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Corps de courbes sur C 616mentairement
6quivalent s.

Jean-Louis Duret

Soit £ le langage constitu6 de deux constantes 0 et 1, et de deux fonctions + et ' ; si
A est un sous-ensemble d’une structure de £, nous noterons £(A) le langage obtenu en
ajout;ant i /: les 616ments de A comme constantes.

A Introduction : Ie cas du genre diff6rent de 1.

Tous les corps consid6r6s seront commutatifs. Nous appellerons corps de courbe sur un
corps k une extension de k finiment engendr6e de degr6 de transcendance I sur k. Si k
est alg6briquement clos, d’apr6s le th6orbme de la base s6parante, un corps de courbe sur
k est de la forme k(u, o) oil u n’est pas 616ment de k et oil o est alg6brique sur k(u). C’at
dorIC le corps de la courbe sur A d’6quation affine P(z, y) = 0 oil P(u, Y) est un polyname
minimal de o sur k(u). C’est aussi le corps d’une courbe non singuliire sur k.

Nous appellerons ensemble de coe$rcients d’une courbe sur un corps A un sous-ensem-
ble A de k tel qu’il existe un systbme de g6n6rateurs de l’id6al de cette courbe dont les
coefficient sont des 616ments de A

Nous nous proposons de continuer 1’6tude des corps de courbe sur un corps alg6brique-
ment clos commenc6e dans 1’article SIT la th£orie £ldmentaire des COTPS de fonctions [D].

On y avait d6nlontr6 [D, proposition 21, p. 954] :

1. Proposition. Pour tout g C N, it e=iste an ensemble d’€nonc€s, gg, du premier
ordre du langnge C tel que, si K est un corps de courbe sur un corps alg€briquement clos,
alors K est de genre g si et seulement s’it satisjait gg

Il en r6sulte dorIC imm6diatement que deux corps de courbe sur un corps alg6brique-
ment cjog 616mentairernent 6quivalents dans le langage C, ont mime genre. S’iIs sont de
genre 0, iIs sont donc k-isomorphes. D’oil la tentation, pour le genre Z 2, d’appliquer un
corrollaire de la formule de Hurwitz [H, chapitre 4, exemple 2.5.4, p. 303] :

2. Proposition. Un morphisme dominant de courbes projectives non s£nguli€res de
m£me genre Z 2, est un isomorphisme.

V6rifier l’hypothase de cette proposition se fait en appliquant une fois encore les id6es
de [D]
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3. Lemme. Solent I< un corps de courbe sur un corps alg6briquement clos A, 14 an
ensemble de coeBtcieTtts d ’line colmbe dont K est le corps et K1 un corps de couTbe sur k
616mentairement €quiualent & K dans le langage £(A). Alors K et K1 ont mane genre
et iI eaiste un k-homomorphisme de I< dans I<1. Si C et C1 sont des couTbes projectives
non singvliires sur k dont les corps sont tespectivement K et 1(1 , alors C et C1 out mime

genre et iI e3iste un morphisme dominant de Ct sur C

D6monstration. Soit C(x) une formule : ly(ad +yd = 1), oil {(d – 1)(d –2) est stricto
ment sup6rieur au genre de K ; C(x) d6finit k dans K et dans K1 [D, proposition 10] . Soient
Pl(Xl, . . . , Xm ), . . . , P„(X1 , . . . , X„, ) les g6n6rateurs a coefficients dans A d’un id6al (de
k[Xl, . . . , X,„]) d’une courbe affine dont if est le corps ; if et donc K1 satisfont :

3 T 1 1 T p p I = m ( A JR ( a 1 ) p p a I = m ) = 0 A B? a C ( r f ) )

Soit alors (al, . . . , a„,) un 616ment de Klm – h'" tel que pour i = 1, . . . , n, on ait

Pi(a1, . . . , a„,) = 0 ; k(al, . . . , a.,) est un sous-corps de K1 k-isomorphe i K

La deuxiame partie du lemme est la r66nonciation de la prernibre h 1’aide de [H, chapitre
1, corollaire 6,12, p.45]. D

Nous venons donc de d6montrer

4. Th6orbme. Solent if un corps de courbe de genre dif6rent de / sur un corps
alg6briquement clos k et A un ensemble de coe#rcients d’une court>e dont K est Ie corps
de fonctions (notamment, duns Ie cas du genre 0, A petIt etre l’er:semble vide) . Alors
tout corps de courbe sur k 6i£meTrtairement 6quiualent & K dans le !angage £(A), lui est
k-isomorp Ite .

On peut aussi sans grande difficult6 supp16mentaire d6montrer :

5. Th6orirne. Soit K un corps de court)e de genre dilarent de 1 sur un corps alg6brique-
ment clos k. Alors tout corps de courbe sur k 616mentairement 6quivalent & K dans le
tangage C tui est isomorptIe.

Nous aimerions maintenant 6videmment montrer la conjecture suivante (ainsi qu’une
conjecture analogue au th6orbme 5) :

6. Conjecture. Si K est un corps de courbe sur un corps alg6briquement clos k, il existe
un sous-ensemble ,4 de A tel que tout corps de courbe sur k 616mentairement 6quivalent

a if dans le langage C( A), lui est k-isomorphe,

Pensant au th6orime classique de repr6sentation des corps de co tube de genre 1 sur
C par des corps de fonctions elliptiques, nous nous limiterons au cas de la caract6ristique
nulle et m6me, ici, au cas oil & est C. Malheureusement, je ne sais pas trait:er la g6n6ralit6
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J.-L. Duret

du cas du genre 1, et nous aJlons devoir ajouter aux hypothises que X n’a pas de multi-
plication complexe (pour la d6finition, voir plus loin definition 19). De plus pour ne pas
dissimuler l’id6e principale dans des difficult6s supp16mentaires, nous accepterons que A
d6pendent des deux corps de courbe consid6r6s. Nous nous proposons donc de d6montrer

7. Th6orame. Si K est un COTPS de courbe sur C sans multiplication comple ze , tout
cows de courtie sur C £t6mentairement €quivalent & K dans le langage £(C), lui est
C3-isomorphe.

B R6seaux et fonctions elliptiques.
8. D6finition. Nous appellerons r£seau un sous-groupe additif de C engendr6 par deux

616ments lin6airement ind6pendants sur R (i.e. dont Ie rapport n’est pas r6el).

9. Deux r6seaux A et A’ sont semblables si et seulement si A’ est 1’image de A par une
similitude du plan complexe (ce qui est 6videmrnent une relation d’6quivalence), i.e. si et
seulement s’il exixte un nombre complexe non nuI a tel que : a- A = A’. Nous noterons
< w1,w2 > le r6seau engendr6 par {al,bb}. Un r6seau < w1,hb > est semblable a un
r6seau < 1, 7 > aa 7 n’est pas r6el (r = S, rapport de similitude ; }). En remplagant
6ventuellement r par –7, on petIt mame supposer que 7 est 616men£ de II, demi-plan
sup6rieur ouvert de C.

IO. Th6orbme. DeIL= rdseau= < 1, 7 > et < 1, r’ > (oil r et r’ sont dIdntent de H) sant
semblnbles si et seulement si T et T1 sont £ldment de la mame orbite du groupe (appe16

“groupe modulaire ”) d’applications de H sur H engendr€ par les detr: applications ;
; b} : + 1 ct z b} –} [DV, chapitre 3, g 26, p. 42].

11. D6finition. Nous dirons qu’un r6seau A a une multiplication compte ze si et seule-
ment s’il est semblable a un r6seau < 1, r > oil 7 est un nombre alg6brique quadratique (i
e. est un nombre complexe de degr6 2 sur Q). D’apr6s le tha)rhIne 10, c’est 6quivalent i
pour tout 7 tel que < 1, 7 > est semblable i A, 7 est un nombre alg6brique quadratique.

12. D6finition. Si A est un sur-r6seau d’un r6seau A/ (i.e. A/ C A) nous noterons

RCA, A/) = {d e C ; aA 3 A’}

13. Soit i 6tudier R( A, A’). Si A est un sur-r6seau de A’, alors il existe une base de A’,

(b/1 , b,12) et deux entiers naturels non nuls m et n tels que (=, #) soit une base de A [DV,
S 63, p. 132]. On a

R (< =, = >,< Ul,D2 >) = {ma ; a C R (< !, = >,< 1, : >)}
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On se ramine donc i 6tudier R(< !, r >, < 1, r >) que nous noterons RCn, 7). On

rernarque

Z = {i ; k e Z – {0}} C RCn, T)

(quels que soient n et 7) et
R(1, r) C RCn, r).

Pour justliner la terminologie, signalons que c 1, 7 > a une multiplication complexe si et

seulement si : R(1, r) + ,} (un 616rnent de R(1, r) – } n’est pas r6el, puisque I et 7 sont
lin6airement ind6pendanti sur R).

14. Proposition. Si r n’est pas un nombre alg6brique quadratique (i.e. r n’est pas
solution d’une 6quation du second degr6 a coeftcients dans Q), alors ,

R( nIT ) = Z

D£monstration . Soit o e RCn, r) . II existe des entiers relatifs a, b, c et d tels que

1 = a: + baTn
et

at
7 = c: + daT

n

c’est a dire

{1
Rempla€ant b dans (2), on obtient

a! + bT
n (1)

c! + aT
n (2)

bT-z + (! – d IT – S = 0n n

et comr,le T „’„t p,, alg6b,iq„, q„,d,,tiq„,, .„ , , b = 0, ! = d ,t , = 0. D,n,, de

(1) ,„ ti„, , i = d. O„ , d,., , i = R(„,,), ,t d,„, 1’6g,lit6 d’,P,a, I, „m,,q„,
pr6c6dente. – a

15. D6finition. On appelle jonchon elliptique sur un r6seau A une fonction m6ro-

morphe dont 1’ensemble des p6riodes contient A.

Les fonctions constantes sont dorIC des fonctions elliptiques. E:IIes constituent un corps

canoniquement isomorphes i C (que nous noterons C)

16. Th6orbme. L’ensemble f( A) des fonctions elliptiques sur A est un corps (pOUT

I’addition et le produit usuel des fonctions) de courbe sur C de genre 1. R6ciproquement
pour tout corps de court)e sur C, K , de genre 1, it e=iste un r£seau N tel que K est
(;-isornoTphe a f( A) [H, chapitre IV, th6orames 4.12B et 4.14B, p. 327-328].
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17. Th6orame. Tout soIls-corps de f( A’) de degt€ de trunscendance 1 sur C est un
corps de court)e sur C de geare 0 ou 1. Pour tout sous-corps K de f(A’) de degr£ de
transcendance I sur C de genre 1, it eziste un stir-r£seau N de A’ tel que K est 6gal a
fCA) [DV, th60 nme 11.2, p. 196]

18. Th6orbme. I>eur corps f( A) et f( Ao) sont (;-isomorphes si et seulement si A et
Ao sont semblables. Une application Q : fCA) –+ f(Ao) est un C;-isomorphisme si et
seulement s’it e=iste un compleze p et un coTnple=e non nuJ a sat£sfaisant d : aN = No,
tels qu’on ait

(v/ e fCA))(v= e c)($(f)(;) = /(; + P))

[DV, i 88, p. 191]

19. D6finition. Nous dirons qu’un corps de courbe/f sur C de genre 1 a time multiplica-
tion comple=e si et seulement s’iI est isomorphe i f( A) oil A a une multiplication complexe,

si et seulement si (d’apr6s le th6orame 18), tout r6seau A tel que if est isomorphe i f( A),
a une multiplication complexe.

C D6monstration du th6orbme 7.

20. Soient I<1 un corps de courbe sur C 616mentairement 6quivalent i I< dans le langage
£(C). D’apr ds le lemme 3, A“ est de genre 1 et il existe un C-homomorphisme de K dans
/t“ ; sans perte de g6n6ralit6, nous pouvons supposer que I< est un sous-corps de I<1 :
I< C I<1 . Pour d6montrer le th6orame 7, iI suffit donc de d6montrer que, si de pIus X: et
I<' ne sont pas C-isomorphes, alors ils ne sont pas 616mentairement 6quivalents dans le
langage £(C), c’est-i-dire qu’il existe un 6nonc6 de ce langage vrai dans if et faux dans
/(

D’apr6s les th6or ames 16 et 17, il existe un r6seau A/ et un sur-r6seau A de A/ tel
que I<1 et K soient respectivement C-isomorphes i f( A’) et f( A) ; d’apr6s 13, il existe
une base (ul,a2) de Af et deux entiers naturels m et a tels que : A’ =< nl,a12 > et

A =< S, f > ; d’apr6s le th6orame 18, K est C-isomorphe i f(< L+,a/2 >) ; enfin
d’apr6s le th6orame 18, K ' est C-isomorphe i f(< 1, r >) et K au sous-corps f(< }, 7 >).
D6sormais, nous noterons K ' = f(< 1, 7 >) et K = f(< !, r >).

