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A universal Local-Global Principle
for the field of totally ©—adic numbers

by Florian Pop at Heidelberg

— Abstract —

Let K be a field. We say that a place p of A is of local type if the completion
K, of K at p is a local field. Equivalently, the valuation v, defined by p is
either archimedean, or non-archimedean discrete and with finite residue field. In
the first case K, is isomorphic to R or C, and in the second case, if F is the
residue field of v, snd p = charF is the residual characteristic, then K, is finite
over the p-adic field §, or isomorphic to the power series field F((t)).

As usual, if p is a place of local type of K we say that an algebraic element a
over K is totally p—adic if for all K —embeddings

1t K— K,

(a) liesin K,. Here K denotes the algebraic closure of A and K, denotes the
algebraic closure of K.

Let ¥ be a finite family of places of local type of K. We say that an algebraic
element @ over K is totally T -adic if a is totally p-adic for all p € E. By
general valuation theory it follows that set of all totally ¥ -adic elements of R is
a normal extension K= of A and moreover, if K,|K is a separable field extension
for all p € ¥ then AT|K is a Galois extension. One has the following:

Let K== be the relative algebraic closure of K in K, . Then the field KT s the
intersection of all conjugates in K of the fields K¢ (p € T).

In particular, the separable part of K™ is the maximal separable extension of K
in which all p € & split totally.

Let now KT denote the prolongation of & to A, Then for any q € K and the
corresponding p = q|x we have by the observation above: K, = K=,

The main result we proved is the following:
Main Theorem. The field K¥ satisfies the following universal Local-Global
Principle for the existerice of rational points on varieties:

Let V be a geometrically normal and irreducible projective variety defined over
KT . Then V has KT -rational points, provided V has simple K% -rational
points for all 4 € KE.

The above Main Theoremn provides us with the first interesting examples of PAC,
PRC, PpC and more generally, pseudo classically closed flelds:



Corollary. Let K be a number field and ¥ a finite set of places of K. Then
K* is pseudo classically closed, ie it satisfies the following universal Lokal -Global
Principle:

Let V' be an absolutely irreducible variety define over K. Then V has simple
K% —rational points, provided V' has K= -rational points for all g € K.

In particular:
(1) The field of all algebraic totally real numbers is pseudo real closed.
(2) The fleld of all algebraic totally p-adic numbers is pseudo p--adically closed.

As a further corollary of the main result above we can construct "visibie”
pseudo algebraically closed fields of alg ebraic numbers by the following method:
Let K be a number field and T a finite set of places of K. Further cousider L|KT
an arbitrary algebraic extension having the property: The compositums LK‘E are
algebraically closed for all q € ©. Then L is pseudo algebraicallv closed

This construction has interesting consequences for some special choices of L, na-
mely: Let A be a number field and L = K™ denote the compositum of KT
and Q™. Here as usual, @™ denotes the maximal nilpotent extension of Q.
Then K% is a Hilbertian PAC field. Applying a recent result of Fr ied-Vlklein.
proved independently and by othey methods also by Matzat, on the absolute Galois
group of a Hilbertian PAC field one gets the following interesting fact:

Thearem. The absolute Galois group of K¥™ is w —free,

This makes the conjecture that the absolute Galois group of @™ is w -free very
plausible, which in turn is further evidence for the Shafarevich conjecture. We
recall that the Shafarevich conjecture asserts that the absolute Galois group of
Q*® is w—free.

The most important ingredient in the proof of the main theorem is an exi-
stence theorem of Rumely type. The classical existence theorem of Rumely [RU],
Theorem 1.3.1 is one of the fundamental facts used in the proof of the decidability
of the ring 7 of all algebraic integers, see Cantor-Roquette [C-R], van den Dries
[vdD] and others. We followed the approach of Roquette from [R], where a very
simple proof of the Rumely existence theorem is given. By making some adjust-
ments the idea from [R] can be used to get the existence theorem with rationality
conditions. Using this one first proves the man theorem for 1-dimensional va-
rieties, ie for curves, by using the continuity of the roots of algebraic functions of
one variable. From the 1-dimensional situation one gets the general case by a
"Bertini type argument” uging a result from [G-J].

We should remark that similar results for global fields are contained in Moret-
Bailly’s paper [M-B], where the same idea of proof as in [R] is used for the Rumely
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existerice theorem. Nevertheless, our proof is rather elementary compared with
the one in [M-Bl
The results will appear in the DMV-Jahresbericht seties,

[C-R]

fvdD]

(G-J]

[M-B]

[R)

RU]

References
D. CANTOR, P. ROQUETTE, On diophantine equations over the ring of all alge-
braic integers, J. Number Theory 18 (1984), 1-—26
1. VAN DEN DRIES, Elimination theory for the ring of algebraic integers, J. reine
angew. Math. 388 (1088), 189—205.
W.-D. GEYER, M. JARDEN, On stable fields in positive characteristic, Geom. De-
die. 29 (1989), 335-376.
L. MORET-BAILLY, {Groupes de Picard et problémes de Skolem I, Ann. Sci. Ec.
Norrm. Super. 22 (1988), 161—179,
P. ROQUETTE, Solving diopkantine equations over the ring of all algebraic integers,
Atas de 8% Eacola de Algebra, Vol 2, IMPA 1984,
P. ROQUETTE, Reciprocity in valued function fields, 1. reine angew, Math. 375/376
{1987), 2353—258.
R. RUMELY, Capacity theory on algebraic curves, Springer LNM 1378 Berlin Hei-
delberg New-York 1939,

Mathematisches Institut, Im Neuenheimer Feld 288, D-6800 Heidelberg






CYCLIC ORDERED GROUPS AND MY-ALGEBRAS

Daniel Gluschankof

In the forties and fifties two -at the moment— unrelated
concepts deriveg from that of an ordered group appeared. The notion
of cyclic-ordered group (c-group) (see [9], [10], [13] and [14]) and
that of MV-algebra (see [4] and [5]}). The first one appeared as a
way of generalizing the notion of totally ordered groups. That
notion was further extended to that of partially cyclically ordered
groups. The notion of MV-algebras resulted from a succesfull attempt
of giving an algebraic structure to the infinite-valued lLukasievicz
propositional logics. In the last decade, that theory was fruitfully
linked with that of a class of C*—algebras (see [8]). The objective
of this work is to show that suitable subclasses of that notions can

be linked by the way of a covariant functor.

1. Definitions and first facts. A cyclically ordered group

(c-group) is a system <G,+,-,0,T> where <G,+,-,0> is a group (not

necessarilly commutative) and T is a ternary relation verifying the

following properties:

Cl. Vabe (if a # b # ¢ # a then exactly one of T(a,b,c) and T(a,c,b)
holds);

C2. Vabc (T(a,b,c) = a = b # c # a);

C3. Yabc (T(a,b,c) = Tl(c,a,b));

C4. Yabced (T(b,c,a) & T(c,d,a) = T(b,d,a)};

C5. Vabcd (T(a,b,c) — T(d+a,d+b,d+c) & T(a+d,b+d,c+d)).

A fundamental result of Rieger (see [9]) says that any such a
group is isomorphic to a quotient of a totally ordered group
(e—group) by the subgroup generated by a strong unit (a cofinal
element in its centre). In that case, if G = {G,+,-,0,u,=> is an
o-group with strong unit u, the quotient group Gu = G/<u> can be
endowed with a cyclic order by defining T(a,b,e¢) if and only if, for
the only representatives a,b,¢ such that O = a,b,c < u, either
a<b<corb<c<aorc=<a-<bholds.

