]) Ejlery pair of models ( A, B) has a Karp tree T1 and a ScoLL

tree T'2, and T\ $ TI

The structure of Karp trees and Scott trees of pairs of structures is not fully un-
derstood yet . For rather trivial reasons. the families of Karp trees and Scott trees of a
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given pair of structures are closed under supremums. The following theorem contains
some less obvious results that have been obtained about the ordering of Scott or Karp
trees of a pair of models.

Theorem 5.18 /. ThcTe are models ,4 and B of cardinalitV k?1 such that the pair
(X, B) has 2“’1 Scott trees which are mutually non-comparable by S. ([HV90])

2. There are models A and B of cardinality vl such that the pair (A,B) has two
Scott trees the infmum of which is not a Scott tree. ([Huu91f )

3. There are models A and B of curdinatity ul such that the pair (A, B) has two
I<arp trees the in Bmum of which is not a KaTP hee. ([Har91])

A tree T C TH, is a uniuersal equivalence tree of a model JL of cardinality h/1 if
a 3 B holds for every B of cardinality h11 for which T is an equivalence tree of (X, B)
If

KA = a{/*-x,a : IBt $ „I.B # a}
and T = aKA with 1:FI $ a1, then T is a universal equivalence tree of a. A tree
T e TH, is a universal non-equiualence tree of a model JL of cardinality hh if JL # 13
implies T is a non-equivalence tree of ( A, B) for every 6 of cardinality ul. This is
equivalent to the claim that for every B # JL of cardinality hh there is some winning
strategy 7 of V in EF,(A, B) so that sA.B ,, « :r.

Note that a universal non-equivalence tree is necessarily also a universal equivalence
tree. Thus having a universal non-equivalence tree is a stronger property than having a
universal equivalence tree. Every countable model has universal non-equivalence trees.
This tree is the canonical tree arising from the Scott rank of the model. The concepts
of universal non-equivalence tree and universal equivalence tree are attempts to find
an analogue of Scott rank for uncountable models.

It is clear that many models of cardinality h11 do have universal non-equivalence
trees. Let us consider an example. Let T be an u-stable first order theory with N DOP
(or countable superstable with N DOP and NOTO P , see [SB89]). By [She90, Chapter
XIII Section 1], any two L,.w,-equivalent models of T of cardinahty ul are isomorphic.
There is a back-and-forth characterisation of Emu, -equivalence which, from the point
of view of V, is a special case of E Fw.u(A, B) . Hence every model of T of cardinahty
ul has a universal non-equivalence tree of height $ ta. u.

Theorem 5.19 ([HT91]) Let N = h<' > u. There is a model ,4 of cardinatity # with
the foltou]ing property: For any tree T such that \T\ = K and T has no branches of
length n there is a model B of cardinahty h so that A 7 B but I has a u>inning startegy
in EF.LA, B , T) . Thus A has no universal equivalence tree
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Proof. Note that x = R<" implies x is regular. The models Jt and B are constructed
using the reflexivity operation R introduced in Section 3. Let To be x<” as a tree of
sequences of ordinals. We let X be the tree-ordered structure (R(To), $). Let

rl = ((O „) ' r) + 1
C)<K

and 72 = T\ a To. Let I be the canonical projection T2 d Tl. We can extend I to
R(Ta by letting fLtso. ..., s„)) = f(sf. Let B be the tree-ordered structure (R(T2), $).
Now a has branches of length K but 6 has none, so ,4 # 6. To finish the proof we have
to describe the winning strategy of 1 in EF.( A, B, T). Because of the special relation
between T and Fl, it suffices to show that I wins the game EFL(A, B ,Tll which differs
from EF. tA, 6, T) by allowing V to play only elements of a and B the predecessors of
which have been played already.

Recall that elements of /?(To) and /?(T2) come in different phases. An element
(so, . . . , h„) of phase n may have extensions (so, . . . , sl) inside phase n but it also has

extensions ( so, . . . . s„. . . . , s,„) of higher phase. During the game elements aa of R(To),
elements b. of /?(T2) and elements t. of 71 are played. Here a refers to the round of
the game. The strategy of 1 is to play in the obvious way but taking care that he never
increases phase by more that I, and making sure that when p( ba) = p(aa) + 1, then
f(ba) $ 1

Suppose now V plays a„ of limit, height. There is a chain of predecessors ap of aa
converging to a„. The corresponding elements ba will eventually be inside one phase
and because of the "+1" in the definition of Tl, will converge to some element ba. This
is the response of 3.

Suppose then V plays aa of successor height and aa is the immediate predecessor
of a,. If p(ba) = p(ag) + 1, then f(bl) $ 1a < t,, so /(bp) is not maximal in Tl
Then I can let b„ be a successor of ha in /?(T2) so that p(bp) = pCb,\ if and only if
p(ap) = pCa.) and j(bB) $ t,. If p(ho) = pCa,), then f(bn) may be maximal in fl. In
that case I lets ba be a slrccessor of bg in /€(T2) of the next phase, Then /(ba) is the
root of T1, so f(b. ) $ f'. Additionally. 3 has to avoid the < h elements played already
during the game, but this is not a problem because of the ' ETo" part of the definition
of 72

The case that V plays b, rather than a, is similar, only easier. Q.E,D

The models constructed in the above theorem are unstable. This is not an accident,
as the fOllOWiIlg result shows

Theorem 5.20 ([HT91]) (CH ) if 7' is a roantable unstable Brst OTdtr theory, then
there is a model A of T of cnrdinnlit.y ,vI so that A has no universal equivalence tree.
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On the other hand, it is not just the unstable theories that have models with no
universal equivalence tree, The paper [HT91] has results about models without uni-
versal equivalence tree of certain stable theories. Also, there is a p-group of cardinality
hh without universal equivalence tree ([MO]).

The situation is more complicated with universal non-equivalence trees. We know
already that models of u-stable theories with N DOP do have universal non-equivalence
trees

Theorem 5.21 ( A. Mekler) (C H ) Let F he the free abelian gro tIP of cardinatity N1.
Suppose A g w I is bisLationary. There is an Rl -/ree group A so that I does not
loin EFwx3LF, H) , and N wins the game EFv,QF,H,aTLAl + v . 2) but wot the game
E Fu„LF, if, T(,4) + w . 2)

Note that for F and H as above, the tree K F,H has height $ u>' 3, but sF.H has
height c,71

Corollary 5.22 ([MS]) (C A ) There is a universal non-equivalence tree for the free
abelian group of cardinality RI if and only if there is a Canary tree

Proof. Suppose there is a Canary tree T. We show that Tl = aT + w ' 2 is a universal
non-equivalence tree for F. Suppose H is an abelian group of cardinality Nr . We may
safely assume H is Nl-free, for otherwise V wins easily. Hence we may as well assume if
arises from a bistationary set ,4 as in the proof above. Now T( A) S T. By the previous
Theorem, V wins E F„.I F. H, 71). Suppose then :r is a universal non-equivalence tree
of F. To show that T is a Canary tree, let ,4 be bistationary. Let X arise from A as
above. Now V has a winning strategy r in E Fu, (F, H, T). Let us then work in a generic
extension of the universe, where /1 contains a cub set but no new reals are introduced.
In that extension F 3 H, but r still applies to any sequence of moves of 1, whence T
contains an uncountable branch. So T is a Canary tree. Q.E.D.

So the statement that the abelian group F does not have a universal non-isomorphism
tree is independent of Z FC + CH . This is not an accident, as the following general
result demonstrates

Theorem 5.23 ([HT91]) IIZ FC is consistent, then. the follo\ning statement is can-
sistent with C 11 : Every countabte non-superstabte $TSt or€1er theoTy has a rhodeI of
cardinatity d1 without a universal non-equivalence tree.

If we give up CH , the situation changes again dramatically. In [HST] it is proved
consistent relative to the consistency of an inaccessible cardinal, that (–'C A and )
every linear ordering of cardinality c,11 has a universal equivalence tree which is of the
form T + 1, where T has cardinality c,>1.
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The orbit orb( R) of a relation on R is the set {S g h" : (x, R) a (it, S)}. D.
Scott ([Sco65]) proved that the orbit of a relation on o is a Al-subset of V. For
orbits of relations on ,,'1 the corresponding question is tied up with the problem of the
existence of universal equivalence and non-equivalence trees. Implication (2)–>(1) in
the following Proposition together with a model-theoretic argument for its proof were
suggested by H. Tuuri

Proposition 5.24 ([MV]) The following two conditions are equiualent=

(1) (b/1 , E) has a uniuersal non-equivalence tree.

(2) orb( E) is A{ .

Proposition 5.24 shows that the question, whether a model of cardinality Ur can be
assigned a tree-invariant via the Ehrenfeucht-FraTss6 game, which is in close relation
with stability-properties of the first order theory of the model, has also a topological
formulation

We end this Section with a result which further emphasizes the relationship between
properties of trees and properties of models:

Theorem 5.25 ([STV]) The fOUOrLling two conditions are equiualenL=

(1) There is a tree of cardinulity and height dI with e=actly X uncountable branches.

(2) There is a model of cardinality ,vl with ezactly X automorphi sms.

Note that the set of uncountable branches of a tree of cardinality and height al
is (up to some identification) a closed subset of ,Vl. It is consistent relative to the
consistency of an inaccessible cardinal, that there are no closed subsets a of X1 with
b21 < ICI < 2”1. On the other hand, a Kurepa tree satisfies (1) with A = h12 and it is
possible to have a Kurepa tree with d2 uncountable branches while 2”1 > h22. So there
is a lot of freedom for the number of automorphisms of a model of cardinality wr. For
comparison, recall that the number of automorphisms of a countable model is $ w or

2

6 Infinitely deep languages
Let ,4 be a fixed structure, The property of another structure 13 that a wins EF.(A, B, T)
can be expressed by an infinitary game sentence which imitates the progress of the game
Er,tA. B. T), These infinit,try garIIC sentences are the origin of what we call infInitely
deep tanguQges.
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Figure 1: Formula Fa.

Let a be a structure of cardinality hh . We assume the language of /t to be finitary
and of cardinality $ ul . let T be a tree of height ul in which every node has at most
ul successors, there is no branching at limits, and there are no maximal branches of
limit length. The universe of a is denoted by A. We shall define an infinitary formula
bTA =(;) by describing its syntax-tree. We think of syntax-trees of formulas as labelled
trees. Figure 1 shows a syntax-tree Fa that we shall use to build up #! a(4.

Let us consider an arbitrary maximal branch C of FA. The branch a ends in
#'1, #?a , QQ or 77a for some a = aCa) e A. Let G be the set of branches a which end in
\1;' or ya. Let us consider the tree Fa -6 T. To make Fx .G T a syntax-tree, we assign
lables 1(g, to , t) to nodes (g, m, t) of Fx .(, T as follows. Only nodes V#, la, da, @a, da
and ?' of the various copies of Fx are given a label. For other nodes the label is as in
the picture of Fn. Suppose we are at a node (g, Vr, t) of Fx -c, T. Let (te)e,,„ be the
sequence of {s e =f : s $ t} in ascending order. We let i(g, Vr, t) = V#„. Staying in
the same copy of Fa we let Kg, I#, t) = Ir.. If t is maximal in T, we let /(g, Oa, t) =
Kg, Va, f) = Vzo(to = #a). If t is not maximal in T, we let /(g, da, I) = /(g, 77a, f) = A.
Let a€ = a(gdc)) for { $ a. We let /(g, #-, t) and Kg, a'’, t) be the conjunction of
atomic and negated atomic formulas +(Q)(,'„ such that JL b #(a€)(<„. This ends the
definition of the labelling of nodes of Fx .& T. The labelled tree (FA .c, 7, 1) is our
+T& ,7(a

The formula @I =(F) can be given semantics by means of the obvious semantic game,
The dual formula dl 8(a of d dCF) is obtained by replacing in the lables of bTx. aCF)

everywhere A by V, V by A, V by 1, 1 by V and the labels /(g, da, f), Kg, +', f), J(g, 0a, t)
and !(g, Ta, t) by their negations.

The formulas d: r(4 and PI a(g) are taylor-made so that player I has a winning

strategy in the game E Fw,((B, i),(a, a), T), if and only if B b @lla(i), and player V
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has a winning strategy in FFH, ((B , i),(A, a), r) if and only if B b @: iCi). We shall
now define a general concept of which formulas #: d(7) and rbI. a(4 are examples.

A quasiformula is a labelled tree (T, I), where T is a tree with no maximal branches
of limit length and no branching at limits, and Kt) is

1. a countable conjunction of atomic and negated atomic formulas, if t is maximal
in T

2 A or V, if t has more than one successor in T.

3. lu or Vu, where u is a variable symbol, otherwise.

Definition 6.26 ([Kar84]) The inpxiLaTy language Mu,u, consists of quasiformulas
(T, I), where T is a tree of height nl in which every node has at most wI successors,
and there is no u and no branch b of T such that Jd) alternates in$nitely many times
between the values Wu UTtd Iu on b

The semantics of Mu,w, is defined via a semantic game, exactly as for any game
formulas. A formula is determined if this semantic game is always determined. The
formulas dI a(4 and dI a(Z) are clearly examples of formulas of Mu,w, . These formulas
need not be determined, but they are determined in models of cardinality $ a1

The quanLI fer-rank of a formula (T, 7) of Mu,w, is the subtree T’ of T which consists
of nodes ! with /(f) = Vu or kt) = lu, where u is a variable symbol. The tree T’ may
not have a unique root, but relations like T’ S T still make sense.

The Ehrenfeucht-FraTss6 games EF,LA, 6, T) have dominated our discussion all the
way from the beginning. The special connection between EF,IA, B , TI and Mu,w, is
revealed by the following easy fact

Proposition 6.27 ([Kar84]) Let ] and 13 ae two models of the same similarity type
and T a tree of height w\ in uInch eveTU node has at most u\ successoTS, there is
no branching at limits, and there are no mazimat branches of limit length. Then the
following two conditions are equivalent.

(1) A and B satisfy thc same sentences of Mw,w, of quantiFer-rank ST

(2) Player 3 has a ulinning strategy in the game EFw,(A, B, T)

Note that Mu,w, is, up to logical equivalence, closed under conjunctions and dis-
junctions of length $ 2” and rrniversal and existential quantification over countable
sequences of variables. Although NI w, w, is closed under dual in the obvious sense, there
is no trivial reason for it to be closed under negation, because the relevant semantic
games need not be determined, as the example below shows. In fact, Tuuri showed
that a sentence of Mw,a, has a negation in Mw,w, if and only a it is definable by a
sentence whose semantic game is determined ([Tuu])
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Example 6.28 Let ,4 C hl1 he bistaLionnry. Let dx be the foUo u)ing sentence of Mw,u, :

A V
ao<ul al >ao

N N . -- d(ao...a„.-)
a2n+2>a2n+ 1 a2n+3>a2n+2

u)here

if suP„<„ an e '4
if SLIP„,„, an g '4

NeittteT bA nor the dual of + A is hue iu a wu model. In this case the semantic game is
non-determined. We still have a negation for bA in the semantic sense, for e:ample
13(r = z)

Is(z = =)
177(= = =)

A PC(Mw,w, )-sentence consists of a sequence of $ b;1 existential second-order quan-
tifiers followed by an Mw,al-sentence. The existentially quantified predicates are al-
Ic)wed to have any countable ordinal as their arity. The PC(Lu,w, )-sentences are de-
fined analogously. It is easy to see that every PC(Mw,w, )-sentence can be defined
by a PC(Lu,u, )-sentence. This observation combined with a standard Skolemization
argument gives:

Proposition 6.29 ([Kar84]) Suppose O is a PC( MD,D,)-sentence and A is a model
of O. Then theTe is a submodel 6 of A so that 161 $ 2" and B b Q.

Proposition 6.30 if CH hoLds and there is a Kurepa tree, then some sentence of
Mv,w, does not hat>e a negation. 1

So, what can we express in the language Mw,w, ? We have already pointed out that
the formulas @l d(4 and va a(7) are in Mu,w, . This immediately gives the following
nice characterisation of rigidity. Recall that a countable model is rigid if and only if
all its elements are definable in L,.,.,.,. and a relation on a countable model is invariant
if and only if it is definable by a formula of Eu,w.

Proposition 6.31 Suppose ,4 is a model of cardinality c,71 . The fOllotDing conditions
are equivalent.

1. A is rigid

2. Every element of Ais defInable by a determined Mw,w,formula

Proof. Suppose Jt is rigid. If b e A, we can find a tree Tb with no uncountable
branches so that a + b if and only if a b d:bb(a). Now

A bVa(# = a A A $ 1bb(#)).
b+a

Q.E.D

IRecently T. Huuskonen proved this without assuming CH or a Kurepa tree.
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Proposition 6.32 ([Hyt90]) The foUoruing conditions arc rquiva lent for any relation
R on a:

(1) R is invariant. (i.e.. B:ed by all automorphisms of A).

(2) R is de#nable on A by a determined Mu,w,- formula.

Proof. Suppose R is invariant. If b e R and a g R, we can find a tree Tb.' with no
uncountable branches such that A b d:br(b). Now

a b V=(T e R b} v A d, IT;( x)).
bell agn

Q.E.D

If ,4 is a model of cardinality c,11, let /( A) denote the class {6 : B = X}. That is,
/( X) is the isomorphism type of A, We say that /( a) is tdet.erminedly) Mw,w, - de$nable
if there is a sentence q in Mw,w, so that /( .A) is the class of models of (b of cardinality
$ al (and @ is determined in models of power $ b:1 ).

Proposition 6.33 Let JI ae a model of cardinnlity nl .

(1) A has a uniucrsal equivalence tree if and only if /(A) is Mw2w\-de$nabte.

(2) A has a universal non-equiualence tree if and only if /(A) is determinedly Mw2w,
de$nnbte .

Proof. ( 1) if T is a universal equivalence tree of a, then dl defines /( A) among
models of cardinality $ c,71, Conversely, assume + = (T, /) defines /(A) among models
of cardinality $ b)1. To prove that T is a universal equivalence tree of A, suppose I
wins EFa,(A. B .T), Since a F b, \vc have by Proposition 6.27 that a b d. Hence
a= B

(2) if T is a universal non-equivalence tree of A, then first of all, d defines /(X)
among models of cardinality $ dl. Moreover, dl is determined in models of cardinality

$ h;1, for if B P Q:, then V wins EL, CA. 13.T). and hence B E + lo. Conversely,
assume a determined d = (T, /) defines /( A) among models of cardinality $ bh. To
prove that T is a universal non-equivalence tree of a, suppose 6 # X. So B satisfies
the dual of e. Now V wins E Fu, ( H, B, T) by following + in a and the dual of + in
B.Q.E.D

So whenever we can find a universal equivalence tree for a model Jt of cardinal-
ity d1, \ve can find an ,Va,u,-sentence which is an £nuar£an£ of a, i.e., identifies the
isomorphism type of a
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Let us rrow turn to the question, what cannot be expressed in Mw,w, . The most
interesting concept undefinable in Lu,w is the notion of well-ordering. The analogous
result for M..,.,.,. is that the class of trees with no uncountable branches is undefinable in
Mw,w, . This fact alone is as central in the study of Mw,w, as undefinability of well-order
is in the study of Lw,w . The proof we present for this fact is topological. For this it is
useful to observe that if @ is a PC(Mw,w, )-sentence, then the set {E g c,11 : (h11, R) b
O} is a Bj-subset of A'1.