Soient w un 616ment primitif de K1 sur K : K1 = X [w], a et u tels que : K = C(u, o),
PIX , Y) e C[X, Y] tel que P(u, Y) soit polyn6me minimal de u sur C(u), QLX, Y, Z) e
C[X, Y, Z] tel que acu, u, Z) e X [Z] soit polyn6me minimal de to sur if (d'’a > 1). Soit
C(n) une forrnule d6finissant C dans if et K1 [D, proposition 10]. On a :

K A 1-ly(nC(3) A f(#ly) = O A Vz(Q(-ly,z) # O))

II suffit donc de d6montrer :

K/E V,ly(-C(„) A PCa 9y) = O –, lz(Q('I yI z) = O))
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Soient dorIC Ua et oo des 616ment s de K1 tels que ; ito q C et P(ao, vo) = 0, et
yo : K –} C(ao, oo) Ie C-isomorphisme d6fini par : Po(u) = Ua et yo(o) = oo. 11 s’agit de
d6montrer qu’iI existe un C-homomorphisme de I<1 dans I<' prolongeant yo. D’apra 18,
iI existe a, p e C tels que yo est d6fini par

Ni C K)(Vz ( C)(Q(/)(;) = /(; + P))

(C(Ua, ut>) = fCa < +, r >)), Puisque par hypothbse, 7 n’est pas un nornbre alg6brique
quadratique, d’apr6s la proposition 14, a est un 616ment de }, et a < 1, r > est un
sur-r6seau < 1, r >. Le C-isomorphisme y : K’ = f(< 1,7 >F + fCa < 1, r >) d6hni
par

(v/ e x’)(v, e c)(o(f)(;) = /(; + P))
est le prolongement cherch6 de Po. O

D Le cas avec multiplication complexe.
21. On voit que la d6monstration pr6c6dente reste valide si 1’on peut affirmer que le

complexe a qui est 616ment de RCn, r) est aussi 616ment de R(1, r). S’inspirant de [H,
chapitre IV, th6orame 4.19, p.330], on peut calculer RCn, r)

22. Proposition. Si 7 est un nombre nlgdbrique qundratique : r = r + £sV£d rod ;
re Q, s e Q- , de N et oi d est libre de carr6 (i. e. 1 est le seul carr6 div£seur de d)) ,
alors :

7:(„, ,) = {(g + b,)–= ; „, be Z ,t , ,„ b + a ,t 7,(r2 + ds2)b,
It

23. Corollaire. Sl : r = }(k + ;Iva) (oil ; k e Z, I, mC N – 0 et oa d est libre
de carr€), alors si rn et n sont premiers entre elm et notamment si : m = \), on a
R(„, ,) = R(1, ,)

En modifiant 1’6nonc6 avec les marrIes id6es, on peut obtenir aussi le r6sultat lorsqu’il
existe un nombre premier divisant m et ne divisant pas m. On obtient donc

24. Proposition. Soienl r = kk + iIM) (ad ; k e Z, 1, meN – 0 et oa d est libre
de carr£) et n c N. S’it eziste un nombre pTemier diviseur de n et non de m, alors

C(< 1, T >) +
C
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SUB6ROUPS OF SMALL INDEX IN ORDERED PERMUTATION GROUPS

To appear in: Quart. J, Math+ Oxford

M. Droste (Essen) and J.K. Truss (Leeds)

91 Introduction and results

ThIs paper presents results supplementary to those of [ 11, 12 ]

in the specific context of ordered permutation groups , The first type

of result concerns the least number of con jugates whIch are needed to

express an element f of the normal closure <9>G of some gC G
n

as a product of the form n (9:1 ) 1, in [ 11 ] it was shown that for the
1i

groups A (Q) and AaR) of all order'-'automorphisms of the rationals

(Q,s) and the reals aR, <) , respectively, this least n tImber is 4 ,
Let us call an infinite chain (C, <) doubLy homogeneou8 , if its
order-automorphism group ACC) = Aut (C, <) acts transitively on the

2-element subsets of C, Notice that such chains include, for example,

all linearly ordered fIelds; their automorphism groups A (C) are

important in the theory of ordered permutatIon groups , see [ 7 ] . In
[ 1 ] it was proved that if C is any doubly homogeneous chaIn, then

the ljeast number of conjugates 1 for ACC) is at most 8 ; in [ 4 ] this
result was extended to any ljarge ' subgroup G of ACC) (precIse

definitions are given below) . It is our first aim to show by a
combination of the methods of [ 1, 4 , 11 ] that for any such group G

the ' least number of con jugates 1 is actually 4 +

The second kind of result, whIch concerns the "small Index property",

was initIally proved in [ 2 ] for the symmetric group on a countably
infinIte set, and was then extended to various other cases in [4 , 6 , 12 ] .
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TO say that the permutation group G < Sym Q has the sma ZZ £ndea

property means that any subgroup of G of index < 2Ho contains the

polntwise stabilizer G rv\ of a finite subset F of n . In [ 12 ]

the only group of order-automorphisms considered was A (Q) ; indeed

that was the only possibility since the goal was to look at permutation

groups of countable degree . The same argument used in that proof shows

however that AaR) has the small index property in a strong sense ;

namely that the only subgroup of ACIR) having Index < 2Bo is in
fact AaR) itself . It is this that we generalize here, consIdering

subgroups G of A (C) where C is dense in ]R having the small

index property . The conditions we need to impose on C and G are
just that C is doubly homogeneous and that , as before , G is large

in A (C) . The idea behInd the notion of largeness is that it allows

us to perform many of the typical constructions possible in ACC)

also in G. However , to illustrate the scope of this extension we

cite various instances , such as the groups preserving certaIn

colourings , or the locally linear or locally differentIable homeo-

morphisms . Some care is required here to keep in mind whIch set the

group acts on; the finite set F whose stabilizer is contained in

the given subgroup of small index may need to be taken in the order-
completion E = ]R of C, rather than in C Itself (so strictly

speaking we need to modify slightly the definItion of the " small

index property" ) . ThIs is immediately clear for Instance in taking
for c the set of irrational numDers (where ACC) is "the same as"

A(Q) ) . A sufficIent condition for F c C when considering ACC)

that ltR \ C 1 = 2Bo

FInally we use the methods of [ 11 ; 55 ] to distInguIsh large

subgroups of ACC) in some cases , and examine the numbers of
conjugacy classes of stabilizer:s of singlet:ons e
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Before stating precisely our two maIn results, let us Introduce

some notatIon. Throughout C will be a chaIn (a linearly ordered set

with ordering < understood) . In thIs paper (contrary to the

convention in [ 11 ] ) permutatIons wIll act on the rIght, so that xg,
or sometimes xg, is the Image of x under 9, The 8uppo rt supp g

of g C ACC) is {x ( C: xg + x} . We let a denote the Dedeklnd-'

completIon of C and e = e a {-n,O) where -n < x < o for each

xe E, We regard ACC) as a subgroup of ACE) in the natural waya

Let G < ACC) . We say that G is ct08ed under dio joint patching ,

if whenever {g1 : 1 C I} are members of G whose supports are
pairwise disjoInt , then g C ACC) given by

*, = { :’= tf__:__:_:-" ’= ='’ ;""' “ = \ A b \PI

lies in G, We say that G is ct08ed IInde? p£eeeo£8e patching, if

whenever al,bi C C for i ( Z are such that ai < al+1, bi < bi+1

for each icr and lim ai = IIm bI and IIm a_i = IIm b_1 in a1 +H & j+aD & l+ aD 4 l+ aD &

and gi C G are such that [ai , al+1 ]gi = [bi, bl+1 ] , then g C ACC)

gIven by

if x C [ai , al+1 ] (1 C I)
otherwIse

(x C C)

lies in G, Finally we say that G is Zarge in A (C) , if G acts

doubly homogeneously on C and is closed under dIsjoint patching

and plecewise patchIng, if g C G, we let <9>G denote the norlnal

subgroup of G generated by g, Now we can state our maIn results+

Theorem 1.1, Let a be any doubLy homogeneou8 e;iain and a
a Zarge subgroup of A ( C) .



4

(a> Let f ,g eG ,u,h that fC <g>G . Th,n f = g1.g;1.g3 . g=1

for some eonjugates ga. of g in G ,

Cb ) There are f , g E G v£tih <f>G = <g>G = G, but f is not

the product of three conjugates of g or g-1

Moreover, we show that Theorem 1.1 (b) even remains true for the

cosets of f and g in G/ (G n B (C) ) , where B (C) is the normal

subgroup of ACC) comprising all those h C ACC) whose support is
bounded above and below in c .

If G 5 A (C) and F c E, let FG denote the set of images of
elements of F under members of G.

Theorem 1 B 2 + Let a be any dense doubLy homogeneous subset of

and G a Large subgrou? of A( C ) , Then for any subgroup H of G,

IG : XI < 2N'’ if ,„d ,„Zg if X = GrrJ ,„d lrG 1 , 2Ho

for some finite subset F cIR .

]R
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UNE BORNE OPTIMALE POUR LA PROGRAMMATION ENTIBRE QUASICONVEXE

Bernd BANK , Joos HEINTZ , Teresa KRICK , Reinhard MANDEL

& Pablo SOLERN6

R6gum6 - Soient PI , , , , , Pse Z tXt, , , , , XJ des polW6n08 qua-
3iconvoxe8 de degr8 maJor6 pa;' d ) 2, ’ it I une borne pour
la longueur binalre de leur8 coefficIents, an nontre que
si le 8y8tene Pl g O, , , , , Ps 40 a claret une 80lutlon ontIBra,
8lor8 ll exjgte une t8lle solution a longueur blnairo ma-
Jor6e par ( ad)OII (oa c est une congtante, Ind6pendante
de 8, d, rt et 1 ) , Le caractBro 8lmplonent expanentl81 de
cette borne ost Intrln8equ'e au problame, an obi;lent nasal
uae borne sinllalre pour 18 problbmo de ninlnl8atlon cor-.
respondant ,

INTRODUCTION ET NOTATIONS eM

nl 1983, 1,.G.Xhachiy an et s.P.Tara80v ( [13],t6 ] ) ant
anrronc6 que 81 Fl, , , , , Fs sont dea polw6me8 eonv8xe8 en n
ind6teemln6e8, de degr6 d } 2 et a coeffIcIents entlersp
tolls do longueur blnalre major6e par if alors lo 8y8tbme

d 'in6gallt63 polynami ales Fl 4 O, , , , 9 Fs gO aclnet une golu-
tion entIBro a1 et seulement 81 ll adraet une aolutlon en-
tiire canterlue dang une battle centr6e I ltor18ine et de

rayon entler R, de longueur blnalre major60 par fW'ilncq2
( oil a := min { 8,d} et c est une constante !nd6pendante
des parambtr08 con8id6r63) . L'lnt6r6t de cette que8tlan

est qu1 elle repr690nte uno solutIon effectIve pour le pro-
blaIne de 8t&billt6 corr8apondant au problamo d'optlm Isa-

tIon ( de minlml88tlon) pour la progranmatlon entl Bro a
contralnte8 palynomiale8 convex08p g6n6rali8atlon naturel+
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le du problin8 de la progranra8tlon lin6alre entlaro,

Dan8 ce travail, noua nous Int6re880ns en prenler IIeu
a ce mame probl bme de calcul dluno borne 86om6trlque pour
le cas des polyname8 qua8iconvexe9,

Pour pr6cjger les r63ultat8, flxons tout a 'abord lea no-
tat ions :

Dans ce qui suIt, IR repr68entera le corp8 des nombregl r6-
eIs et Z I'arrneau des entlers, Solent xI , , , , , Xn de& ind6-
ternln6e8 sur IR, an dlt qu lun polyname Fe IRtXl, , , , 1 Xn] est
qua8lconvex8 si pour tout Ie IR 1 1'8n8emble de nlveau

fxe IR'': F(x)( Ii est un sous-ensemble eonv8xe de R“,
Pour un ensernblo flnl VC Z“ de vecteur8 a coordonn6e8 en-
tlbr8s, nous noterons par / (V) la longueur blnaire maxi-
male des coordann6e8 de tout vect8ur de V, Do mame, al
C/C a LIl, . , ., XJ eat un ensemble flni de polyn6ne8 1 coef-
ficlent9 entierg, / ( a1 ) noter a la longueur blnalre naxima-
le das coefficients des polynome8 de C/ ,

La batIIe ferm6e de rayon Re IRao et centr6e 1 I'origlne ge-
ra Indiqu6e par B( C), R) , Nous adopterons au881 Ia notatIon
standard OCn) , ne IN, pour d69lgner une fonetion lln6alro en
n, c test-X-dire, iI exl8te une con3tante cf Ind6pendant8

de a,telle que 0(n) < en,
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P&s80n8 m8intenant ; 1l6nonc6 doe r68ultat&:

THEOREME I,-. Solent & , , , , , Fs e Z [II, , , , ,h] den polyn6me8

qua8leonvexe& a coeffieient8 entier8, de degr6 najor6 par

d > 2 et tele que 2:= / ( {FI, . . , 1 Fs} ) ,
11 exi9te un rayon RCN, de longueur blnalre kR)=(ad)a 92

tel que 81 1lenBemble {xez": Fl(x) 401...9 Fs (x)< o3 B&t
non vidop alor8 II contilent un point (entior) dana 1 a bottle

B ( 0 + R ) +

Ce rayon R no d6pend pas du caractBnpartlauller dea poly-
names Pl, , , , , 4 mats 8eulem8nt aeo paran;tr08 s, d,’n,1 con-
8id6r6s ,

Et;ant donn6 aue leo polynames convexea constItuent un caa

partlculler de& polyn6m08 quaslconvexeg, ce r63ultat g6n6-
ralise et am61iore Ia borne &nnone60 par Kh&ehlyan et Tara-
SOY

D'aut;re part, le caractbr8 exponentie1 de la borne obte'I
nIle est intrln9baue au problime, comme lo prouve I'exenple
sulvant 6tud16 dana [13] : les auteur8 congjdarent lea poly-•

n8me8 quadratlqu88 et convexe8 PcB ..Xl + 21 , Fl= Xi -. X2,
, , , , Pn= x:_1-. Xn et montrent que tout88 les 80lution8 du

systeme Fl(x) gO, . . . , Fm(X) 6 O 88 trouvent ea dehorg de la
boule B(0, R) , aU /( R)B 2fL-t I , Cool 8lgnlfie que la borne
du Th6orBne 1 est optlmala en fonctlon dea par&mbtr88 cons

sld6r68, en tant que mesure g6n6r ale de conploxlt6,

Ce th6orane g6om6trlque entiralno au931 le r68ultat 8=lgo-

rlt}unique sutvant; :

COROLI,AIRE,- On petIt d6clder a 1 +aIde d'uno naehlno do

TurIng non d6termlnl8te sl 1 ' ensemble jxe Z+' 8 Fl (x) 4 of , + , ,

7,(x) ( O} ,,t n,n „rd, ,. t,„P, (,d)cel. al d',utraa
aot8, le prob16me de la programmation antlire a contraln-.
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tes polWomlales qua8iconvexe8 appartlent a la cla88e de
complexit6 NEXPTIME ( "non det8rmlnlstically 8lhply expo-

nentla1 tIme" ) + Ceel glgnlfle quInn peut v6rlfier 81 un

candidat a 80lution du sy8tin8 consid6r6 eat effectivement
uno solution en temps slrnplement- exponentlel,

Flnalement, lea m6thode8 appllqu6e9 pour nontr8r le Tb6-
ardme I entralnent aus81 le r6sultat dloptImIsatIon entli-
re a eontralntes polynomiale8 qu88leonvoxe8 eorre8pondant :

THEOHEHE 2 .- + Solent F, 71 , , , , , Fs e Z [Xu , , , , Xwl dea poly..

ncSmeg qu&sicdnvexe8 a coeffIcIents entlera't de aeKr6 najo-

rg par d > 2 ft t,18 q., J,= J( {?, ?,, . ..,F'} ) ,t p,,,n,
M:B { xe Rn: FI(x) 409 . . . fPs(x) sO i .
St I'onsernble Mn Z4' ost non vlde et

Inf iF(x) : x eM nZ“} a n b - m
(oa inf note lljnfimum) ,
alor8 ll exi8te un rayon Re N, do longueur binalre
JCR)=(Bd)o(nz tel que

a = hf iF(x) : xeMnznnB(OfR)} .