The notion of c¢-group generalizes that of totally ordered



groups (e-groups) in the sense that for a c-group with the property:
for all a e G, T(-a,0,a) implies, for all n € N, T(-na,0,na) a
total order (compatible with the group operation) can be defined by
0 < a if and only if T(-a,0,a). Cenversely, an o-group can be
endowed with a c-group structure by defining T(a,b,c) if and only if
a<b<corb<c<acorc<ac<ahb,

A partially cyclically ordered group (pco-group) is a system
{G,+,-,0,T> where the axioms C2, C3, C4, C5 and
Clp. Vabc (T(a,b,c) = -aT(a,c,b));
C8. Vabc (T(a,b,c) == T(-c,-b,-a)} hold.
This last axiom is consequence of axioms C1..C5.

Observe that, Rieger’s theorem alsc holds in this case by
replacing the o-group by a partially ordered group (po-group) (see
[13] or [141).

An MV-algebra (see [4], [5] and [B]) is a system <A,®,*,-,0,1>
which satisfies the following universal identities:

m, xe(yoz) = (xoyleoz

m, xo0 = x

m, XQy = y®x

m xol = 1

4
m €Y = X

5

I -0 =1

6
m xonx = 1

7

m A xeyley = a(xeqylex
mg X*y = -|(-|x©-1y]

By defining xvy := (x*ay)ey and, by duality, xAy := =(axvay) we have
that <A,Vv,A,0,1> is a bounded distributive lattice.

Another approach for this structures is that of Wa jsberg
algebras (W-algebras) (see [6] and [11]). Such an algebra is a
system <A,—,9,0,1> satisfying the following universal identities:

Hl. (x = 5y) 5 ((y 5 2) - (x > z)) = 1;
W2. (x 5 y) -5 5y=1(y - x) > x

W3. (ax > y) > (y =5 x) = 1;

Wd. 1 — x = x;

W5. x — 0 = Ax;
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In the forties and fifties two -at the moment- unrelated
concepts der‘ive'd from that of an ordered group appeared. The notion
of cyclic-ordered group (c-group) (see [9], [10], [13] and [14]) and
that of MV-algebra (see [4) and [5]). The first one appeared as a
way of generalizing the notion of totally ordered groups. That
notion was further extended to that of partially cyclically ordered
groups. The notion of MV-algebras resulted from a succesfull attempt
of giving an algebraic structure to the infinite-valued Lukasievicz
propositional logics. In the last decade, that theory was fruitfully
linked with that of a class of C*-algebras (see [8]). The objective
of this work is to show that suitable subclasses of that notions can

be linked by the way of a covariant functor.

1. Definitions and first facts. A cyclically ordered group

(c-group) is a system <G,+,-,0,T> where <G,+,-,0> is a group (not

necessarilly commutative) and T is a ternary relation verifying the

following properties:

Cl. Vabe (if a # b £ ¢ # a then exactly one of T{a,b,c) and T(a,c,b)
holds);

C2. Yabe (T(a,b,c) = a # b # c # a);

C3. VYabe (T(a,b,c) = T(c,a,b));

C4. Vabed (T(b,c,a) & T{c,d,a) = T(b,d,al));

C5. Vabcd (T(a,b,c) = T(d+a,d+b,d+c) & T{a+d, b+d,c+d)).

A fundamental result of Rieger (see [9]) says that any such a
group is isomorphic to a quotient of a totally ordered group
{a-group) by the subgroup generated by a strong unit (a cofinal
element in its centre). In that case, if G = {G,+,-,0,u,=> is an
o-group with strong unit u, the quotient group Gu = G/<u> can be
endowed with a cyclic order by defining T(a,b,e) if and only if, for
the only representatives a,b,c such that 0 = a,b,c < u, either
a<b<corb<ec<aorcc«<a<h»holds.

The notion of c-group generalizes that of totally ordered



groups {a-groups) in the sense that for a c-group with the property:
for all a € G, T(-a 0,a) implies, for all ne N, T(-na,0,na) a
total order (compatible with the group operation) can be defined by
0 < a if and only if T(-a,0,a). Conversely, an o-group can be
endowed with a c-group structure by defining T(a,b,c) if and only if
a<b<corb<c<aorcc«<ac<hb.

A partially cyclically ordered group (pco-group) is a system
{G,+,~,0,T> where the axioms C2, C3, C4, C5 and
Cip. Vabc (T(a,b,c) = AT(a,c,b));
C8. Vabe (T(a,b,c) — T(-c,-b,-a))}) hold.
This last axiom is consequence of axioms Cl..C5.

Observe that, Rieger’'s theorem alsc holds in this case by
replacing the a-group by a partially ordered group (pe-group) (see
[13] or [14]).

An MV-algebra (see [4], [5] and [8]) is a system <A,®,+,-,0,1>
which satisfies the following universal identities:
m, xe(yez) = (xey)ez
m, xe0 = x

m, X0y = y@x

m x®l =1

4
l’n5 X = X

m 20 =1

6
m xo=x = 1

7
m A(axeyley = a(xeay)ex
m, xry = A (axeny)

By defining xvy := (x*ay)ey and, by duality, xAy := a(-xvay) we have
that <A,v,A,0,1> is a bounded distributive lattice.

Another approach for this structures is that of Wa jsberg
algebras (W-algebras) (see [6] and [11]). Such an algebra is a
system <A, —,9,0,1) satisfying the following universal identities:

Hl. (x 2 y) 5 ((y 5 2) 5 (x> 2)) =1;
W2. (x - y) 5 y=1(y - x) > x

W3. (x > y) - (y - x) = 1;

Wa. 1 — x = x;

W5. x —> 0 = =x;



D. Gluschankof

W6. =1 = 0;
W7. =0 =
By defining xvy := (x 2 y) — vy and XAY = ={nxvny)

{A,V,A,0,1> results also a bounded distributive lattice.

In [6] it is proved that a W-algebra can be thought of as an
M/-algebra (and viceversa) by identifying the respective 0,1 and -
and defining:

a — b := aeb and asb := =ma — b;
(recall that the operation * of the MV-algebra can be defined in

terms of ® and =).

In {4] it is proved that any M/-algebra A can be obtained from
an abelian lattice-ordered group (£&-group) with strong unit u
G = {G,V,A,+,-,0,u)> by defining:

A=1([0,ul ={a/0=a=su}; aobhb = (a + bl)au; =a = u-aand 1 = u.

Since any MV-algebra derives from an abelian £-group, in the
sequel group will stand for abelian group, homomorphism and subgroup
for homomorphism and subgroup for the respective structures

(o—groups, c¢-groups, pco-groups, f-groups, MV/-algebras).

2. Lattice pco—groups.
For any pco-group G, a partial order can be defined by
a = b if and only if a = b or T(0,a,b) or a = 0. (*)
This order makes every element “positive”. Observe that, in general,

= is not compatible with the group operation, for example, by

setting G = 2/32 with its natural cyclical order, the total
order (*) induced is given by the set of pairs
{(0,0},(1,1),(2,2), (0,1}, (0,2), (1,2)} which is obviously

nen—compatible, since 1 = 2 holds but 2 =1+ 1 =2 + 1 = 0 does not

hold.

We say that a group homomorphism f:G — H between pca-groups is
a pco-homomorphism if, for a,b,c € G such that T(a,b,c), if
fla) = F(b) = f(c) = f(a) then T(f(a),f(b),f(c)).

Observe that a pco-homomorphism is also a homomorphism for the

order given in (*).



Definition 2.1: A pca-group G will be called a lattice-cyclical-
group (and denoted fc-group), if, for the order defined in (*) the
structure <G,0,=> admits a distributive lattice structure with first

e lement.