Proposition 6.34 ([Hyt87, Oik88]) (C H ) The class of trees (T, <) of cardinahty
ul roith no uncountable branches is not PC(Mw,w,)-defInable

Proof. Suppose @ is a PC ( Mw,w, )-sentence whose models are exactly the trees (T, $)
which have no uncountable branches. Let A = if C Xl : (h11, $/) F @}. Since @ is
PC ( Mw,,, ) , A is a E{-subset of TO. By Proposition 4.11 there is a tree W of cardinality
c,71 with no uncountable branches so that Tj g W for all i e A, contradiction. Q.E.D

Proposition 6.35 ([Hyt87]) (CH ) For any PC (Mw,D,)-sentence O there is a map-
ping T h+ QT from TH, to Mw,w, so that

(1) F @ A A{$’ : T e X„}.

(2) Ah A{o’ T e Tu, } –} Q if A has curdinality S ul

Proof. The analog of the classical game-representation of PC(Lu, w )-sentences or E+-
sets, deriving from Svenonius and Nloschovakis, is a game G of length ah of the following
kind. If a b O, then I wins G. If a P Q and JL has cardinality $ ul, then V wins
G. Let (Y be obtained from a by demanding V to go move by move up the tree :F.
If :F e t, , then the property that I wins cY can be expressed by an M„,,u,-sentence

®7. If A f O, A has cardinality $ c,71, and r is a winning strategy of V in G, then r
gives a winning strategy for V even in the game a7, where T is the tree of all possible
sequences (of successor length) of moves of 1 against r such that T has not lost yet.
Q.E.D

Proposition 6.36 ([Hyt90]) (CH ) Svppose Q and W are PC (Mw,w,) –sentences so
that O AQ has no models. Then tbeTe is an Mw,w, -sentence 0 so that Q k 0 and WAP
has no models. (Craig Interpolation Theorem for Mw,w,)

Proof. Let T H} OT be the mapping given by Proposition 6.35. If OT AW has no
models for some IF e %, , we are done. So let us assume ©7 A W has a model for all each

T e %, . By Proposition 6.29, we may assume these models have cardinality $ col . But
this means that the class of trees (T, <) of cardinality h11 with no uncountable branches
is PC(Mw,w, )-definable as the class of trees (T’, <1) of cardinality a1 for which there
is a tree (7, <), an order-preserving mapping T’ –> T, and a model of OF A W. This
contradicts Proposition 6.34. Q.E,D
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A logic Z: satisifes the Souslin-Ktet nt Int CTpolaLiob Theorem if every Pa(£)-expression,
the negation of which is also definable by a PC(C)-expression, is actually explicitly
definable in £. It is well-known that in,w satisfies the Souslin-Kleene Interpolation
Theorem but Lu,w, does not.

Theorem 6.37 ([Hyt90]) (CH ) Tht srnnllcsl r'rtcnsion of Lu,u, to a logic which
satisfIes the Sozstin-Kleene int.eTpolation theorem is the largest jTngment of Mn,ul utInch
is closed under negation

One interpretation of Theorem 6.37 is that Lu,w, has implicit expressive power
which the syntax of the logic is not able to express explicitly. This emphasizes the
naturalness of Mw,w, as an extension of Eu,w, . Various extensions of Craig interpolation
theorem for Mw,w, have been proved in [Tuu] and [ C)ik]
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Representation of Curves in the Real Plane9

and Construction of Curves with Given Topology.
a . Gonzalez-corlxlldn t 'i F.Santos t 'i

Abstract.- IVe are interested in the following problem; if we are given a topological model for
an algebraic curoe fn the real plane (i.e. something which is isotopic to a certain algebraic curue) ,
what is the minimum degree of a polynomial which 'realizes’ it?

In the particular case of the model being compact and with only double points, a superior
bound for the needed degree is 4N + 21c , where N and K represent the numbers of double points

and connected components respectiuely asa2 IJ, and in the other hand jor any N and if ure show
ezample8 not realizable with degree lower than '2N + 2/\

Here we claim t.hot this later is actually the worst.case optimal superior bound, and we show
a method to construct the polynomial u>nh this degree from the topological model, although the
proof is not complete

We introduce the notion of 'prime factor st of a curt)e (which are the essential components
in which the curve can be decomposed) and show that these prime factors haue good geometrical

properties, which mr enclose under the name o/ 'qlrasiconue liLy 1. IYe also study the problem of
combinotorially characterizing the topology of a plane curve, and show a data structure oppropiate
for this characterization, based on the so-called 'Gauss codes’.

1. Introduction.
If we have two subsets A and B in a topological space X, and a global homeomorphism which

sends A to B, \ve say that (.4, X) and (B, X ) are topologically equivalent or that A and B have
the same topological shape in X. In the context of real algebraic geometry an interesting question
is knowing which are the possible pairs ( V, IR " ), or (I/, IR IP n) up to topological equivalence, with
I/ an algebraic set.

The answer to this question is far from trivial in the general case (see for example [BCR] , or
[AK]), but simple if we restrict ourselves to the real (afFIne or projective) plane: any imbedded
graph in IRIP 2 or IR2 with even order ( possibly zero) in every vertex has the shape of an algebraic
set, and conversely any algebraic set Lg IR IP 2 has the same shape that an imbedded graph with
even order. For IR2 the characterization is tIle same except that there can be a certain number
(finite and even) of branches going to infinity, and thus the algebraic set can be noncompact.

Nevertheless, the classical proofs of this characterization normally use polynomial approxima-
tion of Cm functions ( [AK] ). and thus say nothing about the degree needed to 'realize’ a given
topological shape by an algebraic crlrve.
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In [Sa2] we show a construction which works well (both in the projective and the affine plane)
if the topological model we want to realize is compact and has only double singular points, and in
this case the bound obtained is that every topological model can be realized with degree

d < 4N + 2/\

where N is the number of singular points and I< the number of connected components in the
topological model. For nonsingular curves this bound gives d $ 2/f, which is trivial (for we can
construct any non singular model as a product of circles, plus may be a line), but also optimal (if
the model consists on I< nested ovals it can not be 'realized’ by an algebraic curve of degree lower
than :IK , because any line crossing the most inner oval intersects the model 21f times).

In the other hand, for any N and I< there exist examples of singular curves with N double
points which cannot be realized with lower degree tlren 2N + 2/f , due to topological obstructions:

Let us see first the case of a connected curve, and let IV be an arbitrary number of double
points. If we construct JV + 1 circles one inside the next one, two consecutive ones being tangent,
the resulting topological model has ,V double points, and cannot be realized with degree lower
than 2N + 2, because in any realization of it a line passing by the most inner region necessarily
cuts the curve in at least 2N + 2 points. The example generalizes to non connected curves with
N double points and I< connected components just consideriag A’ – 1 additional circles inside
the inner region and one inside another. We could say even more: for any sequence of numbers
JV1, Nz, . . . , N K , with EJ N,' = N, a curve can be constructed with it components each having Ni
double points, and not realizable with degree lo\ver than 2 N + -IIt (see figure 1 for an example
with 2 connected components and 2 + 3 double points)

i

't
(

'\
tt).)

\

Figure 7

The question is whether these examples are the worst case for each pair of numbers N, A’
or not. The method discribed in this paper makes us think that they are, i.e. that any compact
topological model iII the plane with A’ double points and 1( connected components can be realized
with degree at most 2rV + -IIt (this will be our corollary 7.8); the construction ive show would give
such a realization, except for some detail that we will remark in section 7 (see conjecture 7.5)

X41oreover our results indicate why the exarbples we have nre]rtioned ds worst-cases are indeed
worse than others. Proposition 7.7 says that the only connected topological models that possibly
need degree 2 IV + 2 to be realized are those in which every vertex disconnects the model if we
delete it (as it happens in the examples). The rest of connected, double points models can always
be realized with degree at most 2N. ( The converse is not true, some models in which every vertex
disconnect them can be also realized with low degrees).
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In the first part of the work (sections 2 and 3) we abord, as a previous question, the problem
of how we can combinatorially characterize the topological shape of a diagram by means of a finite
data structure. Such a characterization is necessary if we want to have an algorithm of construction
of algebraic curves with given topology, because the data characterizing the shape would actually
be the input for the algorithm

What we show there is a brief summary of some parts of the coauthors respective works [Go]
and [Sa]

Section 2 is devoted to introduce our topological representations of algebraic curves, (what
we call a diagram is in fact the topological model we will use to make the constructions), and
section 3 introduces the data, structure we propose to represent their topological shape, based on
the sacalled Gauss-codes.

Other authors have given different solutions to this question: [Roy], [AM], [GT], work in a
context closely related to ours: they are given a polynomial (or more) and they give algorithms
which compute the topological shape of its real zero set, by means of a Cylindrical Algebraic
Decomposition (the two formers), and seminumerical root finding methods (the later). Never-
theless they do not have a good representation of topological sllapes, Both Gianni-Traverso and
Arnon-McCallum represent non singular curves by some data containing the number and mutual
disposition of the connected components of the curve (which are in this case either ovals or lines),
but say few or nothing for the singular case, while M. F. R.oy gives for the singular case a data
structure which permits to recover the topological shape of the curves, but which is not an invari-
a.nt of the shape (in fact it depends even on the cartesian coordinates chosen). This makes very
difficult to know if two such structures correspond to the sanre topological shape or not.

Guibas and Stolfi ([G-S] ) propose, in the context of Voronoi diagrams, a representation by
means of what they call an aIgel)ra of edges, representation which could be applied to algebraic
curves but seems less a.ppropiate than ours,

The data struct,11 re we propose here has the following three good features:
i) it characterizes the topological shape of a diagraln (t\vo diagrams with the same code have

the same topological shape)
ii) it is a topological shape invariant. up to certain basic operations roughly consisting on

permutations of the symbols that conrposc tlle code. \Ve can easily compute whether two such
codes come from the same topological shape.

iii) it has a good relation with the topology of the curve, in the sense that topological manip.
ulations are well translated to codes

Sections 4 and 5 deal with the topological nranipulations we will need in the algebraic construc.
Lions, and give a self-interesting topologica] result (proposition 5.4 ) which is that every connected
diagram with only double points that cannot be disconnected by cutting only two (different) edges
can be put in quasiconvex form (qudsiconvexity is defined in 5.1 ).

Section 6 shows the algebraic reaIIzation of diagrams in the general case (in which we do not
know how to bound the degrees), and section 7 in the particular case of diagrams with only double
points

2. Curves and diagrams.

In this section \ye use the word 'curv('’ in its topological meaning, a (closed) curve being then
a continuolrs l'nap fl'olll t llc standard circle illt.o the real plane,

3



Definition 2.1 A diagram is a finite set of topological curves, i.c., a continuous map f from
a topological space X into ]R2, where X is a finite, disjoint union of circles. We call vertices of
the diagram the points of IR,2 which have more than one inverse image in X, and order of a vertex
its number of inverse images. We pose to diagrams th3 following finiteness conditions: they must
have a finite number of vertices, each having finite order

\

I

)

J
X

Figure 2: A diagram in the pI(tIle

Sometimes \ve are going to call diagram not the continrlous map but only its image in the
plane. With this laIlguage flexibility a di(1 gr(Int is always a compact subset of the plane and is
homeomorphic to a g7wfi/l witlr even order in all its vertices. Thus every diagram is isotopic to an
algebraic curve, and we can consider diagralns as being t.IIe topological models of compact algebraic
curves: any compact algebraic curve will consist on a (topologically) 1-dimensional part, which is
represented by a diagram . and a finite nllnrber of isolated points. Isolated points are not important
for us, because any isolated point can be algcbraically realized by a degree-2 polynomial, and glued
into the rest of the curve without affecting the bollnd I N + 2/f : each isolated point increases by
2 the degree of the curve. but it also ilrcreases by 1 the number 1( of connected cornponents.

For diagrams \ve could give a strorrger defiIrit.ion of shape than we gave for subsets of the plane,
because the 2'; edges that reach to a given vertex of order ; are associated in pairs by the map which
defines the diagram, forming what we may call the f (local) branches of the diagram at the vertex
(note the analogy with the local branches of an algebraic curve at a singular point). This branches
make possible to distinguisll between. for example, t.angencial and tl'ansversal double points, and
so we can consider t\vo diagrams whose ilrrages al'e isotopic, not having the same shape as diagrams
if their branches do not coincide. A strolrg defilrition of shape for diagrams is:

Definition 2.2 Lot /(X ) and a(Y ) be two diagrams in the real plane, I and g being their
defining maps. Then we say that / and g have t]Ie same st rang topological bIrtH)e if there exists an
homeomorphism /7 from the plane into itself such that h (/(X) ) = go’ ) and a new homeomorphism
I from X into l’ such that // o I = g o f

The condition /7( /( X ) ) = g ( Y ) is superfluous in the delinition. but we include it to make
explicit that tllis lrc’\v dcnllit ion of sllape is stronger thalr tIre old one. Another concept related
with the local bratlctI('s jllst 111entiolrcd is tlrat of trans;versa Iity:

Definition 2.3 Let .f ( X ) be a diagram in the plane and 1/ be one of its vertices. of order
i. \Ve will say that tile diagram is t III II src I's(II at 1.’ if all tIle branches of the diagram at Y have
equal number of edges at each side (this number being necessarily i – 1). \Ye say that a diagram
is transversal if it is transversal in all its vertices

If we consider d iabrallls jlrst as inIt)cd(led graplls. tlllls forgettirlg tllat sorrre edges prolorrg each
other, we can not distillgllislr betweclr tralrsversdl alrd non transversal diagrarrrs, neither between
weak and strong topological shape. In fact
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i) Every diagram has the same (weak) shape than one transvcrsal diagram.

ii) Two transversa.I diagrams have the same weak shape if and only if they have the same
strong one.

Coming back to the relation between diagrams and algebraic curves, the above considerations
give us two canonical ways to associate a 'diagram structure’ to a given compact plane a.lgebraic
curve without isolated points: in the first one we follow the algebraic branches of the curve to
build the map I , giving a diagraIn which can be non transvcrsal, and in the second one we cross all
the vertices transversa.1 ly, in the sense of our definition. The second procedure gives a transversal
diagram which contains only the topological information of the algebraic curve as a subset of the
plane (its weak shape), while the first one contains a part of the algebraic information of the curve;
it says which pairs of topological half-branches form the analytical branclles of the curve at each
singular point (its strong topological shape)

Although the first procedure seems more natural to deal with algebraic curves in this work
we are going to adopt the transversal lrlctltod which llas two advalltages for our purposes: firstly,
it is simpler to deal only with tl'ansvel'sa1 diagrams, and secondly iIT the algebraic constructions
\ye are going to make we obtain always nondogenerate singular points (which are topologically
tran sversal )

3.Gauss Codes.

In this section we are going to describe the announced characterizatiorl of plane curves and
diagrams, and see its properties.

The starting point is a coding method for curves described by Gauss ( [Gal): Gauss associated
to any normal curve in the plane (normal means here having only double transversal vertices)
the list of the double points of the curve, given in their cyclic order (a.ltd thus each double point
appearing twice). If \vc name vertices with the numbers, from 1 to .V, where IV is the number of
vertices of the curve. the so obtained Gallss code of the curve is a list colttaining twice each of the
syrnbols I, . . . . N. No\’(’l'llleless it is easily secll that llot every list IIa\’ing twice each number from
1 to Af is the Gauss code of a curve in the plane (for example the list ( 1, 2, 1, 2) is not), so Gauss
asked what \vere tIle necessary and sufficient conditions for such a list being a Gauss code. (He gave
the necessary cotrdition of every symbol fronr I to IV having exactly an even number of symbols
between its two appearallces. but this condition proved not to be sufTicient. Recent authors have
given the comp]etc solutions [RT] , [Ros]. [LMl, [Go]. See also [KMPS] for a recent survey on
Gauss codes )

We can easily gelreralize Gauss codes to our diagraIlrs considering, instead of one list, as ma,ny
lists as curves forIn tIle diagram. a list consisting OII the vertices one crosses when moving along
a curve (see figure 3). The set of these lists is the Gauss code of the diagram, Note that one or
several of the lists it1 the (liagranr caII be the ('IIIpty list . if tIl(' associated curve is an oval with no
vertices
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Figure 3: A diagram in the plane with Gauss code (1,2,3,4,5,6,2, 1 , 1 ,3,7,5,8) (8,4,7,6).

If we want Gauss codes to be an invariant of the shape of a diagram, we must introduce some
equivalence relatiorls between codes, because of the arbitrary choices made in the construction
process. We say that two codes are equivalent if we can obtain one of them from the other by a
finite sequence of operations of the following types

-Renumbering of the vertices (which corresponds with the choice of the 'names’ for the double
points)

-Cyclic permutation of the symbols in one of the lists ( which corresponds to the choice of an
initial point to start the list in each curve)

Inversion of one of the lists (which corresponds to changing the direction to move along the
curve), and

Reordering of the lists in the code.

Note that if two codes are equivalent, then the maximum number of operations required to
obtain one from the other is one of the first and forth types and one of the second and third for
each list forming the code, because of tIre conrnuta,tivity of operations of different kinds. This is
important because ensures that we can algorithmically construct all the codes which are equivalent
to a given one, for example to test wllether two diagrams, given by their codes, have the same
shape or not.

Gauss codes are now a shape invariant of the diagram up to this equivalence relation. (A strong
shape invariant, properly speaking, because diagra.nls with the same weak shape can have different
codes depending on the transversality relations between the branches.) Nevertheless, they do not,
in general, characterize the topological shape of a diagram, i.e. the same code has different-shape
realizations as a diagran1. \Ve need to add sorne extra infornration to obtain a shape characterizing
cod€

We do it as follows: firstly, \ve choose one of the t\vo possible global orientations of the real
plane, and for each vertex of the diagrarn \ve rlumber ('yclically its 2; edges ( \\’here ; is the order of
the vertex), starting by an arbitrary one and following the chosen orientation. Then, we construct
the Gauss code of the diagram as we did t)efore, but \ve include in the code not only the vertex
number, but also the edges by which we come in and out of the vertex when nloving along the
curve. \Ve write the nunrbers corresponding to these t\vo edges as a subscript and a superscript in
the number which represents the vertex (see figure 4).

We call the so constructed code the CIt ended Gauss code of the diagram. Again the extended
Gauss code is a strong shape invariant up to equivalence of codes if we define two new equivalence
operations with codes:

6
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- A cyclic renumbering of the edges in one given vertex, and
A global orientation change, i.e. an inversion on the cvclic ordering of the edges of all the

vertices .