PRBUVES DBS RE$ULtl: ATS e =

Preuve du Th6or arne 1 - Lo Th6orame 1 est une con86qu8nce

des nouveaux r6sultats en g6om6trle semi-8lg6brlqu8 algo-
rithmlque (allmination 11rapldd" des quantlflcateur8; dana 18
th6ori8 616mentalre des corps r6el8 cl08) qu'on trouvo
dana [12], [3 ], [ 4 ], [ 51 et Eg ], appliqu6s au probl ime race
a deg technIques de r6ductlon pour la progr&mmatlon quasI-
convexe d6velopp6e8 dana [1 ], chapltre8 4 et 5, et simpli-
fi6e9 da118: [2 ], Nous con8id6reron8 IcI pjug en d6tail les
m6thod08 nouve11ee partlcull;res a notre probIBme1 nous

remett;ant aux travaux elt68 ci-de33ua pour lea d6mon8tr&-

tierra des r6sultatg pr611mlnalre8 qui y flgurent , One bor-
ne 169brement molns pr6ci8eT avee les preuve8 conpIBte8,

- 4 -
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aot aussi pr6s8nt6e dans [ 7 ].
Dang le but de fournlr la d6mon8tration la plua claIre

p08$1ble, nous la dlvi9erons en diff6rente8 sectIons ,

1, Propr16t6s fondamentale8 des polyname8 quaslconvexes,
Nous d6crlvons Icl quelques propr16t68 th6orique8 qui

scat Indispensables pour I'obtention de la borne annon-
c6e

Propr16t6 d'1'unifornlt6" : So it FeIR[XL, , , , t Xnl un poly-
name quagjcanvexe. Solent x, ue IR“' , u++ of flx68 ,
SI le polyn8me F(x + Tu) , en I'lnd6termln68 T, eat 3trie-
tement d6crol88 ant (re3pectlvenent con8t ant) alorsp pour
tout ye IR , le polyn6me F(y + Tu) eat atrictemart d6-
croi83ant (respectivenent constant) ,

Preuve : Nous ut11i8eron8 la d6finltlan 6quivalente do

polyn6me qua8iconvex8 8ulv ante, quI eat plus op6ratlv8 :
Fe IR[XI, , , , , Xv] est auasieonvexe aol pour tout x, ye IR'’
et pour tout ciC IR, OCcKg 1, on a :

?( „x + (1- .' >y) ( max {r(x)PR(y)}
11 est facile de v6rlfier qu'un polyn8me qua8lconvex8
non congt;ant FC JR[X] ( en une seule varIable) n 'admet pa8
de m&xlmun localt et que done, 3l11 est de degr6 paIr,
son coefficIent conducteur e8t p08itlf et 8 ' ll eat do de-
gr6 impaIr, la fonctlon qu' il d6flnlt est 8trletement
crai8sante ou d6crci8sante sulvant Io algae de gon coof-
fic lent conduct eur e
La preuve de la propri6t6 d'1'uniforrnlt6" suIt malntoaant
de la d6finltlon de polyn8me qua3lconvexe quI ' ImPlique quo

sI x,y,u€JR'1 1 u ?/ 0, alor8 F(x + Tu) et F( y + TU) sant

ou bIen Iiaus deux con8t ants ou bIen do m6ae degr6 d +’ 09-1
et onI; name coefficIent conduct8ur, Volr [1] 1 ehapltro 4,

ou L2 ] pour lea d6tall8 . a
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Propr16t6 de "lin6&rlt6'1 d 1 une forne honogbne qua8lconvexe :
Solt Pe JR[xI, . , , , Xm] une forme homogBne qua8lconv8x8 de do-

©6 dl) 1, ,t Bar,nt 1„ B {xenn : P(x) = O}
Xi= {xe Rn : P{x) 4 03

Alor8 : - L eat un 80u9-e8pace lln6alre de JR" e

-. SI d est paIr, K = L
• SI d e8t ImpaIr, L est un hyp8rplan et K e8t un

des dernl-08pace8 llmlt68 par L,

PreuyB : c 1 est une con86qu8nce imn6dlat8 de la propri6t6
ant6rl8ure (Valr [ 1] , Chapltre 49 ou [2 ] ) B •

Nous montreron8 maintenant une ver8lon effectIve de cet"

te propr16t6, qui exhlbe uno ba88 a de L ( et un 8Y8t}me

de g6n6rateur8 g de K) construlte a p&rtlr dea o08fft-
cient8 de la forme homogine qua8lconvoxe Pe

Leaune I : Salt P eZ [XI, . , , , XJ une forma honogine quasi-
convexe (i coefflcient8 entier3) de den6 d, et salt t :=
max ; 2, d? ,

Alor8 le 30u8-e8paco lln6aire L = {xe IR~ : P(x) = oj ad-
.,t u., b,,, ,„tib,, a t,II, q., Ka) = Ioc’)(I (P) ,,rl)
ou r := n - dImm L, et, 81 d est impaIr, 18 demI-espac8 K

,d„,t .. ,y,tB„, d, g6r,6,,t,urs ,ntler g (I.e. K = {: \."',
\>o3 ) tel qu8 J( g ) = J(6). Mr t
Preuve : On observe tout d 'abord que 81 P est qua8ioonve-

xe, il exl8te une varIable Xi t811e que d8q1. P = a (volr
[ 1] o& [2]potu lea d6tail8) , Sans porto do k6n6r&llt61
8upposons que Xl ost c8tte vatlablee
On procbde par induction en rb :

Solt a) 2 , st b+ {oj , 80it ucl - { o3 , Le falt que
potu tout teR, P( tu) = tap( u) B 0 inpllque par la pro-
pri6t6 d1 „uniformit6" que pour tout x eR“ , le polW8me

P(x + Tu) est constant comme polW8ae ea T; c le8t-a-dIEO

- 6 -
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que pour tout xe IR“ , P(x) = P(x+u)

Ain8 1 :

( a ) P( X) = P( X+u) I pour tout ucl
Po son8 :

P(XIP + Be , Xn) = ad(X2 pa . .I h) e + ad_1(IIt . ..f Xn) Irl +

' e ' + 81 ( 12, , . + , Xn)Xl + 80 (XI, , + e , Xh)

ob ad( XI, , , . , Xh) ?/ O, et, pour tout 0 gIg d, al(XII , , , tIn)
ea[xz, , , , , XJ est une forme homogine de degr6 d-4 (1. e,

ad(Xi' e'',X+) = ad CZ - ! oj et ad_1(II, 'O' IXn) :B 2£Jk\
est une forme lln6alre entlire) ,
Evaluon8 le polw6me P en X+u :B (XI+ uIl, , , t Xn+ Un) :

?(X,u)+ ad. (XI,ul )d , (2iJk. ( Xk,uk) ) .(XL,%) 'hI ,. . .
+ + ,+ aO(XZ+u2 , , , , , Xn+Ub)

T, p(x) + C1(da,u, +2IRb,u,) +.... + P(u)
( ob lea terme9 comprl8 dans lea poInte de suspension 80nt

de deN6 en Xl Inf6rieur ; ( d-1 ) ) ,
Par ( + ) , on conclut que L g 1/:= {ueIR'' : dadu£ +
2E n tA) ]b[ t1 ]A1bHF = 1(1F)

L'hyperplan Ll adm8t la ba8e entier8

J(-bz , dad,O, . . .,o), . . .I (-bn,Of . .. ,Ofdad)?
( qui so complbte h une base ab de IRq en aJoutant le
vecteur ( 1, 0, , , , ,0 ) ; , de mani Bre quo I( d ) = J + log, d) ,
Si la forme homogBne P regtreint8 a Ll n ' est pas 18 forme
nu11e ( c'est-l-dIre sI L 4 LI) , on pose :

PI( YI p . . . f Yn_1) := P(-bZ YI-. . .-b%YR_lp dad L I . . . I dadYn_I)
at an obI;lent la forne homog;ne qua8lconvexe pI on (n-1)
varIables, qui repr6sente ( dans la base # ) la forme P
restrelnt8 ; Ll,
pI v6rifie lle8tlmatlon 8ulvanto :

a( P') g J(p) + d(la,,d + J (a' >) + 'r' 1.8,(d+l)
B ( d+1 ) / ( P) + 2d.logZd +nlog?( d+1)

B a' ( J ( P) + n ) ( oil c eat une con8l;ante unlvor’
9elle) ,
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Bt ant donn6 que L +' Lt , la forme qu88lconvexe P1 n ' eat
pas la forn8 nulle et on r6pate la proc6dure avec elle,
Supposons que L = LP , pour un c8rtala acr(+ ) + c 1 est-l-
dire que la forme phI re8treinte b LP eat la forne nulle,
arors drmRL = n -r ,t /(f-4)( a'CF-D(1(?) , (r-1)n)
De Plus, on a: J ( &+) 4 / ( P=1) + lo8od H

a“'”(J(p) + (f-l)T'>
(Oa 43f est la base corre8pondante de L, 6crlte en terme8

de la base &f-4 do I,na ) ,
On r6cupBre flnalemen+ 1'6crlture canonlque dZ de la ba8e
6£ de L en multipllant f n8trlces d8 pa88age, a coeffi-
cient8 de longueur8 binalre8 contr616e8 par IcP-4>( Kp) +
(F-1 )%) , obten ant aln81 :

J(a) g (f-1)1.g,TL + T(f(“)( KP) + (T-1)+') )

= go(')(7(P) +n).
La borne pour /( % ) , 81 d eat impaIr, eat claIre,

Ce lemma a la cons6quence 8uivante g

a

Coro11aire : SoIt F B E_dpi e z[x4,,,,px7J un polyn6no
o£ lsd

qua8lccnvexe 6arit comne somme de formes homogbne8 de de-

gr 6 1 , et 80it Z := max { 2, d ) ,
Alors, pour tout 0 $ 4 ( d, 1 ' ensemble :

LI( F) := { xe IRb : Pd(x) nO, . . , ,Pi (X)=Oj
est un 80u8-e3pac8 lin6aire de IR’' , qui adm8t une base

entibre gal avee Z ( a) = aon) I( F)
et 1 ' ensemble :

XI ( F) := {xenRn g Pd(x)=O!...tbl(x)=OpPi(x) 6 Qj
e8t ou bIen un demI-.80us..e9pace de IR“ + quI adnet un

s,stime do ,6n6rateur8 entler g, avec /t g,> = a'X")(F)
ou bien coincide avee LI( F) ,

Preylyet c 1 est une application ilam6dlate du felt que at F

est un polw6ne quasiconvexet ea forme hanogine Pd do Plu3

- 8 -
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kant degr6 est aussi qua8lconvexe, et du lenn8 pr6e6dent,B

AprB8 ae8 consid6ratlon8 d'ordre g6n6r81 sur Ie& poly-
names quasiconvexe8, pa880ns au caractire particuller de

notre pro blame ,

2 . Elimination des contraintes 8up8rflue8 ot r6duction
a un ensemble born6,

Soient Fc , , . , , Fsc @[Xl, , , , , X%] de8 polyn6me8 qua8ican-

VexeB dB d'gr6 major6 par d > 2, ,t sort 2,= Z( \%, . . ,, ?, i )
Soit M llen8emble convexe d6fini par :

M:= { xe IR’t' : PI( x) g 0, , . . , Ps( x) g 0 }
Le but de cette s8ction eat d 16tudler legquell68 des con-
trainte8 Fl, , o , , Fs 80nt de trop, c 1 est-a-dIre de d6terml-
ner ; partir dos contraintes Fl (l£££ s ) quI d6fini88ent
M un ensemble convexe M 1 d 'a8pect plus unlforae que M et
v6rlfi ant prlncipalement la conditIon g

Mn %\ + $ <=> MIn vf # $
Pour c8la9 fai80n8 le ral80nnement 8uiv8nt :

Supposons qu1 il exi8te une dIrectIon u€1RB-+0} telle
que Fl (Tu) sdlt 8trictem8nt d6crol88ant et Fa ( Tu) f , , , p
Ps( Tu) soient d6crol88ants ou canal; anta ( dana ce caa on
cilt que u est une directIon de r6cesgjon d8 FI, , , , , PsI
non congtante pour Fl ) , et 8upp080n8 de Plus que uc %4b,

So it alors xle Z'T’ tel que PI(xI) gO, , , , IFs (xI) gO ; 1lby-
path Bse et la propr16t6 d11'unlformlt6'1 de FJ impllquent
que FI (xt + Tu) est 8trictement d6crol83ant ot on peut
choislr tc IN de alanlbre que FI(x c + tu) 40 ,
Poson8 X:= x 1 + tu, Le m8me arwent quo cl-d088u8 mon-

tre que pour 2614 s , Fl( x) B Fi (x 1 + tu) < FI(xI) ( C) ,
Done, XC Z’' eat tel que FI (x) < 0, , , , , Ps(x) < 0, et dana

ce cas nous dirons que Fl est une contralnt8 sup8rflu8,
11 est clair que le r8le d8 FI pont atre Jou6 par n 1 in-.

pQrte qL=elle c'ntraInte ?# (lg + $ 5 )1 ot pour la coast-
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aeration de I ' ensemble M, nou8 8upprlmeron8 la contralnte
superfluee Une fo is 61imin6e une contrainte 8uperflu8, on
peut r6p6ter le proc6d6 ju8qu 1a la suppres8lon (dans un
certain ordre) de toutes les contrainte8 superflue8,
Les questIons qui se pogent sont alor8 les 8ulvante8 :
Comment choisir les directions de r6ce98lon entl ares u ?
Que 8e pas3e-t-iI qu and il n ' y a plus do contralnte8 su.-
perflues ?