Lemma 2.2: Let & be an fe-group, a,b e G. If a=a+ b (b =a+ b)
then b = a + b (a = a + b), implying avb = a + b,

Proof: Suppose 0 < a < a + b (the other cases are immediate). Then
we have T(0,a,a+ b), which, adding -(a + b) to each term, implies
T(-(a + b),-b,0) which, by axiom CB, is equivalent to T(0,b,a + b),

proving our claim. =

Definition 2.3: Let G be an le-group and H a subgroup.

i) It is called an Zc-ideal if it is convex for the order = (that
is, for all » € H, z € G, z = x implies z € H), and is an {-subgroup
(that is, for x,y € H, xvy € H).

ii) It is called a pec-subgroup if it is convex for the relation T

(that is, for x,y € H and z € G, T(x,z,y) implies z € G).

Observe that the fc-ideals (pc-subgroups) are the kernels of fc
(pc)~homomorphisms. Moreover, the Zc-ideals are lattice-ideals for
the structure <G,0,v,A>. Observe also that for cyclically ordered

groups, the T-convex subgroups are always trivial.

Lemma 2.4: Let G be an fZc—group and H a subgroup. H is T-convex if
and only if it is =-convex. Sec, any pc-subgroup preserving the
lattice operations is also an fc-ideal.

Proof: Let H be T-convex, a € H, b € Gsuch that 0 = b = a. If b =0
or b =a, it is immediate that b € H. So we can write T(Q,b,a),
implying, by T-convexity, that b € H.

For the converse, if H is =-convex, a,c € H, b € § such that
T(a,b,c). By axiom C5 we have T{(0,b-a,c-a). Since H is =-convex, we

conclude that b-a € H and then b € H. =

S0, without abuse of notation, we can speak about convex

subgroups.

Lemma 2.5: Let G be an fc-group, H € G an fc-ideal. H is prime if

and only if the quotient G/H

Proof: By a result on distributive lattices (see [1, II11.3]) we have

is cyclically ordered.



D. Gluschankof

that the lattice <9H LO,V,A> = (G,O,V,A}H is totally ordered if and
only if H is prime as a lattice ideal. Since the notion of primeness
is a set theoretic one, H is prime as lattice ideal if and only if
it is so as £c~ideal. It is immediate to verify that the induced
order = on a pco-group is total if and only if the group is

cyclically ordered. m

As in the case of {-groups, we can define the notions

of orthogonality, projectability and weak unit:

Definitions 2.6: Let G be an fe-group, g,h € G, A,B subsets of G.

i) g and h are orthogonal, gLh, if gah = 0.

ii) The polar of A, A = {x / Vala € A = x1a)}. B is called a
polar if B = A* for some A. If A= {g}¢ we shall write g' in
place of {g}".

iii) The double polar of A, A" = {x / Vy(y € A* = =x1y)}. Observe
that B is a double pelar if and only if it is a polar.

iv) G is called projectable if one can define a binary operation pn
on G, compatible for the left argument with the group
operations, such that, & = pra(g,h) implies k" € B* and

g - k" e .
v) u € G is called a weak unit if, for all g e G, glu implies
g = 0.

Lemma 2.7: Let & be a projectable d&e-group. Its polars are
Le-ideals.

Proof: let g,h € G, A a subset of G. Consider a generic a € A. By
distributivity, it is immediate that (gvhlaa = (gaa)v(haa). Since
g = h implies gaa = haa, we have that h € a* implies g € a'. Since
A" = Ha' / a € 4}, we conclude that A4* is a lattice-ideal. Suppose
gla and hia. By projectability, observe that g = pa(g,a) and
h = pa(h,a). Since pr is compatible at left with the sum and the
inverse, we have that pal(g + h,a) =g+ h and pnrl-g,a) = -g,
implying (g + h)ia and ~glLa. So we can conclude that 4° is an
le—ideal. =

Lemma 2.8: Let G be a projectable £&c-group, & hy,hy, by, by € G such
that h,,h, € bh*; h,,h, € b and g = h +h, = hgth, then h, = h; and



Proof: We have hy+h, = hy+h, implies h -h; = h,-h,. Since the polars
are fc-ideals, we have that the first member belongs to h* and the
second to K, implying that both equal zero. =

From the above proved lemma, we conclude that the decomposition
in terms of h" and h** given by pa( ,h) is the only one possible
and, since pa(palg,h),h) = palg,h) it can be well considered a

projection.

We recall (see [3; § 8.1]1) that given a language £, an
£-structure G and a family (Li)lEI of #-structures, G is a Boolean
product of the family (L1h£1 {denoted by G € F(I,(Lihel)) if and
only if:

i) G is a subdirect product of the family (Ll)1€I and
ii) I can be endowed with a Boolean space topology such that:

«) For any atomic £-formula ¢(x,,..,x,) and g, -8 € G, the
set {i /L kelg(i),.., g,(i)]} (denoted by [elg.,..,g 1D
is clopen;

B) For g,h € G and J a clopen set of I, there exists the element

of G given by g, v h (patchwork property).
Iy

) §W

Let (Ci)iEI be a family of c-groups and G a subgroup of IIC,. G
will be endowed with a pco structure by considering the product
ternary relation T = IIT,. That is (a,b,c) if and only for all i € I
T(a,b,,c;) holds.

The following proposition 1is analogous to a result of

Weispfenning on £-groups (see [12]):

Proposition 2.9: An £fc-group G is isomorphic te a Boolean product
(in the language <+,-,0,T,v,A>) of (non-trivial) c-groups if and

only if it is projectable and has a weak unit.

Proof: Let G € F(I’[Ci)lel) where (Ci)iel is a family of non-trivial
c-groups, For each i € I there exists h, € ¢ such that h = 0.
Since G is a subdirect product, there exist a family (h;%ﬁl <G
such that, for each i € I, h/(i) = h. By property ii-a) above, for
each i € I, the set [h/ # 0] is clopen. By compacity of I, a finite
subset J of I can be found such that the family {[h; 20} 7 ie}

covers I. Now, by property iii), an element h € G can be found such
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that [k # 0] = 0. (This line of argumentation on Boolean products is
standard and will not be repeated in the following proocfs). We shall
see that h is, indeed, a weak unit. For, suppose g € G and gah = 0.
Since G is a subdirect product and xay = 0 is an atomic formula, for
each i € I, g(i)ah(i) = 0 holds. But, for each c-group C,, h(i) is
different from 0, implying that g{i) = O for all i and then g = Q.

For the projectability, let g,h € G. Congsider the clopen subset of I
J = [h # 0}. By property iii) call h” the restriction of g to J and
h’ 1ts restriction to INJ. It is immediate to verify (since G is a

subdirect product) that g = &' + B” and B’ = pa(g, h).

For the converse. Let G be a projectable fc~group with weak unit u.
We consider the Boolean algebra B(G,u) with underlying set
{prlu,g) / g € G} and  operations palu, g)vpr(u, h) = pa(u, gah);
apnlu, g) = u-palu, g) = pralu, palu, g}); 0B = pr{u,u) = 0 and
1 = pa(u,0) = u. It is easy to verify that, if u,u’ are weak units,
we have the isomorphism B(G,u) & B(G,u’). So we can forget the weak
unit and write B(G) for the Boolean algebra of the group. Observe
that polars of G and ideals of B(G) are in a bijective
correspondence: If A is a polar of G, AnB(G) is an ideal of B(G).
If J is an ideal of B(G), J® = {2 € G/ u-pnlu, gl ¢ J} is a polar of
G. Both constructions are each other inverses.

Let I = #p(B{G)) the space of prime ideals of B(G). By the above
remark and lemma 2.7, we can identify it as a subspace of the space
of prime fc-ideals of G. That set of fc-ideals distinguishes points:
In particular, if g € G, g # 0, there exists a prime ideal P of B(G)

such that u-pr{u,g) ¢ P. Then B, p6 * 0. So G can be represented as a

G
subdirect product of the famili (Ci)iex of Zfc-grups given by the
quotients by the elements of I. Since, each of those {fc-ideals is
prime, by lemma 2.5, each C, results cyclically ordered for the
quotient of the relation T.