In figure 4 we have chosen clockwise orientation of the plane and we start numbering the edges
from the horizontal-right position (as showed;

Figure 4. Eltcndtd Gauss coIIc : (215 321 432 341 351 163 422 613 411 331+ 371 452 183) (284 244 274 264)

Obviously, the extended Gauss code contains much more topological information of the dia-
gram than the non extended one, for it includes the local disposition of the edges of a vertex. Let
us see that it permits for example to recover the cycles that form the boundary of the faces (which
is not true for the usual Gauss codes). We see this in our example: firstly, we can obtain the edges
of the diagram by simply breaking the code into pieces in the following way

[15 32] [21 43] [3: 34] [''11 35] [51 16] [63 42] [22 61]

[13 41] [11 33] [31 37] [71 45] [52 18] [83 21]

[84 24] [44 27] [74 26] [64 28]

Now we can recover the cycle of tIle edges in tIle boulldary of a face (in the anticlockwise
sense) starting by an arbitrary edge. say [15 32] and looking for the edge which has its second
vertex (2) with the sub- or superscript which innle(liately follows in tIle clockwise sense. In our
example, we must look for a 24 or a .12. and that gives us the edge [63 42]. We revert this edge to
[24 36], and glue it to the first one to give [15 32][24 36]. \\’e look then for a 64, and we find [64 28]
The cycle follows with [83 21] and ends with [13 41] (because the next edge to this one would be
the original [15 32]. The obtained cycle is then [15 32][24 36][64 28][83 :1][13 41], which is the cycle
of the exterior face. \Ve call ol)tain all the cycles in the sarne \yay, the process finishing when every
edge has been takell twice. The complete face cycles obtained for our example are listed below

[15 32][24 36][64 28][83 21][13 41]

[32 3„1][44 : 7] [73_13]

[21 43][31 37][74 26][63 42]

[7] 45][51 16][6’ 47][ 41 35][5’ 17][72 44]

[2= 61][11 33][3' 12] [5= 1 S][$2 46][61 15] [Sl 25][53 14][42 48]

[$4 24][43 :3][3:’ 11][1= Is] [1’ :51] [lb 22][23 .r,1]

Yet the extcrlded (;a11ss code of a diagranr does not chaI'acter'ize conlpletely its shape, and this
is for two reasons: firstIY. froln tIre extelld(.(1 Gauss code \ve can recover which are the connected



components of a diagram (because that is a part of its graph structure), but not how they are
mutually disposed in the plane; secondly, even for connected diagrams, the extended Gauss code
does not say which are the exterior and interior parts of the diagram.

\Ve can see this second fact more clearly if we consider the one point compactlifted of the real
plane, which is a sphere. Every plane diagram can then be viewed at as a diagram in the sphere,
the sphere having one special point which represents the infinity. The Gauss code of the diagram
in the sphere can be obtained in the same way as we did in the plane, but the code does not tell us
in which region of the diagram is the infinity point placed. The topological shape of the diagram
in the plane depends on this isposition of the infinity point respect to it, so the extended Gauss
code cannot characterize its shape. Nevertheless, we can say the following (proof can be found in
ESa) :]

Proposition 3.1 The €=tendcd Gauss code of a connected diagram characterizes its strong
topological shape as a diagram in the sphere, i. e. two given connected diagrams have the same
strong topological shape in the sphere if and only if they hattc the same e:tended Gauss code (up to
the equivalence relation for codes). •

What we do then to make codes cllaracterize the strollg shape for plane diagrams? First of
all, we build the codes asociated to tIre connected collrponenB of the diagram, including in the
code something which tells us which is the exterior face of each component (for example the cycle
of edges of the exterior face). Then we can build a rooted tree to represent the disposition of the
different components, in the same way as [GT] do for non singular curves (with each component
represented by a node in the tree, and the components which are included in others represented
below’ them), and add to the tree some information saying in which face of the inmediately upper
component we mrlst place a given one. This finishes the problem of characterizing the shape of
diagrams in the plane

We are goillg to mention fInally the solution to the original Gauss problem applied to our
extended Gauss codes, i.e. the decision of whether a given code is rea.lizable as a diagram in the
plane. The solution is very simple and gerleralizes easily to other surfaces.

Definition 3.2 \Ve call an (crtcndcrl ) gauss-like code a sequence of lists globally containing
all the symbols 1, . . . , iV at least twice, each of the symbols having a subscript, and a superscript,
and with the sub/superscriptl•i of each symbol k = 1, . . . , iV going from 1 to 2£k, where ik is the
number of appearenccs of k (its order)

First of all a gauss- like code is realizable in the plane if and only if each of its connected
components is, so n’e can restrict ourselves to the colrnected case. Secondly we recall that we know
how to get from an exterlded Gauss code tIle edges that forln tIle cycle of a face ill the corresponding
diagram. In particular. \ye can find tIre nlllnber of faces. bc'cause each face of a connected diagram
in the plane has only one cycle of edges. \Ve clainr that

ProposItion 3.3 A rortlrcctcd gauss-likc t'orle is re(IIt:able in the plane if and only if it subs Fes
the Euler forlnula F – E + V = '2. u'lrcre F is the nuntber of faces (cycles of edges) that result from
the code, I’ is the number of rcrticr$i. antI E is the numIwr of edges, which coincides with the total
numbr of t'crtc: synrbols contposing in the code (the 'cod£ lcngth-). •

The proof can again be found in [Sa]; necessity of the condition is trivial once \ye know that
the faces of a conllectcd })lalre diag;raul are simply colllrccted with the exccptiorr of the exterior
one which is a rillg. \\'llile the sufnciellc}’ is due to a nlore general result saying that every gauss-
like code can be realize(1 in some rolllpa('t orienta.ble stlrfacc'. and the Euler c]laracteristic of the
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minimal one that realizes a code is given by the stated Euler formula. Thus a code that satisfies
the formula can be realized in a sphere, and deleting a point to the sphere, in the plane. Note that
the formula is satisfied by our example: 11 – 17 + 8 = 2.

For more detailed descriptions and proofs, and for a. generalization of everything concerning
extended Gauss codes to compact surfaces, even in the non-empty boundary and ill the non-
orientable cases see [SaI

4 Flips and Flops. Prime Diagrams.

We are going to begin now the study of the geometrical manipulations on diagrams that will
led to the algebraic constructions (and to some interesting topological results also). From now on,
we are going to work only with traIISversal diagrams, and in some places we will demand them
to be connected or to have only double vertices. BeiIlg transversal means that we can think on
diagrams as being just drawings in the plane, and forget the continuous map from which they are
the image (because of the cqllivalence between shape and strong shape for these diagrams).

Our aim is to give a method to constl'llct any diagrarll from a collection of simpler diagrams
and a sequence of \veII defined topological operations that transform this simpler diagrams into the
one we had. The two I)asic operations we lloed are Ollc' to delete sillgular points from a diagram
and other to add thenl. \Ve call this operations Hips and Pops respectively:

Definition 4.1 To make a flip in a vertex of the diagram we take the 2£ edges of the vertex
and join them t\vo by two in consecutive pairs, thus nrakirrg the singular point dissappear. This
can be made in two possible ways up to isotopy, shown in figure 5.a. Flips can be easily treated
with extended Gauss codes: if we llave the code for the original diagram, a flip is characterized by
the name of the vertex in \v]rich we make the flip and some additional infornra.tion distinguishing
the two possible flips.

jrt ; (bJ
Fi{yrlrc i

Definition 4.2 FIt)1)s are the inverse operation of nil)s. To make a flop \ve must choose one
of the faces of tIle diagram and a list of sonr€' (at least t\vo) of the edges which bound this face.
An edge may appear more than once in the list, and tIle total number f of edges in the list will be
called the ord CT of tIle flop. The geonretrical flop is made insertirlg in the chosen face an i-petals
flower (as sho\yn in figure 5.b), and then joining each petal to one of the edges.

If the face is silll I)ly connected t,his call 1)e nrade ill Ollly one way up to slrape equality ; in other
case \ye will need sonre extra illforInation about the 'patlts' along which \ve nrust place the 'petals’

9



of the flower. Nevertheless we are only going to be concerned with simply connected faces; note
that in a connected diagram in tile 1)lane all the faces are simply connected except for the infinity
orl€

Both flips and flops can be easily made in the Gallss code that represerlts the diagram. We
show with an example the way to fiIld the code of tllo resulting diagram of a flop from the old
one’s code. Consider the diagram of sect.ioll 3, whose extended Gauss code was

(215 321 432 341 351 163 422 613 411 331 371 452 183) (284 244 274 264)

and suppose that we want to make a nop in the face [71 45][51 16][62 47], joining the edges [71 45],
[51 16], and again [51 16] (the geometrical flop is showed in figure 6)

t = >

\Ve give the nanre '9/ to the ne\v vertex, and add as nrally synrbols 9 in each edge of the cycle
as its number of appea.rings in the list; this gives the cycle [71 9 45][51 9 9 16][62 17].

\Ve then add t.Ile to the new '9’ sylnl)ols the subscript s 1, . . . , 6 in decreasing order:

[71 (,93 .15][31 493 291 16][62 47],

and put these new 'edges' instead of the old ones in the original code

( 2l5 321 432 341 :+51 493 291 163 422 t,13 4l1 331 371 695 452 183)

( 284 244 274 264 )

this is the exten(led Gauss code for a diagranr having the required (weak) shape, but which is not
transversal. To lllake it transversial \ve jIlst break the code ill all the appearings of the symbol ’9’
and regluc thc pieces in such a \yay that each symbol '!)' has as srlbscripts two opposite edges (i.e.
t\vo numbers whose difference is 3):

( 21 s 321 .1:32 3-l1 351 49] [93 :9] [91 163 l22 b 13 4l1 331 371 69] [95 .152 183) ,

( 284 244 : 74 qU’{ )

0
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and regluing:

(2l5 321 432 341 351 49] [91 163 422 6l3 4l1 331 37t 69] [93 29] [95 452 183),

(284 244 :74 264)

(215 321 432 341 351 491 163 422 613 411 331 371 693 295 452 183), (284 244 274 264)

which is the code for the new diagram

The way in which flips and flops are used to buiki up diagrams is the following: we make
flips to a given diagram Do until we arrive to a simpler one Dk, and in each step i = 1, . . . , A we
compute the code of the new diagram obtained by the it h flip Di, as well as tIle information to
recover the code of D ,_\ from Di (i.e. the information concerning the inverse Hop of the flip). The
shape of the final diagraln DA joint to tlr(' inverted sequence of flops determines the shape of Do.
The choice of the 'simpler' diagranr Dk to stop the process depends on our purposes, but clearly
it is always possible to arrive to a diagram without any vertices (i.c. a collection of ovals), if we
want to

For connected diagrams with only double points this flip/flop decomposition of diagrams is
specially useful, becallse of t he following result:

PropositIon 4.3 Lrt D be a ronnrrt[ II rliagram iIt thr plan,c and Ict V be one of its vertices,
of order 2. Then our of the trro possil)Ir Fips in t*crtc= V leaves the chau ram connected,

Proof: Let '1’. '2'. 'B' and '4' represent the four edges in vertex I'’ in a cyclic order, and let’s
what happens to D wllen \ve delete the pOiIlt T

If D \ {v} is connected, then both flips on 1 ’ are connected. If it is not, each of the four edges
at U must be connected in D \ {1/} to another one, because the arc beginning in an 'open edge’ of
D \ {+’} must end in an open edge.

Now srlpposc that one of the flips ill I'’ gives a diag;raII I which is not conIrected, for example
the flip which joins '1 ’ to '2’ and '3’ to 'I’. Then 'l' can only be connected in D \ {v} to '2’
(for otherwise thc four edges would be connected to each other in the 'flipped’ diagram ), and thus
the other flip gives a connected diagram (because it connects '1 ' to •+’ and '2’ to '3’). A counter
example for higher order points is an 7 ;gIIt i lull rr1 with all oval crossing its double point ( see figure
7) •

r' '-+,CJ
\ ._ _/’

(-
\>

Fig tire 7
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The proposition implies that the final diagram in the nip decomposition of a connected, double
points diagram can be always chosen to be connected andnonsingular, and thus a single oval. This
fact is used in the construction of algebraic curves with given topology shown in [Sa2] (in fact, there
the final diagram can be either an oval or a pseudo-line, because the context in which diagrams
are defined is more general)

Nevertheless, here we will prefer to use other diagranls instead of ova.Is to start the construc
tion, and for that we need to introduce a type of connected, double points, diagrams with good
decomposition properties, which we cal] prime dingrnrlrs. (Prime diagrams can be defined with
vertices of higher order, but the good properties we mention are obtained only for double points)

Definition 4.4 Let D be a connected diagram with only double points. We say that I) is
prime if it carlrlot t)e disconnected 1)y 'cuttirrg’ only two edges, or equivalently if there do not exist
two adjacent faces ill the diagram wllich have two different common edges on their boundaries.

The three main features abotlt prilne diagrams are:

Proposition 4,5 Let Z be a (ronnectcd.. transrcrst Il, double points) diagram. Then:
i) The non-ertended Gauss code of Z characterizes its sIu ipc in the sphere (compact$ed plane).

Therefore the information adclcd in flu r=trrlclrrl ra(les is irrclc u(Int for this d.iCI grams and their plane
shape is determined by the Gnuss code and the 'in$nitu face' additional information.

ii) Let V tx an arbitrary vrrte= of Z . Then at least c>nr of the two flips at V gives a new
prime diagram,

iii) if a flop gitc,s as Pnnl diagram Z . tlrcn thr Pop is made joining two different edges of the
initial diagrant.

In (ii) and ( ;ii) the initial diagrurns of Ix)fIt the Hip and the flop are assumed to FInoe at least
one vert e:

Proof: i) The proof of this can be found in [Go] . It is too long to put it here, and in fact this
property of prirne diagranrs. altlrollgll it Ina)’ be tIle lnain one to express the nreaning of being
prime, is not relevarlt to our purposes. \Vc illdicate just that the reason why non prime diagrams
with the same non extended code can have different sha.pes (in the sphere) is that one of the
parts of the diagranl can be tlrrned 'inside-ollt’ as in figure 8, and that does not happen for prime
diagrams (a prime diagram can be turned inside out as a whole, but that does not change its shape
in the sphere)

:\-)

Fiqrl rc 8

ii ) Consider tIle following sketch of the t\vo possible flips at I'- (figure 9). Suppose that (a) is
prinre and botll (b) alld (c) are not I)rillle. alla \ve are goillg to arrive to a contradiction

12
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>„-.((b)

Diagram (b) being not prime, one of the two faces that share two edges must be the middle
face ( AuG), for in other case (a ) W'OIl]d not be prime. For the same reason the other face cannot
be B nor D, so we call it £, E being t IIen a face of the initial diagram which is adjacent to both
,4 and C. \Vith the same considerations for t.llc horizontal flip \ve obtain another face F adjacent
to both D and B. and the following sketch:

\ !// //\\
'\

t:

/\ a
Fi(jtlu /0

Now the contradiction arrives if we study whetlrer tJ and F are the same face or different
ones: they can not be the same, for ill figltl'e IO we can find a line that goes from E to F crossing
the diagram in exactly three points. and if tlley are difFerent \ye can find two lines going from E
to Z and from F to F respectively, and crossing each other iII exactly one point. Both things
are impossible becaltse transversaly crossilrg curves in the plane must have an even number of
intersections (\ye recall that our diagranl is a finite union of curves),

iii ) it is easy to prove in its reciprocal form: an order 2 flop in the same edge of a diagram
which has at least Olle vertex gives a. (liagralll which is not priIlre. The following picture shows
this. The final faces /1 all(1 B share th€' t\vo edges a aII(1 b. an(I tIle existence of at least one initial

vertex ensures tllat a aIrd b are not tIle gallic edge. so the fiIIal diagranr is not prilrle

13
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When we have a diagram which is not prime we can 'factorize’ it by cutting the two edges that
disconnect it and then regluing the pairs of open edges that lay in the same connected component.
(This process can be described as a flop in the two edges followed by a nip in the new vertex
obtained, a.s ShO\VII ill figure 12, and gives as a result two corlnc'ct.ed diagrams each having at least
one of the initial vertices. )

Figure 12: Dcromlxi sdion of a diagram

The process call be continued wit 11 tllege two new diagrams if they are not prime until we
have a finite collectioll of pritno diagrams in the plalle which \ve call the prinre factors of the initial
diagraIlr .

The factorizatioll of a diagralrl is rlot llllique, because \vhelr \vc 'regltre’ the open edges in pairs
we can do it in two different \\’ays (or. equivalently. if we lrrake a flop in the two disconnecting edges
followed by a flip OII the new vertex. tllel'e are t\vo ways to lllake the flop, one in each of the two
faces which share the edges). Nevertheless. these different ways give diagrams which are equivalent
as independent diagraIrls in the sphere. i.c. diagrams with the same extended Gauss codes, but
possibly with difTercllt dispossition respect to one another all(I to the infinity point. It can be also
shown that the factorization does not depend on the order \ve clloose to make the decompositions.

The inrportallt point roll('el'ning tllis prinre-factors decoln])osition is that if we know how to
realize by an algcl)I'aic curve each of t.llc pl'inre factors of t IIe decolnposition it is easy to 'reglue

1.1
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the algebraic prime factors to have a realization of the whole diagram. We will come back to this
point in section 7

In the case of only double points we can refine a little the construction, and section 5 is devoted
to prepare this refinement.

5. Quasiconvexity of Prime Diagrams.

Definition 5.1 Let D be a (connected, double points) diagram in the plane. We will say that
D is quasiconve= if we can choose a point P, in every edge e of the diagram in such a way that the
two following conditions are satisfied:

i) for every face F of D different from the infinity one, the polygon whose vertices are the
points P,, with r the edges in the boundary of F is a strictly convex polygon contained in F and
touching its boundary only in {P,}

ii) if an edge r is in the boundary of the infinity face, then a straight line exists passing by P,
and not touching the diagram in any other point (a. ’tangency line’ on P, )

In figure 13 \ve sho\v an example of a quasiconvex diagraIn. This section is devoted to proof
that every prime diagranr has the gallic sllapc of a quasicoll\’ex one; for non-prime diagrams the
result is not true in general, but nevertheless the diagram in figure 13 is not prilne.

FiouTC l:3: Quasiconueritu.

Lemma 5.2 Lrt D be a quasironrrT diagram. Then ejlery Pop on D joining two di ferent edges
in a face digerent from the inAnity one, can be nIadc in such a way that the reshlting diagram is
qu (ISt co IEvel .

Proof: Let a and a tIle nd g,es to ina] ie the flop, and r the face. \Ve We make tIle following small
peturbations in a (and b)

- if a is an edge llot torlclrilrg t llc illnllity face (all illtcrior edge ). \ve make it to be a straight line
segment in a srrfTlcientl}’ small neighborll'hood of P„ . wit llout altering the quasiconvexity conditions.
The quasiconvexity condition rerllaills tllcn trtle if \ve cllange the point Pa by sufficiently near ones
Q, or R, in a ( figure 14-a ).

- if a is one of tIle e(tHes of the illfiIIity face, \vc make it to be all ’angle' in P,, without altering
the quasiconvexity conditions. There exist then Q„ and R, such that the line passing by them is
parallel to the taIIHenry line in P, and does not cross the diagram in any other point (fIg 14- b).

15
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Figure 14

No\v, we make the flop joining a. to Rb and Qb to R, by straight lines, and deletintg the
parts of edges a and b between these points (figure 15). The diagram so obtained is quasiconvex:
the qua,siconvexity condition is automatically verified ill tIle interior faces, and in the exterior one
it suffices to modify a little the line passing by Q, and R, (or Qb and Rb) to two lines each passing
by one of them and not crossing the diagram in any other point (as in figure 15)

Fig 11 1t' IS

•

Lemma 5.3 Err ry (connectcd, doublc poilrt s) printe diagram with no interior uertices have
one of the following sllaprs (by an ilttc-rior rertcr u’r nreart n t?crtc= not adjacent to the in$nity
face /
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Figure 76

•

ProposItion 5.4 EtcTy (connectcd. rloublc points) prime diagrant in the plane has the same
t,opol,cgi,cal shape tll(III a q\lasiconuer one.

Proof: Let D be our diagram, and let us prove the result by induction on the number of interior
vertices. By lemrna S.:3 all diagranrs witll Ilo i11terior vertices have the shape of a quasiconvex one.