La r6ponse est dans la pro posIt lon 8ulv ante :

ProposItion : 11 exlste {q, , , , ,”ti g {1, , , , , s } tel que
si M1 := { xc IRq i Fil (x) g 0, , , , , Fit (x) gO } t alor8

( i) Mn ZZ'’ + g <=> M1 n =Z'' gq
(iI) A part;ir de chaque poInt ent;ter x 16 Mt , on r6cup~8-

re un point entier xe M de m8nlare quo
2€x)= d"VCx.) + d'’(-J
(Dans le cas au t= S , on peut chalslr x laQ)

( IiI) M' = V + (M1 n VI ) , ol V est un sous- e8pac8 II-
n6alre de IRB, adi admet une base entlere IB telle
que / ( a) = dohy et M1 n VI est un 80us-en-

semble compact de IR’"

preuv9 : Selon le raisonnement fait auparavant, le proc 6-
d6 consiste a trouver des direct;iona entlbres de r6ce8-
sIon u, non constanties pour une contraln&e donn6e,

Pour tout Fe Z [Xl, ,,,,XWl qu&siconvexe, pogon8 :

L(F) := \uea q : 8UP iP(tu)I t en]<+m3
et K( F) :3 fu(mN : suP iF(tu) I t) o) ( +oo)
11 est alars claIr que ue Z--- { 0} est une directIon de
r6ce93lon d8 FA , , , , , Ps , non constant;e pour F+ 81 et 8eu-
lenient si ue K( Fl ) n , . . n K( Ps ) et u / L( F+ )
Dans [1 ], Chapitre 4, ou [2 ] , 11 est montr6 que pour

tout F = : q PI qua9lconvexe, 6ctlt canIne 30nme do formea
oZ t+ a

homo&nes do degr6 1 , II exi9te Xo , 1 gloS a, tel que
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L( F) = {ueIR’' : Pd(u)=0, , , , , PIe(u)=0}

ot K(F) = {uenq : Pd(u)=01. . . tFL,1(u)=Of PA(u) gOt
C'est-X-dIre, 8uivant la notation du Corollaire, L(P) =
LA( F) et K( F) = Kb( F) ; ain8lf une dIrectIon uc Zn - { 0}

ost de r6ce89lon de Fl, . , , , ps non constant& pour FJ st
et seulement 91 u / 0 appart;lent au cane polyhedral (i, e,
a lljnt8r80ctlon d1 un nombre finl de demi-e8pace8 d8 IRB )

K( Fl ) n , /' n K( Fs ) naia non au 80u9-e8pace lin6aire L( F#) ,
La preuve de la ProposItIon 8'obtlent malntonant a I'aIde
des r6sultat8 9uivants :

Lemme 2 : Dans le8 condItIons de la Prop08itlon+ 8uppo'.

sons que K( Fi ) n. . .n K( Ps ) / L( q ) , et gojt lhC%-- tel
que Fi (xI) gal pour tout 1 / } , alor& il exl8te xe Hn Z“
tel que /(x) = d( 2<xl) + doCB>) +

Preuve g Si le c6ne polyhedra1 K( Fl ) n, , ,n K( Fs ) n ' est
pa8 contenu dans L( P{ ) , 11 exl3te un g6n6rateur u du c6n8
quI n lappartlent pa8 a L( F; ) , D laprag la d6nonstration du
Th6orime de Farkag--Uinkow3kl-Weyl ( quI afflrne qu'un cane

convexo est polyhedral sl at seulement sI 11 adnet un
nombre fini de g6n6rateura; volr par exemple [11 ] , Carol-
lary 7, 1, a, ou [lOJ ) et lea borne8 6nonc6ea dana le Lem-

me 1, Ill exi9te un sygtime de g6n6rateur8 8ntler g du_

,an, polyh,dr,1 X(?,) n.. .n K(?, ) tel. que J( g ) = a'[';)-
(;eel mo IItre qu'on peut cholslr ue Z'L - { 0 jt tel que
Z( u) B dOC’y , Le raisonnement pr6sent6 auparav ant nontro:

au98i au' il exjgtn te IN tel que % (x b + tu) 40 , Un tel
t d6p8nd d8 la tallle des coBfflcienta du polynouo

Pi (XI + Tu), clest- i-dire deB coeffIcIents de Pa ' de xl
et de u (vo Ir par exemple [ 8 ] pour cotta relation) , an
pose alor9i x := xc + tu, at an obI;lent J (x) * d( / (XI) +
nOf?Of \ n

Pour conp16ter la preuve d8 ( 1) et ( I1) de la Prop08l-
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tion, on procBde par r6currence en trav8111ant nalntanant

avec les contr8intes FI , l£i£ S , 1 / 4. t et en 8upprl-
Brant une a une, dans un cdrtaln ordr8, toute8 Ios con+"
trainte8 8uperflue8 , On obtlent aln9i un ensemble :

M' := { XC IRt' : Fil(x) so, , , , .FIt (x) 4 o3
de man tire que pour tout 4, l£4£ I, K(PIl) n , , , n R( at)£

L(Fi) ' Cet ensemble v6rifi8 la condItIon ( i) de la Propo-
sit;ion : Mn an + P <=> M' n Zn ++
Pour ( ii) , on a 18 lelame suivant :

Lemme 3g Salt M1 d6flni comme pr6c6d8aunent, et sett x 1 C
M' n Z$, Alors, 11 exi8to xe Mn Z$ tel que

J(1) = da'B /( x ' ) + &&Tel

( Dang Ie cas air M' n 1 est d6flnl par aucune contralnte+ on
p09e x ':= 0.) ,

Preuve : Supposon8 sans perta de g6n6rallt6 quo pour dg-.

finir M1, on alt supprlm6, dang cettordrer Fs,FsTl, , , , t Pr,a

et qulaln8i, M' t= {xe ]R'' : Pb(x) 4 O, , , , , Fr(x) G O}
Si on appliqu ait r6cur9ivement le r6sultat du lemme pr6-
c6dent, on obtiondralt I ' estimatIon 8ulvante :

Z(x) 4 ds(2(x.) + sda~k)

pulsqu' a priorI la 8eule borne sur le nombre do contraln-.
tes qu' on supprine est le nombre total S de contrainte8,
Ceci n ' est pas 1 ' estImatIon d68lr6e gtant donn6 que s ap-
paralt dans I'exp08ant, Le rai80nnement 8ulv ant pernet d8
borner le nombr8 do r6p6tltlons de la proc6dure du :beano

par la dImension 'rb de I'espace ambiant ,

Rapp8lon8 que 8i K cIR“” est un ensemble convexe9

dimRK:= nin { dI%Lp L 80u8-e9pace lin6alre de IR’' gut con-.

tlent K 3
Et par 8lmpllcit6, d6flni980n8 :

X„,,= X(?,) n. ..n x(r,) n K(?,t,)
et Kr+t:= K r+1_InK(Fr+z) t pour tout I> 1 ,
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Clairenent Ks 9 Ks_IG , , , C Kr+r
On consld6rera en una 8eule 6tape toug les onsenbl88 con-
vexes K„I de agate dImensIon, par oxemple, soIl; :

dirnRKr+t = ' ' ' = dIn$1Kr+i / dlmRK ,+),b = ' ' ,
Alor8, pour tout 1 g is 4 , Ie falt qu'on alt 8upprim6 la
contrainte Fr+1 de 11 ensemble {Pl1, , , , Fr,I? inpllque que

dimR(XFm nI'( Fr+z ) ) < dlmRKr+I ' = ' ' ' ' = dinRX r++ (Ig is / )
an afflrme cue dans ce cas on petIt cholslr u + Ot ue Rr,i
tel que ujl(Fr,i ) (1 s lei ) (c'est-1-dire que la dlrec-
tion u va sorvir pour 3uppriner en une foIa toutes lea

contrainties Fr,{, , , , , Fr, & de I'8ngemble iPl, , , , fFF+i ? ) ,
Pour cola, on considbre un sygtine de g6n6rat8ura # du

,6r„ polyh6dr a1 X,, j , +br qu, Z( g ) , d'CVJ , et on
pose ui= VI +, . .+v, , oh 4vl, , , , , v,} £ ? est un ay8t B-
ma lin6alrem8nt Ind6pendant maxImal de e , in propr16-
t6 d '11unlformit6'1 des polyn8me8 aua8lconvexeg pormet del

montrer 1'affirrnatlont et d ' aut;re part iI eat claIr quo
Z (u) , d'""J .
Ce proc6d6 p8rmet de contrater to nombre de r6p6tltion8
du lemmo par la dImensIon AV do I'espac8 amblant, ce quI
fournit la borne 1,

J(x) = d"( Z(x.) +ndof"Y ) ; d"’/(x') + phIL A
Flnalement, 6t ant donn6 que le falt que 11 ensemble

Ml= { xe JR4' 8 FIa (x) 40t,,,,F££ (x) 4 Q3 ne =ontlenne Plus
aucun8 contralnte 8up8rflue est 6qulvalant a la condItIon

K(FA) n , . , n K( &l) = L(FIl) n. , .n L( %) , on achave la preu-
ve de la PropositIon b 1 ' aide du lenne 8uivant :

Lemme 4 t Solent Y,e , , , , F,t C Z [Xl, e + + , Xml qua8ieonvexe3

tel8 que K( nI) n. . .n K(%) = L(Pal) n.''n L(FAt)+ Bolt
Min { xe an : FJI(x) gOP . . ., FIt (x) go j et BOlt J:=

I ( } FIl, , , , , &l i ) , alors t
M' = V + (M' nV 1)
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o& V est un 80u8-e8pac8 lin6aire de IR" qui admet une

ba8e ya tell8 que J ( a) n aDfNII et H. n Vr eat un 80u8-
en3emble compact de IR~'

Pre live : an d6finit V:a L( F,i) n, , ,n L(Fe)
Il e8t claIr que V est un sous-e8pace lln6alre de JR" ot
on petIt faeilement on construire uno ba8e dl tello que

I ( &) = dof"lZ ( en utlll8ant le falt que cInque L(FA)

admet; une base de longueur bin8ire major6e bar ad”V ) .

So it malntenant x£M' ; iI axi8te une repr68entation de

x de la formo x = y + u , oi ye VL et a cV,
Alor8, y = x - ue H' (pui3que -u eV et que par 18 d6fi-
nItIon de V, Fh(x + (-u) ) 4 F+k(x) £ O (1 6 kg I ) ) ,
c 1 est-a-dire x c (M1 n V1 )' + V,
L' Inclusion r6cipro que so raontre 8lmll&lrement,
Il 8uffit de montrer maintenant que 1len88nbl8 (A' n VI )
est conpact : sI 11 ensemble fern6 et convexe M' n VI ne
1'6talt pas, il conti8rrdr8it uno deal-dro IIte { x + tui
t > Oj I oh x CMln VI Bt uea“- IO! (voiP par example

[10 ] ) , Ceci entraineralt que la directIon u eat une dl-•
rection de r6ces8ion de F,II, , , fFa + et aln81, u cV, Dtun
aut;re cot6, on obt;lent que u€V1 ; par cons6quentt wO,

contradIctIon, n a
3., in borne semI-&lg6brique,

En vert;u de la PropositIon do la section pr6c6donte, il
sufflt, pour conclure la d6mon9tratlon du Th6orBma I, de
montrer que sI 1 ' ensemble M' aVI ost non TIde, alor8 III
can I;lent un poInt entier X' de longueur binalre 2(x' ) =
(sd)'’f"'I .

Et;ant donn6 que H' 88 d6conpa8e comme 80nme d'un sous-

espace lln6alre d8 ]R’' at d 'urr 8n8emble compact, nous not18

r6duiron8 a la con8ld6r&tIon d tun engenble born6, do rayon
d6pendant de celul du compact, ot nous 8ppllqueran8 en8ul-
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te lee r6sultat8 pr6cjg de g6on6trle 86mi-alg6brlque de

par exemple [12] ou [5 ] pour borner le rayon du com-

pact,
Sans perte de g6n6ralit6, on paul; 8upp08er dan8 cett€

8ection que M = { xe IR~ : 71 (x) g C), , , , , Ps(X) < 0} ne con-
t;lent aucune contralnte superfluo (dans le 8en8 donn6

dans la 8ection pr6c6dente) 1 ce quI entra Ina que Hn V +
( Mn V1 ) , ob Hn V1 est compact et V lln6alre &dmel; une

base entiere 'f3 te11e que 7 (6) n dO(+y ,

Observation,: Si Mn Z"' est non vide, alor8 M contient un
point entier dans llen8emble Mn VI + B, ou B := { E pdF,
04 pu<1} . -AKa

preuv8 ! So it xe M nZ'' , an a la d6composition x = y + u,
yeMnV1 et-uc V, Soit a :=]vI, , , , , Vm} in ba8e entibre
de V et 80 it u =dlvr+,,,+dmvM ( dr,,,,ldM (II1) la repr6-
sentation de u dans la base ga,
Pour tout 1 g 14 'v' , p080n8 :

di = Ldc J +' rai oh L''iJeZ et 0 C (31 < 1
et so it T := y + (1>fI% + , , ,+(1,hvm , Alor8 T = x - ( LdhIv& + , , ,
,,++L,hJvM) ( Z"’, De plU8t leM + Vg M; par eon86quentp

ReMnZ'’ et TeM n V1 + B, a

Ceci 8ignlfie que 81 1 ' ensemble M nZ“ est non vide, II
cant;lent un point "prbs'1 de 1 ' ensemble born6 Hn V1 , E-

t&nt d,.„6 q., I, b,s, a d, v ,at t,II, a., J (a ) B /n/
pour conclure la d6mon8tration du th6orbmep il 8ufflt de
uiontrer I'oxi8tence dlan rayon ReIN tel que Mn V1£ B(01 R)
et JcR) = (sdy(”I.
L,mn, 5, Mn VlgB(O,R), ,a R, w ,St t,I que z(R) = (sayFk.

Preuve : L'en8emble semI-alg6briqu8 Mn V1 petIt gtire d6-
fini a 1laide d' une fornule 8an8 quantiflcateur8 du lan'.
gage de prenlor ordre de IR I con8t8nt08 dans Z, dan&:
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coefficlent8 doa polyn8nea1&que11e apparalss ent les

, , p Fs at les 6qu&tlon8 de V1 , an petIt alors d6criro
PI,

llensenble 8emi-alg6brlque S :a {P cIR 8 Hn V1 € B(atf)}
par in formule $ 8uivante ( quI a un soul bloc de quan-
tificateur8) :

$ : (VI) ( Xc Mn V1 + 11l1124 P2)

o& X:a (XI, , . . , Xn) 80nt lea varlableB 116e8 de @ et P
e8t la 8eule variable libre ,
Si on appliaue I @ 1lalgorithme rapide d '61inination des
quantificateur8 pour le cas partleuller d'une formule a u-
ne varIable IIbre et un bloc de auantiflcateura, (volr par
exenple [12 1 ) , on obtlent une foraule Y 8an8 quantlfl-•
cateurst en la variable j> , quI d6crlt ex8ctement 1len8em-

ble S,
I' est une disjonction de conjonction9 d8 conditions de

3ignes nur certain8 polyn6me8 GIf , , , 9 he Z [ P J o Bt ant

donn6 que dans la formule origlnale $ tou8 lea p&ram'b'

tres sont de longueur blnaire major6e par do(7'U et 16
nombre et leg degr6s des polyn8ne8 p8uvent: 1 litre Par s et
d re9pectivement, llalgorlthme dl611mination des quantifi-
cateur8 garantit que ces polyn6mes (;11, , , tG@ v6rlflent g

d,g(Q) = (sd)o(") (1 + Ism) et /( {%, . . ., GH) = (sd)DVI
De plus, si dell est la plus grande racine r6elle quI ap-.

paraIt dans lea polyn8me8 GIt , , , , Gm 1 on observe que la
farm Ille V est toujourg vraie ou toujours f&u88e dana

lljntervalle ] d , +oo[ (pulsqu1 a la drc>ite de a< , 11 n1 Y a
changement de 8lgne dl&ucun des polyn8ne8 qt , , , t Gm ) e

cogune y e8t vrale pour + m , y doIt 6tr8 vraie dans 1IIn-
tervalle ]d , +mE , et par cons6quent il sufflt deklbornor

la plus grande racIne r6ollo dea polw6me8 Gl IB , et GM pour
obt8nir le rayon R cherch6 ,

La borne sur les degr63 et la longuour blnaire dos coof-
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flclents dea polw8mes Ga, , , , , Gm prodult directement une

borne Re [N pour leur8 racine8 r6elle81 telle que Z(R) B
(sd)O(nb (on &pplique par ex8nple I'in6gallt6 do Cauchy,

[8 ] ).
Ain81 81 ach;ve la preuve du Th6orim8 1, •

Preuve du Gorollaire - Cello-el est inm6dlate pul8quet

3achant que si I'en8emble { xe Z'' i FI (x) 40, , , , , F, (x)4 0}
eat non vlde, il contlent un poInt dans la boule BCC)tR) ,
o& R eat tel que I (R) = is d)of'aZ , 11 8uffit do v6rifl6r
si un poInt entler xc Z'' , de lon8ueur bIn aIre uajor6e
par cotto borne v6rlfi8 le8 conditlon8 Fl (x) g 0,,,,+Fs(x)£ o
Cela peut bien 8&r 8'effectuer en temp8 (sdyf’'I , en te-

nant compte du dB©6 de ?I , . . . , Fs et de X(+Fe, . . , , F,} ) .
(Observons qu' une borne d6ternlnl8te est do llordre de
2 (sdy n p„i,qu. iI f,„t 6„al„,r I,, p,lyno,1,, ?l, . . . , F,
en tous le8 polnt8 entler8 de la boul8 B( C)1 R) ) , a

!’reuve du !heorene 2 - On appllque Ici a nouveau 188 186-

thodeg utlll86es pour montrer le Th6oreme li 9uppre88lon
des contraintes 8uperflue8 et r6duction I un ensemble con-
pact , Nous ne fournlron8 pas icI une preuve coapl';te m 8l8
simplement une e8qui88e de la d6non8trationf nous remet-

tut a [ 7 ] pour leo d6tall8,
( i) Etant donn6 que Mn a’'/ g, iI exl8te x, e Hn Z“nB(O, R)

,b kR) = (Sd)o(’al (Th60,bm, 1), ,t' 'Z(?(xo)) =
(sd)on’k .