Finally we show that &G (considered as a subdirect product) has
properties ii-a) and ii-B) of the Boolean product definition. Any
atomic formula ¢(x) is of the form or T(t,(x),t,(x),t,(x)) or
t,(x) = t,(x) for t,,t,, t; terms in the group language.

For the sake of simplicity, we can suppose that the terms are Just

variables. We have, for a c-group T(x,,x,,x;) & T(0,x,-x,,x,-%,) <



= 0< xx < X%, & (2% Iv(xy-x,) = x5-x, & X-x, # 0 &
X37%; # 0. Let be now g,g,8, €6, call b= ~prlu, g,-g, ),
a= pn(u,gS-gl-((gz—gl)V(gS*gl)]) and ¢ = apalu, g;-g,). Now, by the
above considerations about the definition of T on = subgroup of a
product of c-groups, the element aabac of the Boolean algebra B(G)
corresponds to [T(gl,gz,ga)]. And since the elements of B(G) are in
correspondence with the clopen sets of ¥p(B(G)), we are done. For
the formula Xy = X and g,,8, € G, it suffices to take
a= pn(u,gl—gz), proving property ii-a).

Property 1i-8) results from projectability. Let g,h € G and J a
clopen set of I, there exists then ¢y € G such that
¢; = palu,u-cy) = prlu,c;) and that element “corresponds” to J. So,

we have the identity ;Y h = prlg,u-c;) + palh,c,). m

l1ng
3. The standard construction. We recall the result of
V.Weispfenning (see [12]), which states that an l-group is
isomorphic to a Boolean product of totally ordered groups if and

only if it is projectable and has a weak unit.

Let G be a projectable f-group and u e G a strong unit. Define

Es
(with g ranging by all the elements of G). Consider the quotient

the ¢-subgroup H(u) generated by all the elements of the form u

group G = S/ntuy

Proposition 3.1: The group G'u admits a natural fe-stiructure.

Proof: By the above stated observation, we shall consider
G e I"(I,(Ll)lﬂ) for some family (1.'.1JIEI of totally ordered
groups. First, observe that, for any gu € G'u there exists only one
2€ [0,u) ={h e G/0=<h<u} such that a =g: Let be g € G.
Since u is a strong unit, we have that there exists n € N such that
nu > {g|. For m € Z such that -n <= m < n, call I the clopen subset
of I given by [mu = g < (m+1)u). Calling &, the restriction of g to
I, we have that it has a representative in the interval [0,u).
Now, by the patchwork property, we «can patch all those
representatives and obtain an element a [0,u) such that a = gu.

It is immediate that any two of the elements in the interval are not

congruent modulo H(u).
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Now, for au,bu,cu € Gu, consider the representatives

a,b,c € [0,u). We shall define T(au,bu,cu] if and only if
I=[a<b<corb<c<aorcc«<a<bhb]

The proof that this defines a partial cyclic order is analogous to
that for the cyclic order case (see [10]}.

Call 5u the order induced by T. It is immediate to verify that
a = bu if and only if a =b for a,b representatives in [0,u).
Since for this order that interval is a distributive lattice with
first element, we can conclude that its lattice structure is copied,

isomorphically on G;. ]

The Boolean product characterization allows us to prove the

converse.

Proposition 3.2: Let G be a projectable £c-group with weak unit.
There exists an £-group G’ with a strong unit u such that G = G; in

the above sense.

Proof: We can suppose G € F(I,U%)iel) for some family (Ci)l€I of
c-groups. By Rieger's theorem, there exists a family (Llﬂﬂ)iel of
o-groups with strong units such that for each i eI, C =1L

' .
Consider now the direct product IIL;, and identify the elementé/iE%>G
with the elements in the product of intervals MN[0,y ). Now call G’
the £-group spanned by G and (ul]i€I in WL;. By construction, it
results that G € F(I,(LiheI) and it is immediate to prove that,

setting u = (y,) , G = G;. ]

1e1
4. The functorial equivalence. In the sequel we sghall restrict
ourselves to projectable M/-algebras, which can be defined
analogously to the case of £fc (¢) -groups. In particular, it holds
that a projectable MV-algebra is Iisomorphic to an element of
I“(I,(Li)]1€I for a family (Li)ier of totally ordered MV-algebras.
(This result is analogous of that of Weispfenning on #-groups and

can be found -implicitly- in [11]).
In an MV-algebra, an element a is called boolean if alna,

Llet A =<A,®,%,9,0,1> be an M/-algebra and consider the
equivalence relation ~ given by:

a~b if and only if there exist boolean elements a’ and b’ such that



a®a’ = beb’, ala’, bib’ and a’lb’. By considering A as a boolean
product over a space I, this corresponds to the identity
I=fa=blda=08&b=1]Ub =0 8% a = 1]. We show that -~ is,
indeed, an equivalence relation:

- By taking a' = 0, we prove that a-a.

- The reflexivity results from the definition.

- Let be a-b~c. We shall use the boolean product characterization of
the relation ~;

Iy =la=cl=(la=bilNb=cllMa=0&c=0lfa=1%&c=1];

I,=[a=08&c=1] =

= ([a = bJAlb =0 & ¢ = 1Nu(lc = blAlb = 1 & a = 0]);
In=[la=18&c=0] =

= ([a = blnlb =1 & c = 0])ulllc = blAlb = 0 & a = 1]).

A simple set-theoretic manipulation proves that I = I,vlul; and

then a-~c.

We define the group operations in G = A/ by
—(a/~) i=ma, .
Given a/ ,b/ € G, consider the clopen set J = [asb < 1] and define
(a/v) + (b/w) =((a@b]|Ju(a*b)iI\J}/~.

To verify that those operations are well-defined, since we are
dealing with subdirect products, it suffices to consider the totally
ordered case:

For that case we have a-b if and only if a=hb or (a =0 and b = 1)

or (2=1 and b = 0). For the difference: ﬂO/ e 1/ g, N 13 .
For the sum, it suffices tc consider the case a/ = 0/ and
G <b <1 . So we have O/~+ b/w = (Oeb)/~ = b/“? (l*b)/v = 1/~+ b/w.

We show that <G,+,-,0> is an abelian group:

Recall the theorem 16 in [B] which implies that the variety of
MV-algebras is generated by the MV-algebra @Q[0,1] with underlying
set {x € @ /0 = x = 1} and operations xey = 1a(x + y) and x = 1-x.
Sc any equation is true in the variety if and only if it holds in
©[0,1]. We shall consider then 4 = @[O0, 1].

- The commutativity results from that of @ and *;

- a, + O/~ S (a@O)/ = a

/ C /3
-a, ¢t (-(a/v)] =a,+ma = (a*wa{/V e O/V because ag-qa = 1;
- For the associativity, let a, ,b/ ,C, € G:

10
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Case (asb)ec < 1: Results from the assoclativity of e;

Case as®bh = 1 and (a*b)ec = 1: Since a*h = b, we have bec = 1 and
2 S (a*b}*c (1).

ae(brc) = 1ala + (b*c)) = 1a(a + a(=benc))) =

1ala + (1-(1A(1-b + (1-€))))) = 1ala + (1-(1a(2-(b + c))))) =
1ala + (1-(2-(b + ¢)))) = 1A(a + b + ¢ - 1) = (asb)ec because
ath = a + b - 1. And, by hipothesis, (a*b)ec = 1. So we have
a,+ (b, + c, ) = (asb)*c which coincides with (1).

Case asbh = 1, (a*blec < 1 and bec < 1:

then (a/v+ b/v) + c

(a/v+ b/w) te, = (asb)ec = 1a(a*d + ¢) = 1A(a(~ae=b) + c) =
1IA{1-(1A(1~a + (1-b))) + c) = 1a(1-(1Aa(2-(a + b))} + c) =
IA{1-(2-(a + b)) + c) = 1ala + b +c - 1) (2).