If D ]las /V + 1 interior vertices \ve choose one of them and make a prime flip on it (recall
that one of the t\vo flips in a vertex of a prime diagram gives a prirne diagram). By induction
hypothesis this new diagrarn has the shape of a quasiconvex one, and by lernnla. 1 the flop tllat
recovers I) from it call 1)e nrade to give a qrlasiconvex diagram. We have used here the fact that a
flop which produces a prime diagram must be made joining t\vo different edges. •

The lemma,s all(1 1)roI)osition S..t prove tIlat if I) is a I)ril11c (liagralrl with only double points
a sequence of flops oil it call lea( 1 to 011e of tIle I)I'il11c (liagrallls ill lenrrna 5.3 and that the flops
that recover tIle sllal)c of D fr0111 tllis fiIIal (liaFiratll call be lllade preserving quasiconvexity. This
is going to be the pl'ocedrll'e \ve will use to colts;tru('t an algebraic curve with the topological shape
of a givell prinre (liaF_{ralll. all(1 mol'eovel' let ils see that IIlakirlg flops in tIle interior vertices we are
never going to arrive to (liagrams Pl all(1 P{ of lelllnra 5.3

Lemma 5.5 Lr 1 D Ix a pHmc diagwtm (ronnfrted. u'itil only doabl€ points) with at least one
interior \'crtc I. Thr II. D has at IcQ.st 'Z rrtcrior \'erIc=, i,e. a sequence of Hops in its interioT
ucrl.icrs cannot lca(1 to tllc dlaar(11118 P\ nor PI

Prr>oj: The lenn11a reducr's to proof that there are no prime diagrarni-1 with only one exterior
vertex and at least Olle ilrterior vertex

This is tl'lle. becallbic' if tller(' is only Ollc ext ('I'iol' vertex, say I'’. then the cycle of edges of the
exterior face has either o]lo only c(lgc [ I -. t -]. or t\vo c'€1ges, [ I.’, 1 -][ I.-, 1 -]. In this second case the
diagram can only be P{ . all(1 in tIle first case it is either /’1 or not prime (the other two edges of
t' apart from [1-'. 1 -] al-c difFerent aIIa disc'ollll crT IIlo diagram )

•
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6. Algebraic Construction of Curves with Given Shape.
The Gbneral Case.

In this final section we are going to show how we can use the 'flip-Hop’ techniques on diagrams
to construct an algebraic curve with a given in advance topological shape, and how we can profit
of the quasiconvexity properties of prime diagrams to obtain the optimal degree 2N + 2 for the
realization of any compact curve in the plane with only double points. We introduce first some
well known concepts in algebrain geometry:

Definitions 6.1
By an algebraic plane curue in IR 2 we mean a polynomial j C IR[X, Y], and also its zero set

Y/ = {/(X, Y ) = 0} c IIi2 when there is no ambiguity in the polynomial we consider to define Y/
It is necessary to remark this because different curves (polynonrials), can have the same zero set
We say that a curve / T€ ali:cs a diagram D if the zero set of i is isotopic to D

- A point P = (a, b) e IR 2 is called a singular point of the curve /(X, Y) if /(a, b) = /x(a, b) =
/r(a, b) = 0 (where fx and fy are the derivatives of fI. We consider only curves with a finite
number of singular points. (if a plane curve has an infinite number of singular points it means
that it has a repeated factor)

-The OTder of a. singular point is the least order of a derivative which is not zero in (a, b). If
P = (0, 0), then the multiplicity of P is the least degre of the monomia1 s of f . For P arbitrary the
same thing holds if \ve develop j around the point P

An important class of singular points are nond.egener(1.t e singular points. The general definition
for complex curves is \veII known (see, for example, [Wa] ), but we give here a slightly different one
for the case of real curves

Definitions 6.2 Let /(X, Y ) be a real curve of degree n, and let P = (a, b) be a singular point
of i of order m. We can then write ft X , Y ) = /„,( X – a, I’ – a) + f,„+ Itx – a, Y – b) + . . . +
/„( X – a, Y – b), where fk are homogeneous polynomials of degree k. We will say that P is
Teal-rbondegeneTnt c (or real-ordinary) if j„, decomposes in m real different linear factors. (Remark:
a bivaria.te homogeneous polynomial always decomposes totally in complex linear factors, here we
demand this factors to be different and real. The rrsual definition of ordinary points demands them
only to be different )

We are going to 1)e specially interested iII singular poilrts of order 2. The local structire of a
real algebraic curve ill a lreigllborhood of such an order 2 point is either that of one order 2 analytic
branch (this is the case of a 'cusp’) or that of two nonsingular branches crossing at the point, and
in this later case these branches can be either both complex or both real. We are going to call
singulnrities of tup£ 't– those order 2 singular itie:, which consist on two real analytic branches (the
name comes from the terminology used in [AGV] to clasify singularities). An example of these
A- singularities (in fact the only one \ve are goinF, to be concerned with in the constructions) is
the product of t\vo cllrves both passing by a point P whiclr is regular for both of them

Finally \ye say that a curve I of degree n tins no points af inFnitu if the monomial of highest
degree j,„ of f has no real zeroes different from the origin (i.e. if the projective curve associated to
/ has no points on the infinity line of the projective plane RIP 2 ). Note that if t\vo curves f and g
have no points at infinity. then neither the product /g has

Our constructi011 of algol)raic curves is based on pertrlrl)a.tion techniques: a perturbation on
a polynomial is a. small, continuotls change ill its coefficients. A particular case of a perturbation
of a polynomial I is the fanlily of polynonlials I + cg, where c is supposed to be a small parameter
which varies rontinuously arId g is supposed to be of degree lower or equal to g (due to technical
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reasons). We call it a perturbation of i hy g and say that a property is true for suffIciently small
perturbations of I by q if it is true for every rurve f + eg with l£l smaller than a certain co.

The following result says how a small perturbation of this type affects the topological shape of
the polynomial f . in a particular case that will suffice to our purposes. We give it without proof,
for it is the affIne version of theorem 2.7 in [Sa2], and it can also be deduced from two lemmas in
[Gu] (the 'lemma on the class of a point’ and 'the lemma. on isotopy’)

ProposItion 6.3 Let f be a real rurrc u*Hh no points at infInity and of degree n, and suppose
that the singular points of f arr P\.P2,..,,P1, and QI,QI, . . . ,QI, from u\Itich the Pi are real-
Trondegerretate and the Qi are of A– type. Let g be a CUTt.e of the d.egret deg(g ) $ deg(/) which
has a singular point of at 1.cast the samIr order in thc points Pi, and which does not pass by the
points Qi

Then, anD sufFrcicntlu small pert\lrbrttion oi ! by g of thc form j + cg
_ has a real-nonrlrgencrate singular )loin.t of the same order hI rarh of the Pi,
-has no other singular point , and no points ut in Putty, und.
_ its topological shapc in IR 2 can br ot)ta{ncd lnodiyyiny rar it A– singularity of f in that of the

two ways in Fgure 17 \dItCh is compa.tib Ie u’i.th the signs of f . g and t

i’ + ' ':: < c/ f >+: -: =~-Fx . z-.,”
r I ( <(r \

\--__
+

t

-*\
Fig 11 11 17

•

Proposition 6.3 is enollgh to desrri1)o t IIe (’ollstruct.ion of algebraic 'flops’, as we do in the
proof of the foIIo\vilIE lenr IIla

Theorem 6.4 Lrt D Ix a cliagrclm trhich ts rrali:rd by an algebraic curve f (X , Y), J having
only real-norLdegenerat€ points und no points at irlflrtity. Let D1 be a diagram obtained by a Pop
on D . Then D1 can nIno Ix TraIt:cd by an qlgrbrrlic curl’( f 1 with only real-nonclegenerate singular
points and no point at infInity.
Proof: Let P1 . P, . . . . . Pk_\ be the singular points of j. which are all real-nondegenerate and
with orders 1171. in.2. . . . . III k_1. \\Fc can identify D with the zero set of I

The flop of order ni ill I) is givell by OIle of its faces F, an ???-petals flower in the face, and m
paths joining the petals witll poillts iII tIle bolln(lar}’ of r.

An m-petals no\ver can be ronstrurted algebraic by the fot'lnula: R = cos( nlt ) if nt is odd,
and R: = cos( nlt ) if 711 is even (it is easy to clle('k tIlat these equations defirre algebraic curves
of degrees ’m + 1 and 7/1 + 2 re'sl)ecti\’ely. all(1 tllat tIle.v Iravc tIle shape of an mI-petals flower, no
points at infinity, and their only birlgular point is rcal-rlondegenerate of order ? it)

Now \ve can place tIle Ill-petals nowor ill t llc face F 1)y trallslatiorls and homoteties, arId call
f + the product of f with the polvnonlial donning the flower

9



To nrake the flop we have to join each petal of the flower to the corresponding points in /,
along some given patlls. To do this algebraically, we first cover each path witlr a 'chain of circles’
satisfying:

-The first r;rcle is tangent to the point in the pet.II, the last one to the point in f , and each
circle is tangent to t lle next Olre.

-The circles in the chains do not intersect each other nor f + in other points than the mentioned
tangencies (see figure 18),

(To construct the chains we first put a tangent rirf Ic in each of the t\vo extremal points of the
path, sufficiently small not to touch f + in other points than the tangency one, and then cover the
part of the path not covered by these two circles with a fInite number of circles not touching f+.
If we delete the supel'flllorls circles all(1 reduce tIle relnailling Olle's to be each tangent to the next
one the circles \vi Il satisfy tIl(' conditions )

Fig 11 /r /8

We still call f + The product of f + with all tIle circles in the chains
f + satisfIes the hypotheqs ilt proposition 6.3, if \vc call Pb = P (the singular point in the

no\ver), and Ql,Q:. . . . .QI thc tangency points in the chains of circles. We can moreover suppose
that f + has positive sign outside the circles and the no\ver, and negative inside. We are going to
perturb the curve f + to have the gallic shape than the diagram obtained fron1 the flop

For each nolrdcgeneratc' point Pi = ( al. bl ), f = 1, . . . . A' of I \ve consider the polynomial
g,- = ((X – ai )2 + (I’ – hr )= )”'+i. where III+ , is an exponent to make Pi be of order at least mi in
g,. (it suffices nl+i ? in i/2 ), and call g tIle product of the gjs, g is everywhere positive (except in
the points Pi which are its zeroes), and \ve can srlppose tllat its degree is smaller than the degree
of f + (if it is not we nrultiply f + by a factor not afFecting its zero set, such as ( 12 + 1’2 + 1)P)

In these conditions. proposition 6.3 ensures that for a small positive c the curve f1 = f + –cg
realizes the wanted (liagranl Df of the flop: At earII tallgency point tIle deformation compatible
with the signs of f . g and r is that w IIi(-l1 joins the petals of the flo\vcr with the original curve j
along the chains of circles. a

Coronary 6.5 ICrc ru (Iia gUI IIt in the 1)Ict nc ca it bc 1’cclli:cd a lgcbr(tic(IIly . u'itIl only real-nondege-
neratc points and no points at infInity.

Proof: By induction OII the nunll)er of singular points. A (liagranl with no singular points is
a finite collection of ovals which call always be realize(1 by sc)IIIO product of circles. To realize a
diagram oN with A; silrgulal' poillts. \ve Illake a flip to it , obtailling a diagralll DN_\ with A’ – 1
singular points. and IIV indllction suppose this lie\v diagram realized algcbraically by a curve fN_\
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with only rea,l-nondegenerate points a.nd IIO points at infinity, and apply the theorem to the inverse
Hop to the flip made. That gives a realization of D,v a

7. The Case of only Double Points.

Corollary 6.5 gives a constructive proof of the characterization of tIle possible shapes of com
pact algebraic sets in the plane: every diagram is realizable as an algebraic set implies that a
sufficient condition for something to llave the shape of an algebraic set is to be an imbedded graph
with even order ill all tIle vertices, and as \vc lrrellt,iono(1 in tIle introduction this is also an easy to
proof necessary colldition for an algebraic conlpact. set in tIle plane. But more interesting that this
is that this kill(1 of construction perlrlit.s 115 to t,lliIlk ill coIltrollillg the degree of the curves we use
to realize a diagram. In theorem 6.4 and corollary 6.5 this is not possible because we do not know
a priori how to bOIIn(1 tIle nlllrrber of circles II('cdc(1 iII the chains of circles for the flop. Neverthe.
less if we restrict ourselves to diagranrs Iraving orllv double points we can refine the construction
thanks tIle 'prime factors decomposition ’ of dia£ralns aIr(1 tIle 'quasiconvexity’ properties of prime
diagrams.

For algebraic crlrves \ve need a sligllt ly (lifTer('IIt defillitioll of quasiconvexity than for diagrams:

Definition 7.1 We say that an algebraic curve / (collnected, with only double points) is
qu qsirrim’rr if its zero set is quasicon\’ex (in the sense of definition 5.1 for diagrams), and moreover
the points P' in the esterior edges of the curve are not naxos,

Note that the exterior collditioll of (jtlasi('onv('xit .v. ill t.llc case of algebra.ic curves, irnplies that
the tangent line to the clll've at points P, in tIle exterior edges does not have any other intersections
with the curve. The additional assunlption of the points P, not being Ile>ies (i.e. having finite
curvature) inrplies tlrat a sllfTiciently big circle tangent to tIle curve at P, has the same property
it does not intersect tlle curve ill any otller point. This will be used in the next proposition to
'glue’ the quasiconvex alg('bl'aic I'ealizatiolls of tIle prilrle factors of a diagralrr. The proposition is
true for any nunrber of prime factors, bllt \ve proof it for 2 factors. for tIle sake of sinrplicity

Proposition 7.2 Lrt D bc a ronnrct(d diaglrllrl u'itlt onI,y (1,out)Ic po{'ltts which decomposes
in two factors D\ and D.! such ttl.nt D\ and D: arc OIl€ outside another, or D2 inside Dl, (but
not the mnveTSe) . Swp Ilos( that DI und D.: au unit:cct by fit'a algebraic CUT ties fI and 12 with
only reaL\tond.egeneratc $ingalnr points (of order 2), and no points at inFrrity, Suppose also that
d = deg( /1 ) + deg( /2 ) = 2 X , ulhrr€ N is tht nunrbcr of double points in D , and that fI is
quasiconte t. Then D r-all bc rcQti zed by all qigc brute curtc f of dcyrec d
Proof: in any of t llc t\vo (lispossitiolls of I) \ allrl /J= ( /J2 inside 1) \ or one outsIde another), to
recover D from Dl and D: we need nIlly to place a copy of D 2 in the appropiate face of D1 ( which
would be tIle exterior fa('(' if D\ a IId /92 Ii(’ OII(' Olltsi(Ie allot 11(’r ), all(I join tllelll by tIle appropiate
edges

Let us then do 1 hat \viI h the algebraic curves /1 and /2 which realize 1) 1 and D2. We can
put the curve f : in the :lppl'opiatc face of /1 by translntiolls and homotecics, which do llot affect
its degree' Let c 1 and c = be the edges by which \ve mint join /2 to /1, and let P1 and P2 be the
points of tIIe qllasicollvexity coll(litiolls ill tIl('so edges. c2 is all exterior e(lgc, and thus we can
construct a big circle fallgcnt to the curve /2 at P1 and containing the whole curve ft. We can also
construct a SInall circle tangt’nt to /1 at I’1 and contaillecl iIt the appl’oj}iate fa(:o of /1 (because P1
is regular), and by some rotations. translations and ho1110tccic's in fI make the tw'o circles coincide
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and identify the points P1 and B2 , which become a tangency point between /1 and /2 (see figure
19)

f: L r: t C .t

Figr11't= IP

Consider the product in of /1 and /2 under these conditions. It has degree d ? 2 N , and
N order 2, real-nondegcnerate singlllar poillts. wllich correspond to tIle double points of D, plus
another singlllar pOiIlt wllicll is also of or(Icr 2 all(I type ,4 –: tIle tangency point. Moreover, it has
the same shape of tIle didgra.In 1) except for tIle tarlgellcy point. Thus, we want to perturb it to
make the ta,ngency disappear, alrd it is easy to do this tIranks to proposition 6.3

fa satisfies the conditions of the proposition. and \vc can take as perturbing curve the product
g of the factors gi = ( X – ni )2 + ( Y – aF ), (where (ai, a,' ), with i = 1. . . . . N are the coordinates of
the singular points). g has degree 2,V $ d = deg(/o ) and has a singuIa.r point of order 2 at each
of the real-nondegcnerate singular points of /o (which are also of order 2). Then, the perturbed
curve I = /o + rg, with c sufbciel lt]y small II as tIle same shape of la except for the tangency which
disappears arId thus. with tIle adeqllate sig11 for (. the sllape of D. •

Proposition 7.2 (generalized to ally 11111111)or of ])rillr(' factors ) wi]1 perlnit to realize any con-
nected diagram iII t IIe plane I)y an algebraic cllrve of colltrolled degree if we know how to realize its
prime factors by a qllasiconvex crI i've. To realize the prime factors \ye are going to make use of their
quasiconvexity properties. bllt we nrust nrake note tlrat ill the induction process we describe, we
have not a proof that quasiconvexity can be preserved by the perturbations made (see conjecture
7.5). Thus the induction hypothesis is not ensured. and thns 7.6, 7.7 and 7.8 are true only if the
conjecture is.