(iI) Etant donn6 cue m := inf { F(x) & le Kn Z’n } > - oo p
F(xo ) } a + et, par cons6quentf sl N := { xc Rn: Fa(x) gO/

, , , , Ps (x) { 0, F(x) < F(x, ) } , Nn Zn eat non TIde et
n = Inf { ?(x) ,8 xe RaZ -' } ,

an procBde &lor8 a la 8uppre88lon des eontralnte8 super-

flue8 d9 la 8ucce88ion F1,,,,fPsIF-F(xoy'9 d8 manlbre b ob-
tenir un en8enblo N 1 1 d6flnl par 6ventuellenent noin8 de

- 17 -



contraintes, connie dans la Prop08ltlon de la preuve du
Th6or8ne I, (ii) implique que dans cette proc6durep on
nl6jinlne Jamal8 la contralnte F-F(Xa ) , et par con36-

quent : inf { F(x) : xe No Z“} = Inf { rCx) : xc N' nZ“3
Conne auparav ant, on a la d6comp09ililan i

N1 = W + (NI nW 1 )'

oh W est un sous-espaco lln6alre de IRqt qui admet une
base entIBre., & telle que I (a) = (sd)oC’'I , et
N 1 n WI est un sous-ensemble compact de IR~b quI v6rifle :
N ' n W1 g B(0, R) , av8c Z (R) = (Sd)o(al
an montre ensuite que :

Inf + F(x) : x cNla ZHi = inf { P(x) : xc (N' n WI +. B)n N'nzI
al B := + 2: h. Lr , 06 /a'a < 1 }
et on achive la d6mon9tratlon en r6cup6rant I p8rtlr du
poInt entier jl de N ' aZt' ' quI se trouve dans I' ensemble

N 1 n Wl+ B et tel que F(x 1 ) = m , un poInt entl8n xe
Mr\Z’' out v6rifie Z (x) = (Sd)OCTal at F(x) = m,

0bs8rvong, avant de conclure, que I'hypathb ge du th6o-
rbmet Inf {P(x) : x eMo Z“ ] = n > – aa entralne que le r6-
sul&at ne fournlt pas une proc6dure de recherche de m,
maia 11 est facile do nontrer que dana nos conditIons
partlculi'bres, si M nZ'’ est non vlde9 alor8

Inf { F(x) : XC Mn E--} >-oo <=,, Inf { P(x) :xx cM 3 > -aD
et par cons6quent, 6tant donn6 qu1 on pout v6rlfler rapt-
demerIt b 1' aIde de 1l611mln&tion des auantlficat8ura, { [ 5 ] )
si inf { F(x) : x eMI > -ao , on abtient une proc6dure de
recherche de la,
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9.1 INTRODUCTION

If F is a field and g(X),h(X)c FIX], then f(X)=g(X),h(X)= g(h(X))e F[X] is their
(functional) composition, and (g(X),h(X)) is a functional decomposition of f(X). Given

f(Xk F[X], there exists a complete decomposition in the form:

f(X)=f1(X)of2(X)o.....,fr(X), where "," denotes substitution of polynomials and fi(X) are

indccomFnsablc polynomials over F[X], see Pill
The functional decomposition problem over F[X] can be stated as follows: given

f(X)e F[X] of degree n=rs, to determine whether there exist g(X)A(X)e FIX] of degrees r,s

respeclively, such that f(X)=g(X)oh(X)=g(h(X)) and, in the affirmative case, to compute them. For

some time, this problem was considered to be computationally hard, but since 1986 there are

several polynomial-time algorithms working in the "tame" case, i.e. when the characteristic of F

does not divide r, (see Kozen & Landau presented the first polynomial-time algorithm, in 1986,
(;athen el al. , Grui€nez et al. ).

Regarding extensions of this important problem, recently Kozen & landau have found (in

the tame case) a solution when the polynomial f(D has coefficients in a commutative ring, but

assuming that the polynomials involved are monic.

On the other hand wveral generalizations of the decomposition problem have ken posed

for multivariate polynomials. Barton & Zippel proposes the following: given a polynomial

f(X)c F[Xl„.,X„] they wish to know if ihere exist a g(be F[Y1,..,Ym] and hlW„.., hm(X)E

F[Xl„.,X, I such that:

f(xI,...,x,)=g(hIm,...,hm(x)). This seems more difficult than the decomposition of univadate

polynomials; but even partial solutions would tx an aid to algebraic simplification and evaluation

problemns. Gathen and Dickerson solve the following problem: given f(X) c F[Xl„..,Xm] of

(total) degree n=rs, and r not divisible by the characteristic of the field F, to determine when there

exist g(X)c F[X] and h(X)c F[X1,.......,Xm] of degrees r,s respectively, such that

f(Xl,...,Xm)=g(h(XI,..„Xm)) and, in the affirmative case, to compute them. Bateman presented

the first polynomial-time algorithm in 1987 and Gathers (1990) presented a conceptually simple

Newton approach that yields polynomial-time algorithms for denwly prewnted inputs, and rardom

.1



polynomial time for imputs given by arithmetic circuits.

Now, we remark that solving in all generality the problem of decomposition of

polynomials in one variable over a factorial domain will imply the solution of the decomposition

problem for polynomials in several vadabla over a field, in a wise diffuart to the one dx)ve stated

by Gathen, namely, considering the given polynomial as a polynomial having as ccxfficients

polynomials in one less variable and proceeding to an iterative decomposition, once an ordering has

been choosen in the variable (c.f.Definition 2.1 below). Moreover, every decunposition in the
sense of Gat hen is also a decomposition in the new sense of definition 2.1, but no conversely, as

shown by the following exwnplc:

f(X,Y) = ((X3+1)Ya+ 2XY+ X2+l)„(Y2+Y+X) =
= (X3+l)(Y2+Y+X)2 + 2X(Y2+Y+X)+ X2+1

is a decomposition in our sense but the polynomial f(X, Y) is "indecomposable" according to

Gathen's criterion. The solution of the decomposition problem for factorial domains is precisely the

content of §3 of this paper. Besides we survey briefly the algorithm of Guti4rrez & Ruiz de

Velasco working in a field F; we also study and solve the more general problem of finding (and

defining) a complete decomposition in indecomposable elements, stating some uniqueness results

concerning this decomposition. As a consequence we can recover Gathen's decomposition and

clarify also some of the concepts of Kozen & Landau with regard to complete decompositions

(which were obscure to us as they were stated over non neccessadly integrity domains, see Remark

2.3)

In section 4 we coment very briefly some applications of the functional decomposition of
polynomials.

9.2 SOME GENERAL CONCEPTS AND RESULTS

Let R be a commutative ring with identity. It is very uwful, in order to work with the

functional decomposition of polynomials to consider the near-ring (R[X],+,,), see Pitt . If R is a

domain the units in the near-ring R[X] are the linear polynomials aX+b, where a is an unit. As

usual Ro[X] will denote the set of all polynomials over R whose constant term is zero, that is

Ro[X]:= {f(X)€ R[X] / f(X).O=f(0)=0}.

Ro[X] is a subncar-ring and agrees with the zerbsymmeuic part of R[X].

Given a polynomial f(X), we denote the degree off(X) by deg(f(X)).

Firstly, we need some definitions.

Definitions,2,1. As in ring theory, we say that an element f(X)e R[X] is
indecomposable provided that

i) f(X) is non-constant and non-unit

ii) f(X)= g(X)oh(X), (g(X),h(X)ER[XD implies g(X) or h(X) is an unit.

Otherwise we say f(X) is dccor7posabLe.
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Of courw, if R=F a field, then f(X)c F[X], non-zero and non-unit is indecomposable if

and only if f(X)=g(E),h(D, implies deg(g(X))=deg(f(X)) or deg(h(X))qjeg(f(X)).

A decomposition of f(X) is a set of polynomials f1(X)J2(X), ,..„fr(X)eR[X] such that:

f(X) = f1(X)of2(X)a.,_ofr(X).

The fi(X) are componentes of the decomposition. IfR is a d9majr! the product of the degrees of the

fi(X) is the degree of f(X).

A complete decompositIon is one where all the fi(X) are indecomposable. + .

Remark 2g2'

If D=F is a field, every polynomial f(X) has complete decomposition in F[X], with a

strong unIqueness property :
First of all, given a Fnlynomial f(X) over any field, with naleg(f(X)) prime to the charactedsdc

(therefore without any restriction if the characteristic is zero) in order to find a decomposition of

f(X) we can assume that f(X) is mollie and n>1, let say

f(X) = Xn + AOIXn-1 + AO2Xn-2 +.......+ AOiXn-i + ._ + AOn_lX + AOn

Then we are going to find indecomposable polynomials gl(X) , g2(X) „....., gr(X) of

degree > 1 such that:

(a) f(XP g,(X)ag,(X)a--ag,(X)

(b) gi(X) are monic polynomials for all i .

(c) gi(X) ' Ko[XI for i = 2,--..r

The main step is to find a polynomial h(X) and verifiying f(X)=g(X).h(X) for some polynomial

g(X). Then we compute g(X) and pn>cmd recursively.

Let m tn a saict divisor of n and let h(X),

h(X) = Xm + b1 pn-1 + b2Xm-2 +........._+ bm_lX c Fo[X], then h(X) a gcx>d candidate for

the decomposition of f(X) if and only if the remainders of the h(X)-adie divisions of f(X) in h(X)

are constant elements ofF, that is

f(X) = qI(X)h(X)+r0(X)

ql(X) = q2(X)h(X)+rr(X)

qt_1(X) = qt(X) h(X> + rt_1(X)

qt(X) = 0.h(X)+ rI(X).

where tm=n and therfore qt(X) =1. Note that if h(X) is a guM candidate for the decomposition of

f(X) then the sequence of h(X)-adie divisions compute the coefficients ri of g(X) (ri(X) = q =
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qi(0)) such that f(X) = g(X) , h(X), where tm=n and thufore qt(X) =1 and rt_1(X) must be

constant. Imposing this last condition we obtain a system of equations in the bi's. Actually (see the

proof Gwi4rrez & Ruiz de Vel£uco if

qk(X) = Xn-km + AklXn-km-1+._+ AkiXn-km-i +._+ Akm_lXn-km-(m-1) +.................... for
all k then

bI = ( Ao1 )/ 1

Ak1 = Ak-11 - b1 for all k

Cl = A11 + A21 +............+

Moreover

and

At-11

b2= (Ao2 -blCl )/1

Ak2 = Ak-12 -b1 Ak1 - b2 for all k

C2 = A12 + A2'2 +............+ At-12

and

and so on until bm_1 is computed . Ure complexity is O(112+6), where a is an arbitrary small

positive constant ( see Gun6rnz et al (1988 ).

Finally we note assuming that h(X) is mollie and h(0)=0, then h(X) is unique, (see Gutierrez &

Ruiz de Velasco or Gathen ) . +.

Remark 2,1. Kozert & Landau give a "similadLy'’ definition for an arbitrary commutative ring
but this one does not agree with lkfinition 2.1 when D is not an integral domain. In fact, if we take

as R=Z4, the ring of integers m(xlulo 4: then

2X4+X3 = X3, (2X2+X)

is a complete decomposition ("tame case") in the sense Kozen & Lxutdau, but notice that is not a

complete decomEnsinon as definition 2.1, because 2X2+X is an unit in the near-ring Z4 IX];

X =( 2X2+X ).(2X2+X)
Nevertheless Kozen & Landau's proof of their decomposition theorem over monic polynomials

seems to use implicitly a concept of decomposable element that agrees with our lkfinition 2.1. +

9.3 DECOMPOSITION OVER FACTORIAL DOMAINS

In this section we prove our main result, i.e. that if Dis factorial domain, then every

polynomial in D[X] has a complete decomposition. Throughout this paper, we denote by D an

unique factorization domain and by F its field of fractions.

In order to get a complete decomposition of f(X), we can assume -without loss of

generality- that f(X) is in Do[X]; in fact, f(X> ahn + ah.IW-1 +__+ alX+ ao =
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(X+ao)da.W+an_lW4+.....+alX) is indccomposable if and only if

qX+ aH_lW-1 +.......+ alX is indecomposable.

nrc key lemma for proving the complete decomposition of f(X) is:

Lemma ),1. Let g(X)A(X)e Do[X 1 tx pdmiHve polynomials, then their composition is

prrrnltrve.

