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A universal Local-Global Principle
for the field of totally E-adie numbers

by Florian Pop at Heidelberg

– Abstract –

Let K be a field. We say that a place p of A- is of local type if the completion
Kb of K &t p is a local Held. Equivalently, the valuation b, defined by p is
either archirnedean, or non-ar-chimetiearr discrete and with finite residue fIeld. In

the first case if, is isomorphic to R or C, &nd in the second case, if F is the
residue field of D, &nd p = char F is the residual characteristic. then it, is 6nite
over the p–adie field Qp or isonlowhic to the power series field F((f))

As usual, if p is a place of local type of if we yay that an algebraic eleruent
ovcr if is totally p –adie if for all A-–embeddings

z \R +k,

Kcl) lies in A-r . Here if dent>tea the algebraic closure of it and i, denotes the
algebraic closure of I<,

Let E be a finite family of places of local type of K. We say that an algebraic
element a over A- is totally E –a.dic if a is totally p–udic for all p C E. By
general valuation theory it follow8 that set of an totaljy E –adic elements of it is
a normal extension Kt of A- and moreover. if K, IA- is a scpz,rabl,I' field cxtensi,:,11

for all p e E then A-sIX is a Galois extension. One has the follo\\Ing:

Let K;L' be the relative algebraic closure of K in K, . Then the ReId K= is the
intersectIon of all conjugates in A- of the Eelds K :\K (p e =)
In particular, the separable part of KE is the maximal separable extension of K
in which all p C E split totally.

Let now C: denote the prolongation af : to 1{E , Then for any q c [S and the
corresponding p = qIN \ve have by the observation above: K, = KEE

The main result +ve proved is the following:

Main Theorem. The field KE satisfies the following universal Local-Global
Principle for the exIstence of rational points on varieties:

Let I“ be a, geometrIcally normal and irreducible projective variety defined over
If E . Then Y has K= -rational points, provided 1,’ has simple KE, –rational
points for aN q e KE.

The above Main Theorem pr(wideu us with the first interesting examples of PAC,
PRC:, PpC and more generally, pseudo classically closed fields
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Corollary. Let K be a rrurrrber field and S a finitc act of places of K. Then
A-E is pseudo classically closed, ie it satIsfies the following universal Lolul, Global
Principle,

Let. t’ be an absolutely i1 1-edu citIle variety define over KI . Then I/ has bilnple
KE –rational points, provided T/ has KR -rational points for all q e X::

In particular:

( 1) The field of all algebraic totally real numbers is pseudo real closed.

(2) The Edd of all algebraic totally p –&dic numbers is pseudo p --ad;call.y closed

As a further corollarY of the main result above Ive can construct "visible"
pseudo algcbraically closed fields of algebra.i( rlurnbers by the following method:
Let if be a nurnber field and E a finite set of places of A-. Further consider I 1If =
an arbitrary nlgebraic extension having the property: The cornpositunls LK} are
algebraic ally closed for all q e E, Then I is pseudo algebrair_-ally closed

This construction has interesting consequences for unIle special choices of 1, na-
mely; Let X be a. number field and E = IfE ''"1 denote the compoqjtum of KE
and Q“i1. Here as usual, Q"i1 denotes the rnaxirnal nilpcRent extension of Q-b
Then I<='-" is a Hilbertiau PAC field. Applying a recent result of Fried–\’81klein.
proved independently and by other methods also by Matzat, on the absolute GuIF}is

group of a Hilbertinn PAC field one gets the following interegting fact

Theorem, The absolute Galois group of liE’"11 is a –free.

This makes the conjecture that the absolute Gal(d6 group of Q"11 is ,u - free very
plausible, which in turn is further evidence for the Sh&farevich conjecture. \Ve
recall that the Shh.farevich conjecture asserts that the a.b80lute Ga lois groIIP of
Q•b is w –free.

The most important ingredient in the proof of the rrrain theorem is an exi-
stence theorem of ltumely type. The classical existence theorem of Rurnely [RU],
Theorem 1.3.1 is one of the fundamental facts used in the proof of the dccidability
of the ring 2 of all algebraic integers, see Cantor-Roquette [C–R], van den Dries
hdD] and others. \Vc foIIo\red the approach of Roquette from [R}, n’here a very
simple proof of the Rurnely existence theorem is given, By making some adjust-
merItS the idea frc)in [R I can be used to get the existence theorem with rationality
conditions . Using this one first proves the main theorem for 1–dimensional va-
rietie$9 ie for curves, by using the continuity of the roots of algebraic functions of
one variable. From the 1 –dirnensiuIral situation one gets the general t:hse by a
“Bertini type &rgrlment" using a result from [G-- Jl.

We should rernark that sinlilar results for global fields are contained in h4oret-

Bai11y’s paper [M-B], where the sarne idea of proof as in [R] is used for the Rumely
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F . Pop

existence theorem. Nevertheless, our proof is rather elementary con-„pared with
the one in [M-B].

The results will appear in the DMV-Jahresberic.ht series.

[C–R]
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CYCLIC ORDLRED CROUPS AND MV-ALCEBRAS

Daniel Gluschankof

In the forties and fifties two –at the moment– unrelated
concepts derived from that of an ordered group appeared. The notion
of cyclic–ordered group (c-group) (see [9] , [ 10] , [ 13] and [ 14] ) and
that of W-algebra (see [4] and [5] ) . The first one appeared as a
way of general izing the notion of totally ordered groups. That
notion was further extended to that of partially cyclically ordered
groups. The notion of W-algebras resulted from a succesfull attempt
of giving an algebraic structure to the infinite-valued Lukasievicz
propositional logics. In the last decade, that theory was fruitfully
linked with that of a class of C'-algebras (see [ 8] ) . The objective
of this work is to show that suitable suk>classes of that notions can
be linked by the way of a covariant functor.

1 . Def ini t i ons and first facts . A cycIIcal ly ordered group

(c–group) is a system <G, +, -, O, 7> where <G, +, -, O> is a group (not
necessarilly commutative) and T is a ternary relation verifying the
following propert ies
Cl. Wabc ( if a # b + c + a then exactly one of FCa, b, c) and 7( a, c, b )

holds ) ;

C2. \'dabc (Tta, b, c) + a + b + c + a) ;
C3. Wabc ( 7( a, b, c) + T( c, a, b) )

C4. Nabcd (TCb, c, a) & T(c, d, a) + TCb, d, a) ) ;

C5. Vabcd (T(a, b, c) + T ( d+a, d+b , d+c) & T ( a+d, b+d, c+d) ) .

A fundamental result of Rieger (see [9] ) says that any such a
group is isomorphic to a quotient of a totally ordered group
(a-group) by the subgroup generated by a strong unit (a cofinal
element in its centre ) . In that case, if G = <G, +, -, 0, u, s> is an

o-group with strong unit u, the quotient group Gu = G/<u> can be
endowed with a cyclic order by defining T(a, b, c) if and only if , for
the only representatives a, b, c such that O s a, b, c < u, either
a < b < c or b < c < a or c < a < b holds

The notion of c–group general izes that of totally ordered
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groups (o-groups) in the sense that for a c-group with the propertY:

for all ac G, T(-a, O, a) implies, for all nc IN, 7( -na, O, na) a
total order (compatible with the group operation) can be defined bY
0 < a if and only if T(–a, 0, a) . Conversely, an o-group can be
endowed wIth a c-group structure by defining f( a, b, c) if and only if
a < b < c or b < c < a or c < a < b.

A partially cyclically ordered group (poo-group) is a system

<G, +, -, O, T> where the axioms C2, C3, C4, C5 and

Clp. Wabc (7( a, b, c) + aT(a, c, b) ) ;

C6. V abc (T( a, b, c) > T( –c, -b, –a) ) hold.

This last axiom is consequence of axioms Cl. . C5.
Observe that , Rieger’s theorem also holds in this case by

replacing the o–group by a partially ordered group (pa-group) (see
[ 13] or [ 14] ) .

An W–algebra (see [ 4] , [ 5] and [ 8] ) is a system <A,©, *, a, 0, 1 >

which satisfIes the following universal identities:
x©(y©z) = (x©y)©z
X©0 = x

X©y = y©x

X©1 = 1

5

ml

m2

1113

In
4

m ==X = X

m aC) = 1
6

mT X©nX = 1

m8 n (=X©y)©y = =(X©Hy) OX

m9 X+y = n(ax©ly)
By defining xv), : = (x* ny)©y and, by duality, my : = n( axV ny) we have

that <A, v, A , 0, 1> is a bounded distributive lattice.