Since a®(bec) = ash = 1, we have a,+ (b/ te, ) = ax(bec). An

analogous treatment yields a*(bec) = (2).

It

The rest of the cases are treated in a similar way, proving the

associativy.

Now, for the relation T, given a/ ,b/ ,c/ € G, define the following
clopen sets: I, =[la<b<c) &(a#0orc=1)],
12=[(b<c<a)&(b*00ra=tl)],

Io=[(ec<a<b)&{c#0orb= 1]
3

Define a pc-order by T(a/v,b/u,c/w) if and only if I =Jg11j.1t is
immediate that T satisfies properties Clp, C2, C3, C4, C5 and CB.
The good definition results from the second condition in each Iy.
Since the order Ec defined on G by g ﬁc h if and only if T(0,g,h) or
g =0 or g = h coincides with the order = of A (modulo -}, we have

that it induces a lattice structure.

For the compatibility of + and T it also suffices to consider the
totally ordered case: Let be a,b,c,d € A such that a < b < ¢ < 1 and
d < 1.

= If ced < 1 we have aed < bed < ced <1;

- If aesd = bed = ced = 1, we have a*d < bxd < c*d;

If aed,bed < 1 and ced = 1 we have c*xd < d = ased < baed;

1

The case a®d < 1 and bed,ced = 1 is analogous.

If f:A — B is an MV-homomorphism, it is immediate to verify that

f/u is well-defined and then, an {c~-group homomoprhism.

11



Reclprocally, let G = <G,+,-,0,u,T> be a projectable fc-group with
weak unit. We can identify 6 with an element of ITI.(LihEIJ for
some family (Ll)l€I of e-groups, where the Boclean space I is the
one constructed in the second part of the proof of proposition 2.9.
The Boolean algebra B(I) of clopen sets of I (considered as a set
algebra) can be also identified with the algebra of supports of
elements of G.

Define A = {(g,a) € GxB(I) / supp(glna = @}.

We define on A the MV operations:

The O of the MV-algebra will be the element (0,®) and the 1 the
element (0,I).

Let (g,a) € 4, call B = I\supp(g). Define -(g,a) = (-g, (INa)nB).
Given (g,a),(h,B) € A, consider the clopen set ¥ = I\N(auB8) and the
elements of G g’ = glw and h’ = hb" Call 3 the clopen set
n([T(0,g’, g + )Idg = 0)hR’ = 0o]) which coincides with
yrlg’ = g + h’). (Observe that lemma 2.2 implies T(0,g’,g" + k') if
and only if T(O,h’,g" + B’)). And finaly n = [-T(0,g’,g" + h')]. Now
def'ine:

(g,e)eo(h,B) = ((g° + h’)la,aUBun).

The operation * is defined in terms of ® and -.

We shall proof that A4 = <A,e,*,4,0,1> is in effect an MV-algebra.
m: Let (g,a),(h,B),(k,¥) € A

By setting &8 = INauBuy, g’ = g|6’ h' = ’Ha , k' = 56 s

e=[g =g +h =g +h +k], n==end and

k=-lg’ =g +h =g +h + k], we have that
((g,x)eo(h,B))olk,y) = (g,a)alh,Blelk,y) =

=((g +Rn + k’)[n,auﬁuwux), implying the associativity.

mg: Let (g,a) € A4, B = I\supp(g), then =(g,a) = (-g, {INna)nB). Since
supp(-g) = supp(g), we have --(g,a) = (g, IN({(INa)B)AB) = (g, &)

because a £ B.

mg: We shall prove that -(-xeyley = xvy, proving then the equation
“(~xeyley = a(xeny)ex. Let (g,«),(h,B) € A. Using the Boolean
product characterization, we have -(axey)ey = xvy if and only if,

for each i € I,

12
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. _ [x(i) if y(1) = x(i);
(ﬂ(ﬂx@y)@y](l) = {y(i) if X(i) < y(.i]).'

which translated to the elements of A results:

(~(~(g, e)o(h,B))e(h,B))(i) =

(g, ) (1) if T(0,h(i),g(i)) or (g(i) # 0 and h(i) = g(i)) or
(g(i) = 0 and a(i) = 1) or k(i) = B(i) = 0;

(h,B) (1) if T(0,g(i),h(i)) or (h(i) =0 and g(i) = h(i)) or
(h(i) = 0 and B(i) = 1) or g(i) = ali) = 0;

Case g(i) = ali) = O:

~(g,a)(i) = (0,1) and then (~(-{(g,a)e(h,B))e(h,B))(i) =

= (a((0,1)e(h,B))e(h,B)) (i) = ((0,0)e(h,B))(i) = (h,BI(i).

OI a(i) = 1
(g, (i) (0,0) and then (-~(-(g,a)e(h,B))e(h,B))(i) =
= (=((0,0)e(h,B))e(h,B)) (i) = (-(h,B)e(h,B))(i) = (0,1) = (g,a)(1).

Case gl(i)

Case h(i) = B(i) = O:
(-(=(g, a)elh, B))o(h,8)) (i)
= (g, a)(i) = (g,a)(i).

Case h(1i) = 0, B(i) = 1:
(ﬂ(ﬂ(g,a)@(h.B])@(h,B))(i)
= (h,B)(i);

(0,1) =

(~(-(g,2)®(0,1))e(0,1))(1)

Case T(0,g{i),h(i)), that is 0 < g{i) < h(i) and a(i) = B(i) = O:
that implies -(g,a)(i) = (-g,0)(i) > (-h,0)(i) = ~(h,B)(i), and
then =(g,«)(i}e(h,B)(i) = (0,1), concluding that
(«(~(g,)e(h,8))e(h,B))(1) = 2(0,1)e(h,B)(i) = (h,B)(i).

Case T{(0,h(i),g(i)), that is 0 < h(i) < g(i) and a(i) = (i} = O:
Since -(g,a)(i) < -~(h,B)(i), we have =(g,a)(i)e{h,B)(i) < (0,1),
implying -(g,a)(i)e(h,B)}(i) = (-g + h,0)(i). Then
(7(=(g,a)o(h,B)}o(h,B))I(i) = (~(-g + h,0))e(h,0)}(i) =

((g = h,0)(i))e(h,0)(i) which is equal to (g,0)(i) because we

have T(0,g(i)-h(i),g(i)).

Case g(i) = h(i) # 0 = a(i) = B(i): We have =(g,a)(i) = ~(h,B)(i).

So (a{~(g,a)e(h,B))e(h,B)) (i) = (-(0,1)e(h,B))(i) = ((0,0)e(n,B)) (1)
which equals to (h,B)(i).

13



My, My, my, mg and m, are immediate and my can be considered a

definition.

If f:G —> H is an fc-homomorphism, observe that f induces a Boolean
algebra homomorphism B(f) = B(G) — B(H), where B(G) and B(H) are
the respective Boolean algebras of supports: Define B(f)(supp(g)) =
= supp(f(g)). The good definition results from the fact that f maps
weak units on weak units ans preserves the lattice operations: So,
let g.g" € G such that supp(g) = supp(g’). Let u be a weak unit in
G. The element g” = pa(u,g’) is orthogonal to both g and g’, and
both g + g” and g’+ g” are weak units. So since supp(f(g) + f{g")) =
= supp(f(g') + f(g”)) = I' (where I’ is the Boolean space of H) and
f(g’)1f(g”) we have that supp(f(g’)) < supp(f(g)). The proof of the

other inclusion is analogous.