Proof . Suppose g(X),h(X)c Do[X] are pdmidve but f(X)=g(Xbh(X) is not. Then there

exist an irreducible element pc D such that p does not divide g(X) and h(X) but p divide f(X). We

consider the domain D = D/(p). We now apply the comwmon ring hornomorphism (i.e. ring and

near-ring homomorphism) see Pilz & So ) of D[X] onto DIX]. We arrive to a contradiction with

the fact that if D is a domain and g(X) and h(X) are polynomials in D[X] with positive degree then

g(X)ah(X) is a polynomial with positive degree. +

Theorem 3,2. If f(X)c Do[X] is primitive then f(X) is indecomposable in DIX] iff f(X)

is indecomposable in F[X],

Proof, Suppose that f(X) is decomposable in F[X]: f(X)=g(X),h(X) where

g(X),h(X)cF[X] and deg(g(X))>1, deg(h(X))>1. We can find ac F such that:

f(X)= aX a g'(X) D h'(X) with h'(X),g'(X)e D[X] primitives. Using the lemma, we have ae D and

hence f(X) is decomposablc in D[X]. Conversely, if f(X) is indecomposable in F[X] but f(X)

decomposable in D[X], then f(X)=1(X)oh(X) or f(X)=g(X).m(X) where deg(1(X))=deg(m(X))=1

and 1(D, m(X) are not units in the near-ring D[X]. If f(X) =(aX+b).h(X), we observe that a

divides f(D. Likewise we proceed in the case f(X)= g(X).m(X). +

ProPQ$i£ion, ), I. The subneu-ring RX:={rX/rc R) is isomorphic to ring R

fred The map rX –> r is a ring isomorphism . +

An immediate consequence of Theorem 3.2 and Proposition 3.3 is the complete decomposition

Corollary 3,4. Given f(X)c D[X] non-constant, there exist indecomposable

polynomials f1(X),f2(X),....fr(X)eD[X] such that: f(X) = f1(X),f2(X),__,fr(X). +

Remark, I,S. To determine a complete decomposition of a polynomial f(X) over a
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domain R, we observe that the assumption "R factorial domain" can not & omitted as shows

Proposition 3.3 +

Alrnrithm 3gfi-

Input: f(X)=ahXr’+an.IX'1-1+.....+alX+ao eD[XI of degree n=rs, and r not divisible by

the characteristic of D.

Output: g(X) A(X)e D[X] with f(X)=g(X).h(X) and deg(g(X))=r, if such a decomposition

exits; and "no decomposidort' otherwise.

A.1. Kind a, Be D such that f(X)= (aX+ B),f(X) where f(X) is primitive. Take a =

G.c.d(an,an_1„__,a1), D= ao.

A.2. UK the standard algorithm decomposition over F[X], with input f (X). If no

decomposition off(X) in F[X] exist, return "no decomposition".

If f(X)=g'(X)oh'(X) is returned with h'(X)E FoIX] and monic,

h'(X)= X;+ (b,_,/c,_,)X’-1+.......+(b1/c1)X, return

g(X)= (aX+B)og'(X) X1/8)X and h(X)= ax ,h'(X), where

6= L.c.m.(cg_1, cs.2„....,c1 ).

Using Lemma 3.1 and Theorem 3.2 we see that the algorithm correctly determines whether

f(X)c D[X] has a dwomposition with the required degrees, and if so, computes a decomposition.

If we suppose that G.c.d.(deg(f(X)),characterisHc(D))=1, since the number of divisors of

deg(f(X) is finite and using Proposition 3.3, we obtain an algorithm to decompose f(X) into

indecomposable polynomials. +

We end with some interesting results ah)ut the "uniqueness" of a decomposition of f(X),

Corollary ],7. Let f(X)c D[X] be of degree n=rsi with G.c.d.(deg(f(X)), char(D))=1.

The following holds:
(i) if f(X)=g(X),h(X)=g'(X),h'(X) with deg(h(X))=deg(h'(X))=r and

h(X),h'(X)eDo[X], then h(X) and h'(X) are associated in FIX]. In particular, if they are
indocomFX)sable polynomials, then they are asswiated in D[X].

(ii) Let f(X)=m1(X)om2(Xb...omr(X)o g1(X)og2(X)o...ogu(X) and

f(X)=n1(X)on2(X)o...ona(X)oh1(X)oh2(X)o...ohv(X) are

6
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two complete decomposition of f(X) with deg(mi(X))=dog(ni(X))=1 and deg(gj(X))>1,

deg(hiCE)>1, then,

m1(X),m2(X),....,mr(X)=n1(X),n2(X),....ong(X) and I=S. Moreover,

g1(X)'g2(X)'....'gu(X) = h1(X),h2(X)'....'hv(X), u=v and the sequences <deg(gj(X))>,

<deg Chj(X))> are wnnutadons of each other.

Pm£l (i) it is a consequence of a strong uniqueness property (see Gutidrrez & Ruiz de
Velasco or Gathers ) and the algorithm.

(ii) Use Theorem 3.2. and the results about the "uniqueness" of a decomposition of a

polynomial over a field, we Schinzel . +

More results about the "uniqueness" of a decomposition of polynomials over a field

appear in the tx)ok of Schinzel.

g 4. APPLICATIONS.

Solvin? noIYnOmial equatinn$ 411-

Let f(X) be a dwomposable polynomial, f(X) = g(X) oh(X). Wren to compute the zeroes

of f(X), first compute those of g(X), zi; so the zeroes of f(X) are the zeroes of the polynomials

hi(X) = h(X) - zi . For example, the polynomial f(X) e Q[X]

KX)= X12 +3Xll+ 3XIO - 5X9 - 12X8 - 6X7 +12X6 +12X5 - X4 - 9X3 +2X + 5, is an

irreducible polynomial over the rational integers, but

f(X) = (X3 - X +5),(X4+X3 -2X ).

So we have reduced the problem to compute the zeroes of an irreducible polynomial of

degree 12 to compute the zeroes the polynomials of degree 3 and 4. Of course f(X) is a polynomial

resoluble by radicals.

The operator SOLVE in the REDUCE System does not give any solution for

f(X)= X12 +3XI l+ 3XIO - 5X9 - 12X8 - 6X7 +12X6 +12X5 - X4 - 9X3 +2X + 5, but it resolves

the equation by appliying the aIx)ve comment. +

Determining POIYnomial factors 4l2.

(i) Let f(X) e F[X] such that Xf(X) is a decomposable polynomial, then f(X) is a

reducible lx)lynomial

We have Xf(X) = g(X) , h(X), then

Xf(X) = COh(X)t + clh(X)t-1 + c2h(X)t-2 +........._+ ct_lh(X) , so h(X) is a factor of Xf(X) and

since deg(h(X)) > 2 we can get ( Uivialy) a factor of f(X).

(ii) Let f(X) e F[X], such that a prirnidve g(X) of f(X) ( i.e. g’(X) = f(X), g’(X) is the

. 7 .



formal dedvadve off(X) ) is a dwomposable polynomial, then f(X) is a nducible polynomial

We have g(X) = g(X) , h(X), apphng the properties of the formal dedvate,

f(X) = ( g’(X) o h(X) ) h’(X), since deg(h’(X)) 2 1, h’(X) is a factor of f(X).

(iii) Finally, to determine when the plwomial (f(X) - W))/(x_y)cF[X,Y] is a reducible

polynomial. ( See Fried ) +.

The N-Partition Problem 4l3 .

There is a similar application of polynomial decomposition to the n-partition problem. Given a set

A=(al„.„ a,in} and a rational-valued function q: A–> Q, we want to compute a panidon of A into

m disjoints subsets B1,...., Bm of of n elements each such that for lgigm we have:

: q(aj)=iE q(aj)
qc Bi –- qc A

In certain instances, we can use polynomial decomposition to solve this problem:

we construct the polynomial f(X) as follows:
TII

f(X) =n (X - q(ai)).

Assume that f(X) has a decomposition f(X)= g(X}.h(X), with deg(g(X)Hn and deg(h(X))=n and

let g(X) factor in an extension of Q as:

g(x) =[1 (x - Fi),

Then

f(X)=g(h(X)) =11 (h(X) - Di).
i= 1

It follows that the roots of the h(X)-Di dvc us the values of an n-partitioning of A ( for details see

Dikerson(1989). +

PeFlnutatiQn PQjynQmial$ 414

In this section we consider polynominals f(X) with coefficients own a finite field Eq of order q=pa

where P is a prime number and aBI, then f(X) is called Wnnutadon plynomial of Eq if the

asswiated plwomial function from Pq into Pq is a Fnnutation of Pq . Pennutadon plwomials
have ken studied since Hermite and Dickson , and recent interest stems from possible applications

in public-key aytography (see Udl & Mullen ). A very guM sumary concerning with permutation

polynomials of Fq is Lidl&Niedeneiter. In their survey papr, Lidl & Mullen pse as an own
problems:

P2. Find new classes of permutation polynomials.

- 8 -
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P3. Find news classes of permutation polynomials that are usefhl aytogr©hically.

Our question is:

charactedw polynomials h(X)€Fq[X] such that X +((Xq - X)h(X) is decomWsable. So we

obtain permutation polynomials and its inverse. + .

Endnrmornhi SIn InYert,ihilit,y 4l5•

This last application of multivariate polynomial decomposition is to the problem ofendomorphism

invenibility:

Given ae EndFF[Xl„.,X,], determine if a is inverable, and if it is, cornpute its inverse.

Let a tn an automorphism definided as follows:

a(Xi) + hi(XI...,X.).
Suppose the inverse of s is given by:

a–1(xi) –> gi(X1,..,X,) where

Xi = gi( hl(Xl,_,Xn)„........,h„(Xl,..,Xn)) for all i. + .

Finally we only want to remark that the algorithms presented here - for one a multivariate

case - are implemented in REDUCE and they are avalaible upon request.
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A COMBINATORIAL GEOMETRIC STRUCTURE ON THE

SPACE OF ORDERS OF A FIELD

M. A. Dickmann

CNRS – Universit6 Paris VII

Note. This is a draft of the introduction to a paper in preparation under the title above. Even at

this early stage, it may be useful to some readers, insofar the underlying intuitions and many of

the ideas are explained in detail; we include exact statements of the main results, but proofs are

omitted. o

Notation

– A total order S on a field K is identified with its positive cone: P = {x c KIx ? 0}.

x(K) denotes the set of all (total) orders on the field K . In using this notation we do

assume that the field K is formally real (= orderable; abbreviated, f.r.) , whence the set x(K) is

non–empty .

INTRODUGFION

In the extensive literature on formally real fields the set x(K) has hitherto been

considered as a topological space, endowed with the sncalled Harri$gn toPQIQgv generated by the

family of sets

–1 –



HR (a1,...,an) = {P e x(K) I a1,...,an e P} ,

for all finite sequences a1,...,an e K , as a base of open (in fact, clopen) sets.

The purpose of this paper is to introduce another –combinatorial– way of looking at

x(K) and develop at some length the ensuing thu)ry. This yields many new (and, we hope,

interesting) rmults, but a part of our task consists also in recasting in terms of the new concepts a

part of the existing theory; the most fruitful aspects of this reinterpretation lie in the link with the

combinatorial theory of quadratic forms, developed essentially by Marshall and Br6cker (sw [8],

[9], [10], [11], [2], [3]).

An informal notion of an "independent" set of orders has been around for some time,

specially in some papers by Br6cker, see [2; p. 149]. However, this notion never was used as any

more than a terminology. It never was the object of systematic investigation using the concepts

and tools of the theory where it belongs, namely the theory of matroids. The idea of checking

whether this vague notion of independence –or rather the corresponding notion of closure– did

satisfy the matroid axioms occurred to me in November 1988. The immediate positive answer

provided the impetus to continue (in particular, to become familiar with the theory of matroids)

In a few months I essentially had the contents of Sg 1, 2 and one–half of S 3 below. The link

with the work of Marshall contained in 55 came later, in December 1989, after a conversation

with E. Becker. The results of S 4 and its appendix, giving a geometric interpretation to, and

generalizing the Baer–Krun theorem were obtained in the spring and summer of 1990.

Since most likely only few readers will be familiar with both sides of the link established in

this paper, I have decided to precede it by a lengthy and somewhat leisurely introduction,

intended to anchor the intuitions behind the main notions and results.

In g 1 we introduce the closure operator on x(K) and show that it satisfies the axioms

for a combinatorial geometry. Further, we show it verifies rather special axioms such as:

(i) "Lines consist of two points11,

as well as the following properties, particularly significant when x(K) is infinite, a case which by

no means we want to exclude:
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(ii) " A point in the closure of a set is in the closure of some finite subset",

(iii) (Local finiteness) "The closure of a finite set is finite".

Moreover, it is easily checked that the closure of an n–element set has cardinality $ 211–1. The

possible cardinalitia that the closure of a finite set may take on have been determined, as a

function of its rank, by Brdcker [3].

Next, a well–known theorem of Br6cker (cf. Lam [6; Thm. 10.q) is used to characterize the

frm matroids (i.e., those whose closure operator is trivial) of type x(K) in terms of the field K

Theorem 1. x(K) is a free matroid iff the field K has the strong approximation

property (SAP). a

With these basic facts established, the first question which comes to mind is: in which of

the best known classes of matroids considered by combinatorists do the geometries x(K) lie? We

give a very satisfactory answer to this question in § 2 :

Theorem 2. For every (f.r.) field K , the matroid x(K) is binary. a

Here dIM (in which case the representing vector space over Z2 is

infinitcriimensional). This result is proved in two steps:

– Firstly, if M = x(K) is finite (or, more generally, M is a finite nat of x(K)), we use the

following well–known criterion (cf. White [14; ThIn. 2.2.1(8)]) : a (finite) matroid is binary iff no

coline (= flat of corank 2) is contained in four or more hyperplanes (= flats of corank I). The

verification of this criterion is carried out by means of 11dual basis" elements.

Secondly, in order to pass from the finite to the infinite case, we use an ultraproduct

construction to put together the binary repraentations of finite flats of x(K) given by the

previous step.

The existence of an obvious map
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X( K) > Hom(K-/EX x2 , Z2)

P > sgnp

where sgnp is induced by the characteristic function of P , raises the question whether this is a

matroid r,p„„„tatio„ ,f X(K) i.t, th, d„al of the Z2–„„to, space K*/£.KX2 . We show that

this is actually the case.

One way or another, the preceding theorem gives an invaluable piece of information, from a

conceptual point of view, at this stage. Another important ruult is proved by the same type of

"dual base" argument as in the previous theorem, namely:

Theorem 3. Every circuit of x( K ) has even cardinality, a

(Matroids with this property are called bipartite. A circuit is a minimal dependent set.)

Notice that the results mentioned above show that circuits are finite (cf. (ii)), of cardinality Z 4

(since any three elements are independent, by (i)). A coronary of Theorem 3 is that finite spaces

of orders of the form x(K) have a coordinatization by odd vectors of Z; , that is, vectors with

an odd number of non–zero coordinates.