\\fe start r'ealiziIlg tIle 'l)asic’ prime (liagrallls, wllicll are prinre (liagraIns with no interior
points :

Lemma 7.3 Er(I'y I)rilrre cliclglrllrl \rith nIlly dotlbl( poiltt.'; all(1 ito ilttcr'ior uertices can be
realized by a quasicollrcr algrbrair currc of rlrgrrr '2N ( rhcrc N is the number of e£terior vertices),
uith no points at infinity allrl only rcal-nanrl(grnrrutc singular points, except for PI and P{, which
can be mali led u+tIl dr gnr 4 (and the saint proptrties)

Proof: : \\’e recall lemma 5.3 which said that the only possible prime diagrams without interior
vertices where the /)1 . P{ all(i the Pi, for f = 2. . . .; \vt' will sIlo\v the algebraic construction for
each of thenr:

'1-}



A. Gonzalez–corbalan & F. Santos

Pl is realized by the lcmniscatd ( X 2 + If2): = .12 – }’!, and P{ can be constructed perturbing
the product of two rircles which intersect tra,nsversally ( \vc consider one of the intersection points
as real-nondegencratc and the other one as of type / l– to appjy proposition 6.3), as shown in figure
20, and that gives (legre(' .t. The qrlasiconvexity properties IIce(led are easily verified

--\ b/

(,.
-N\

\

Figu rr 2 o

To realize t ]to I't'st. of t IIe Pi \vo 1]so t IIe foIlowiltg I)rococlllre. \v IIi(-l1 \ve (lescI'il)e only for Ps: we
consider 5 diffel'eIIt ratii of tIle unit circle front tllc' origill. an( I find tIle 5 circles wllich are tangent
to two consecutive nIles ill t IIe poi IIt s wllel'(' t IIe r;It ii tollcll t.11(' circle ( t\vo collseclltive suclr circles
are tangent to OIre allotllor. as ill figlrre 21.a ). \\b call / tIle I)rodtlct of the 5 circles, with positive
sign at the origin and at infinity. I has clearly degree 10 all(I no points at infinitY, and we are
going to pertrlrl) it 1)y tIle crlrve g = (,V2 + 1--2 – 1 )2. wllicll is positive everywhere except in the
unit circle. Tllis I)('rtllrl)at,iolr is llot itlcllltl('(1 ill bro1)osit ioll 6.3, 1)('calls;e g 1)asses by the singular
points of f which are (loHoneartc’, but it is easy to describe its efFect on the curve:

1: i II II /I JJ

First. tIle porturhc(] curve I + IfI. for sufFiciently small. positive (. must be included in the
interior of tIle 5 ril'rIc's ( because t hose are the regions in which I and g have opposite sign), and is
locally isotopic to / in its non singu]ar points. It rests only to see what happens at the tangency
points of the circles. If \\’e trallslate OII(' of tllis points to be tlrc' orig;ill, all(1 rotate tIle figure until
the tangency is ]lorizontal, then the terms of lo\vcr degree of f and g arc j = –}-= + . . ., and
g = X2 + . . .. and thus / + fg = – l’: + rX: + . . ., whicll corresponds to t\vo real branches with
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tangents Y = ve )X , i.c. to a real-nondegeneratc order 2 point, which gives the shape of figure
21.b. The quasiconvexity properties are automatically satisfied, as shown ill tIle figure. •

Now let us see how two add the interior double points to the realized diagrams:

Lemma 7.4 Let D be a printe diagram with N vertices, which are of order 2, and utitIl at
least one interior verte= V . Let D' k a prime dinqTum obtained by a flip on D at V , and suppose
that D1 is reaLized by a quasicontc= algebraic cuTve f 1 \vith only real-nondegenerute double points
and no points at infInity. Then, D can be reahzcd by an algebraic curve of degree IN with only
real-nondegcnerate $inoutnr points and no points at in$Ttity,

PTOOf: All we have to do is an algebraic flop on f' to recover the initial D, and we are going to
do this by a similar process as made in proposition 6.4. The difference no\v is that we can profite
the quasiconvexity properties of f 1

Let a and h be the edges of f ' in which \ye must make a flop to recover the shape of D, and let
P. and Pb be the points of the quasiconvexity definition in the edges a and b. Then, the face for
the flop (the only face which has a and a in its boundary, for f ' is prime) must be an interior face
of j1 , because the vertex of D in which \ve made the flip \vas interior. Then, by quasiconvexity,
there exists a convex polygon with vertex at P. and Pb inscribed in the face, and in particular the
segment P.Pb is contained in the face. Moreover P, and Pb are regular points in /1 (they are not
vertices), and this implies that an ellipse can be constructed being tangent to /1 at P, and Pb, and
sufficiently close to the segment P,Pb to be contained in the face (see flgure 22.d). What we want
to do is to perturb tIle product of j’ with this ellipse in the way shown in figure 22.b.

,„

r/

if

bJ >C

a\
I

th
I''i(lu II, eg

Call /o this product . Pl . . . . . PN_1 the singular points of f' . and suppose that P, is placed at
the origin. \viI 11 horizontal tagcnt . aILCl with the signs disposbition for /o shown in figure 22.a.

For a pcrtnrl)alion of type /o + r g ( with c small allcl positive) to have the shape of figure
22.b (and not to cllaiLge anything elsewhere), \vc need a l}olynoirrial g with degree at most 2 jY
( the degree of in ). wittl a singular point at each of the I)I. . . . . P\. _ \ ( this ensures that the real-
nondegenarate singuIar points of f 1 arc preserved by the perturbation ). with positive sign at Pb
(to break this tangency ill the appropidte \yay) antI \gjt Il a singular point at, P,, such that the
singularity of J + fg at P„ be real-nondegeneratc.

The last condition is acllieved if g has rIO terms of degree lo\ver tllan 2 and its degree 2
term is –_X2. antI tllis is acllieved, for cxalnple. if g = {/192, with q1 positive at P, and q2 =
(-X2 + l-2 + rX )( X ? + I’= – r_V). i.c. the produrt of t\vo circles vertically tangent at a, where the
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radius r is chosen sufficiently small to not interfere with the rest of the figure (i.e. such that 92 is
positive at Pb and at every Pi).

Now the conditions for g1 are only to be positive a,t P, and Pb, to have a singular point at
each Pi, i = 1, . . . , JV – 1, and to be of degree at most IN – 4 (because g2 is of degree 4.

j' has at least two vertices (in fact, at least two exterior vertices), and we can suppose without
loss of generality that P„ and Pb are not in the line passing by Pl and P2, because the quasiconvexity
properties are also satisfied if we move a little P, and Pb along the edges a and b of f' . Thus, we can
take as gl the square of this line, times a factor (X – ai)2 + (Y – h)2 for each f = 3, . . . , iV – 1, where
ki, yi) are the coordinates of the points e. This gI has degree exactly 2N – 4, and is everywhere
positive except in the points Pi and in the line passing by Pl and P2

That ends the construction of the algebraic flop. By a perturbation theorem similar to propo-
sition 6.3, the curve I = Jo + cg has the same shape than the diagram D, has no points at infinity
and its N singular points which correspond to the N double points of D are rea,l-nondegenerate. •

We would like to use lemma 7.4 inductive ly to construct every prime diagram, but we do not
know how to preserve the qusiconvexity conditions in the flop. Thus we state a conjecture, and
give only a partial proof:

Conjecture 7 S in the conditions of lemma 7.4 the $neIl curve I can be constTUctecl quasi-
conDe: ,

Proof: in fact, the only quasiconvexitv conditions that \ve cannot ensure to be true are those
concerning only the four new edges that appear from a and b by the flop. The rest are preserved,
because the quasicoIl\’exit)’ conditions are 'open’ in the sense that they remain true if we
perturb a little the points in the edges or the edges themselves, arId this perturbation is made
'smoothly’ (i.e. varying continuously not only the points but also the slopes)

In the special case that the edges a and b have their clrrvature towards the outside at points P.
and Pb, the quasiconvexity conditions of the new four edges are also preserved , if the ellipse joining
P,, and Pb is chosen sufficiently narrow: this is so because, in this case, there exists a rectangle with
vertices in the edges a aII(1 b. close to P. and Pb (as in figure 22.a ), and this rectangle construction
is preserved by the pel'turbaton, if the el Ii])se is colltained ill the rectangle and the perturbation is
small (see figure 22,b )

.\

Lq /\ ( b J

Figure 23

If the curvature s; at P„ and Pb are to\yards the inside this construction is not possible, but
possibly with a sufhcielrtly lrarro\v ellipse qllasicolrvexit.v is still preserved

•



Coronary 7 .6 if conjecture 7.5 is true, then every lyr ime diagram lvith only double points can
be realized by a quasiconucT algebraic curve of degree 2N (uthere N is the nnmbcr of vertices), with
no points at infInity and only real-nondegenemte singular points, e=cept for Pl and P{, which can
be realized with degree 4 (and the same properties).

Proof: The proof is made by induction on the number of interior vertices. Lemma 7.3 gives the
proof for 0 interior vertices, and for a diagram D with at least one interior vertex Y, we make to
D a flip at Y, obtaining a new diagram D1, which can be supposed prime, by proposition 4.5(ii).
Besides/ lemma 5.5 ensures that Df is not Pr nor P{, so by induction hypothesis we can suppose
D1 realized by a. quasiconvex algebraic curve /1 of degree 2N – 2, with no points at infinity and
N – 1 real-nondegenerate order-2 si11gular points,

Lemma 7.4 enables us to construct the curve f with degree 2,V , only real-nondegenerate points
and no point at infInity, and by conjecture 7.5 we can suppose that i is also quasiconvex. •

Finally we state the general theorem about the coltstruction of real algebraic compact curves
in the real plane:

Theorem 7.7 \Vc stlppose that conjecture 7.5 is trIte. Let D be a connected diagram with N
uertices, all of order tu'o. If at Icq st one of the prime factors of D is not PI nor P{ then D can
he realized by an nlgcbrai.c curve of degree 2N , u?Hh only real-nondegenerate singular points and no
points at inFrrity. If not. D can be rcah ICd in the santc conditions with degree 2N + 2
Proof: For prime diagrams the theorem is already proved (corollary 7.6), and for non prime
diagrams we use the same techniques of proposition 7.2: \ve decompose D in its prime factors Di,
and realize eaclr by a qrlasicolrvex a.lgel)raic curve of degree IN i, where Ni is the number of double
points in Di; this can be done by proposition 7.6, except if the factor is a P1 or a P{ (we will treat
this case separately )

Now, proposition 7.2 gives a procedure to reglue all the prime factors one by one and gives as
final degree the sum of the degrees needed to realize the factors, that is 2N, where N is the total
number of double points in D, tIre only thing to take care of is that to use proposition 7.2 we must
first realize the most exterior prime factor of D (or one of the most exterior ones, if there are more
than one), and then glue the others from the exterior to the interior

When tllere is solrre P1 or P{ factor' this procedure would not give degree 2N, because these
prinre factors call only be realized wit II degree 4, and tlley add just one singular point. Nevertheless
we can 'glue’ them in another, eqllivalent way: illsel't a tarlgent circle in the appropiate face
of the curve, an(I then pcrturb thc' Tangenry ( which is a singular degenerate point) to be real
nondegenerate (this can be done in the same way \ve did in the proof of lemma 7.4). With this
procedure each /)1 or P{ factor irrcreases the degree only by 2. and than the final degree 2N is
mantained

The only case ill which tlris callllot be done is if all the prime factors of Z) are P1 or P{, for
iII these case we lleed degree -t to realize the first prime factor. and thus the final degree becomes
2AF + 2 instead of 2'V. •

Corollary 7.8 ( if rorljrrturc 7. ,'; is trur) ti’cry rliagrrlm in lllr planr lritlr only double points
carl be mali:(d with d(qrrr lou-ct or cqual to '2X + -aK . u'lrc rt X and K are the Tntmtxrs of double
points and connected colltpoltc nts. r( sl)cct itcly.

Plot)j: Let D\. . . . D 1,1 be The conncctec components of D. Theorem 7.7 permits to realize each
Di with degree at most 2.VI + 2, where ,Vi is the rlumber of double points in Dj. Realizing all of
thenr and then placillg them in the appl'opiate place froln one another we will have the desired
curve realizing D ( the product of the curves reaIIzing the connected components), whose degree
will be at most E( 2.Vi + 2) = 2.V + 2 if . •
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Continuous sums of squares of rational functions

Clrarles N. Delzelll

0. Introduction. Suppose I? is a real closed field, with the usual, order topology; let if
be a suI)field, with the inherited order. Let X := {Xl, . . , , X„} be indeterminates. We
call i C K[X] positive senridefinite (psd) over R if Vz := (rl, . . . , #„) C R", J(z) ? 0
Hilbert’s 17th problem [15], solved by AMin [1] in 1927, was to prove a conjecture which
logicians in the fifties ( 113], [16], [221) refined into the following theorem:

if I C K [X] is psd over B, then j = EJp£r?, with 0 S pi e K and ri e K(X) (0.0.1)

For general background on the 17th problem, including Kreisel’s 1962 question [17] on
whether various 'continuously varying’ versions of (0.0.1) are possible, see, for example, [4]
and [11]. The purpose of this note is to prove (0.1) that the pi and the coefficients of the
Ti may be chosen to be functions b of thc coefficients c := (cl, . . . ) of f , depending only on
77, and d := deg .f. and having tIle following special sup-inf-polyllonrially definable (SIPD;
also cant ICl 'scrrri-polynorrrial’) fornli bCc) = suph infl AkI (c), where the hk I are finitely many
polyrlorrli&tIs in Z[c] . As all irrrrn(:(liate corollary, we get a proof of the following conjecture,
first stated in our thesis of 1980, and repeated in [3], [5], [6], and [7]: the b can be chosen
to be continuous and even 'picc=cwisc-polynorrrktl.’ By [4], 'piecewise’ cannot be dropped
when d = 4 kcl [8] on the irnpossibility of analytic variation, as well)

To state the result precisely, we introduce sc)nrc definitions and notation. Now let ]
be the general polyrrorrrial of (legr(:c d in X with coefficients a:

J = y, C,Xo e Z[C; X],
loj<d

where 0 := (#1, . . . . a„) e N". I#1 = E:=1 %. C := { Co
indeterrnirrates, arId Xo = Xf 1 . . . X£’' . Write

101 g d } is a set of m := (”=d)

P„d := { c e Rt"jd ) I /(c; X) is psd in X over a } . (0.0.2)

It is well krrown2 that one call (:1)11strllct hnitely rnany hhI e Z[C] such that

P„,I = U n{ c C R("1') I AM(c) ? 0 }.
k I

(0.0.3)

1 Sul)port,II(I by NSF, tlrc Lt)llisiitrl ib BrIar(1 i)f R.CB(:rlts R.cscarcll arId Developnrent Program (Educa-
t.iorl Qtrality Strl)1)ort Flrrl(1), itII(I tIlt' Al(!XitII(It:r VOII Htllrll>ol(it. F<)lrrl(latiorr

2 Sec [3}, [4], [5]. or the following sullllllibry= (a) By Tarski'h elilnination of quantihcrs (e.g.. [20])
P,1,L is ( Z-)scrrlialgcl>riric (•s.a.') . i.t:.. equal to it (finite) Bol>lean cornbindtion of sets of the form { c C
Em 1 /1(c) > o }, where h c z[c]. ( b) P„d is closed, either by noting that the limit of a sequence of psd
polyrromiibls is psd, or by noting thin R111 \ P„d is obviously open, since if fLr: I a;) < 0, then for all d e R11'

close enough to c, ftc1 1 x) < 0. (c) The •Hniterress theorcrn’ for (closed) s.a. sets (e.g., [3]) says that every
closed, s.a. set. call be written as ill (0.0.3) above; i.c., we do rIot need strict irleqrralitics. (The fact tlrat
the coefticicrrtis of the /bkl caII be takcrl to be integers is well kIlt>WII, though rarely stated.)
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Define functions hI, and A holm R( "1' ) to R by hk(c) = infl hI,iCc) and hCc) = supt hk(c) ;
tlrcrr

P.„L = U{ c e X("1') / l1.(c) ? 0 }

= { (; e ][I?: ( 1 1 1 d ) 1 / 1r ( c ) ? 0 }

Let B be the snlancst ring of hlnctions from RC"I') to R containing h, the hk, and Z jCI
(where, in the latter. formal polynomials are identified with the functions which they
determine). Since the set SIPD is actually a rillg (i.e., closed under sums and products
cf. [7] or [14], for example), B g SIPD. Note also that B depends on the particular c:hoict
of hI,I satisfying (0.0.3).

Theorem 0.1 (Main Theorem). Tllere is an identity

ftc. X) = EpI-(') (A) , Me„e (0.1.1)

(a) the p, e B arc 'not necessarily distinctproducts of the functions 1, it, h – hk, and
hI,I – hk, and hence pi Z 0 OII P,„I (obvious meaning) ,

(b) r/ I. s e 4 := B[X}. and Ir: e N sllch that q1 = /2' and sCc; r) = f (c-. X)2' +
E 1 t..; (c)gJ(c: X)2 . wII( III: f/J e 4. arId the t7 e 13 C A are not ncccssarily distinct
pTO(lucts of the functions it. lb – II.k, and it,kl – ttl„ which are all > 0 on P„d; thus
sCc: r) = 0 only if /(ci :r) = 0 for (c; z) e P„d x RTL : hence, by (0, 1. 1),

(c) each pi(ch/ s)2 extends (by 0) to a scmialgebraic.3 locally uniformly (even locally Lip-
schitz) continuous function P„d x R"- –} R.

We shall prove (0.1) in jl. In H2 we shall contrast this proof with the proof given in

I thank G. Krciscl and A. Preb;tel for their interest and help.
[9]

1. Proof of (0.1) (a la Prestel). We shall need

Lemma 1.1 ((1.4) of [20]). Let G be a ring (conrnIutative, with 1, as always), and
let S be a -pre-orcll'rir lg- of G. i.c.. a subset of G such that S + S C S, S . S C S.
G2 := { a2 ! geO } C S. iulrl –1 ( S. Then S can be extended to an 'ordc:ring’ T of
G. i. f:. . a pre-or(I(:rirlg slr(Ill that, S C T . T U –T = (J. all( I the ideal supp T '.= T n –T is
1)r;Inc. Q.E.D

Identify the A in (0.1)(t)) \\'itIl it sul>ring of its localization

A f := { u 1 Sk I a e A & k C N } .

3 A hrnctioll fr0111 c)IIe s.a. set (fOCJtllt)to 2(a) ) tc) another is called senlialgebraic if its grapll is a s.a
SIIt)set of tIle prodIrt:t. sl)act

2



Charles N . Delze11

in the usual way. Let Sf be the subserniring of A/ generated by

A} U { h, h – ht, hhi – hk i all k, i }

Nott! tllat

Il(hm – ht) = ITCh – hI,) = 0 e ,4 E ,4/,
Z A

(1.1.1)

by the definition of hk and h. after (0.1),3)

Lemma 1.2. Tllcre exist ql, 52 e Sf such that (1 + 52)/ = 1 + 51

Proof of 1.2-. Otherwise, f – 1 { S} := Sf – IS f, Since 1 – f e $, and S} is closed
under multiplication, we conclude that –1 + S}. Thus S} is a pre-ordering of A/. By (1.1)
with G = Af and S = S}, S} extends to an ordering TJ of aJ. Write AJ = 4// supp Tf,
ordered by TJ := { al a C T/ }. Tf induces an ordering on the held L of fractions of B.
Let M be the real closure of E

First, f < 0, since –f e S} E Tf and j { suPP T/ (prime!). Second, for all k, I.