Now, if A and B are the respective MV-algebras constructed
from G and H respectively, as above, define §:4 —— B by
flig,a)) = (f(g),B(f)(«)). We shall proof that it is an
MV-homomorphism: Let (g,a),(h,B) € 4, call «' = I\supp(g) (where I

is the Boolean space of G). Then f(a(g,a)) = f(-g, (INa)ra’') =

(f(-2),B(f)((INa)a’)) = (=f(g), (B(fICINB(f) («))nB(Ff)(e’))) =

(~f{g), (I'\B(f)(«})nB(f){a’))). By calling o” = I'\supp(f(g)), we

have also -f((g,a)) = (-f(g), (I’\B(f)(a))ne”). Since «” = B(f)(«’)

we have that f preserves the operation A.

For e, call ¥y =IN(awB), g =g,., " =h , 8d=qyrlg =g + n'l
ly

l¥
and n = a[g’ =g + B']. We have (g,a)e(h,B) = ((g’ + h') Ia,dUBUn)-

fllg,@)o(h,B)) = (f((g + R*) . ),B(f)(auBun)) =

|8
(f(g’la) * _f(hl’a ),B(f)(auBun)). By the other side, calling

u=B(f)(a), v =B(fYB), o =1IN\pw) = B(f)(y),

v=alf(g’) = f(g’) + f(h')] (because §f preserves the relation T),
gn = j‘(g) Io" R’ = -f(h)lo-’ and T = O‘T{g” < gu + h”], we have

fllg,a))ef ((h,B)) = (flg),we(f(h),v) =

14
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= ((f(g) + ‘f(h))lr'uWW)' Since, for each i € I,
g (i) = g' (i) + (i) if and only if f(g')(i) = f(g' (i) + f(k*)(i)}
because of axiom Cl1 and the fact that {f is an Zc-homomorphism, we

have that v = B(f)(n), proving f((g,a)e(h,B)) = f((g,a))ef((h,B)).

Finally we show that the compositions of both functors are the
identity:

Call ¥€ and MV, the categories of projectable lec-groups with weak
unit and projectable MV-algebras, respectively, ¥: MV — 26 and

$: ¥6 — MV the above constructed functors.

let G € ¥6, ®(G) = {(g,a) € GxB(I) / supp(glna = @} (as a set) and
¥ (G)) = <I>(G)/u {as a set). Observe that a = (g,a) ~ (h,B) = b if
and only if g = h: by taking a’ = (0,f\a) and b’ = (0,a\B), we have
a®a’ = beb’, a’lb’, aia’ and bib’, implying (g,a) ~ (g,B8). Suppose
now g # h, then the set [a=blfa=08&b=11Ja=1&b=0] is
strictly contained in I, implying that (g,e) is not equivalent to
(h,B). Now, for the operations, it is immediate for 0 and -. Let
Z,h € G, we can choice, for their images in ®(G), the elements (g, @)
and (h,®) respectively. By calling J = [(g,2)}e(h,2) < 11, we have,

in ¥ (2(G)), g+ h = (((g'g)e(h'g))IJU((g’e)*(h’z))ll\J)/-v. Observe

that J =g = g + h] and then (g,@)e(h,e) = ((g + h) , ,INJ]. So, it

10

holds g + h = (g + h) JU(((g,@)*(h,QJ]) ), =

ling 7/~

(g + h}IJu(-n(-a(g,z)s-:(h,a)) ], =

7~

Y.

because [-g = -g~h] = I\J. So, we can conclude that {in ¥(&(G))),

1ng

(g + b)), vl=((-g,@)e(-h,@)) = (g + h)|J U(ﬂ((-g-h.z)]' )

s |18g INT S~

gt h=(g+ h)hu(-(-g—h)) =g+ h (in G). We have,

Iy
proved, then, that ¥.® = Idc;'

For the converse, let A € MV. In ¥(A4A) the elements of A which
coincide modulo a Boolean element are identified. Let a € A. By
setting o« = [a = 1], we have that, in ®.¥(A4) the element (a/ , o)

15



corresponds to a (in 4). So, it is immediate to verify that the

application a — (a, ,a) gives a bijection between A and ®-¥(A4)

/-...’
preserving the 0 and 1. For the negation, [-a =11 =[a =0] =
= I\(ausupp(a/ )J) and call B = I\supp(a/ ). We have then ={a, ,a) =
= ("(a/w).(I\a)nB)) = (1a/J

defined map preserves also the negation.

/M’
I\(ausupp(a/ })) proving that the above

Finally, for the MV sum, let a,b e A, a =[a = 1] and B8 = [p = 1].

Define ¥y = IN(auB), (a, )’ = ( ) )

/e /0 by ly /~"

8 = 7r\[[(a/~)' = (a/v)' + (1% )’} and

= (a (b/w)’ = (b, )

5 M
- (blaf)ﬂ- ’

17=-|[(a/v) = (a/v) + (b/g) 1. So, we can write

(a, oo, ,B) = (((a,)" + (B_)")g .avBum).

/o~
Call now J = [al7©b|7 < 1]. We have then
(a/~) + (b/v) = (agb)IJn7U(a*b)|(Dd)nv’ which implies
(a/w,a)®{b/v,ﬁ) = (aeb)|Jn8U(a*b)|(Du)nauaUBUn' It is easy to

verify that J =8, implying (a, , a)@(b/ .B) = (a@b‘ vougun = aeb

/ 3

because aupBun = [aeb] = 1.
So we can state the

Theorem 4.1: The categories £6 and M/ are equivalent.
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The object of this paper is to survey the theory of spaces of order-
ings, its origins in field theory, and various generalizations and appli-
cations of the theory that have emerged in the past 15 years. A special
feaéure of the paper is a large list of references. Hopefully this will be
of some:value to a novice to the area. See [96,97,142] for additional re-
ferences.

Spaces of orderings were originally introduced [90,107-111,113] as an
abstract device for studying orderings and the reduced theory of quadratic
forms over fields [11,12,19—21,28.30.39—40.133,139—141,147]. In the field
case, spaces of orderings arise as follows: Take a field ¥ and a preorder-
ing T € F. (For example, take T = % Fz.) Take X = Xp := the set of all
orderings of F lying over T and G = Gy := F*/T*. Then the pair (X,G)
= (XT,GT) is a space of orderings. Elements of X are viewed as characters
on G. The theory has since been generalized in two different directions:

(1) To abstract quadratic form schemes satisfying the "linkage axiom”
[32,94,112,121,148]; equivalently, abstract Witt rings which are "strongly
representational™ [83]. These were introduced initially to study the (non-
reduced) theory of guadratic forms over fields. Linked guadratic form
schemes satisfying D<1,1> = {1} correspond exactly to strongly representa-
tional Witt rings which are reduced (nilradical = 0) and these, in turn,
correspond exactly to spaces of orderings.

(2) To Becker's reduced theory of diagonal forms of higher degree [7-
10,13]. Here, the abstract objects being studied are called "spaces of
signatures" [116,119,130-132,134,135,137], a level 1 space of signatures

being just a space of orderings. Here again, the initial examples come from

1

field theory: If T C F 1is a preordering of level n (for example, T

13

z an) then one has an associated space of signatures (XT,GT) where Gp

F*/T* and  Xq := all signatures of higher level lying over T.



Additional examples of spaces of orderings (and alsoc of the generaliza-
tions (1) and (2) above) are now known. In fact, {1} and (2) both apply not
just to fields, but to semi-local rings [83,84] and, more generally, to
rings with many units [120,158]. The theory of spaces of orderings applies
to skew fields [44,50,157], and even to planar ternary rings [68,72,73]. (2)
also applies to skew fields [136,138] and possibly also to planar ternary
rings, but there seems to be some problem in interpreting (1} even in the
case of skew fields: see [149].

Interestingly enough, in the abstract case, there is a natural common
generalization of (1) and (2) (see the Remark in [116]) and this is probably
worth investigating further. But first one needs to show, in the field case,
that the type of "higher level scheme" described in [116] actually occurs,
and this is not at all clear.