Once we know that the matroids x(K) are binary, the next basic question suggested by

matroid theory is : which of them are unimodular ?. A point of caution is in order here: what do

we mean by a unimodular, possibly infinite, matroid ?. We shall take it to mean that every finite

flat is unimodular in the usual sense

In fact, there is a simple example of a non–unimodular matroid x(K) , namely for

K = RCX, Y, Z) . This is shown as follows ; sinm it is known how all orders of a rational function

field k(X) which extend a given order of k are constructed (cf., f. ex., Dickmann [5; Ch. I, S 5]),

by placing the elements X, Y, Z, in suitable positions with respect to one another, we construct

eight orders P1,...,P8 of RCX, Y, Z) whose dependencies can tn explicitly computai. The

raulting mnfiguration is a three dimensional cube (= Himensional affine space) over Z2 :
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The presence of this configuration as a minor in x(RCX, Y, Z)) makes it non–unimodular, by

Tunels famous excluded minor characterization of unimodular (binary) matroids : Fano's plane

F is obtained from the cube by contraction of any (one) vertex, and its dual, F+, by deletion.

(if the presence of many other orders in RCX, Y, Z) bothers you, consider instead the formal

power series field R((X))((Y))((Z)) , which only has eight orders.)

Which is, then, an example (at least a non–trivial one) of a field K so that x(K) b

unimodular?. Familiarity with the example above shows that the argument proving

non–unimodularity depends usentially on having three variables, since the cube has rank four; it

breaks down for RCX, Y) . Another candidate is Q(X) . (We exclude RCX) since it is

unimodular fOI trivial reasons; it is SAP and hence its closure operator is trivial.)

Before explaining the general solution to this problem, let us take a further look at the

cube above. Such a configuration is an example of a notion crucial in quadratic form theory: that

of a fan. This notion is defined as follows:

Definition. Let K be a f.r. field. A fan of K is a pru)rder T such that any multiplicative

subgroup S of K’' so that TCS , [KX: S] = 2 , and –1 1 S , is an order. a

The following characterization of fans brings us to our point:



Proposition (Br6cku [2; p. 149, (a)]). A preorder T of K is a fan iff for every three different

orders Po, P 1, P2 containing T , the closure cIR({Po, Pp P2}) has cardinality four (this is

the largest cardinality it can have), o

In this case, dK(Po, P1, P2) is necessarily a four-element circuit of x(K) . In our gu)metric

language it is more telling to redefine this notion as follows: a subset a gx(K) is a fan iff any

three distinct elements of 3 are contained in a four–point circuit contained in J.

It is an easy matter to show that there is a unique fan of rank n for every integer nZ 1 ;

it has 2n elements. In terms of the coordinatization by odd vectors mentioned above, the fan of

rank n is exactly the geometry of a odd vectors of Z; . Concrete examples : (i) if K is a field

with a unique order, then the fan of rank nZ 2 is isomorphic to the matroid x(K((X1,...,Xn_1)))

(ii) if L is a RoDe field with 211 orders, x(L) is the fan of rank n + 1 . Lam [7; Ch. 5] contains

a comprehensive analysis of fans (in their disguise as preorders) and their role in quadratic form

theory .

Returning to the problem of characterizing the fields K such that x(K) is unimodular,

we obtain a very satisfactory solution in terms of the shcalled stability index of K , a

magnitude considered in quadratic form theory, the meaning of which we explain below:

Theorem 4. Let X be a fr. freld. Then x(K) is unimoduJar iff the reduced stability index of K

is at most 2 . a

One–half of the proof, the implication (+) , is based on Br6cker's local-global principle for

stability indices [1; ThIn. 3.19], which reducu the question to an analysis of the structure of the

order spaces x(C) of the residue fields K= of K , for all real valuations v of K . For the

other implication, (+) , we use a chuactedzaHon of the (reduced) stability index in terms of

fans, cf. [7; ThIn. 13.7] and [12]

st(K) = max {n ( N 1 x(K) contains a fan of cardinality 2n}
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(st(K) = o if x(K) contains fans of arbitrarily large finite cardinaHty). Thus, if st(K) ? 3 , then

x(K) contains a fan of at least 8 elements, hence a fan of 8 elements, i.e. the affine cube

designed above. By Tuttels criterion again, x(K) is not unimodular,

Examples. Here are some examples of fields K such that st(K) $ 2 :

(a) st(K) = 0 iff K has a unique order

(b) st(K) $ 1 iff K is SAP (iff x(K) is free); cf. [1; Satz 3.20] .

(c) st(Q(X)) = 2 , st(RCX, Y)) = 2 . a

(For an explicit "drawing" of x(Q(X)) , see below.)

The same technique can be used to improve the preceding result in a way which underlina

the sharp dichotomy between the spaces of orders of 2–stable fields (stability index $ 2) and

those with a larger stability index. The result is as follows:

Theorem 5. Let K be a f.r. field. Each of the following conditions is equivalent to st(K) $ 2 :

(a) x(K) is a graphical matroid

(b) x(K) is a cographical matroid

(c) x(K) is a planar graphical matroid.

(d) x(K) is a series–parallel matroid. a

As in the case of unimodular matroids, the meaning of these notions for infinite x(K) is that

every finite flat has the stated property. Well–known excluded minor characterizations for each of

these classes of matroids (cf. White [13; pp. 146–147]) are used in the proof.

The point in the proof of Theorems 4 and 5 is that Br6cker's local-global principle,

together with Theorem 1, implies that the space x(K) has a very simple structure if the field K

is 2–stable. Indeed, each connected component of x(K) (in the matroid sm8e) is either a single

point or it is a (possibly infinite) slab of the form:
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e + f + + + + • • •

A particularly transparent example is that of x(Q(X)) , where the components are either single

points :corresponding to Archimedean orders or, equivalently, transcendental cuts on Q), or slabs

as above containing 2r points (i.e., of rank r + 1). For each r 21 there are countably many

such slabs, classified by the polynomials F e Q[X] with exactly r real roots, say a1 < ... < ar

The 2r orders are those obtained by placing X infinitesimally near each real root ai of F ,

either to the lea (= ai) , or to the right (= aT) .

dq- A; d; di d f_ q

A (non–trivial) component of x(Q(X))

di

It is widely known that any inclusion of fields i : K >–> L inducm a dual map

p : x(L) –> x(K) given by the restriction of orders from L to K . The map p is just the

(real) spectral dual of the inclusion i . From a combinatorial point of view, p is a strong map of

the geometry x(L) into x(K) , i.e. a map preserving closures (P ( dl(1) + PCP) e clK(pR);

cf. White [13; Prop. 8.1.3]). The interpretation of a well–known result from valuation thmry (cf.

Lam [7; Prop. 3.17]) in our geometric language yields;

Theorem 6. Let < K, v > g < L, w > be an extension of valued fields, where w is a real

valuation. Let x(K, v) denote the set of all orders of K compatible with v ; similarly for

L, w . If < L, w > is an immediate extension of < K, v > , then

pIx(L, w) : x(L, w) –> x(K, v) is a matroN isomorphism. In particular, if Kv’h denotes the
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henseIization of < K, v > , then p is an isomorphism of x(Kv’h) onto x(K, v) . a

(Recall that an immediate extension is an extension of valued fields such that the canonical

inclusions of the value groups Pv >–> Fw and of the residue fields Kv >–> Lw are

isomorphisms. )

The preceding theorem implia that a subset of x(K) of the form x(K, v) , v a real

valuation of K , is itself the space of orders of a field, namely that of the hensehzation Kv’h.

As a motivation for our next theme, we recall a result of Baer and Krull (cf. Lam [7; Thm

3.10 and Notes on Ch. 3]). Let v be a real valuation of a t.r. field K . Two objects are associated

to each P e x(K, v) :

1) The pushqjown order P of P on the residue field Ki , defined by :

P = {x/M 1 x eAv nP}
V

2) A 'h'r”t'r P* C H'm([v/2]' , Z2) , u”"ti'ny i"d"”d by th' 'ig' f""'ti'n '" K*/b(KX)2 ;

Fv denotes the value group of v . Actually, P* is in the dual of the Z2–vector space Fv/2r ,

but is not intrinsically defined.

The formal definition of P+ is as follows. Denote by vt the composition of the valuation

v : K’' –> Fv and the canonical quotient map Pv –> Fv/2r . Let us choose a system of

representatives i = {\ I i e I} g K* such that {v'(ai) I i e 1} forms a Z2–base of

We define P+ by specifying its action on the chosen base, as follows.
a

Fv/2r
V

-9-

P;(v'(ai)) = sgnp(ai) = { T

if ai c P

if ai f P

and extending to all of Fv/2F by linearity.

The result we have in mind is:



Theorem (Baer–Krull) The map

g: X( K I v)
a

P
–> x (q * Homa„ /2r v' l2J
> < P . P* >

a

is a bijection. a

A refinement of the technique employed in proving the surjectivity of this map (lifting a

residual order along a character x e Hom(Fv/2F , %)) suffices to prove the following result:
V

Theorem 7 (The rank formula). Let v be a real valuation of a field K. Then ;

rK(x(K' v)) = \_fx© J + dimz2rHD'1'rr„/2r J 12)) = rr(x%) + dimz2rr„in )
V

a

The proof shows that lifting a base of x(K;) along the constant character 0 plus lifting, e.g.,

any residual order along each member of the dual base of {v'(ai) 1 i c T} results in a base for

X(K, „)

All along the proof of Theorem 7 the subgroup 2Fv (= v[E(K*)2]) can be repl,.ced by the

subgroup v[T] , where T is an arbitrary preorder of K ; we obtain:

Theorem 7* (The rank formula, sharpened). Let v be a real valuation of a fIeld K. Let

I E X(K, v) , T = n {P I P cI) , and I = {P 1 Pel } . Then :

rK(1) = rR–B) + djmZ2(Hom(rv/v IT 1 ' 12)) = rr(T) + dim12Q v/vjTP - n

The rank formula allows to compute, inductively, the rank of an arbitrary (finite) subset of

x(K) , whether it is included in x(K, v) for some real valuation v , or not .

A further question suggested by the foregoing results is whether the set–theoretic bijection

tntween x(K, v) and x(Kv) x Hom(Fv/2r , Z2) utabbshed by the Baer–Krull theorem has a

geometric interpretation. Since x(Kv) and Hom(Fv/2F , Z2) each have a natural matroid
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structure, we may ask, for instance, whether thwe structures induce on the cartesian product a

matroid structure which makes the Baer–Krull map g into a matroid isomorphism. The answer
a

is positive whenever x(K, v) is finite; more generally, we show:

Theorem 8 f Geometric form of the Baer–Krull theoreml.

Let T be a preorder of K and v be a valuation fully compatible with T. Assume x(K, T) is

anita Let d = diml2( HQmEd, IT] 112) and r = rCx%T)) ' let i = {ar'-7ad} gK* be

such that {v'(a1)„'',v1(ad)} is a basis of the Z2–vector space TV v[T].

The set xK, T) x HomQ Vv[T] , 12) can be endowed with a matroid structure so that

the Baer–Krull map

g : X(KI T)
a P

a

> x%, T) x Hom(Tyv[Tr 12)
> < P . P* >

is a matroid isomorphism. This matroid structure is defined by taking as bases all families of sets

of the form

{<Ri, xj> 1 i = 1,...,d} U (<Q,I @,> 1 s = II...tr}
such that

(i) {xp''',xd} is a basis of the Z2–vector space HomFyv[T] ,12) .

(ii) {Ql,...,Qr} is a basis of x%, T) .

(iii) {RI,...,Rd} is a non–empty subset of x%, T) of cardinality g d and {+1,..., Or} is a

non–empty subset of HomE dvjTF 12) of cardinality Sr (repetitions allowed)

(iv) The matrix IF – NE is non–singular, where

– Ir is the rx r identity matrix .

– N is the rx d matrix (with entries in 12) of linear dewndencies of {+IF..,IPr} with reswt

to the basis {xp...,xd} , i.e.

+11 yr 1 1 Xr 1
=N

Xd\b,

–II –



E is the dx r incidence matrix of {Rr...,Rd} with respect to the basis {Q 1,...,QI} in

x(q, T) , i.e., the matrix with entrIes eli (1 S i Sd , 1 Sj Sr) in Z2 defIned as follows : eu is

1 or 0 according to whether Qi belongs or not to the fundamental circuit of Rj with rupect to

{Qp...,Qr} (cf. White [13; P. 129]). a

Section g 5, is devoted to the decomposition theory of the matroids x(K) . The main tool

used in this part is the approximation theorem for V–topologies, a very efficient instrument in

dealing simultaneously with orders and valuations

Matroids are naturally split in connected components by the circuit-connectivity relation:

for p, qe M,

PF q iff either P = q or there is a circuit containing both P and q .

The circuit axioms (see White [13; P. 301–302]) imply that ? is an equivalence relation; the

equivalence classes modulo ? are the connected components of M . A corresponding external

operation of direct sum of a (possibly infinite) family of matroids can be defined in such a way

that a matroid is isomorphic to the direct sum of its connected components (considered themselves

as matroids under the induced closure operator).

In [3] Br6cker introduced a natural way of splitting the spaces x(K) ; for P, Q e x(K) ,

P = Q iff ei ther P = Q or there is a non-trivial valuation of K
compatible with both P and Q .

Since Archimedean orders are characterized by the fact that only the trivial valuation is

compatible with them, the class Arch(K) of such orders, if non–empty, gets split into singletons

modulo ; . The approximation theorem for V–topologiu impliu that the classes modulo ; are

flats of x(K) . Furthermore, it implies:

Theorem 9. Let K be a f.r. field. Then I

(a) The operator dK is trivial on Arch(K) , i.e. cIR(1) = 1, for 1 g Arch(K) .

(b) Arch(K) is a separator of x(K) (cl. White [14; pp. 175–1 76D. Henm
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x(K) = Arch(K) o (x(K) – Arch(K)) .

(c) Every Pc Arch (K) is an isthmus of x(K) (cf. While j14; pp. 128–130D . a

The connection between the relations : and : is as follows

Proposition 10. (a) Circuit–connectivity implies Brdcker (valuation) –equivalence.

(b) Every Br6cker class of x(K) is the direct sum of the connected components of xM
contained in it. a

Circuit–connectivity admits a characterization in valuation–theoretic terms, namely :

Theorem 11. Let P1, P2 e x(K) . Then :

Pl~6P2 iff P1 = P2 or th,ere is P3 tP 1, P2 and a non–trivial valuation v
compatible with PI, P2, P3 such that Pv is not 2–divisible. a

The main technical tool used in proving this result (as well as Theorem 12 below) is the

Baer–Krull theorem mentioned above

This characterization suggests that circuit–connectivity is a finer relation than Br6cker–

equivalence. In fact, this is the case, and there are well–known examples: the field R((X)), or any

chain–closed field, has a Br6cker–connected space of orders of cardinality 2 which necessarily

splits into two one–point (i.e., trivial) components (cf. Dickmann [4]) . We present a non–trivial

example of the same situation by constructing a field K with Br6cker–connected order space

x(K) of cardinality 8 which splits into two 4-element connected components.