Another approach for this structures is that of Wajsberg

algebras ( V-algebras ) (see [ 6] and t 11 ] ) . Such an algebra is a
system <A, 4, a, 0, 1> satisfying the following universal identities

Wl. (x –> y) –> ( (y –> z) –) (x –> z) ) = 1 ;
W2. (x –> y) –> y = (y –> x) –> x;

W3. (=x –> ny) –) (y –> x) = 1 ;
W4. 1 –> x = x;
W5. x –> O = =x;
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CYCLIC ORDERED CROUPS AND MV-ALGEBRAS

Daniel C;luschankof

In the forties and fifties two -at the moment- unrelated

concepts derived from that of an ordered group appeared. The notion
of cyclic-ordered group (c-group) (see [9] , [ 10] , [ 13] and [ 14] ) and
that of W-algebra (see [ 4] and [5 ] ) . The first one appeared as a
way of general izing the notion of totally ordered groups. That
notion was further extended to that of partially cyclically ordered

groups. The notion of W-algebras resulted from a succesfull attempt
of giving an algebraic structure to the infinite-valued Lukasievicz
propositional logics. In the last decade, that theory was fruitfully
linked with that of a class of C+-algebras (see [ 8 ] ) . The objective
of this work is to show that suitable subclasses of that notions can

be linked by the way of a covariant functor

1 . Def ini t i ons and first fact,8 . A cyclical ly ordered group

(c–group) is a system <G, +, -, O, T> where <G, +, –, 0> is a group ( not
necessarilly commutative) and T is a ternary relation verifying the
following properties :

Cl. Wabc ( if a # b + c + a then exactly one of T(a, b, c) and T( a, c, b)
holds ) ;

C2. Wabc (T(a, b , c) + a + b + c + a) ;
C3. Wabc (T( a, b, c) > T(c, a, b ) ) ;

C4. Nabcd (TCb, c, a) & T(c, d, a) + TCb, d, a) ) ;
C5. Vabcd (T( a, b, c) + T( d+a, d+b , d+c) & T( a+d, b+d, c+d) ) .

A fundamental result of Rieger (see [9] ) says that any such a
group is isomorphic to a quotient of a totally ordered group
Co–group) by the subgroup generated by a strong unit (a cofinal
element in its centre ) . In that case, if G = <G, +, –, O, u, g> is an

o–group with strong unit u, the quotient group Gu = G /<u> can be
endowed with a cyclic order by defining T(a, b, c) if and only if , for
the only representatives a, b, c such that 0 s a, b, c < u, either
a < b < c or b < c < a or c < a < b holds

The notion of c-group general izes that of totally ordered
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groups (o-groups ) in the sense that for a c-group with the property:
for all ac G, T(-a, O, a) implies, for all nc IN, 7( -na, 0, na) a
total order (compatible with the group operation) can be defined by
0 < a if and only if T(–a, O, a) . Conversely, an o–group can be
endowed with a c-group structure by defining 7( a, b, c) if and only if
a < b < c or b < c < a orc < a < b.

A partially cyclical ly ordered group (pca-group) is a system

<G, +, -, O, T> where the axioms C2, C3, C4, C5 and
Clp. Wabc (T( a, b, c) + aT( a, c, b ) ) ;

C6. V abc (T( a, b, c) + T(–c, –b , –a) ) hold
This last axiom is consequence of axioms Cl. . C5

Observe that , Rieger’s theorem also holds in this case by
replacing the o-group by a partially ordered group (pa-group) (see
[ 13] or [ 14] ) .

An W-algebra (see [ 4] , [ 5 ] and [8] ) is a system <A,©, *, a, 0, 1>
which satisfIes the following universal identities:

ml x©(y©z) = (x©y)©z

% X©O = x

1113 X©y = y©x
m X©1 = 1

4

In_ ==X = X

m_ aO = 1
m X©lX = 1

7

ma I(nX©y)©y = =(X©ny)©X

ma X+y = =(=X©ay)
By defining XV), : = (x*=y)©y and, by duality, my : = =(HXV=y') we have
that <A, v, A, 0, 1> is a bounded distributive lattice

Another approach for this structures is that of Wajsberg

algebras (V-algebras ) ( see [ 6 ] and t 11 ] ) . Such an algebra is a
system <A, d, a, 0, 1> satisfying the following universal identities:

Wl. (x –> y) –> ((y –) z) –) (x –> z)) = 1;
W2. (x d y) –> y = (y –> x) –> x;
W3. (=x d =y) –> (y –> x) = 1 ;
W4. 1 –> x = x
W5. x –> O = =x:
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D. Gluschankof

W6. a 1 = 0;

W. nO = 1

By defining XVy : = (x –+ y) –+ y and my : = = ( axv ny)
<A, v, A, O, 1> results also a bounded distributive lattice

In [6] it is proved that a V-algebra can be thought of as an
W-algebra (and viceversa) by identifying the respective 0, 1 and a
and defining:

a db : = q aab and a©b : = =a –> b;

(recall that the operation * of the W-algebra can be defined in
terms of o and a ) .

In [4] it is proved that any W-algebra a can be obtained from
an abelian lattice-ordered group (Z-group) with strong unit u
G = <G, v, A, +, -, O, u> by defining:
A = 10, u] = {a / 0 S a S u} ; a©b = (a + b) AU; Ha = u- a and 1 = u.

Since any W–algebra derives from an abelian t–group, in the
sequel group wIll stand for abelian group, homomorph ism and subgroup

for hom c)morph i sm and subgroup for the respect ive structures
(a-groups, c-groups, p'co-groups, Z-groups, W-algebras) .

2. Lattice pco-groups.

For any poo-group G, a partial order can be defined by
a 3 b if and only if a = b or 7(0, a, b) or a = 0. ( + )

This order makes every element “positive”. Observe that , in general,
s is not compatible with the group operation, for example, by

setting a = Z/32 with its natural cyclical order, the total
order ( + ) i nduced is given by the set of pairs
{ (O, 0) , ( 1, 1 ) , C2, 2 ) , (0, 1 ) , (O, 2) , ( 1, 2 ) } which is obviously
non-compatible, since 1 $ 2 holds but 2 = 1 + 1 s 2 + 1 = O does not
ho 1 d

We say that a group homomorphism J: a –> A between pen–groups is
a poa-homomorphism if , for a, b, c c G such that r (a, b, c) , if
f ( a) + f ( b ) + f ( c ) # f( a) then r(f ( a) , J (b ) , J( c) )

Observe that a pca–homomorphism is also a homomorphism for the
order given in ( + )
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Definition 2.1 : A pco–group C will be called a lattice–cyclical–
group Cand denoted tc-group) , if , for the order defined in ( + ) the
structure <G, O, s> admits a distributive lattice structure with first
e lement

Lemma 2.2: Let G be an tc–group, a, b c G. If a $ a + b (b g a + b )
then b = a + b ( a $ a + b ) , implying avb s a + b
Proof : Suppose O < a < a + b ( the other cases are immediate ) . Then

we have r(o, a, a + b ) , which, adding – ( a + b ) to each term, implies
T( -( a + b ) , -b, 0) which, by axiom C6, is equivalent to T(0 , b , a + b ) ,
proving our claim. •

Definition 2.3: Let G be an Ec-group and X a subgroup.
i ) it is called an tc-ideal if it is convex for the order s ( that

is, for all x c A, z c G, z $ x implies z e X) , and is an Z–subgroup

( that is, for x, y e X, xvy c #)
ii ) it is called a pc-subgroup if it is convex for the relation r
(that is, for x, ye X and z c 6, T( x, z, y) implies z c G)

Observe that the Ec–ideals (pc–subgroups) are the kernels of tc
(pc)-homomorphisms . Moreover, the tc-ideals are lattice–ideals for
the structure <G, 0 , v, A>- Observe also that for cyclically ordered
groups, the T–convex subgroups are always trivial

Lemma 2.4; Let G be an tc–group and if a subgroup. X is T-convex if
and onIY if it is $–convex. So, any pc–subgroup preserving the
lattice operations is also an tc–ideal
Proof : Let if be T-convex , a c H, b cG such that 0 s b $ a. If b = 0
or b = a, it is immediate that b c N. So we can write r(o , b , a) ,
implying, by 7-convexity, that b e X.
For the converse, if X is $–convex, a, c c X1 b cG such that
T( a, b , cl . By axiom C5 we have T(0 , b–a, c-a) . Since X is $-convex,
conclude that b–a c N and then b c A. u

So, without abuse of notation, we can speak about convex
subgroups .