/& ? 0, /1, 2 /tk, alrd hhI > hA,

by the choice of SI . Third, for each k, since III (m– E) = 0 (1.1.1) and © is an integral
donrz:tin. we corrclrrdc tlrat for SOIII(: I . ALI = /1,A, wlrcnce

ivf it'kI = ttL\

likewise

hence

srrp it k It'.
k

sup inf /&hl = / 1 : 0
k- Z

Since f and the hm are polynomials, 7 = / (a; I)
indexing the Co’s. we see that the statement

and m = re-hm (a) . Thus,

16l1 ' ' . s btn, 1 ?71 yn C M [/(bl ' . . . ; #1, . . . ) < 0 & sup inf{hm (b1
k

.)} = 0],

which is easily seen to be clcnrcutary, is true (ntuncly, take b, = a and gj = Z). By
Tarski’s transfer theorenr (c.g.. [20]). it renrains true if we replace M by any other real
closed field; we choose the field R. yielding a point (b. y) e P„d x R" such that j (b, g) < 0,
a contradiction. This proves ( 1.2). Q.E.D

R,eturning to the proof of (0.1), for a = 1.2, write the su given by (1.2) in the form
a.„.//2'’1-" . where 71.„ C N and a„ e S := thc suI)scnliri11g of ,4 generated by

A2 U { h. h – hk, hhI – II,k ! all k. i }

3



Write e = 711 + 112 . Multiplying the equation (1 + 52)/ = 1 + 51 by /2' gives

kf2e + a2f2''\ )f = it- + (1\f2"2

Since b1 := a2/2-17" and b2 := al/2"= both lie in S. we get

, f::e + b2 lz' + b2

I – f2e + bI – f2c + bI = = = =;„(')(A)'’
wherc also b3 e S, s = /2c + bl (proving (0.1)(b)), and the pi are as in (0.1)(a)

Finally, for (0.1)(c). the semialgebr,ticity of the extension of pi(gi/s)2 is obvious
((0.1) (c), footnote 3). And the only points (c; r) e Pnd x Rn at which the (locally Lip-
schitz) continuous extendibility of pi(g.i/s)2 is in question are those where s = 0; by (b)
also f = 0; by (0.1.1), each A(qi/s)2 tends to 0 near (c; r) (compare [18]); the fact that
this point;wise continuity of the extension is actually locally Lipschitz follows horn the
corresponding property for f . Q.E.D

2. Comparison of Sl with [9]. We proved (0.1) in 1988; that original proof will appear
in [9]; the proof presented in 51 above contains some modifications on the earlier proof,
due to Prestel, which we now explain

In tIle sevcrrtics. several vcrsiorrs of the 'Nichtnegativstellensatz’ for the polynomial
ring /4 := K [X] were discovered; they all give weighted sum-of-squares representations
of ally polynomial wlliclr is rlonrrcgittivc OII a 'basic s.a.’ set. Ill tIle eighties, both tIle
staterncnt and proof of this were generalized to arbitrary rings A (cf. , c.g,, [19] ); in these
abt;tra( it versions. rirlg (1l(:nltlrlts art: (:orlsi(1( tre(1 as frrnctiorrs on the real spectl'unr Spec'. A of
A. all(1 rro\v a full(:tiOII lrrlrst I)(! rrorlrrt:gIltivo oil a 't)asic constructible’ set in order to have a

sum-of-squares representation. It is tIlt in (almost,) straightforward to apply these abstract
versions to the particular ring A nrcntionc(1 in (0.1)(b); this was our original approach [9]
to proving (0.1)

Actually, only the underlying set ( tu opposed to the topology) of Spec, A is used in
the abstract NicIItnegativstellensatz, and this set goes back to Lemma 1.4 of Prestel’s 1975
book [20] (replicated here as Lemma 1.1 above); there he gave the modern definition of an
'ordering’ of ,4 (but with different vocabulary), and Spec„ A is just the set of all orderings
of A. Furthermore, Lenrnra 1.2 above is based on Theorem 5.10 in [20]; the latter applied
only to polynomials e X [X]. So the main difference between Prestcl’s proof in !1 above

and the proof in [9] is that the former replaces explicit use of the real spectrum and
the abstract Nichtnegativstellensatz with Lcmmiui 1.1 and 1.2, respectively. (in addition,
Preste1 showed rue sonIC Irelpful sirnplifications of IIly original proof; these are incorporated
in both Sl and [9].)

The differences in the 2 proofs of (0.1) have some bearing on the directions in which
(0.1) can be extended. (1) in [2] . Prcstel asked whether (0.1) extends to higher even powers;
cf. the abstract in [21} when it, = 1. (2) Fronr tIle proof in [9] we extract a few examples
and gcncral results on the real spc('.trurrr of partially ordered rings and (almost) /-rings;
one surprise is that tIle (SIPD) absolute value function c1 n !cli, while obviously psd on
R. is not psd when considered its all at)sEra( it function on Spec.r. A. We also generalize (0.1 )

4
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in 2 directions: first, we prove Stcllcns£tze for arbitrary SIPD functions (generalizing the
Stellensatze for polynomials), and then we obtain 'SIPIJ-varying’ Stcllensatzc in all cases

where continuous variation is possible (improving Scowcroft ’s continuous, semialgebraically
varying Stellens£tze [23] ) .

While mentioning different proofs of (0.1), we should mention also that in 1991 Lau-
reano Gonzalez-Vega and Henri Lonrbardi, together, re-discovered (0.1); cf the historical
note in my joint paper with them [10], and their other paper [12] on this subject. The
main difference between their proof and that in [9] is that theirs reduces it to the (concrete)
Nicbtnegativstellensat,z (for polynonrials), and not the abstract version thereof.
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GROUPES FAIBLEMENT R£TICULES

Jif i Rachanek, Le Mans et Olonouc

Dans cet expos 6 , nous allons nous occuper des groupes
seni-ordonn6s et faiblenent r6ticu16s . Il s’agit des notions qui
gen6ralisent celles de groupes (partiellement ) ordonn6s
(po-groupes ) et de groupes r6ticu16s (l-groupes ) de cette nanidre
que la transitivit6 n’ est pas, en g6n6ral, exiger. DorIC les
notions de seIni–ordre et de trei11is faiblernent associatif sont
fondanentales pour cette situation.

On appelle trei11is faiblement associatif (va-treillis ) une
algdbre A = ( J, v, A) avec deux op6rations binaires te11es que

1. Va€a; aAa = a , ava = a
2. Ya , beA; a hb = bha , avb = by a

3 . Va , bea; aA(avb) = a , av (aAb) = a
4. Va, b, ceA; ( (aAC)v(bAC) )vc = c , ((aVC)A(bVC) )AC = c .

(Cette notion a dtd introduite par E. Fried [ 1 ] et H.L.Skala [ 5 ] . )
On peut d6finir la relation binaire "s" sur A en posant
Va, bea; asb ear abb = a ( avb = b) . Alors on a:

5 . Va€4; aga

6. Va, bcA; asb & bsa + a=b
7 . Va,b€a3d€z; ( asd & bsd ) & (vu€a; (asu & b£u ) + dsu ) )
8. Va,b€ale€a; (esa & esb) & (VyeJ; (rsa & vsb) + yse) ) .

On a aussi inv6rsernent: Si une relation "s" v6rifie les
propri6t6s 5-8, alors, pour avb=d et ahb=e , on obtient 1’algdbre
( 4, V, A) qui est un trei11is faiblement associatif .

1



Une relation "g" v6rifiant les conditions 5 et 6 est dite une
rejation de serni-ordre sur A et ( 4, s ) est un enseInble

sent-ordonn6 ( go-ensemble ) . Un ensenble seni–ordonne est elit un
tournoi ( ou un enFemble tptalernent semi-ordonn6 ) si quels que
soient deux 616nents a , beA sont conparables, i. e. si pour quels
que soient a , beA on a asb ou bsa .

Un syst6me G= ( G, +, s ) est appe16 un groupe semi-ordonn6
( so-groupe ) si (G, + ) est un groupe, (G, s ) est un so-ensenble et

Va, b, c, deG; asb + c+a+dsc+b+d .

Si (G, s ) est un va-treillis , alors (G, +, s ) est un groupe
fajbjement r6ticu16 (val-gror+pe ) . Si (G, s ) est un tournoi,
(G, +, s ) est un groupe totale=rent semi-ordonn6 ( to-groupe ) .

Remarque . On salt que si un groupe adnet un ordre (transitif )
lin6aire ( i. e . il est un O-groupe ) , alors il est sans torsion, et
que, dans Ie cas des groupes ab61ienns, cette condition est aussi
suffisante. E. Fried [ 3 ] a d6montr6 que la classe de groupes
adnettants des seni-ordres totaux est essentiellenent plus large
que celle de O-groupes.

Par exemple, un groupe avec torsion adnet un sent-orcIre total
si et seulenent si 11 ne contient aucun 616nent d'ordre 2 .

Exemple I. Pour les groupes cycliques finis Z_ , n irnpairs, on
a les seni-ordres totaux "naturels" :

, Zs :

Soit G un so-groupe . Notons G+ = {x€G; Osx} . G+ est appe16 le
£6ne positif de G. Il est claire qu’ on a:

Proposition 1. a) Si (G, +, s) est un so-groupe, alors G' est un

2
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sous-ensemble invariant de G tel que aeG+ et –a€G' entrainent
a=0, pour quel que soit aeG.

b) Si (G, +) est un groupe et P un sous-ensenble invariant avec
O de G, alors (G, +, s ) , oil asb ssi b–a€P , est un so-groupe et G+=

P

Nous voyons irnn6diatement qu' ll est possible caract6riser les
po-gr oupes dans la classe de so–groupes en ut ill sant les
propri6t6s des c6nes positifs .

Proposition 2 . Un so-groupe (G, +, s ) est un po-groupe si et
seulenent si G' est un sous-dent-groupe de (G, + ) .

Soit G un so-groupe et a+Asc;. On dtt que a est convexe si asx
et xsb entrainent x€A, quels que soient a , beA et x€G. (Notons que
a et b ne sont pas nec6ssairement comparables . ) Le c6ne positif
n’ est pas , en g6n6ral, convexe . ( Par exemple, dans Za, on a 1 < 2,
2<0, et 1,OeZ: , mats 2ez: . ) Pour G avec G* convexe, on obtient:

Proposition 3 . Si G est un so-groupe tel que C+ est convexe
dans G, alors G satisfait l’ une ou l’autre des possibilit6s :

a ) G est un po-groupe .

b) Ja, beG; O<a, a<b, 0 IIb.

Coro11aire . Si G est un to-groupe , alor s les
suivantes sont 6quivalentes :

a ) G est un o–groupe ( i. e . ordonn6 lin6airement ) .

b ) G' est convexe dans G.

c) Il n’existe pas d’616ments a , bEG tels que O<a, a<b, b<O

conditions

ReInarque . La d6finition de val–groupe est essentiellement plus
faible que celle de 1–groupe, nais, tout de md=le, beaucoup de
propri6t6s fondarnentales des l-groupes restent conserv6es aussi
pour les val–groupes . Par exemple : Soient G un so–groupe et
a, b, c, deG . Alors :

- Si bvc existe, alors (a+b+d)v(a+c+d) existe, et a+(Lvc)+d =
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( a+b+c) V (a+c+d ) .

• Si avb existe, alors -aA-b existe, et -ah-b=–(avb) .
Si avb existe, alors abb existe, et ahb = b+(–(avb) )+a,

– G est un val–groupe ssi Va€G, avO existe.
• Si aAb existe, et c, x, y sont des 616nents de G tels que

a=x+ (aAb) , b=y+(dAb) , c=a-b ,
alor s

XAy=O, x–y=c, x=cv0, y=–cvO.
• Si pour G= (G, +, s) , (G, s ) est un v-va-deni–trei11is ( i. e . il

satisfait les conditions 5-7 ) , alors G est un val-groupe ssi
Va, b,c€G; a+(bvc)+d = (a+b+d)v(a+c+d) .

- Tout val-groupe est engendr6 par son c6ne positif G+, plus
pr6cisement G=G+-G'.

Nous voyons que les val-groupes constituent une vari6t6 ( i. e .
une classe prinitive ) d’algdbres de type < 2, O, 1, 2> avec deux
op6rations binaires "+" et "v" , une op6ration O-aire "O" , et une
op6ration l-aire "-(.)" .

Exenple Z . On peut consid6rer le groupe G= ( Z, + ) co=rme un
raI-groupe en pos ant ( de naniere assez naturelle )
C+={O, 1, 2, 4, 6, . . . } . Alors pour x€G:

a) x€G+ + xv0=x
b) -x€G+ + xvO=0

c) x€G+ et -reG+ + xv0 = max{x, O }+1 , oa max{x, 0} est
consid6r6 dans l’ordre nature1 de Z.
Donc (G, +, s ) , oU ’s" est le seni-ordre d6fini par G+, est un
val–groupe qui n’ est pas ni I–groupe ni to–groupe.

Remarque . a) Notons que pour un val-groupe G, G+ ne doit pas
6tre un v-va-demi–treillis . Par exemple, dans le val–groupe G de
1’exenple 2, 1€G', 4€G', mats IV4=5€G'.

b) Tout I-groupe G est, comme un trei11is , distributif ,
Va , b , eeG; aA(Dvc) = (aAb) v(aAC) .

Mats cette identit6 n’ est pas v6rifi6e, en g6n6ral, dans tous les
val-groupes . Par exemple, pour (ZR, + ) totalement semi-ordonn6 par
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0< 1, 1<2, 2<0, on a
OA(IV2 ) = OA2 = 2 , (OAI)V(OA20 = OV2 = O .

N6anrnoins, on a:

PropQsition 3 . Si G est un val–groupe et a, b ,c€G , alors
(avc=bvc & aAc=bAC) + a=b .

( II est bien connu que pour les treillis , cette propri6t6 est
6quivalente a la distributivit6 . )

On petIt rnaintenant caract6riser Ia classe de l–groupes dans la
classe de val-groupes en ternes de distributivit6:

Proposition 4 . Un val-groupe G est un 1-groupe si et seulement

Va , b,c€G; aA (Dvc) = ( aAb) v(aAC ) .

si

Il est aussi possible de caract6riser les l–groupes dans la
classe de va]–groupes en utilisant la notion de l’orthogonalit6.

Des 616=rents a et b de C' (G est un val–groupe ) sant dits
othoqonaux si axb=O . ( On 6crit arD. )

Proposition 5 . Pour un val–groupe G, les conditions suivantes
sont 6quivalentes .

a) G est un I-groupe.
b) Va,b,ceG; arb & czO + aAc=aA(b+c) .

c) Va, b, ceC;; all) & arc + al(b+c)

Soit maintenant ( G, +, s ) et ( G' , +, s ) des so-groupes . Une

application p: G+G' est dite un so–homomorphisme si p est un
hornomorphisme des groupes et des so–ensembles ( i. e . asb +
p( a) sp(b) ) . Un val-homomorphisme d’ un val–groupe ( G, +, s ) dans un
val-groupe (G' , +, s) est un so-hornomorphisme qui est en plus un
hornonorphisme des va–treillis .

Proposition 6 . Soient G=(G, +, s ) un so–groupe et a un
sous -groupe dis tingu6 de G . Alor s 2 est le noyau d ’ un
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so-homonorphisrne si et seulement si a est convexe.

Dans ce cas, on peut munir le quotient de a par 4, G/X, de la
relation de seni-ordre: x+as}r+4 qr IaeA; x+asy . (Le seni-ordre
induit. )

Solent G un val-groupe et a un sous-groupe de G. Alors on dit
que a est un val–sous-groupe de G si a est un va-sous-treillis de
va-trei11is ( G, s ) . Un val–sous–groupe convexe distingu6 A de G
est dtt un val-id6al de G s ’ iI satisfait la propri6t6:

( + ) Va, beA et x,y€G tels que xsa, ysb, il existe ccA tel que xvy£c.

II est claire que le noyau d’ un val–honomorphisIne est un
val-sous-groupe distingu6 convexe. On a:

Proposition 7 . Soit A un val-sous-groupe
d ’ un val -groupe G . Alor s les conditions
6quivalent es :

a ) a est le noyau

val-groupe G’ .
b) A est un val–id6a1 de G.
c) (++ ) Va, b, ccA, x, yea; xga, ysb + (xvy)vc€a .

distingu6 convexe
suivantes s cnt

d’ un val–hornornorphisIne de a dans un

On appe11e sous-grouPe solide de G tout val-sous-groupe
convexe verifiant Ia condition ( ++ ) .

On va noter Z(G) 1’ ensemble des val-id6aux et 6(G) l’ensenble
des sous-groupes solides d’ un val–groupe G. Il est evident que
ECG) et B( G) , ordonn6s par inclusion , fornent des treillis
complets , avec 1'616ment minimum { 0 } et avec Ie maximum G, et que

les infirna sont 6gaux aux intersections dans les deux treillis .
Soient G un val–groupe et HeE( G) . Consid6rons Ies conditions

suivantes :

( 1 ) Si x,yeG et OsxAy€H, alors x€H ou yeH .
( 2 ) Si x, yet; et XAy=O, alors xeH ou yeH .

( 3 ) G/ IH ( 1 ’ ensemble des classes de gauche de G par H) est un
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tournoi .

(4) { AeG(G) ; Hsa} est un ensemble lin6airement ordonn6.
(5) Si 4,BeG(C) et artB=H , aIQrs A=H ou B=H .

Th6or6me 8 . Si X est un sous–groupe solide d' un val-groupe G,
alor s

(1) + (2) + (3) + (4) + (5) .

Un sous-groupe solide H d’ un val-groupe G v6rifiant les
conditions ( 1 ) , ( 2 ) et ( 3 ) est dtt sous-groupe redFessant, Un
sous-groupe solide H de G est dtt sous-groupe prenier si H v6ri-
tie la condition ( 5 ) .

Renarque . a ) Si HeE(G) , alors H est redressant si et seulenent
si G/H est un groupe totalenent semi–ordonn6 .

b) Il est bien connu que pour les sous-groupes solides d' un
I-groupe, toutes les conditions ( 1 ) - ( 5 ) sont 6quivalentes . Mats
pour les val-groupes, en g6n6ral, cela n’ a pas lieu, parce qu’ il
existe des sous–groupes pre=lters qui ne sont pas redressants .

Exemple 3 . Soit G Ie prodIlit direct ZXZ , oil ( Z, + ) est
sent-ordonn6 par le md=re sent–ordre que dans l’exenple 2, i. e.
G+={ O, 1, 2, 4, 6 , . . . } . G est un produit direct des val-grouoes,
dorIC il est un val-groupe lui-m6me. Notons X={ (x, 0) ; xeZ} . H est
un val–id6a1 de G. Mats & n’ est pas un sous–groupe redressant
parce que, par exemple, ( 1, 4) A( 4, 1 ) = ( 0, 0 ) , mats ( 1, 4) eH et
(4, 1 ) CH.

H est un sous–groupe premier . En effet, soit AeG(G) tel que H
est un sous-groupe propre de 4. Soit (a. , an) eA\H. Alors aa+O et
( 0, aT) = ( al, aa) – (al, O ) ca. Parce que le sous–groupe convexe de Z

engendr6 par go est 6gale a Z, on a (xt , Xa) = (xg , 0 )+( 0, Xn) CA pour
tout 616nent -(x. , Xa ) eG, donc A=G , et A est un sais-groupe
prea11er .

Un sous-groupe H de G est dtt r6qulier si H=n ( A1 ; icl) ,
al cE(G) , entrainent l’ existence d’ un i_el tel que H=A. .

a
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Proposition 9 . a) Tout sous-groupe solide d’ un val-groupe est
1’ intersection des sous–groupes r6guliers .

b) Tout sous-groupe redressant est 1 ’ intersection d’ un systeme
lin6airenent ordonn6 de sous–groupes r6guliers .

On dit qu’ un val–groupe G est repr6sentable s’ il est isonorphe
a un produit sous–direct de to–groupes .

Th6or6E e 10. Un val–groupe est repr6sentable si et seulement
si 1 ’ intersection de tous ses id6aux redressants est 69ale a {O} .

Corollaire . Si un val–groupe G est repr6sentable, alors G
contient un syst6ne des id6aux premiers tel que 1' intersection de
ce systdme est 6gale a { 0} .
(L’inplication inverse n’ est pas valable . Voir par exemple G de
l’exercice 3, oa H et H’ ={ ( 0, y) ; y€Z} sont premiers et HF\H’ ={ 0} .

Remarque . Il est bien connu que tout I-groupe ab61ien est
repr6sentable , don c la classe de l–groupes ab6 liens est
strictenent contenue dans la classe de l-groupes repr6sentables .
Mats cette inclusion n’ est pas valable pour les val-groupes .

Par exemple, le val–groupe ab61ien G= ( Z , +, s ) , oil
G+={O, 1, 2, 4, 6, . . . } n’ est pas repr6sentable . (G n’ a pas de
sous-groupes redressants distincts de G. )

Donc Ia classe de val–groupes ab61iens et ce11e de val–groupes
repr6sentables sont incompar abIes . En plus , les l–groupes
repr6sentables constituent une vari6t6 de ]–groupes . Par exenple,
ils sont caract6ris6s par l’identit6
( 1 ) (XA ( -y–x+y) )VO = O
et aussi par l’identit6
( 2 ) 2 (x,\y) = 2xA2y .