For a space of orderings (X,G), we give X the topology induced by
the embedding X € Hom{(G,{:1}). A "fan” in X 1is a closed set V E X
satisfying o,f8,y € V = afiy € V. For any finite fan V E X, |V| - k-1
where k 1is the Z/22-dimension of G/V¢Z If a,f € X (possibly a = B)
then V = {a,8} is a fan (called a "trivial” fan). In the field case, non-
trivial fans all arise in a natural way from valuations on F [20,30].

The Witt ring W = W(X,G) of a space of orderings (X,G) is the subring
of the function ring Cont(X,Z) generated by the functions ¢ -+ o{a), a € G.
The cokernel of the embedding W & Cont(X,2) is 2-primary torsion [85].
the group of units of W, X = all homo-

il

(X,G6) can be recovered from W (G
morphisms o : W » Z). Thus, the study of spaces of orderings is equivalent
to the study of their Witt rings. Elements of W are represented by

>, ay,...,a, € G, just as in the

anisotropic quadratic forms p = <ay,...,a n

classical case.
One can also form the graded Witt ring GW = GW(X,G) = B0 I

where 1 € W denotes the unique ideal of index 2, 1.e., the ideal of even

dimensional forms. The following question arises naturally in studying GW:
Is it true that p €W, p(ac) Z0mod 2% v o e X = p € 1X2 This is Lam's
"Open Problem B" [985]. This is true, for example, if the chain length is
finite [29,88,106,107], but little progress has been made on this problem.
For a space of signatures (X,G) of higher level, the Witt ring is
defined similarly. But now 2 gets replaced by the ring of algebraic in-
tepgers 2[w], ® a primitive 2n-th root of 1, and {21} gets replaced by
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the cyclic group (w) = {l,m,...,men'l}, where n is the level.

There are several main results in the theory of spaces of orderings:

(a) Classification of finite spaces of orderings (more generally,
spaces of orderings of finite chain length). Spaces of this sort are built
up from the singleton space by two operations called "direct sum" and "group
extension" The construction is essentially unique.

{b) A local-global principle for isotropy: A quadratic form p is
anisotropic over (X,G) iff it is anisotropic over some finite subspace of
(X,6).

(c) A representation theorem for the Witt ring: A continuous function
s . X »Z ds in W= W(X,6) iff pl, is in W(V,6/V) for all finite
fans V € X iff EUEV pl(o) £ 0 mod |V| for all finite fans V E X.

These results were proved first in the field case using valuation
theory [11,19,21,39,140,141] and, in the field case, valuation theory is
still the quickest way of proving these results. See [30] for a proof of
(b), {c) using the theory of R-places. For the proof in the general case, see
[108,110,111]. Also, see [113] for a generalization of (b}. Actually, there
are two proofs of (¢) in the general case: One is given in [110]. The other
involves using (b) to reduce to the case where (X,G) is finite, and then
applying (a) as in [11].

If n is given then, using (a), one can "count" the number of spaces
of orderings (X,G) with IG{ = 2% one can also compute the possible

values for |X| for given n [21,41,122,126]. (One knows n = ‘X] < 2n—1’

but one can say which values in the interval [n,2n_1] are actually
achieved.)

An interesting consequence of (c} is that G is determined by the
topological space X together with its fans: The natural embedding
G c» Cont{X,{:1}) identifies G with the group of all continuous functions
p : X » {1} satisfying Zoev plo) =0 (mod 4) for all 4-element fans V E
X [110].

in the field case (a),(b),{(c) generalize to the higher level situation
[13,135]. (b),(c) also generalize to the higher level situation in the case
of a ring with many units, using results in [120] to first reduce to the
field case. For abstract spaces of signatures, (a) 1s generalized in [137]
(but only in the finite 2-power level case) and (c) is generalized in [119}

and [132]. (b) is still open for abstract spaces of signatures.



The non-reduced analogue of (a) would be to classify all finite linked
quadratic form schemes. This has not been done, even in the field case. The
"elementary type conjecture” [112] asserts that all finite linked quadratic
form schemes are built up from quadratic form schemes of finite fields and
local fields by the non-reduced analogues of the direct sum and group exten-
sion operations. See [15,16,18,32,34,35,52-57,76,93,94,112,115,148,153,154,
165,167] for work related to this conjecture. If the elementary type
conjecture were proved true, them there would be interesting applications to
Galois cohomology [4.6.63,64], But unfortunately, the non-reduced theory is
not very well developed (as compared to the reduced theory). In particular,
there is no indication that the elementary type conjecture will be settled
in the near future.

For a field F, Char F # 2, let GWF denote the (non-reduced) graded
Witt ring of F and let H *F denote the graded cohomology ring

q
H*(Gal(Fq/F),Zfzz) where F_ = the quadratic closure of F. There is a

natural relation eF* c GWF(I» Hq*F which is conjectured to be a well-
defined isomorphism. In case the (non-reduced) Witt ring WF is of ele-
mentary type, this conjecture is true {4,6). Also, in this same case,
Gal(Fq/F) is describable recursively in terms of WF and the action of
Ga](Fq/F) on the roots of unity [63,64]). However, the question of which
Demuskin groups can occur (corresponding to the dyadic local -factors) is
still open. An interesting consequence of the results in {[63,64] 1s the
following: WF 1is of elementary type = WF[fa ] is of elementary type.
This lends some credence to the elementary type conjecture, at least in the
field case.

In the category of (abstract) spaces of orderings, there are several
constructions for producing new spaces of orderings from old. Direct sum and
group extension have already been mentioned. In addition there is an inverse
limit construction [109], a direct limit construction [92] and a sheaf con-
struction [112]. Direct limits of finite spaces of orderings are classified
in [92].

Given an abstract space of orderings (X,G}, one would like to be able
to find F and a preordering T ©€ F such that (X,G) = (XT,GT) (as spaces
of orderings). This is referred to as the "realization problem". One would
prefer that F be a field although some other structure (e.g., skew-field,

semi-local ring) might be admitted. The "best" situation would be If we
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could choose F to be a Pythagorian field and T = % F2. If (X,6) has
finite chain length then there does indeed exist a Pythagorean field F
such that (X,6) = (XT,GT) where T = X F2. The proof involves the
classification theorem (a) above, and a fair amount of wvaluation theory
[21.39]. Another case when a solution is known is when {X,G) has stability
index s 1. In this case also, by a result of Craven [37,140], (X,G) is
realized as (XT,GT) with F Pythagorean, T = I F2.

The realization theorem for finite chain length spaces of orderings
extends: (1) To quadratic form schemes: Any linked quadratic form scheme of
elementary type is isomorphic to the quadratic form scheme of a field [89].
(2) To spaces of signatures of higher level which are built up from the
singleton space using the two standard constructions [135].

For any space of orderings (X,G), o¢,r € X are said to be "connected"
if either o = r or there exists a non-trivial fan V &€ X with o,7 € V.
This Is an equivalence relation on X. The equivalence classes are called
the "connected components” of (X,G) [108,111,113]. The proof of the class-
ification theorem (a) for finite chain length spaces involves a careful
analysis of connected components. Generally speaking, connected compcnents
are useful in that they provide, in the abstract situation, a partial sub-
stitute for the valuation theory which is available in the field case.

Suppose (X,G) has finite chain length and F 1is a Pythagorian field
whose space of orderings realizes (X,6). In [62}, Jacob constructs valua-
tions on F associated to the non trivial connected components of (X,G);
also see [122]. In this way, each non-trivial connected component of (X,G)
is realized as the space of orderings of a certain 2-Henselian extension of
F in a natural functorial way. This construction has since been generalized
to the non-reduced case [5,15,16,160], culminating in [63,64].