Lemma 2.5: Let G be an gc–group, Ng b an tc-ideal. X is prime if
and only if the quotient G /u is cyclically ordered.
Proof : By a result on distributive lattices (see [ 19 III . 3] ) we have
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D. Gluschankof

that the lattice <gH , 0, v, A> = <G, 0, v, A>N is totally ordered if and
only if X is prime as a lattIce ideal. Since the notion of primeness
is a set theoretic one, X is prime as lattice ideal if and only if
it is so as tc-ideal. It is immediate to verify that the induced

order s on a pco–group is total if and only if the group is
cyclically ordered. •

As in the case of Z-groups, we can define the notions
of orthogonality, projectabil ity and weak unit

Definitions 2.6: Let G be an Ze-group, g, h c G, A, B subsets of G.
i ) g and h are orthogonal, gTh , if gI,h = 0.

ii ) The polar of 4, A' = {x / Va(a c 4 + XIa) } . B is called a
polar if B = A' for some 4. If A = {g} we shall write g' in
place of {g}'.

iii ) The double polar of A, A“ = {x / Vy(y e A' + ny) } . Observe

that B is a double polar if and only if it is a polar
iv) G is called project able if one can define a binary operation in

on G, compat i bI e for the left argument with the group

operations, such that , h’ = in( g , h) implies h’ c h' and

g – h’ c h“
v) u € G is called a weak unit if , for all gc G, gIU implies

0g

Lemma 2.7 : Let a be a pro jectable tc–group. Its po lars are
tc– ideals

Proof : Let g, h c G, 4 a subset of G. Consider a generic a c 4. By
distributivity, it is immediate that (gvh) Aa = (gAa)v(bAa) . Since
g g h implies gAa s hAa , we have that h c a' implies g c a'. Since

A' = U{a' / a e X} , we conclude that A' is a lattice-ideal. Suppose

gla and hla. By pro jectabi I ity, observe that g = fmCg, a) and
h = p'tCb, a) . Since pa is compatible at left with the sum and the
inverse, we have that in( g + h, a) = g + h and pa(-g, a) = -g,
implying (g + h)la and -gla. So we can conclude that A' is an
tc–ideal. •

Lemma 2.8: Let G be a projectable Ec–group, g, hl, b2, b3, hI c G such

that b1, b3 c h'; b2, b4 c h*' and g = hI+b2 = h3+ ht then b1 = b3 and
b2 ht

5



Proof : We have hI+h2 = h/ht implies hI-h3 = h2-ht. Since the polars
are tc-ideals, we have that the first member belongs to h' and the
second to h“ , implying that both equal zero. •

From the above proved lemma, we conclude that the decomposition

in terms of h' and h“ given by pa( , h) is the only one possible
and, since in(pa(g, h) , h) = in( g, h) it can be well considered
projectIon

We recall (see [ 3; 9 8.11 ) that given a language !, an

!-structure G and a famIly (L1)1r T of g-structures, G is a Boolean

product of the family (Lt )ICI (denoted by a c r(I,(Ll)l€1) ) if and
only if :

i ) C is a subdirect product of the famIly (L1 ) SgT and

ii ) I can be endowed with a Boolean space topology such that
a) For any atomIc g-formula p(x1, . . , Xn) and g1, . . , gn c G, the

set (i / £1 k 9[g1 (i) , . . ,g„CI) 1} Cdenoted by 19[gl, . . , g„]])

is clopen;

B) For g, h c G and J a clopen set of 1, there exists the element

of a given by gIJv hll\J (patchwork property) .

Let (C;1)1€1 be a family of c-groups and G a subgroup of TTC;1. G
will be endowed with a pca structure by considering the product

ternary relation T = 1171. That is (a, b, c) if and only for all i c 1
7( a1 , b1 , cl ) holds.

The foI 1 owing propos i t ion is analogous to a result of
Weispfenning on Z-groups (see [ 12] ) :

Proposition 2.9: An tc-group G is isomorphIc to a Boolean product
( in the language <+, -, 0, 7, v, A>) of (non-trivial ) c-groups if and
only if it is projectable and has a weak unIt

Proof : Let a c F(I,(C1)1€1 ) where (C;1)1€1 is a family of non-trivial
c-groups. For each icI there exists b1 c a1 such that b1 # 0
Since G is a subdirect product, there exist a family (h; ) SrT SG
such that, for each i c r, hi ( i) = hl. By property II-a) above, for
each i c 1, the set [h; # 0] is clopen. By compacity af 1, a finite
subset J of I can be found such that the family { Ihl’ + 01 / j € J}
covers I. Now, by property iii ) , an element h c G can be found such

6
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that [h + 0] = 0. (ThIs line of argumentation on Boolean products is
standard and will not be repeated in the following proofs) . We shall
see that h is, indeed, a weak unit. For, suppose g c G and gAL = 0.
Since G is a subdirect product and XAy = O is an atomic formula, for

each i c /, g( i ) Ah( i ) = 0 holds. But, for each c-group al, h( i ) is
different from 0, implying that g( i) = 0 for all i and then g = 0.
For the project;ability, let g, h e G. Consider the clopen subset of I
J = [h + 0]. By property iII ) call h” the restriction of g to J and
h’ its restriction to 1\J . It is immedIate to verify (since G is a
subdirect product ) that g = h’ + h” and b’ = m( g, h)

For the converse. Let G be a pro jectable tc-group with weak unit u.
We cons i der the Boolean algebra B( G, u) with underlying set
{pa(u, g) / g c G} and operations m(u, g)vpn(u, h) = pa(u, gAn) ;
am(u, g) = u-P(u, g) = m(u, in(u, g) ) ; On = p'tCu, u) = 0 and
I = p'ft( u, 0) = u. It is easy to verify that , if u, u’ are weak units,
we have the isomorphism BCG, u) = BCG, u’ ) . So we can forget the weak

unit and write BCG) for the Boolean algebra of the group. Observe

that po 1 ars of G and Ideals of B( G ) are 1 n a b IJect ive
correspondence: if A is a polar of a, AnD(C) is an ideal of BCG)

If J is an Ideal of BCG) , Jc = {g c c / u–pa(u, g) c J} is a polar of
G. Both constructions are each other inverses.

Let I = Yp(BCC) ) the space of prime ideals of BCC) . By the above

remark and lemma 2.7, we can identify it as a subspace of the space

of prime Ec-ideals of a. That set of Ec-ideals distinguishes points:
In particular, if g c G, g # 0, there exists a prirne ideal P of BCG)

such that u–P( u, g) d P. Then g/pc # 0. So G can be represented as a

suk)direct product of the family (q ) SrT of Ec-grups given by the
quotientIS by the elements of 1. Since, each of those &–ideals is
prime, bY lemma 2.5, each C1 results cyclically ordered for the
quotient of the relation r.
Finally we show that G (considered as a subdirect product ) has
properties iI-a) and ii-F) of the Boolean product definition. Any

atomic formula PCI) is of the form or 7(t1(i),t2(i),13(i) ) or
tl (x) = t2CI) for t1,t2,13 terms in the group language

For the sake of simplicity, we can suppose that the terms are just

variables. We have, for a c–group T(x1,x2,x3) A 7(0,x2-x1,x3-x1 ) A

7



O < x2-xl < x3-xl A (x2-x1 )v(x3-x1 ) = x3- xl & x2-x1 # 0 &
x3-x2 # 0. Let be now g1, g2, g3 c G, call b = HP( u , g,2-gI ) ,
a = m(U,g3–gl–((g2–gl)V(g3–gI))) and C = Hp4(U.g3–g2). Now, by the
above considerations about the definition of T on a subgroup of a
product of c-groups, the element ahb AC of the Boolean algebra BCG)

correswnds to [T(gl,g2,g3) 1. And since the elements of BCC) are in
correspondence with the clopen sets of Yp(BCG) ) , we are done. For
the formula x1 = x2, and g1, g2 c G, it suff ices to take
a = pa(u,gl-g2) , proving property iI-a)
Property ii-B) results from proJect;abiIIty. Let g, h € G and J a
clopen set of 1, there exists then cJ e G such that
cJ = m( u, u-c j) = Hpa(u, cJ) and that element “correswnds” to J. So,

we have the Identity gIJv hll\J = pCg, u-cJ) + p(h, cJ) ' •

3 . The standard construction . We recal I the result of
V. Weispfenni ng ( see [ 12 ] ) , whIch states that an E-group is
isomorphic to a Boolean product of totally ordered groups if and
only if it is projectable and has a weak unit

Let G be a pro Jectable E-group and u e G a strong unIt . Define
the t–subgroup #(u) generated by all the elements of the form ul #
(with g ranging by a11 the elements of G) . Consider the quotient

group Gu = G/H(U) .