Mats les val-groupes repr6sentables ne doivent pas v6rifier ces

identit6s . Par exemple : Pour G=( Za, +, s ) , oa C+={ o, 1 } , on a
(2A(-2) )VO = (2AI)vO =1 + O ,

et aussi
2(IA2 ) = 2 , 2x1 A 2x2 = 1 , 2+1 .
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G est un to-groupe, dorIC repr6sentable.
11 est claire que, plus g6n6ral, la preni6re identit6 n’ est

pas vraie dans aucun val-groupe ab61ien qui contient un 616nent
a€G' teI que O<a, a<-a, –a<O.

Pour la deuxi6ne identit6: Il existe aussi des to-groupes
ab6 liens infini s qui ne v6rifient pas cet te ident it6 . Par
exenple, soit G= ( Z , + ) totalenent seni–ordonn6 par

G+={O, 1, -2, 3, 4, -5, 6, 7 , -8, 9, 10, -11, . . . } . Alors
2(IA5) = 2 et 2x1 A 2x5 = IO

Il y a naintenant une question assez naturelle: Les l–groupes
repr6sentables, sont-elles caract6ris6s dans la classe de
val-groupes repr6sentables com=re ceux qui v6rifient les
conditions ( 1 ) et ( 2 ) ? Mats cette conjecture est fausse . Par
exenple, consid6rons le val–groupe G= ( Z , +, s ) , oa
G+={0, 1, 2,-3, 4, -5, -6, -7, 8,-9, -10, . . . , -15, 16, -17, . . . }={2k; kzO} U

-{Z+\{2k; IraQ} ) . G est un to-groupe, donc repr6sentable .
( 11 n’ est pas un o-groupe . )

On a, pour haQ: 2k – (–2k ) = 21'*1€G' + -2kS2k , et on a -2ks0 .
Pour kal : - ( 2;r+1 ) - ( 2;r+1 ) = -2(2k+1 ) eG++ 2k+1<–(2k+1 ) , et on

a 2;c+1<0.

Pour kz3, k+21, Vlz0 : -2k-2k = 2(-2k) + 2m, VmzC) + -4k€G' +
2k<-2k, et 2k< O .

Donc Vx€G; (XA-X) VO = 0 , c’est-a-dire l’identit6 (1) est
satisfaite

Pour la condition ( 2) : a est totalement seni-ordonn6, donc

tous deux 616nents x, y de G sent comparables. Soit, par exenple,
XS}r . Alors 2(XAy) = 2X

Supposons que y-x = 2k, kz0. Alors
2xs2y + 2xA2y = 2x .

Soit y–x = –(2k+1 ) , kal. Alors 2(x-(2k+1))–2x = –2(2k+1)€G' +
2xA2y=2x .

Finalement, soit y-x = -2 Ir, kz3, k#21 , V jao, Alors 2(x-2k)-2x
= -2(2k) + 2m, VmzO + 2xA2y = 2x .

Donc G v6rifie aussi l’identit6 (2) .
C'est–a–dire, la classe de val-groupes v6rifiants les

conditions ( 1 ) et ( 2 ) est plus large que celle de l-groupes

2(x+2k)–2x = 2k+l€G' +
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repr6sentables .

11 rest e une question ouver te si les val-groupes
repr6sentables constituent ou non une vari6t6 de vaJ-groupes .

Soient naintenant T un tournoi et 4u£T 1’ enseInble de tous les
autonorphisrnes de T. 4utT =lunt de la loi de conposition des
applications est un groupe. Si on pose, pour f , ge4u£T ,

f'g +,, VteT ; rd)£g(t) ,
alor s 4utT ave c " g " constituent un val -groupe . Soit G un
val - sous-groupe de 4utT. S i t est un 616nent de T , alor s
1’ ensemble Gt={geC; g( t ) =t } est ait le stabilisateur de E.

Proposition 11. GF est un sous-groupe redressant de G, quel
que soit ecG.

On dtt qu’ un val–groupe G est transitif s ’ il existe un tournoi
T et un val-homomorphisrne injectif u : G+aaT tels que u (G) op6re
transitivernent dans T.

Th6or6yl e 12. Un val-groupe est transitif si et seulenent si il
contient un sous–groupe redressant X tel que 1’ intersection des
conjugu6s de 4 est 6gale a { O} .

Corollair e . Un val -groupe ab6 lien est transit if si et
seulement si iI est un to-groupe.

Th6ordDe 13. Si un val–groupe G contient un syst6ne de
sous–groupes redressants (G1 ; icl ) tel que n (G1 ; icl ) = { O} ,
alors G est isomorphe a un produit sous–direct des val-groupes
transitifs .

Th6or6D e 14. Si un val–groupe ab61ien contient un syst6ne de
sous–groupes redressants avec l’ intersection nulle, alors G est
un prodIlit sous–direct de to–groupes .
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Sur le Groupe de Galois de 1’Extension ab61ienne
maximale d9un Corps

C. U. JENSEN

Dans cet expos6 on va donner un apergu des resultats obtenus en
collaboration al’ec M. Prestel ([JPl],[JP2]).

D'abord nous faisons mention des questions, qui originellement fai-
saient Ie point de d6part de nos 6tudes.

Pour siruplifier nous ne consid6rons que des corps de caract6ristique
z6ro

Soient G un groupe Hui ou profini et if un corps. Par une G-extension
de K on entend une extension norma.Ie dc K , dont Ie groupe de Galois
est isomorphe a G

N(G, if ) soit le nombre dc /\--Iron-isorrrorphes G-extensions de K . A
1’aide des r6sllltats dans [F J] (Tllcorc’nf16.13 et Lemma 15.1) on voit sans
peine qu’iI existe pour cha(plc groupe nni G url corps if (d6pendant sur
G) tel que 0 < u(G , N ) < ac. On appclle la multiplicit6 de r6ali5ation
de G. not6e N(G), Ie minirnurlr L/kG , if) oil if parcourt Ies corps pour
lesquels N(G, A-) > 0. D'apr ds lc r6sultat ci-dcssrls on a K(C) < oo.

Il se trouve que 1/(G) = 1 potrr '-bcaucoul) de grc>upes", par excmple
&(G) = 1 si G est sirnplc ou tru groupe symln6triqlre, Le plus petit
groupe G oil N(G) > 1 est Ic groupe quasidill6dralc d’ordre 16 pour
lequel y( G) = 2. De plus 1/(G) = 3 si G est le produit direct du groupe
c)’clique d'orclre 2 et du groupe (lilr6dral d’or(Ire S

Il est une question ouvcrtc dc sayoir si w(G) = 1 pf >ur tout groupe a
ab61ien nni

C'ette question marIe de faqor1 naturellc a 1’6tude de 1:extension ab61ienne
maxirnale K„b cI’url corps it . Rappclorrs qrrc K ,b est la r6union fil-
trante dc toutes les extensions fillies rlorrrrales, dont Ie groupe de Gaiois
est ali61ien. Le groupe ( pr-ofini ) (lc Gitloi5 Gal( A-„b//f) est Ie quotient
G( if )/[G(It' ), G(if )] dtI groupe al)sc)lu de Galois C’(A- ) par rapport a
son sous-gr-oupe dcs cornrrltrtate\Irs [G(X). G(A- )]

Nous nous proposons de caract6riser les groupes profinis ab61iens de
type nni. qui peuvent acre rc3alis6 cornrne Ie groupe de Gdlois de 1’extension
ab61ienne Inaxiinalc d’un corps de caract6ristiqlre z6ro.



La structlitre d’un grorrpe profini ab61ien est bien connue. Mais, au-
para\'ant, nous fixons dcs notations.

Si n est un rrombre naturel, Z„ d6signe Ie groupe cyclique d’ordre n.
Si p est un nombre premier, zI, d6signe Ie groupe additif des nombres
p-adiques cnt;it’rs

Un groupe profini ab61ien G est produit direct de ses pgroupes de
Sylc>\v Gp, et un pro-p-groupe ab61ien de type fini est un module de type
fini sur l’anneau des nonrbres p-adiques errtiers. Puisque cet anneau est
principal, chaque pro-p-groupe ab61ien de type ani est un produit direct

DO

G 1, = 1 IZ;,’ x 2g
Z=1

(+)

oil pl 0 pour pres(luc torrt f.
Si G est le groupe de Galt)is dc 1’extension db61ienne maximale d’un

corps K , alors (Ilp. K ) , Ie p-groupe de S)’low de G, est le groupe de
Gale)is de la. p-extension al)61ienne maxim,IIe K , bCp) de A- (c.i.d. K ,b(pl
est la r6union de toutes les p-extensions ab61iennes finies de it).

Nous comment,ons a donner des conditions suffisantes pour qu’un pro-
p-groupe ab61ien de type fini Gr soit isornorphe h G(p, if ) pour un corpsIt convelrable,

TlIEOREME I. Gp soit tin pro-p-grfilrpe ab61ien de type fini 6crit comme
produit direct des grouT>es procycliques (#). Si Gp satisfait a la condition
suivant e

#{; 1 I'L = o} S A (Ap)

alors il cxistc un corps K de caract6ristique z6ro teI que G? est isomorphe
a G(p, if).

Si p = 2 la condition pIlls faible

#{/ 1 ; > 1 .t #1 = o} S A (A2)

est suffisantc poIIr l’existerrce d’\In cor1)s IC de cara.ct6ristique z6ro tel
r/IIe C2 est isorncuplrc & G(2. If)

Si 1’on so restre’int a corrsi(16rc’r (Ies corps 1( qui sont alg6briques sur
Q ( c.a.d. dcs sous-corps de a, Ie corps dcs nombres alg6briques), nous
a\’oils un r6sultat plus pr(’:cis

b)
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TlIEOREME 2. Soient p un nonrbre premier > 2 et Gp un pro-p-groupe
ab61ien. Alors il existe un soIls-corps A’ de a tel que G? = G(p, A-) si et
seulement si les invariants pi, A de Or dans (+) satisfont a la condition

(Bp)

Soient p = 2 et G2 un pro-2-groupe ab61ien, alors il existe un sous-corps
K de (2 tel que C2 = G(2, if ) si of seulement si les invariants pi, p de
(72 dans (+) satisfont a la condition

(B2)

Le r61e exceptionel drl nombre premier p = 2 est da au fait que les
seuls sous-groupes finib non-triviaux du groupe absolu de Galois G( K)
d’un corps I< sont d’or(Ire 2; Ie corps des inva.ria.nts correspondant a un
tel sous-groupe est 1111 corps ordonn6 maximal, qui d6finit un ordre sur
I< . Si 1’on prend en corrsi(16ratiorr Ie nonbre des ordres sur les corps, on
a le r6sultat sui\’ant

TlIEOREME 3. Soit it llm sotr.'i-corps de C2 tel que G(2, if ) est de type
nni. AIors les invariants dc G(2, if ) dans (+) satisfont a la condition

ac

EJ / / f g r11 1 + P S /1 1 + A (+)

oil rn est le nnml)re des orrlr'cs sllr K

R6ciproquernent si m , jli ct FI sont dcs nombres satisfaisant a la condi-
tion (+), alors iI ex;sfc url SOIIS-COIl is if de C2 a),ant cxactement rn ordres
et tel que les invdriants dc G(2, K ) coincident avec lcs nombres Fi et &

On d6duit rn,tintenant dcs crit arcs pour qu’un p-groupe ab61ien fini
peut 6tre r6alis6 comme lc groupe do Ga.lois d’exactement une extension
nornr ale,

3



TII EOREXIE 4. Soit G Ill I li-gro IIPC ab61icrr firri, 6(:rit coirrrrre

od II ll /> 0
Alor.'; iI exist e url ('orI>s I< bot ir le(IItel iJ y a exactcment une G-

extension de it

# { / 1 ; < 11 cl Hi > 0} S /I" (CP)

Si p = 2 IIne condition pIlls fItit>IC suffit
1/ exist.c tIll c(n-ps it Tx>Ill- ical!(I iI y a (:xactPrnf Int lille G -extension de

I< si
# {/ 1 1 < ; < Il c+ /11 > 0} S /I„ . (C2)

Dc plus, si 1’on sc rrstrcint tlllx s(>lds-corps if dc (2 on aura. un r6sultat
plus pr6cis.

TII BOliEXll: 5. Igolf

G = IIz:::

01) /in > 0.
Soil p > 2. .\tors il cxistc IIn SOIIS-COll>S K tIe Q tcl qulil y a exactement

une G-extelrsiorr cIe I( si ct s('ll](uriclIIt si

( Dp)

Dans Jc ras p = 2 i/ ttxistf' lui sfnrs-t'c)rl)s K cIc (? /)Ollr' lctluel il y a
cxactt:rrrcrrt. rlrrt' G-t'xtt'rrsi(nI rIc if si cf sr'lIJl:Irlr*rIf si

(D2)

RE:bl AltQUl=. II t'st urrc' (Ilt('stit)II c)rrvf'rtc' (to satoir si 1 c.'s corrditions suff-
isarrt('s (lzlrrs I(’s tlr(lori'rrrt's I t't 3 SOIIt llc’'('(’ssilit('s. Par exarnple, on ne sait

4
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pds s’il existc un corps K tcl que G(2, A-) = Z4 x Zs x Z2. C’est une (tues-
tion 6quivalente dc savoir s’iI cxistc un corps if tcl qu’il y a exactement
une (Z4 x Z8 x Zr6 )-extension de A'. Si p est un nombre premier impair
on ne sa.it pas s’iI cxiste un corps if trI que G( p, A ) = ZI, x Zr2 x Zr ou
s’iI existc un corps K porn lcqucl iI y a cxactcment unc (Zr, x Z1,2 x1 ,3 )-
extension de I\

Nous rcgarclorrs rrra.irrtcrrarlt le ca,s g6rr6ral d’url groupe profini ab61ien

de type fini. On a le r6sult;at stlivant

THEOREM E 6. Soil (; lin gr( IIII>C pr(lfilri aIx;I fell (Ir' tFI)e ani. II existe un
corps if tel tjllt' Ga.I( A„ I,//f ) = G' si les ill\'ariiIllt.q cIlt p-groupe de Sylow
de G satisfr)nt allx corr(Iitir iris ( Ap) cItI tir6ori lure I j>olrr chaql,Ie nombre
premier irnpair li ct les irn'2\riarrts; (1ll 2-grortp(' (Ie S)'low dc G satisfont
aux corrclitirrns ( A2) rlll tIlt’'(Irl’IIII ' I /

En cc c(>ncc'rrr(* lcs sous-rorl>s dc a lo TII I.;OII Eh1 E 2 sc g6n&alise cc>mme
suit

TlIEOREbI E 7. S(>it a 111 1 groIll)(! 1)rofirri al)6/lorI (Ie ty 1)e gni et de torsion
finie, (Cettc dcrrridrc c'r>II diff( III signific CHIC la p-tOTSlion de G s’annulle
pour pres(IIU: tollt riorrrJ>re I)rt'lllit'r -p.) Alors iI exist e un soIls-corps if de
Q tel que G = Gal( K„ b//f ) si oF s(:lllcllir'rlt si los irrvarian£s du p-groupe
de Svln\v do a srI tisfor rt a llx rrnlclit ir)Ils ( Bp ) chl fIrr;or-&nIe 2 pour cha(luc
noInbre I)II’IIi;(tr' irrrl); tir Ii ( it los irn'ariarrts (1ll 2-gro IIpc (Ie Sylo\v de G
aux COII(nflolis ( B2 ) (III tlrtlr)If'rnt ' 2.

Con}rrre (l:lrrs I<' cas (1(’s /J-gr0111)('s firris OII (I(’'(Irrit dcs crit ares pour
cjlr’un grorrl)c al)(’'li('rr firri I)(’IIt atr(’ r(’'alis6 ('ornrrr(' Ie groupe de Galois
pour exactcllr(,’Ilt tIll(? c’xt('rrsioll Iiotill tIl(?.

TlIEOIiExl E 8. Soit (; 1111 gl-( )II1)c' iII J(III( II firli. AloI's iI exist e 1111 corps
It porrr ](:url('I iI )' it r'x;l('F(IiI(II f IIII( I G-(!xtcrrsiorr dc K si Ie p-groupe
de Svlolv rlt' G siltisfilit a IiI c'rurrJ;fir)n ( Cp) riII tIlt’x>ri'I no + pollr clraque
divisc tlr bIll rr;c'r ' irrr1)air Ii (1(' 1-or(III’ (1(' G et 1(' '2-Syl(nv grorIpe de G
satisfait i in coli(litiorr ( C'2 ) r/11 tlr6oTi IIII c' 4.

De nit"'rrrc

L)



TlIEOREME 9. Soil a un groupe ab61ien fini. Alors iJ existe un sous-
corps if de a pour lcqucl iI y a exactement une G-extension de A- si et
seulement si le p-groupe de SyIow de G satisfait a la condition (Dp) du
thier bme 5 pour chaque di viseur premier p impair de l’ordre de G et le
2-Sylow groupe de G satisfait a la condition (D2) du th6orame S.

Pour terminer nous esquissons des exemples qui illust;rent Ie rapport
entre la structure d’un corps A’ et le groupe G(2, K). Pour simplifier
nous supposons que G(2, K ) est de type fini, c.i.d. [A’' : A’'2] est fini et
dorIC [A’' ; A’'2] = 2n pour un entier n. Pour eviter des cas triviaux on
suppose n > 0.

Ceci 6tant le groupe G(2, A’) peut s’6crire
GO

G(2, A-) = HZ;! x if
t=1

oil Hl = 0 pour presque tout i et E+;Z1 pi + A = n
Un r6sultat cdI&bre de Whaples [W] implique

(El): p = 0 ': )' Pr = n '( ), I( est pythagoricien et
formellement r6el .

Rappelons que le niveau s(A’) d’un corps K est oo si K est formellement
r6el et dans le cas non-r6el s(K) est le plus petit ender s tel que –1 est
une somme de s carr6s. L’assertion suivante est 6vidente:

(B2): Hl = 0 + s(if) = 1 ou 2 .

De plus on a

(E3); n = 2 , p1 = p = 1 + s(K) = 2 ou aa .

En g6n6ral on a (en utilisant Kk” p.191 dans [R])

(E4): Pr > 0 + s(K) = oo ou s(K) = 2e ,

Un r6sultat (Theorem 3) dans [K] implique

(E5): 112 > 0 + 2 ( A’2 et – 2 ( A’2

6
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On petIt en d6duire

(E6): Pr > 0 , p2 > 0 , pi = 0 pour i > 1, p = 1 +

8(A-) = aa ou sCA-) = 2' , 2

et

(E7): pl > 0 , p2 = p = 1, pi = 0 pour i > 1 +

s(K) = m ou s(K) = 2' , 3 Se S W
En particulier,

(E8): G(2, K ) = Z£1 x Z4 x & , PI $ 2 +X est formellement r6el .

II restent plusieurs questions ouvcrtes. Par exemple on ignore si un corps
1( est forc6ment formellement r6el, si Pr > 0, p = 1 et pi > 0 pour un
i > 1
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ORDERINGS AND VALUATIONS IN COMMUTATIVE RINGS

VICTORIA POWERS

INTRODUCTION

Valuation theory is one of the main tools for studying the reduced theory of
quadratic forms and higher level orders and the reduced theory of forms over fields,
see, for example [L], [BR]. There is a general theory of valuations in commutative
rings (see [LM], [M], and [G]), which in [MaI is used to study orderings and
the reduced theory of quadratic forms over commutative rings. In this paper
we list some further results obtained, namely on the real holomorphy ring of a
commutative ring and on orderings of higher level in commutative rings. Results
on the holomorphy ring of a commmutative ring are from joint work with E.
Becker. We do not give proofs here, since the work will appear elsewhere.