Suppose (X,G) = (XT,GT) for some preordering T € F, F a field.
Then there exists a natural surjection A : Xqp =+ Mp where My is the space
of R-places on F compatible with T [11,28,30]. This satisfies:

{i) Each fiber A 1{or}, a € My is a fan.
(ii} EBach fan in Xq lies in hhl{a} u h_l{ﬁ} for some «,B € Mr.
(Possibly a« = $.)

(1idi) My is finite iff (XT,GT) has finite chain length.

This set-up is generalized in [111] and {113} to the idea of a "P-structure”

on a space of oarderings. P-structures always exist (even in the abstract



case), although they are not uniqgue. One cannot expect uniqueness since,
even in the field case, (XS,GS) = (XT.GT) 7 Mg 2 My [122].

In the case of a planar ternary ring F (in particular, a skew-field)
one has, as in the field case, a natural P-structure corresponding to the
space of T-compatible R-places on F, provided @ € F [71]. The same is
true for any semi-lccal ring or ring with many units, if one takes the
definition of R-place given in [117].

The "stability index" or "s-invariant" of a space of orderings (X,G)
is the smallest integer s 2 0 such that 2% € W(X,G) V¥ p E Cont(X,2Z)
(or ® is no such finite s exists). This is also characterized as the
smallest integer s such that each basic clopen set S8 £ X, § # @, has the
form S = {0 E X: o(ai} =1, i =1,...,s} for some ay,...,a4 E G. Apply-
ing the representation theorem (c), we also have a characterization of
gtability in terms of fans: It is the largest integer s such that there
exists a fan V E X with |V| = 2% [11,110]. The reader can refer to
[113,147] for the definition of the "local stability index" and the rela-
tionship between this and the (global) stability index defined here. As
might be expected, the case where the stability index is finite 1s somewhat
better understood but, at the same time, it is also more important, at least
from the viewpoint of application to real algebraic geometry [22,23,25,26,
105,118,144].

Recently, Brocker introduced another invariant of spaces of orderings
called the "t-invariant" [23,25,26]. This is defined to be the least integer
t 2 1 such that each clopen set 8§ € ¥ is expressible as a union of t
basic clopen sets. Using the isotropy criterion (b), and the classification
of finite spaces of orderings (a), Brocker gives a bound for t 1in terms of
the stability index s [25]. Unfortunately, it appears unlikely that this
bound is best possible, and moreover, computation of the best bound appears
to be difficult. Since the t-invariant also has application to real
algebraic geometry [25,26], it would be nice to understand better the rela-
tionship between s and t.

See [17,87,98] for an introduction to real algebra and real algebraic
geometry. Here, the theory of spaces of orderings (mainly of fields, but
also of semi-local rings) has application tc the problem of minimal genera-
tion of semi-algebraic sets in an algebraic set V € R", R a real closed

field [22,23,25,105,144) and also to the more general problem of minimal
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generation of constructible sets in the real spectrum X(A) of an arbitrary
commutative ring A [26,1i8]. Specifically, one uses results on the s-in-
variant and t-invariant and (in the case of algebraic sets) results on the
behaviour of the s—invariant under field extension {19,105].

At the same time (although, a priori, this has nothing to do with
spaces of orderings), one knows that, for any commutative ring A with Witt
ring WA, the cokernel of the total signature ~ . WA » Cont(X(A),Z} 1is 2-
primary torsion [31,102]. Applying this where A 1is the coordinate ring of
the algebraic set V & R  implies, for example, that the semi-algebraic
components of V can be separated by quadratic forms. Also, when A 1s the
coordinate ring of an algebraic set V, there is some smallest integer s
such that 2%Cont(X(A),Z) is in the image of ~. 1In [103], Mahe determines

bounds for s in terms of the dimension of V.
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ON THE EXISTENCE OF ORDERINGS OF PRESCRIBED LEVEL

Ralph Berr

Let A be a field. A subset P C K~ is called an ordering of level n. if
P+PCP.P-PCP K'|P=Z[?nZ

{see [1], [2]). Orderings of higher level are of importance for the study of sums of 2-nth
powers and forms of higher degree {see [1],[2},[4]). In this note we are concerned with
the characterization of the fields admitting an ordering of given level n € N. We will
only give an outline of the results. For details see [5].

Let n be a natural number. From [3] resp. [6] we get the following characterization.

Proposition 1: Let K be a field. Then the follourng statements are equivalent:
(1) K admils an ordering of level n.
(2) K admits a real valuation v with v(K) # pvi K for all prime divisors p of n.

The existence of such a real valuation corresponds to arithmetic properties of the field
K, as the following resuit of E. Becker {[1], Satz 2.14) shows:

Theorem 2: Given r € . K*. then the following statements are equivalent:
(1) r ey R*".

(2) v(z) € 2nv(K) for all real valuations v of K.

Applying the last two results we get

Corollary 3: Let p be a prime number. Then K admits an ordering of level p if and
only if

SR £ Y K.
This result cannot be generalized to arbitrary levels. as the following example shows.

Example 4: Let p, g be odd primes and n := p-g. Let R{.X') be a simple transcendental
extension of the real numbers R. Now set

K=RXI{(X—r) (X =r) |1 <1< rnrrn€REEN),

R is formally real, as p, ¢ are odd. Given a real valuation ¢ of A, then v(R’) is divisible
by exactly one of the primes p,q. Applying Proposition 1 we see that K admits no



ordering of level n. On the other hand it follows from the construction of K that there
exist real valuations v,w of K with v(K) # pv(K) and w(K) # qw(K). Hence K
admits orderings of level p as well as of level g. Thus we have found a field K satisfying

ZK"} .-,é ZK‘zn

and the stronger condition

ZK".' __/; ZI{2P1 Z I{? % ZI{“‘

but admitting no ordering of level n = p - ¢.

So far we have seen that Corollary 3 does not carry over to the general case. However.
an improved version of Theorem 2 will lead to a similar characterization of the existence
of orderings of arbitrary level. Let £ be a nonempty set of natural numbers. We denote

by
; Z K-t’.'n

the additive semi-group generated by the 2n-th powers A" with n € £. These 'sums
of mixed powers’ can be characterized as follows ([5], Theorem 1.2):

Theorem 5: Given L C N andz € ¥ K*2. then the following statements are equivalent:
(1) x € L3 K™,
{2) vir) € Unee2nv{ K) for all real valuations v of K.

Now let n € N and let £ be the set of prime divisors of n. Applying Proposition 1 and
Theorem 5 we get ([5], Proposition 1.5):

Proposition 6: Given n € N, then the following statements are equivalent:
(1) K admits an ordering of level n.
(2) K2 #£3%,, 2 K**, where p ranges over the prime divisors of n.

P L

This result shows that there is a natural relationship between orderings of higher level
and sums of mixed powers in fields. For details see [5].

In [2], E. Becker derived from Theorem 2 the existence of "Hilbertian identities’ of higher
degree {[2], Satz 4.1). In view of Theorem 5, the same arguments lead to the following
results about sums of mixed powers.

Theorem 8 Given k,in € N andn,,...,ng, $1....,5; € N, there erist natural numbers
L, =L{n,s,.m), i € {1....,k} such that for any field K of characteristiic 0 we have:
Forr; € K, 1€ {1,....k}. j; € {1,....8;} there exist y;;, € K. i € {1,...,k}j; €
{1..... l;} such that

B oa i EL
(zzm)=22ﬁw

=1 gi=1 =1 ji=1

Let Q be the field of rational numbers. As an immediate consequence we get the
existence of "Hilbertian identities’ for sums of mixed powers.

2



R. Berr

Corollary 9: Let X,,..., X, be indeterminates. For m,n,,....ny € N there erist
bLy....li€Naend f,, e QX,,....Xx). i=1,....k J. = 1,....1, such that

k 5
(X 4ok X =303

i=1 Ji=1
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