Proposition 3. 1 : The group G admIts a natural tc–structure
Proof : By the above stated observat ion , we sha1 1 cons i der

G c F( 1, (L1 )1€1 ) for some family (Ll ) 1€1 of totally ordered
groups. First, observe that, for any g eG there exists only one

a c tO, u) = {h eG / ash < u} such that a = g : Let be g c G,
Since u is a strong unit , we have that there exists n c IN such that

nu > Igl. For m c Z such that –n Sm < n, call in the clopen subset
of 1 given by jmu = g < ( nhl ) u] . CalIIng gm the restrIction of g to
In, we have that it has a representatIve in the interval [ 0, Um)

Now , by the patchwork property , we can patch al 1 those

representatives and obtain an element a c [0, u) such that a = g .
It is Immediate that any two of the elements in the interval are not
congruent modulo A(u) .

8
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Now, for a , b , c eG , consider the representativesU U U U
a, b, c c [0, u) . We shall define T(a , b , c ) if and only ifU U U

I = [a < b < c or b < c < a or c < a < b] .
The proof that this defines a partIal cyclic order is analogous to
that for the cyclic order case (see [ 10] ) .

Call s the order Induced by T. It is immediate to verify that
a $ b if and only if as b for a, b representatIves in [0, u)
Since for this order that interval is a distributive lattice with
first element, we can conclude that Its lattice structure is copied,
isomorphically on G.•

The Boolean product characterization allows us to prove the

Proposition 3.2: Let G be a projectable tc-group with weak unit
There exists an t-group G’ with a strong unit u such that G = G:, in
the above sense.

Proof : We can suppose a c r(/,(c1)1€1 ) for some family (q ) leI of
c-groups. By Rieger’s theorem, there exists a family (L1 ,u1 )1€1 of
o-groups with strong units such that for each i c 1, C1 = L1 /<u >
Consider now the direct product TIL1 and Identify the elements of G
with the elements in the product of intervals IT[O,u1 ) . Now call a’
the E–group spanned by 6 and (ul ) SeT in TTL1. By constructIon, it
results that a’ C r(1, (Ll )leT) and it is immediate tO prove that,
setting u = (u1)1€i, G a G=. •

4. The fwrctorial equivalence. In the sequel we shall restrict
ourse I ves to project abI e W–algebras , which can be def i ned
analogously to the case of tc (Z) –groups. In particular, it holds
that a proJectable W-algebra is isomorphic to an element of

F(I,(L1))1€1 for a family (L1)1€1 of totally ordered m–algebras
(This result is analogous of that of Weispfenning on Z-groups and
can be found –implicitly– in 111 ] ) .

In an W–algebra, an element a is called boolean if alaa

Let A = <A, ©, *, A, O, 1 > be an W-algebra and consider the
equivalence relation - given by:
a-b if and only if there exist boolean elements a’ and b’ such that

9



a©a' = bob’ , ala’ , bIb’ and a’ lb’ . By considering A as a boolean
product, over a space 1 , this corresponds to the ident i ty
I = [a = b]aa = 0 & b = 1]db = 0 & a = 1] . We show that - is,
indeed, an equivalence relation:

By taking a’ = O, we prove that a-a.
- The reflexivity results from the definition.
- Let be a-b -c . We shall use the boolean product characterization of
the relation -

11 = [a = c] = ([a = b]db = c] )aa = 0 & c = O Itja = 1 & c = 1] ;
12 = [a = 0 & c = 1] =

= ([a = b]db = O & c = 1] )v([c = b]rIb = 1 & a = 0] )
la = [a = 1 & c = O] =

= ([a = b]db = 1 & c = 0] )v([c = b]rIb = 0 & a = 1] )
A simple set-theoretic manipulation proves that 1 = /lul2u/3 and
then a-c.

We define the group operations in G = A/ by
- ( a , ) : = aa ,

Given a / v,b /v c G, consider the clopen set J = [a©b < 1] and define

(a/_) + (b/_) =((a©b) IJu(a*b) II\J)/_.
To verify that those operations are well-defined, since we are
dealing with subdlrect products, it suff ices to consIder the totally
ordered case:

For that case we have a-b if and only if a = b or (a = 0 and b = 1 )

or (a = 1 and b = 0) . For the difference: nC)/_ = 1/_ = 9_ = =1/_
For the sum, it suff ices to consider the case a , = O , and

0 < b < 1 ' So we have 0/_+ b /_ = (O©Z>) /_ = b /_= ( 1*b)/_ = 1/_+ b/_.
We show that <G, +, -, 0> is an abelian group:

Recall the theorem 16 in [6] which implies that the variety of
W-algebras is generated by the W-algebra a[o, 1 ] with underlying

set {x c O / O $ x $ 1} and operations x©y = 1 A(x + y) and ax = 1-x.
So any equation is true in the variety if and only if it holds in
a[o, 1 ] . We shall consider then A = O[0, 1 ]

- The commutativity results from that of © and *;

a / y o/_ = (a©O) /_ = a /J

- a / y ( -( a/_) ) = a / : =a/_ = ( a* Ha)/_ = 0/_ because a© Ha = 1 ;
- For the associativity, let a/ ,b / , c / € G:

10
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Case (a©b)©c < 1: Results from the assoclativity of ©;
Case a©b = 1 and (a*b)oc = 1 : Since a+b s b, we have b©c = 1 and

then (a , + b , ) + c , = ( a*b ) 'c ( 1 ) .
ao(b+c) = IA(a + (b+c) ) = IA(a + n(=b© HC) ) ) =
= IA(a + (1-(IA(1-b + (1-c))))) = IA(a + (1-(IA(2-(b + c))))) =
= IA(a + ( 1-(2-(b + c) ) ) ) = IA(a + b + c - 1 ) = (a*b)©c because

a*b = a + b - 1. And, by hipothesis, ( a*b ) ©c = 1. So we have

a , + (b , + c , ) = (a*b) *c which coincides with ( 1 )
Case a©b = 1, (a*b)oc < 1 and boc < 1

(a , + b , ) + c , = ( a*b )oc = IA(a*b + c) = IA(=(=a© Hb) + c ) =
= IA ( 1–( IA( 1–a + ( 1–b) ) ) + c) = IA( 1-( IA(2–(a + b ) ) ) + c) =
= IA( 1-(2-(a + b) ) + c) = IA(a + b + c - 1 ) (2)
Since a©( b©c ) z a©b = 1, we have a , + (b , + c , ) = a*(b©c) . An

analogous treatment yields a* (b©c ) = (2)

The rest of the cases are treated in a similar way, proving the
assoc i at ivy .

Now, for the relation 7, given a , , b , , c , c G, define the following
clopen sets: 11 = [(a < b < c) & (a # 0 or c # 1)],

l2 = 1 (b < c < a) & (b + O or a # 1 ) 1 ,
13 = 1 ( c < a < b ) & ( c + 0 or b + 1 )] .

3

Define a W-order by T('/_, b /_, ' /_) if ''d ''ly if I =jylrj . It is
immediate that T satisfies properties Clp, C2, C3, C4, C5 and C6
The good definition results from the second condition in each II
Since the order s defined on G by g = h if and only if T(0, g, h) or
g = O or g = h coincides with the order s of a (modulo -) , we have

that it induces a lattice structure.

For the compatibility of + and T it also suff ices to consider the
totally ordered case: Let be a, b, c, d c A such that a < b < c < 1 and
d < 1
- if c©d < 1 we have a©d < b©d < c©d <1

- if a©d = b©d = c©d = 1, we have a*d < b*d < c*d;
- if ac')d , bc')d < 1 and c©d = 1 we have c*d < d g a©d < b©d ;
– The case a©d < 1 and b©d , c©d = 1 is analogous

If f : 4 o B is an W–homomorphism, it is immediate to verify that

f/_ is well-defined and then, an Ec–group homomoprhism.
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Reciprocally, let G = <G, +, -, 0, u, T> be a projectable tc-group with
weak unit . We can identify G with an element of F(I,(L1 ) 16_ T ) for
some family (LI )IrT of c-groups, where the Boolean space I iS the
one constructed in the second part of the proof of proposition 2.9
The Boolean algebra B( 1 ) of clopen sets of 1 (considered as a set
algebra) can be also identified wIth the algebra of supports of
elements of a

Define A = { (g, a) c GxB(1) / supp(g)rw = o} .