SI. PRELIMINARIES

Let R be a commutative ring with 1 and R* the units of it. For any subset
S g R, S- denotes Sr\R' . For a prime ideal p G R, let RCp) denote the quotient
field of R/p and op the canonical map R –} R/p b} RCP)

Valuations in commutative rings Let F be an ordered abelian group, written
additively, and set F,x, = FU {oo}, where a + oo = oo + a = oo and a < oo for
all a C F. A mapping u : R –> Fm is a valuation on R if u(0) = oo, u(1) = 0, and
for all r, y C R, u(r + y) : min{u(#), u(y)} and u(ag) = oCr) + u(g). We always
assume that F is the group generated by {r(r) I r e R}. (if not u'e replace F by
this group.) F is called the value gTozp of u. If u is surjective, we say u is a MaTtis
valuation

Suppose u : R o F,o is a valuation. Then it is easy to check that u–1(oa) is a
prime ideal in it, called the svpport of u and denoted supp(u). Let q := supp(u),
then there exists a unique valuation 8 : R(q) –+ F,x, with u = Dean. Conversely,
if q is a prime ideal in it and 0 : R(q) –} Fw is a valuation, then u := $cag is
a valuation on R. Since 8(7) = oo iff r = 0, it follows that q = supp(u). Two
valuations a and to are equivalent if supp(u ) = supp(tu ) and D = la. Note that if
u and to are equivalent and u is Manis, then u, is Manis. We identify equivalent
valuations, thus there is a 1-1 correspondence between valuations u and pairs
(q, A), where q is a prime ideal in R and i is a valuation ring in R(q). We write
o = (q, i), where q = supp(1, ) and i is the valuation ring of 8.

partially supported by the Emory University Research Counci1 and the Alexander von Hum-
boldt Foundation
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2 VICTORIA POWERS

Suppose A is a subring of R and I is a prime ideal in A. Then ( 4, 1) is called
a Man& valuation paiT if given any r C R\ I there exisbs some r e I such that
rr C A \ /. The connection between Manis valuations and valuation pairs is given
by the following:

Proposition 191. Given u = (p, i) a valuation in R. Set A := ap–1(A) and
J := ap–1 (1), where i denotes the maximal ideal of i. Then u is a Manis valuation
iff ( 4, 1) is a Manis valuation pair. Conversely, given a Alanis valuation pair
( 4, 1) then there exists a Manis valuation u = (p, I) such that A = ap–1(i) and
I = ap-1 (f).

DefInition. Given a valuation u = (p, i), let A = up–1(i) and I = ap–1 (1). Then
A is the called the ualtration Ting of u and I the prime ideal of ,4

Remark. Given a valuation o with valuation ring A and prime ideal I. Then
A = {r C R 1 u(r) ? 0} and I = {r e R I t'(r) > 0}. This follows easily from the
definitions. Also note that if u is a Manis valuation, then A determines u, since
in this case I = {r e R 1 zr e A for some r e R \ X}, see [G]

Proposition 1.2. Suppose there exists A’ e N such that. 1 +r e R* for all r e Rl
Then every valuation in R is a Mattis valuatIon

DefInition. Suppose A is a subring of R and p a prime ideal in A. Define Ap =
{r e R 1 rr e 4 for some z e .4 \ p} and p# = {r e R 1 zr C p for some / eA \ p}.
Then Ap is a subring of R and p# is a prime ideal in Ap

We say A is a PTifeT ring in it if (ip, p#) is a Maris valuation pair for all
prime ideals p in A

Theorem 1.3, Suppose ,4 is a subring of R such that & C A for each r e ER2"
Then A is a Priifer ring in R.

Remark. When R is a field and n = 1, Theorem 1.8 is a result of Dress [D]. Becker
proved Theorem 1.8 for R a field and general ?? [B3].

Higher Level Preorders and Orders For details on higher level orders and
preorders in commutative rings, see [MW, Sl]

A subset :F g B is a pTeorder of level n if :F + T E T, T - T S T, –1 ( T, and
R2" C T. If F is a field, then a preorder P of level n in F is an order of level n if
F' I P' is cyclic. In general, a preorder P of level n. in R is an outer of Zel;e/ n if
there exists a prime ideal p in R and an order P on RCP) such that P = ap–1 (P).
In this case we will write P = (p, P). Note p = P n –P. In this paper, “order"
will always mean an order of some level n. For a preorder T in R, let Or denotes
the set of orders P such that :F g P. (We reserve xT for the T-signatures of R,
see 54.)

A prime ideal p in R is a real prime if I?(p) has an order, iff there exists an
order P in R with P n –P = p. Given a preorder T in R of level n and a prime
idea,1 p, let TCp) = {op(f )ap(s)-2" 1 t e F and s cR \ p}. We say p is T - compatible
if TCp) is a preorder in RCp). It is easy to see that p is T-compatible iff –1 q F(p).
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Given an order P = (p, P) C Or, then by [BI, 3.4] ,4(P) = {a e RCp)

At = e P for some k e N} is a valuation ring in F(p) with maximal ideal
KP) = {r C nCp) 1 kt aCP for all I e N}. Thus we have a valuation (p, ACP)),
with valuation ring ACP) ;= {r e R 1 k I r e P for some k C N} and prime ideal
KP) := {r e R IEt re P for all I e N}. We denote this valuation by UP

82. THE REAL HOLOMORPHY RING OF A COMMUTATIVE RING

The results in this section are from joint work with E. Becker.
The real holomorphy ring of a field is the intersection of all valuation rings with

a formally real residue field. Marshall [Ma] has defined the real holomorphy ring
for commutative rings in which 1 + ER2 g n*. In this section we define the real
holomorphy ring of a general commutative ring and extend many of Marshall’s
results to our setting.

DefInition. The Tea! h,olomoTphv Ting of R is

X(R):= n 4(p)
PC.VCR)

Proposition 2,1, X(R) = {r e R 1 there exists k C IV with k 1 reP for all
P e X(R)}

Corollary 2.2.
(i) X(R) = {r e R 1 there exists k C N with k I r e P+ for all P e X(R)}
(ii) X(R) = {r C R I there exists k e N with A:2 – r2 e P+ for all Pe X(R)}

We use frequently the following theorem of R. Ben:

Theorem 2,3. ([Be, Theorem 6]) Given n e N and r e R. Then r e P+ for all
P e X„(R) iff there exist f , ff e Efi2" with rt = 1 + t'

Theorem 2.4.

(i) A(R) = {r e R I there exists k e N and f , t’ e ER2 with (k2 – r2 )f =
1 + fr}

(ii) X (R) = nap–1 (#(RCP))) , the intersection over all real prime ideals P in
R

Theorem 2.5. Fix n c N, Then H (R) = {r e R I there exists keN and
tt,t11,t2, tb e ER2n with (k + r)t1 = 1 + f; and (k – r )t2 = 1 + fl}.

Since X(R) + 0,we have –1 g =,R2 , Let RE := (1 + ER2)–1 R, then 1 +
ER-2 g Rr.- and there is a canonical isomorphism between X(R) and X(R=)-.
(p, P) b} (Pr , P), where ps denotes the image of p in Rs .
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Proposition 2.6. Given me N
Ru and (1 + ER2'1 )–1 R

Then there is a canonical isomorphism between

FoT the Test of this section we TeplUce R bv Rt.

proclaimThec)rem 2.7 (cf. [B3, 2.16, 3.3].)
(i) aCR) is a Priifer ring in R.

(ii) Fix n e N. Then X(R) = {r c n j k I r e ER2n for some k c N}
(iii) Fix n C N. Then A tR) is generated as a subring by the elements &

C E/?2nwith a

Theorem 2.8+ (cf. [B2, 3.3]) Let E(R) denote the group of units in H(R), then

E(R) n ER2 C nR2"

Remark. By [B3, 1.7] Eg e ER(z)2" for each n C N. We can improve this
result: Given S = R[.T], let X = (1 + =S2)-lS. Si„,, 1 aU$ e £R2 ,nd
1 IW; C ER2, it;{ e E(R) n ER2 by Corollary 2.2. Hence Kg e ER2" for
each n C N by Theorem 2.8

53.HIGHER LEVEL ORDERS IN COMMUTATIVE RINGS

Marshall and Walter [MW] have generalized results on higher level orders and
reduced forms from fields to rings with many units (a generalization of semilocal
rings). They do not use valuation theory and it appears that their techniques
will not extent to general commutative rings. In this section we use valuations to
generalize ideas and results on higher level orders to commutative rings

We fix a preorder T of level n. Let S = 1 + T, a mulitplica.tive set in R, then
S-1 Ra nonzero ring. It is easy to check that S- IT is a preorder in S-IR and there

is a 1-1 correspondence between Or and o s-, T given by P b} { as–2" 1 = e P
and s e S}. Under this bijection we have (p, P) b> (p/, P) where p1 denotes the
image of p in S–1 R. For the rest of this paper Ive replace R by S–1 R u.u.d, T by
S–IT , i. e., toe assume thTOttghOtbt that \ I- TER*

Lemma 3.1.
(i) Given r e R such that r ( Pn –P for all P e oT. Then r e R'
(ii) :r* = FIPeo, P*
(iii) R = T* – T'

Corollary 3.2. All valuations in I? are Alanis valuations .

De$nition. Let A(=F) = {r C R I I I ?' e :F for some I e N}.

By Theorem 1.3, we Irave:
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Proposition 3,3. ACT) is a Priifer rinh jn R

Compatible valuations One of the key notions in studying higher level orders
and forms in fields is that of compatibility between orders and valuations. For a
field F, a valuation ring /4 with maximal ideal J, and an order P on F, we say ,4
is compatible with P if 1 + 1 g P. In this case the “push(Iown of P along A” , the
image of Pn 4 in the field ,4/1, is an order. For details, see [BR, §2].

In our case the situation is a bit more complicated since in general a given
order and a given valuation will come from different residue fields of R. In order
to define compatibility we first need the following:

Proposition 3+4, Suppose u = (q, i) is a valuation with valuation ring ,4 and
prime ideal J. Given P = (p, P) e Or, then the following are equivalent.
a) pg q and Pn (A \ /) + / gP.

(ii) P(q) is an order in R(q), A is compatible with P(q), and aq-1(P(q)) = P U q.

DefInition. Suppose u is a valuation and P e Or. If the equivalent conditions of
2.1 hold, then we say u is compatible with P, written o ', P. We say I? is compatible
with T if u is compatible with some P e Or, written u N T. If u is compatible
with all P e oT then we say u is fully compatible with T, written u N/ T.

Remark. If it is a field then Pn(A\1)+1 g P iff 1+/ g P. Hence our definitions
agree with the usual definitions for fields, cf. [BR, B2]

Lemma 3.5. For all P C oT, op N P

Proposition 3,6. A valuation u = (q, i) is compatible with T iff q is a T-
compatible prime ideal and i N T(q) in R(q),

We want to define the pushdc)wn of an order along a valuation. Again, the
situation is complicated by the fact that the order and the valuation may come
from difFerent fields.

DeBnition. Given a valuation u with valuation ring ,4 and prime ideal /, let D“
denote the domain Ajl and If„ the quotient field of D"

Proposition 3.7. Suppose u is a valuation with valuation ring A and prime ideal
1 and v is compatible with P e oT, Let P denote the image of An P in D„ and
define f ; K„ –} Ajl by /((a + 1)/(b + /)) = (aq(a)/aq(b)) + f. Then J is an
isomorphism such that /(P({0})) = P(q), where P(q) denotes the pushdo lyn of
P(q) along i. (Here {0} denotes the zero prime ideaJ in D„ . )

DefInition. Given t, and P as above, P is the ptt3hdolun of P along u. Note that
since a -, PCP), we have that P(q), the pushdown of P(q) along A, is an order in
Ajl. Hence, by 2.4, P is a.n order in D„, namely P = ({0}, P(q)).

We define the pw$hcIown of T along u to be the image of TnA in D„, denotedI
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Lemma 398, Suppose u is a valuation in R which is compatible with T. Then T
is a preorder in D..

Proposition 3,9, Suppose u is a valuation fully compatible with T. Then the
map 0 : R' IT' –t R(q)*/T(q)* given by 0(rT' } = rT(q)* is an isomorphism,
where q = supp(t )

Theorem 3.10. Suppose u = (q, i, A, I) is a valuation in R with value group F
which is fully compatible with T. Then the sequence

1 –> i*/f* S R* IT' i F/o(T*) –} 1

where a((a + /)T* ) = aT- and p(rT' ) = tI(r)u(T• ) is exact

Remark. Theorem 3.10 is proven for the field case in [BR, B2]

As in the field case (see [BR, 55] ), we can define an equivalence relation on Or
using the valuations u?. This allows us to “break up” :F in pieces which are fully
compatible with a valuation

DefInition
(i) Suppose th and 112 are nontrivial valuations in R. For i = 1, 2, let Fi denote the

value group, Ai the valuation ring, and /1 the prime ideal of t,i. Following [G],
we say t)2 is coarser than 111 , denoted 1,2 S th , if there is an order homorphism
f : F1 –} F2 such that 1l2 = foul, iff (by [G, Proposition 4]) 441 S 42 and
I2 q it

(ii) Nontrivial valuations 111 and t?2 are dependent valuations if there exists a non-
trivial valuation coarser than both. Otherwise, they are independent.

(iii) We define the relation of dependency, denoted h,, on Or as follows: Given
P,Q C Or. If P is nrchimedean, then P N (? iff Ka) = ltP). If P is
nonarchimedean, then P 'v C2 if (2 is nonarchimedean and up and ue are
dependent valuations

Proposition 3.11. The relation of dependency is an equivalence relation on Or

DefInition. For P e Or, let [P] denote the equivalence class of P, called the
dept&(lency cZa3$ of P

Proposition 3,12. Suppose there are only finitely 1Iran.v valuations among {uP I
P e Or}. Then Or has only finit.ely man.r dependency classes. Let [Pl], . . . [Pt]
be the dependency classes of the nonarchimedean elements of oT and set, Ti '.=
npe[p1.]P. Then for each i

(i) On = [ a']
(ii) There exists a valuation ui such that 1'i S ?' p for each P C [Pi] and if i + j,

then ui and vj are independent valuations,

Theorem 3,13, Suppose there are only finitely many valrrations among {up
P C Or} and oT contains no archime(lean orders. Let [Pl], . . . , [Pt] and Tl , . . . Fr

be as in 3.6. Then the map

e ’. R* IT* –+ R* IT\* x -- . x Rf ITt,- ,
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where O(rT- ) = (rT1 *, . . . , rTk *), is an isomorphism

T-Forms and the Reduced Witt Ring We define signatures, T-forms and the
reduced Witt ring of T as in [MW]

For any abelian group G of finite exponent, let CV denote Ham(G, p), where p
denotes the complex roots of unity.

If F is a field and C2 a preorder in F then a Q-signature is any x e (F' )v
such that a* E kerN and ker x is additively closed. Note that if x is a e-
signature then kerI U {0} C Oe. A T -signature in it is a character a C (R*)v
such that there exists a T-compatible prime ideal p and a TCp)-signature x with
a = Xaap IRe , where I&+ denotes restriction to R*. In this case we have P =
ap–1(ker xU {0}) C Or and P* = ker a. Conversely, given P = (p, P) e Or
then there is a TCp)-signature x with P' = ker x. Hence there is a T-signature a,
defined by a = x’Dap IIZ+ , such that ker a = P*. We write xI, to denote the set of
T-signatures

An r-dimensional form over :F is a.n r-tuple p = {a1, . . . . a,}, where ai e R*
The sum and product of forms are defined in the usual way; For p as above and
T = <bl!••• i bE> -.

pOr = (al, . at 9 hI ! , bkl

and

p O T = <al bll- - ' , al bk ,-..,arbll - ?arbk > .

If p = (al, . . . a,> and a is a T-signature, we define aCp) = Ej=la(ai). Two
forms p and r are T.eqrriualent, denoted' p h. r, if aCp) = aCr) for all T-signatures
a. If in addition p and 7 have the same dimension, they are T .{sometTic, denoted
p = r. The Witt Ting of T, denoted TVr(R), consists of T-equivalence classes of
forms with operations induced by a and B.

DeRTrition
(i) We say a form p = <a1, . . . a,> is i80tropic if there exist t1, . . . f, C :F* U {0}, not

all 0, such that alt I + . . . + a,t, = 0. Otherwise, p is uni30tTopic
(ii) The Tepresented set of p. denoted DTk p) , is Ta\ + - - . + :ra,

Proposition 3,14, Suppose p = {al, . . . , a,> is a form , and b C R*. Then b e
DTt pT iff ap(b) e Dr(p6ap(p)) for all T-compatible primes p, where cvp(p) =
EapCa£ )-

Theorem 3,15. Suppose p and r are T -forms b:ItCh that p N r and dinI p < dinI
7. Then T is isotropic.

Corollary 3.16. p A r implies DTt p) = DT(T\
ReTrbaTkI. Theorem 3.15 and Corollary 3.16 are proven for rings with many units
in [MW, 3.5]

Spaces of Signatures Spaces of signatures (hereafter SOS) provide an abstract
setting for studying the reduced theory of higher lrvel forms over fields. For details
and terminology see [Mu] and [MM], The advantage of this abstract approach is
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that once we prove we have a SOS then much of the theory for fields generalizes
immediately to our setting. In [MW] it is shown that a preordered ring with many
units gives rise to a SOS. We cannot prove this in general in our setting, but we
can prove it for preorders :F which satisfy the conditions of 3.12.

We generalize some ideas from the theory of SOS’s:

D eRnitioTb. A 8igTratrLTe paiT is a pair (X, G) where G is an abelian group of finite
even exponent and X is a subset of GW. Two signature pairs (Xl , Gl ) and (X2 , C2 )
are equivalent if there is an isomorphism ci : C1 –} C2 such that av(X2) = X1,
where av is the dual isomorphism

Given signature pairs {(Xi, G,-)}}=1, we set a = C1 x . . . x Gt and X =
Xl O . . . CJXk, where Xi is identified with its image in CV, and 0 denotes disjoint
union. Then (X, G) is a signature pair, called the direct sum of the (Xi , G,)’s. We
write (X, G) = of=1(xi, Gi)
Remark

(i) A SOS is a signature pair which satisfies certain axioms, see [Mu], [MM]
(ii) Given a e Xr, we identify a with its image in kR+ IT-y and thus ( xT, R' IT' )

is a signature pair. If R is a field then (,\’r, R* IT+) is a SOS by [Mu, 1.10]
(iii) if a signature pair is equivalent to a SOS, then it is also a SOS
(iv) The direct sum of finitely many SOS’s is a SOS. This follows from [Mu, 2.6]

Theorem 3.17. Suppose T satisfies the conditions of 3,12. i.e., the set {up 1 P e
Or} is finite and oF contains no archimedean orders. Then (xT , R* IT') is a
SOS

Corollary 3+18. Suppose CF satisfies the conditions of 3. 12. Then there exists
a field K and a preorder Q g K such that (Xr, R* /T*) and (XQ,K-/Q' ) are
equivalent SOSls. In particular, LFr(R) is isomorphic to Me(if ).

Remark. The assumption that Or contains no archimedean orders is strange and
perhaps unnecessary. The problem is that the approximation theorem for indo
pen(lent valuations only applies to nontrivial valuations. In the field case, one
uses the approximation theorem for V-topologies, see [PZ]. However it is not clear
(to the author, at least ) how one could generalize this theorem to our situta.ion
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