We define on A the XY operations:
The 0 of the W-algebra will be the element (O, a) and the 1 the
element (0, 1 ) .

Let (g, a) e X, call p = 1\supp(g) . Define A (g, a) = ( –g, ( 1\a)M )
Given (g, a) , (h, B) c A, consider the clopen set T = 1\(auP) and the

elelne11ts of G g’ = gl7 and h = bIz ' Ca11 a the cloWn set
In( [T(0, g’ , g’ + h’)]tjg’ = o]ah’ = 0] ) which coincides with
TrIg’ s g’ + h’ I . (Observe that lemma 2.2 implies T(0,g’,g' + h’ ) if
and only if F(0, h’ , g’ + h’ ) ) . And finaly B = jaT(0, g’ , g’ + h’ )] . Now

def i ne

(g,a)©(h,B) = ((g’ + h’ ) la ,auPvD).

The operation * is defined in terms of © and a.
We shall proof that A = <A,©, *, a, 0, 1> is in effect an W-algebra

m1 : Let (g, a) , (h, B) , (k, 7) c 4

By setting a = l\uuRuT , g’ = gl6 , h’ = hl6 , k’ = 56 ,
c = jg’ s g’ + h’ s g’ + h’ + k’ ], I) = end and
K = = jg’ s g’ + h’ s g’ + h’ + k’ ] , we have that
((g,a)©(h,P))©(k,7) = (g,a)©(h,P)©(k,7) =

= ( (g’ + h’ + k’ ) in,auPu7uK) , implying the associativity

ms: Let (g, a) c 4, P = 1\supp(g) , then = (g, a) = (-g, ( 1\a)M) . Since
supp(-g) = supp(g) , we have == (g, a) = (g, 1\( ( 1\a)rW)rB) = (g, a)
because a g P.

m8: We shall prove that n(=x©y)oy = xvy, proving then the equation
=(nx©y)©y = =(X©Hy)©x. Let (g, a) , (b, B) c A. Using the Boolean

product characterization, we have n(=x©y)©y = xvy if and only if ,
for each i c I.

12
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(-(-x©y)oy)( i) = {}}{: }} {}{: : ;E{3i. ’
which translated to the elements of A results:

(=(A(g,a)©(h,P))©(1),B) ) (1) =

(g,a)( 1) if r(o,h( 1),g( i)) or (g(1) + 0 and h( i) = g( 1))
(g( i ) = O and a( 1 ) = 1 ) or h( i ) = p( i ) = O;

(h, B) ( 1 ) if T(0, g( 1 ) , h( 1 ) ) or (h( i ) # 0 and g( i ) = h( i ) )

( h( i) = 0 and p( i ) = 1 ) or g( i ) = a( i ) = 0;

Case g( i) = a( i ) = 0:

a (g, a) ( i ) = (O, 1 ) and then (A(A(g,a)©(h,p))©(b, B) ) ( i ) =

= (=((o,I)©(h,B))©(b,B))(i) = ((o.o)©(b,P))( i) = (h,P)( i)

Case g( i) = O, a( i ) = 1:

a(g,a)( 1) = (0,0) and then (n(=(g,a)©(1),P))O(b,B))(i) =

= (=((O,O)©(h,P))©(b,B))( 1) = (=(h,P)©(h,B))( i) = (0, 1) = (g,a)( i).

Case h( i ) = p( 1 ) = 0:

(=(A(g,a)©(h,P))©(h,B))(j)=(=(=(g,a)©(O,O))©(0,0) )(i) =

= an(g,a)( i) = (g,a)( 1)

Case h( i ) = O, p( i ) = 1

(nCH(g,a)©(h,P))©(1),B) )(1) = (A(=(g,a)©(0, 1))©(0, 1))( 1) = (0, 1) =
= (b,B)( i);

Case T(0, g( i ) , h( i ) ) , that is 0 < g( i ) < h( i ) and a( i ) = p( i ) = 0:

that implies a (g, a) ( i ) = ( -g, 0) ( i ) > (-h, 0) ( i ) = 1 (h, B) ( i ) , and
then =(g,a)(i)©(h, B) ( i ) = (0, 1 ) , concluding that
(=(=(g,a)©(h,P))©(h,B) )(i) = =(0, 1)©(h,B)( i) = (h, B) ( i).

Case T(0, h( i ) , g( 1 ) ) , that is 0 < h( i ) < g( 1 ) and a( i ) = p( i ) = 0:
Since = (g, a) ( i ) < = (h, B) ( i ) , we have =(g,a)(i)©(h, B) ( i ) < (O, 1 ) ,
implying A(g,a)(i)©(h, B) ( i ) = (-g + h, O) ( i ) . Then

(=(n(g,a)©(h,B))©(1),B) )( i) = ( a(-g + h,O))©(b,0))( i) =
( (g - h, 0) ( i ))©(h, O) ( i ) which is equal to (g, 0) ( i ) because we

have 7(0, g( i )–h( i ) , g( i ) ) .

Case g( i ) = h( i ) + O = a( i ) = p( 1 ) We have a (g, a) ( i ) = A (h, B) ( i )

So (=(A(g,a)©(h,B))©(b,B))(i) = ( A(0, 1)©(h,P) )( 1) = ((O,O)©(h,B) )( 1)

which equals to (h, B) ( i )
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m2, 1113, m4, ms and m7 are ImmedIate and mg can be considered a
definition.

If f: a –> X is an tc-homomorphism, observe that f induces a Boolean

algebra homomorphism B(f ) = BCG) –> B(X) , where BCG) and B(X) are
the respective Boolean algebras of supports: Define B(J)CsuppCg) ) =
= supp(f (g) ) . The good definition results from the fact that f maps

weak units on weak units ans preserves the lattice operations: So,
let g, g’ c G such that supp(g) = supp(g’ ) . Let u be a weak unit in

G. The element g” = pa(u, g’ ) is orthogonal to both g and g’ , and
both g + g” and g’ + g” are weak units. So since supp( J (g) + f C g” ) ) =
= supp(f (g’ ) + f (g”) ) = 1’ (where I’ is the Boolean space of X) and

f ( g’ )if (g” ) we have that suppCf (g’ ) ) = supp( f ( g) ) . The proof of the
other inclusion is analogous

Now, if A and B are the respective W-algebras constructed

from a and N respectIvely , as above , define f : A 3 B by

it ( g, a) ) = ( f(g) , B( f ) (a) ) . We shall proof that it is

W-homomorphism: Let (g, a) , (h, B) c A, call a’ = 1\supp(g) (where I

is the Boolean space of C) . Then f (I (g, a) ) = f ( -g, ( 1\a)na’ ) =

= if (-g) , B(f ) ( (1\a)na’ ) ) = (-f(g) , (B(f)(r)\BCJ)(a))ABCf ) (a’ ) ) ) =

= (-J(g),(I' \B(f ) (a) )nBC f) (a’ ) ) ) . By calling an = 1 ’ \supp(f (g) ) , we

have also afC (g, a) ) = (-f(g) , ( 1’ \B(f ) (a) )na”) . Since a” = B( f ) (a’ )

we have that i preserves the operation n.

For a, call 7 = 1\(auP) , g’ = gl7 , h’ = 1ll7 , a = IrtB' s g’ + h’ I

and D = =[g’ s g' + h’ I . We have (g, a)o(h, P) = C (g’ + h’ ) 1x, auBurn)

f( (g, a)o(h,B) ) = (f( (g’ + h’)16),BCf)CaUPLm) ) =

= (f (gla ) + I Chja ),B(f)(avPw)) ) ' By the other side, calling
p = B(f) (a) , p = B(J) (B) , a = r’ \(pw) = B(f) (7) ,

u = n[f (g’ ) = f ( g’ ) + f (h’ )] (because I preserves the relation T) ,

g” = f (g) 1a , h" = f ( b)1a , and T = artg" s g” + h"] , we have

f( (g, a) )of( (h, p) ) = (f(g) , p)ocr(h) , u) =

14
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= ( Cf (g) + f (h))IT,pww) . Since, for each i c 1,

g' ( 1 ) = g’ ( 1 ) + h’ ( i ) if and only if f (g’ ) ( i ) = j (g’ ) ( i ) + f (h’ ) Ci )

because of axiom Cl and the fact that J is an Zc–homomorphism, we

have that u = B(J)(7)), proving J( (g, a)o(h,B) ) = f( Cg,a) )or( Ch,B))

Finally we show that the compositions of both functors are the
ident i ty :

Call ZE and Al/, the categories of pro jectable tc-groups with weak

unit and projectable W-algebras, respectively, V: aY –> gE and

it: fF –> My the above constructed functors.

Let a c ge, OCC) = { (g, a) c GxB( 1 ) / supp(g)na = a} (as a set ) and

tCO(G) ) = OCC) / (as a set ) . Observe that a = (g, a) - (h, B) = b if

and only if g = h: by taking a’ = (0, p\a) and b’ = (0, a\B) , we have

a©a’ = b©b’ , a’ lb’ , ala’ and bIb’ , implying (g, a) - (g, p) . Suppose

now g + h, then the set [a = b]aa = 0 & b = 1]tIa = 1 & b = 0] is

strictly contained in 1, implying that (g, a) is not equivalent to

(h, B) . Now, for the operations, it is immediate for 0 and -. Let

g, h c G, we can choice, for their images in OCC) , the elements (g, a)

and ( h, a) respectively. By calling J = [ ( g, a) o(h, a) < 1] , we have,

in g(O(G) ) , g + h = ( ( (g, a)o(h, a) ) IJu((g,o)*(h,o))II\J )/_ ' Observe

that J = [g s g + h] and then (g, a) o(h, a) = ( (g + h) 1 T, 1\J] . So, it

holds g + h = (g + h) IJv(((g,o)*(h,a))II\J )/_ =

= (g + h) IJu(n(=(g,o)©=(h,a) )II\J )/_

= Cg + h) by(nCC-g,a)©(-h,o))II\J )/_ = (g + h)IJ v(=( (-g-h, a) ]I\J )_
because I-g s -g–hl = 1\J. So , we can conclude that ( in 9(OCC) ) ) ,

g + h = (g + h)IJu(-(–g-h))II\J = g + h ( in a) . We have,

proved, then, that WoO = Id1

For the converse, let A c MI/. In VCX) the elements of A which
coincide modulo a Boolean element are identified. Let ac 4. By

setting a = [a = 1] , we have that , in OoW(4) the element Ca / , a)
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corresponds to a ( in 4) . So, it is Immediate to verify that the

applicatIon a F–> ( a/ , a) gIves a bI ject Ion between 4 and O' W( 4)
preservIng the O and 1. For the negatIon, jaa = 1] = [a = 0] =
= l\(atnupp(a/ ) ) and call P = /\supp(a / ) . We have then A (a / , a) =
= (-(a/_) , ( 1\a)M) ) = (Ha/_,l\(ausupp(a/_) ) ) proving that the above
defined map preserves also the negation

Finally, for the XY sum, let a, b c 4, a = [a = 1] and p = [b = 1] .

Define 7 = 1\(ayR) , Ca/_) ’ = (a/_) 17 = (al7 )/_ , (b/_ ) ’ = (b/_) 17

= Cbl7 )/_ , 6 = 7rjCa/_)' s Ca/_)’ + C9_ )’] and

TI= at ( a , ) ’ s ( a , ) ' + (b, ) ’ ] . So, we can write

( a/_, a) o(b/_, B) = ( ( ( a/~) ’ + (b/_ ) ’ )B ,auPvq)

Call now J = [al7©bl7 < 1]. We have then

(a/_) ’ + (b/_) ’ = (a©b) IJn2ru(a*b) 1(I\J)n2r , which implies

( a/_, a)©(b/_, B) = (a©b ) IJd5bu(a*b ) 1(I\J)rouauBvD' It is easy to

verify that J = 6, implying ( a/_ , a)o( b /_, B) = (a©b \a uauBvn = a©b

because auF t,m = [a©b] = 1

So we can state the

Theorem 4. 1 : The categorIes gg and MI/ are equivalent
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SPACES OF ORDERINGS OF FIELDS, GENERALIZATIONS AND APPLICATIONS

by

Murray Marshall

Department of Mathematics , UniversIty of Saskatchewan

Saskatoon , Saskatchewan , Canada , S7N OWO

The object of this paper is to survey the theory of spaces of order–
ings , Its origIns iII fIeld theory , and varIous generalizatIons and appll–
cations of the theory that have emerged in the past 15 years . A special
feature of the paper is a large list of references . Hopefully this wIll be
of some value to a novice to the area . See [96 , 97 , 142 ] for additIonal re–
ferences

Spaces of orderings were originally introduced [90 , 107–111, 113] as an
abstract device for studying orderings and the reduced theory of quadratIc
forms oVer fIelds [ 11, 12 , 19-21, 28 , 30 , 39–40 , 133 , 139- 141, 147 ] . In the field
case , spaces of orderlngs arise as follows : Take a fIeld F and a preorder–

ing T E F . ( For example , take T = E F2 . ) Take X = XT : = the set of all
orderings of F lying over T and G = GT : = F#/T+ . Then the pair (X , 6)
= (XT , CT ) is a space of orderings . Elements of X are viewed as characters
on G . The theory has since been generalized in two dIfferent directions :

( 1 ) To abstract quadratic form schemes satlsfyllrg the " IInkage axIom"

[32 , 94 , 112 , 121, 148] ; equivalently , abstract Witt rIngs which are "strongly
representational " [83 ] . These were introduced initially to study the ( non–

reduced) theory of quadratic forms over fields . Linked quadratic form
schemes satisfying D<1, 1> = { 1 } correspond exactly to strongly representa–
tional Witt rIngs whIch are reduced (rlilradical = 0 ) and these , in turn
correspond exactly to spaces of orderings

(2) To Becker ts reduced theory of diagonal forms of higher degree [7-
10 , 13 ] , Here , the abstract objec Ls being studied are called " spaces of
signatures" [ 116 , 119 , 130–132 , 134 , 135 , 137] , a level 1 space of signatures
being just a space of orderllrgs . llere again , the Initial examples come from
field theory : if T E F is a preordering of level n ( for example , T =
E F2n) then one has an associated space of signatures (XT , GT) where GT

F+/T+ and XT : = all signattlres of Illgher level lyIng over T
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Additional examples of spaces of orderings ( and also of the general iza–
tlons (1) and ( 2 ) above ) are now known . In fact , ( 1 ) and ( 2 ) both apply not
iust to fields , but to semi-- local rings [83 , 84 ] and , more generally , to
fings with many units [ 120 , 158 ] . The theory of spaces of orderings applies
to skew fIelds [ 44 , 50 , 157 ] , and even to planar tcrnary rings [ 68 , 72 , 73 ] . ( 2 )

also applies to skew fIelds [ 136 , 138 ] and possibly also to planar ternary
rings , but there seems to be some problem in interpreting ( 1 ) even in the
case of skew fields ; see [ 149 ]

Interestingly enough , in the abstract case , there is a natural common

generaIIzation of ( 1 ) and ( 2 ) ( see the Remark in [ 116 ] ) and thIs is probably
worth investigating further . But first one needs to show , in the field case ,
that the type of "higher level scheme " described in [ 116] actually occurs ,
and this is not at all clear

For a space of orderlngs (X , G ) , we give X the topology induced by
the embedding X g Hom (6 , { tl } ) . A "farl" in X is a closed set V E X
satisfying a, P, r e V = aIr C V . For any finite fan V E X , IV 1 = 2k– 1
where k is the Z/2Z--dimension of G/V1. If a, I e X ( possibly a = p)
then V = { a , p} is a fan ( called a " trivial " fan ) . In the field case , non-
trivial fans all arise in a natural way from valuations on F [20 , 30 ] .

The Witt ring W = W(X , G ) of a space of orderings (X , G ) is the subring
of the function ring Cont (X , Z) generated by the functions a ' aCa) , a c G .
The cokernel of the embedding W E Cont (X , Z) is 2–primary torsion [85 ] .
(X , G ) can be recovered from W (G = the group of units of W, X = all homo

morphisms a : W ' Z) . Thus , the study of spaces of orderings is equIvalent
to the study of their Witt rings . Elements of W are represented by
anJsotropic quadratIc forms P = <a1, . . . , an> , a1, . . . , an E G , just as in the
classical case

One can also form the graded Wit L ring GW ' GW( X , G ) = %,c) Ik/Ik+1
where I E W denotes the unique ideal of index 2 , i . e . , the ideal of even
dimensIonal forms . The following question ar j ses naturally in studying GW

Is it true that p E W, p( a) : 0 mod 2k V ac X + p E Ik? This is Lam 's
"Open Problem B " [ 95 ] . This is true , for example , if the chain length is
finite [ 29 , 88 , 106 , 107 ] , but little progress has been made on this problem

For a space of signatures (X , G ) of higher level, tIle Witt ring is
defined similarly . But now Z gets replaced by the ring of algebraic in–
tellers Z FoI , o a primitive 211 tIl r'oot. o f 1 . all(1 { 11 } gets replaced by
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the cyclic group ( o) = { 1, o, . . . , a)211–1 } , where n is the level
There are several main result,s in tIle tlleory of st)aces of orcierin£'s

( a ) ClassificatIon of finite spaces of orderings (nlorc generally ,
spaces of order i nHS of firli te chain length ) . Spaces of this sort are buIlt
up from the singleton space by two operations called "direct sum" and "group
extension" The constrlrction is essentia11y unique

(b ) A local-global principle for isotropy ; A quadratic form p is
anisotropic over (X , G ) iff it is ani sc)tropic over some finite subspace of
(X,G)

( c ) A representation theorem for the Witt rIng : A continuous functIon
piX , Z is in W = W(X, G ) iff P Iv is in W(V,G/V1) for all finite
fans V E X iff EaEV P ( a) : 0 mod IV 1 for all finite fans V E X

These results were proved first in the field case using valuation
theory [ 11, 19 , 21, 39 , 140 , 141 ] and , in the field case , valuation theory is
stIll the quickest way of proving these results . See [ 30 ] for a proof of
(b) , ( c) using tIle theory of R--places . For the proof in the general case , see
[ 108 , 1l 0 , 111 ] . Also , see [ 113 ] for a generalization of ( b ) . Actually , there
are two proofs of ( c ) in the general case : One is given in [ 110] . The other
involves using ( b) to reduce to the case where (X , G ) is finIte , and then
applying ( a) as in [11 ]

If n is given then , using ( a ) , one can "count" the number of spaces

of ordering s (X , G ) with IG 1 = 2r1. One can also compute the possIble
values for IX 1 for given n [21, 41, 122 , 126] . (One knows n S IX 1 S an–1

but one can say which values in the interval jn , 211-l1 are actually
achieved . )

An Interesting consequence of ( c ) is that G is determined by the
topological space X together with its fans : The natural embeddIng

G c+ Cont (X , ( tl } ) identifies G with the grollp of all cont Inrlorls functIons

P ' X ' ( tl ) satIsfying Ea€V pja) : 0 (mod 4 ) for all 4-element fans V g
X [110]

In the fIeld case (a ) , (b ) . ( c ) generaIIze to the hIgher level situatIon
[ 13 , 135] . ( b ) , ( c ) also feneral i ze to the higher level situation in the case

of a ring with many units , using results in [ 120 ] to first reduce to the
field case . For abstract spaces of signatures , ( a ) is generalized in [ 137]

( but only in the finite 2–power level case ) and ( c ) is generalized in [ 119 ]
and 1132 ] , ( b ) is still open for obst,rac t spaces of siEna tllrc is .



The non–reduced analogue of (a) would be to classify all finite linked
qtladrati c form schemes . This llas not been done , even in the field case . The

"elementary type conjecture" [ 112 ] asserts that all finite linked quadratic
form schemes are built up from quadratic form schemes of fInIte fIelds and

local fIelds by the noIr–reduced analopues of the direct sum and grotrp exten–

sion operations . See [ 15 , 16 , 18 , 32 , 34 , 35 , 52–57 , 76 , 93 , 94 , 112 , 115 , 148 , 153 , 154 ,

165 , 167 ] for work related to this conjecture . If the elementary type
conjecture were proved true , them there would be interesting applications to
Galois cohomology [4 , 6 , 63 , 64 ] , But unfortunately , the non-reduced theory is
not very well developed ( as compared to the reduced theory ) . In particular
there is no indication that the elementary type conJecture will be settled
in the near future .

For a field F , Char F # 2 , let GWF denote the (non–reduced ) graded

Witt ring of F and let Hn+F denote the graded cohomology ring
H+(Gal(Fn/F),Z/2Z) where Fn = the quadratic closure of F . There is a
natura1 relation eE+ : GWF , Hn+F which is conjectured to be a well–
defined isomorphism . In case the (non–reduced) Witt ring WF is of ele–
mentary type , this conjecture is true [ 4 , 6 ] . Also , in this same case ,
Gal ( Fn/F ) is descrlbable recursively in terms of WF and the action of
Gal (Fn/F) on the roots of unity [63 , 64 ] . However . the question of which
DemuBkin groups can occur ( corresponding to the dyadic local .factors ) is
still open . An interesting consequence of the results in [63 , 64 ] is the
following : WF is of elementary type + WF [fa- ] is of elementary type
This lends some credence to the elementary type conjecture , at least in the
fIeld case

In the category of (abstract ) spaces of orderings , there are several
constructions for prodlrcing new spaces of orderings from old . Direct sum and
group extension have already been mentIoned . In a(Idl tion there is an Inverse
IImit construction [l09] , a direct limit construction [92] and a sheaf con-
structi on [ 112 ] . Direct limits of finite spaces of orderings are classified
in [92 ]

Given an abstract space of orderings (X , G ) , one would ] ike to be able

to find F and a preordering T g F such that (X , G ) : (XT , GT ) (as spaces
of orderlngs ) . This is referred to as the "realization problem" . One would
prefer that F be a field although some other structure ( e . g . , skew–field ,
semi– local ri lIB ) might be admit t(:(1. TIle "best" si tllat ion would be if we
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could choose F to be a Pythagorian field and T ; E F2 . If ( X , C ) has
fInite chain ]engtll tllelr there does Indeed exist a Pythagorean fIeld F

such that (X , G ) : (XT , GT ) where T = E F2 . TIle proof involves the
classification theorem ( a ) above , and a fair amount of valuation theory
[ 21, 39 ] . Another case when a solution is knowrl is when ( X , G ) llas stabiIIty
index $ 1. 1n this case also , by a result of Craven [ 37 , 140 ] , (X , 6 ) is
realized as (XT , GT ) with F Pythagorean , T = E F2

The realization theorem for finite chain length spaces of orderings
extends : ( 1 ) To quadratic form schemes : Any linked quadratic form scheme of
elementary type is isomorphic to the quadratic form scheme of a fIeld [89] .
(2 ) To spaces of sjgnatures of higher level which are built up from the
singjeton space using the two standard constructions [ 135]

For any space of orderings (X , G ) , o, T E X are said to be "connected"

if either a = 7 or there exists a non–trivial fan V E X with a, T E V
TIll s is an (:gIll val CIlt;(: rel ill i OII oil X . The c(]tliva]t:llcc class( is are called

the "connected components" of (X , G ) [ 108 , 111, 113] . The proof of the class–
ification theorem ( a ) for finite chain length spaces Involves a careful
analysIs of connected components . Generally speakIng , connected components

are lrseful in that they provide , in the abstract situation , a partial sub
stitute for the valuation theory which is availab]e in the fi e] d case

Suppose (X, G ) has finite chain length and F is a Pythagorian fIeld
whose space of orderings realizes (X , G ) . In [ 62 ] , Jacob constructs valua–
t Ions on F associated to the non trivial connected components of ( X , G ) ;
also see [ 122 ] . In this way , each non-trivial connected component of ( X , G )
is realized as the space of orderings of a certain 2-11ensel ian extension of
F in a natural functorial way . This construction has sInce been generaIIzed
to the nonreduced case [5 , 15 , 16 , 160 ] , culminating in [63 , 64 ]

Suppose ( X , G ) = (XT , GT) for some preorder ing T E F , F a field
Then there exists a natural surjection N : XT ' MT where MT is the space

of R–places on F compatible with T [ ] 1, 28 , 30 ] . This satisfies
( 1 ) Each fIber A- 1 { a} , a C MT is a fan .

( ii ) Each fan in XT lies in A-1 ( a} U N- 1 { P} for some a , P e MT

(Possibly a = p. )

( iiI ) MT is finite iff (XT , GT ) has finite chain length
This set-up is generalized in [ ] ] 1 ] and [ 113 ] to the idea of a "P–structure

space of order i nas . P'struct.Ill'(:s always t:xi st ( even in the abstract
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case ) , although they are not unique . One cannot expect uniqueness since ,
even in the fIeld case , ( Xs . Gs ) : ( XT , GT ) + Ms : MT [ 122 ]

In the case of a planar ternary ring F ( in particular , a skew–field)
one has , as in the fIeld case , iI natural P–structllre corresponding to the

space of T–compatible R-places on F , provided O g F [ 71 ] . The same is
true for any semi–local ring or ring with many units , if one takes the
definition of R- place given in [ 117 ]

The "stability index" or "s–invariant" of a space of orderings (X, G )
is the smallest integer s : 0 such that 25 p e W(X ,G ) V p E Cont (X, Z)
(or a is no such finite s exIsts ) . This is also characterized as the
smallest integer s such that each basic clopen set S E X , S + g, has the

form S = { a C X : a( ai ) = 1, i = 1, . . . , s } for some al , . . . , as E G . Apply-
ing the representation theorem ( c ) , we also have a characterization of
stabIIIty in terms of fans : it is the largest integer s such that there
exists a fan V E X wIth IV 1 = 25 [ 11, 110] . The reader can refer to
[ 113 , 147 ] for the definition of the " local stability index" and the rela-
tionship between this and the (global ) stability index defined here . As
mIght be expected , tIle case where the stabiIIty Index is fInIte is somewhat

better understood but , at the same time , it is also more important , at least
from the viewpoint of application to real algebraic geometry [ 22 , 23 , 25 , 26 ,
105 , 118, 144]

Recently , Brocker introduced another invariant of spaces of orderings
called the ’'t–invariant" [23 , 25 , 26 ] . This is defined to be the least integer
t 2 1 such that each clopen set S E X is expressible as a unIon of t
basic clopen sets . IJsi np the lsotropy criterion ( b ) , and the classification
of finite spaces of orderlngs (a) , Br6cker gives a bound for t in terms of
the stability index s [ 25 ] . Unfortunately , it appears unlikely that this
bound is best possible , and moreover , computation of the best bound appears
to be difficult . Since the t–invariant also has applicatIon to real
algebraic geometry [ 25 , 26 ] , it would be nice to understand better the rela-
tlonshlp between s and t .

See [ 17 , 87 , 98] for an introduction to real algebra and real ajgebraic
geometry . llere , the theory of spaces of order jngs (mainly of fields , but
also of semI–local rings ) has application to the problem of minimal genera–

tion of semi–algebraic sets in an algebraic set V S Rn , R a real closed
fIeld [22 , 23 , 25 , 105 , 144 ] and also to the more general problem of minimal
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generation of constructible sets in the real spectrum X( A) of an arbitrary
commutative ring A l26 . 118 ] . Specifically , one uses results on the s– in-
variant and t – invariant and ( in the case of algebraic sets ) results on the
behaviour of the s–invariant under field extension [ 19 , 1051

At the same time ( although , a priori , this has nothing to do with
spaces of orderings ) , one knows that , for any commutatIve ring A with Witt
ring WA, the cokernel of the total signature - : WA ' Cont (X( A) , Z) is 2–
primary torsion [31, 102] . ApplyIng this where A is the coordinate ring of
the algebraic set V S Rn implies , for example , that the semi–algebraIc
components of V can be separated by quadratic forms . Also , when A is the
coordinate ring of an algebraic set V , there is some smallest integer s
such that 2sCont (X ( A ) , Z) is in the image of - . In [ 103] , Mah£ determines
bounds for s in terms of the dimension of V
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ON THE EXISTENCE OF ORDERINGS OF PRESCRIBED LEVEL

Ralph Ben

Let X be a field. A subset P C K- is called an ordering of level n, if

P+ P C P. P . P C P. K- IP ZZ IInZ

{see [1], [2]), OrderinHS of higher level are of importance for the study of sums of 2-nth
powers and fonns of higher degree (see [1],[2],[4]). In this note we are concerned with
the characterization of the fields admitting an ordering of given level n e N. We will
only give an outline of the results. For details see [5]

Let m be a natural number, From [3] resp, [6] we get the following characterization

Proposition 1: Let K be a field. Then the following statenreTrts are equiralent
II ) K admits an ordering of level n
( 2) K admits a real ualuation u uith vIKI + pull{ ) for all prime d£U£SOTS p of n.

The existence of such a real valuation corresponds to arithmetic properties of the field
K. as the following result of E, Becker ([1], Satz 2,14) shows:

Theorem 2: (;itten re =K1 . then the jotIon,ing $tatemrnts art equioale'nt:
( 1 ) = e E K!"
(2) u{ r ) C 27111{ if ) IOT all real ual'untiotl.s r of K

Applying the last two results we get

Corollary 3: Let p be a prime nuntber. Then K admit$ an ordering of ieuei p if and
only if

E K= + E x”
This result cannot be generalized to arbitrary levels. as the following example shows.

Example 4: Let p, q be odd primes and II := p-q. Let R( ,Y ) be a simple transcendental
extension of the real numbers R. Now set

K := RCX ) ({X – f--1 )#-- . (X – r= )“-- I r, < 1 < r2, r„ r= e R. A' e N) .

K is formally real, as p, q are odd. Given a real \aluation I' of A. then I' Ih- ) is divisible
by exactly one of the primes p. g. Applying Proposition 1 we see that if admits no

1



ordering of level Ii, On the other hand it follows from the construction of K that there
exist real \%luations u. tu of ff with utKI 7c HuLK\ and m( K ) + gIrl K ). Hence if
admits ordering$i of level p as well as of level q. Thus we have found a field if satisfying

EA-' + ER-"

and the stronger condition

EA-' + E K”, E K’ + E R-’,
but admitting no ordering of level n = p - q

So far we have seen that Corollary 3 does not carry over to the general case. However.
an inrproved version of Theorem 2 will lead to a siInilar characterization of the existence
of orderings of arbitrary level, Let C be a nonernpty set of natural numbers. We denote
b\

EE K-"
t

the additive semi-gTOup generated by the 21&-th powers K '!" with n e C. These 'snnls
of mixed powers’ can be characterized as follows 1. [5], Theorem 1.2):

Theorem 5: Given E C N and leE K-Z . theIr the following statements are equitalerrt.
rl J r C Ec E K-!"
{ 2) ut .r ) C U„ed2nu tK\ for all real valuations u of K

Now let n e N and let C be the set of prime divisors of n. Applying Proposition 1 and
Theorem 5 we get ( [5], Proposition 1.5):

Proposition 6: G£uew n C N, then the follotving statements are eqaiualent =
( 1 ) K admits an OTderi'ng oj leuet n
(2) E K-: # E„„ EK-lP . where p ranges over the prime divisor s of n

This result shows that there is a natural relationship between orderings of higher level
and sums of mixed powers in fields. For details see [5].

In [2], E. Becker derived from Theorem 2 the existence of 'Hilbertian identities’ of higher
degree ( [2], Satz 4.1 ). In view of Theorem 5. the sa,me arguments lead to the following
results about srlms of mixed powers.

Theorem 8 Gille n k. rn e N and it,. . . . . IIb, s„ . . . . st C N. there east natuTnl numbers

I, = 1,Ln,. .s,. III ) , i e {I. . . . . k} such that fOT any field K of characterist£ic Q we Race,
For rD, e X, i e {1. . . . . A}, ji e {1. . . . , si} there eh xt y,„. e K. i e {1, . . . . R:} ji e

{1. . . . . 1,} £'ach that

E E 'i;'
t=1 Ji=

Let Q be the field of rational numbers. As an intnrediate consequence we get the
existence of ’Hilbertian identities' for sums of mixed powers.

D



R. Berr

Corollary 9: Let X1, . . . , it be 'irtdete'rminat es. FoT 111 . 711. . . . . 7 it C N there eIist

Il, . . . . It e N and II, C Q(_Y1, . . . . Xe), 1 = 1, . . , . k. j, = 1, . . . . /, such that

I Ii

( If"' + - ' • + xf"' )”1 = E E: f::'f"
I=1 ), =1
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