Our main result concerning circuit–connectivity in order spaces is:

Theorem 12. Let K be a f.r. field, and P, Q e x(K) . Then ;

P ? Q iff P = Q or there is a +element circuit containing tx)th P and Q. a

– 13 –



This turns out to be the crucial property of the geometries x(K) . In order to understand its

significance (and its origin), let us recall that Marshall [8] considered, in the context of a

generalization of the spacw x(K) called by him abstract ordQr spacw, a relation equivalent to

that on the right–hand side of the statement of Theorem 12. We shall denote this relation by A ;

obviously, it is reflexive and antisymmetric. Showing that it is transitive is a non–trivial matter

requiring the use of yet poorly understood notions pertaining to the combinatorics of quadratic

forms. Of course, Theorem 12 yields at once:

Corollary 13 (Marshall [10; Thm 2.3]). The relation h is an equivalence relation. a

I think that the point of Theorem 12 is that it offers an elucidation of Marshall's relation

# and puts the heart of his work in a natural and, hopefully, fruitful perspective. Of course,

Marshall's work takes place in the more general context of abstract order spaces, and is of a more

difficult technical nature due to the absence of valuation–theoretic tools. However:

1) in spite of its usefulness (for example, in the investigation of the stability index of real

varieties and related matters, cf. [12]), it is not known whether abstract order spaces yield

anything different from the concrete spaces x(K) , at least as far as isomorphism types is

concerned (in the finite case it dom not, see [8; ThIn. 4.10])

2) Our combinatorial gu)metric approach works equally well for Marshallls abstract order spaces;

in fact, I do not (yet?) know of any property of these abstract spaces which is not shared by the

concrete order spaces of fields.

3) Our approach helps to elucidate other, ill understood, points of Marshallls work, as well (for

example, the Basic Lemma 3.1 of [8]).

The interaction of the combinatorial geometric approach prwented here with Marshall's

work is the subject of joint work in progress with A. Lira, to which the praent paper serves as

background.
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1

Constructing models by games for inflnitary languages

Tapani Hyttinen

In the model theory of infinitary languages one of the main problems is the
almost total lack of methods of constructing models. For example elementary
chains does not work, Ehrenfeucht-Mostowsky models work only in some very
limitted cases, ultraproducts need large cardinals and so on. In this paper we
demonstrate one construction, namely generalized Henkin construction (sometimes
called also Hintikka game), that does work for languages like I,, , L,+, and also
for infinitely deep languages like M,, and M,+K (for the definition see [Ka] or
[Hl]). For this paper one needs to know about M-languages only that L x. is a
sublanguage of M x, .

The history of the generalized Henkin construction is roughly the following.
The idea of generalizing inductive constructions by long games is due to J. vaana-
IIen and J. Oikkonen. First formulations of generalized Henkin games are due to
J. Oikkonen and first succesful applications of the method are due to the author.

We demostrate the method by proving an old and easy theorem (Hanf, Scott)
that if 21 < x for all A < x and x has the tree property then LnK is weakly
compact. Here we use large cardinals but it is the theorem that needs them not
the method. In this example we end up with a proof more or less similar to the
proof of this theorem in [Je]. So are these games needed? in this example no but
in more untrivial cases, especially with infinitely deep languages, yes.

By this construction we can prove for example that if rc<' = # and # is
regular then the separation theorem is true for M,+, (this is not true for Z,+, )
and ”there is no decending lc-sequences” is not expressable in MK+, ([Hl], stronger
form in [Tu]). With the construction we can also instead of one model construct
two models and some morphism between them and prove preservation theorems
and normal form theorems for M,, ([H2]).

1 DefInition. Let E be a set of L,+ , -sentences of similarity type p
Assume IEI $ # . Let a = {caja < #} be a set of new constant symbols. The
generalized Henkin game IKE) is a game of length it played by A and E. During
the game E interprets symbols of p to the set C to make C a model of E. This
is done so that at every move a < rc first A asks a question and then E answers
the question by choosing some set Sa of L,+, -sentences. There are eight different
ways to form the question.' Assume game is in move a < R and let Si = UB<a Sp

I. A chooses some d e E; then E must choose Sa = SI U { d} .



2

2. A chooses a closed term t ; then E must choose Sa = S: U {t = f, t = c} for
some c C C.

3. A chooses t = f1 e SL , where I and 11 are closed terms; then E must choose
S. = S: u {t' = t}

4. A chooses IB+(f) e S: ; then E must choose Sa = S: U {d(E)} for some
tEC

5. A chooses %+(E) e S; and some sequence ? of closed termsi then E must
choose Sa = SL U {+(i)} .

6. A chooses \qq C SL ; then E must choose Sa = S: U {d} for some d C O

7. A chooses A $ C S; and d e O ; then E must choose Sa = S: U { d} .
8. A chooses t = tf and #(f ) from SL , where t and t1 are closed terms; then E

must choose Sa = S: U {d(t’)}
FUrthermore E must obey the following rules.

9. For all atomic sentences + either d or nd does not belong to Sa
10. If E, in her answer, uses new constants from a that do not appear in the

sentences of SI then E must choose them so that they are minimal (in the
ordering Ca < cp iff a < p) among such constants.

A wins if for some a < ic E cannot find Sa satisfying the rules. Otherwise E wins.

2. Theorem. Let E be a set of L ,+ , -sentences of cardinality grc . Then
E has a model if and only if A does not have a winning strategy for X(E)

Proof. ” + ” if E has a model a then E always wins IKE) by playing
according to A in an obvious way and so A has no winning strategy.

” + ” Let r be a strategy of A for X (E) such that if rc moves are played
then A has asked all the possible questions. Such a strategy is for example the
following. Let g : M –> rc x 6 be one-one and onto such that always if g(a) = (p,I)
then PS a. At each move a A lists all the possible questions he can ask at this
move, let the list be gg , p < E, and asks the question gJ, where (7, K) = g(a).
By assumption this is not a winning strategy and so there is a play in which A
has used r and lost. Let Sa , a < rt, be the answers of E in this play. Let
S = Ua<, Sa . As in the usual Henkin construction we now make a model for E
out of the new constants by using S as a set of instructions. a

3. Theorem. (Hanf, Scott) Assume 21 < # for all X < rc and #6 has the
tree property. Then L„„ is weakly compact.

Proof. Let E be a set of L,„-sentenaes of cardinality g M. Assume that if
E’ g E has cardinality < # then EY has a model. For a contradiction assume
E has not a model. Then by the Theorem 2 A has a winning strategy r for
aCE) . Let IT be a set of all sequences (go , So, ..., ga) , a < R, such that gp =
r(So, ..., Sl, ...)I<,p and for all p < a Sp satisfies, as a move of E in X(E) , all
the conditions of the Definition 1. In other words let IT be the get of all initial
segments of plays in which A has used 7 and E has not lost yet. We order IF by



T. Hyttinen
3

the initial segment relation. Then T is a tree. Because 7 is a winning strategy :F
has no branches of lenght IC. Because of 10 in the Definition 1 and the assumption
that 2x < ?t for all X < x, all the levels of T are of c&rdinahty < +c. By the tree
property 171 < #. Let B1 be the set of all sentences of E that belong to some
SB from some sequence in T. Then r is a winning strategy of A for a(EY) , too
and by the Theorem 2 B1 has no model. On the other hand, because ITE < it ,
IEI 1 < 6 and so by the assumption E1 has a model. A contradiction. a

Almost exactly the same proof would show that if 2x < rc for all I < rc and
6 has the tree property then M,, is weakly compact (originally proved by using
ultraproducts in [Ka]).
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UN EXEMPLE DE CORPS INDECIDABLE DONT TOUTES
LES EXTENSIONS FINIES PROPRES saNT DECIDABLES

(D’aprbs une remarque de L. van den Dries)
Zo6 Chatzidakis

Cet expos6 a pour but de montrer l’existence d’un corps dont la th6orie 616mentaire
est ind6cidable tel que toutes ses extensions alg6briques finieg propres ont une th6orie
d6cidable. Cette observation a 6t6 faite par Van den Dries et se d6montre facilement i
pMtir des r6sultats de Jarden [J], et Van den Dries, Smith [DS].

Nous commengons par rappeler plusieurs d6finitions qui seront utilis6es dans 1’6nonc6
des th6orames.

D6flnit ions

Rappelons d’abord qu’un corps K est dit pseudo-alg6briquement cjog (PAC) si
toute vari6t6 absolument irr6ductible d6finie sur if a un point /r-rationnel.

Un corps K est hilbertien s’il satisfait la propri6t6 sui%IIte: Si un polyn6me jCT, X) e
K[T, X] est irr6ductible, alors il existe une infinit6 d’616ments a de K tels que /(a, X)
soit irr6ductible.

Bien 6videmment, aucun corps alg6briquement clos n’est hilbertien. Les exemples
les plus connus de corps hilbertiens sont le corps des nombres rationnels Q et les corps
de fonctions rationnelles KV). Notons aussi que toute extension alg6brique finie d’un
corps hilbertien est hilbertienne; ceci ne se g6n6rahse pas aux extensions alg6briques in-
fillies. Pour plus d’informations sur ces corps, on pourra consulter le livre de Fried et
Jarden [FJ]

Le groupe de Galois absolu d’un corps K, que nous d6noterons par G(K), est
le groupe de Galois de la c16ture s6parable K, de K sur K. C’est un groupe profini, et
donc compact .

Si a est un ensemble d’616ments de G(K), nous d6notons par K,(a) Ie sous-corps de
K, fix6 par les 616ments de a; le groupe de Galois absolu de ce corps est alors le sous-
groupe ferm6 de G(K) engendr6 par les 616ments de a.

Le corps des nombres absolus d’un corps K est 1’intersection de K avec la c16ture
alg6brique du corps premier. Nous le d6notons par Kl-bs

En6n, le groupe tH est Ie groupe profini libre sur un ensemble g6n6rateur in£ni
d6nombrable. II peut 6tre obtenu de la faGon suivante:

Consid6rons le groupe discret libre F sur un ensemble g6n6rateur in8ni d6nombrable
X. Si N C M sent deux sous-groupes normaux de F, iI y a un 6pimorphisme canonique
I?iM : FIN –} F tM . On d6finit alors

iN = limFIN

oil IV parcourt l’ensemble des sous groupes normaux d’indices fini de F qui contiennent
un ensemble cofini de X, et les morphismes sont les 6pimorphismes rpgM.
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R6sultats que nous utiliserons.
Les th6ories 616mentaires de corps PAC sont maintenant bien connues et ont fait

l’objet de plusieurs articles, voir par exemple [A], [JK], [J], [CDM] et [E]. Le r6sultat le
plus g6n6ral 6tant un peu long a 6noncer, nous nous contenterons da r6sultat sui%nt,
da a Jarden [J], et qui est une g6n6rahsation au cas infini des r6sultat s de Ax [A] et de
Jar(len, Kiehne [JK]:

Th6orame A, Soient ff et I des corps PAC dont les groupes de Galois absolus sont
isomorphes X Fo. Alors

K = L A K&bs Z L&bs

De plus, la th6orie des corps PAC de groupe de Galois absolu isomorphe a tv est
d6cidable.

Th6orame B, [J] Soit K un corps hilbertien d6nombrable. L’ensemble des w-uplets a e
G(K)" tels que K,(a) soit PAC et ait groupe de Galois absolu isomorphe a Fu a mesure
1

Nous ne donnerons pas la d6finition de la mesure utilis6e, qui est un produit de
mesures de Haar. Il nous suffit ici de savoir qu’iI existe beaucoup de corps avec Ies pro-
priet6s qui nous int6ressent

Th6orame C. Soit IV un sous-groupe normal ferm6 de to. Alors tout sous-groupe ou-
vert propre de iV est isomorphe a PH.

Ce r6sultat est da a Van den Dries et Smith [DS], et a Mel’nikov [M]. Il peut 6tre en
fait enonc6 de maniare bien plus g6n6rale. Nc>tons aussi que Mel’nikov d6finit des in%ri-
ants qui d6crivent compl&tement Ies sous-groupes normaux de PH.

Lemme. Soit S un ensemble de nombres premiers, et consid6rons l’intersection IV de
tous Ies sous-groupes ouverts normaux de to dont 1’index est produit d’616ments de S.
Alors, pour tout nornbre premier p 1’on a: p C S si et seulement si IV n’a aucun sous-
groupe normal ouvert d’indice p.

D6monstration: Supposons d’abc>rd que p n’apputienne pas a S, et soit U un sous-
groupe normal ouvert de F = PH d’indice p. Puisque Lf n’est contenu dans &ucun sous-
groupe ouvert de F contenant N, il n’est pas contenu dans N, et doric U n N est un
sous-groupe normal ouvert de N d’indice p.

Pour la r6ciproque, soit U un sous-groupe normal ouvert de IV d’indice p; puisque IV
est ferm6 dans F, iI existe un sous-groupe ouvert Y de F tel que

U =V nN

D6finissons ensuite

% = n rg
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Comme [F : Y] est ani, Y n’a qu’un nombre fini de conjugu6s distincts, et donc % est
un sous-groupe normal ouvert de F, et Ua est un sous-groupe ouvert de N. Pour tout
g e G, Ug est un sous-groupe normal ouvert de N d’indice p, ce qui imphque que
[iV : no] = p' pour un entier e > 1. Nous avons alors

[F %] = [F : %N][% IV : %]
= [F : %N][N : % n /V]
= [F : %N][N : Cro]

= [r : VoN] P‘

La d6finition de N imphque aiors que p n’appartient pas a S.

D6monstration du r6sultat
Cornme Qd) est hilbertien, Qd) possbde une extension alg6brique E qui est PAC

et dont le groupe de Galois absolu est isomorphe a PH (Th6orime B). Choisissons un en-
semble non-r6cursif S de nombres premiers, soit N le sous-groupe ferm6 de fu = GCE)
d6fini dans le lemme, et soit Jf le sous-corps de E laiss6 fixe par IV. Obser\rons ensuite
que pour tout nombre premier p, if a une extension de Galois de degr6 p si et seulement
si if b Ir Vy yP + 3. Cela provient du fait que K contient toutes les racines primitives
de 1’unit;6. Nous avons alors:

Irb I, Vg gP # . 'i :' Pg St

et dorIC Th(K) est ind6cidable. Soit Z une extension alg6brique finie propre de K. Par
le Th6orame C nous avc)ns G(L) = tH. Th6orame A nous donne alors la d6cidabilit6 de
Th(E): en effet, Th(1) est obtenue en adjoignant a la th6orie des corps PAC de groupe
de Galois absolu fu une collection d’6nonc6s exprimant que L contient la c18ture alg6brique
de Q
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THr £LCM[NTARV CLASS OF PRODUCTS.
OF TOTALLY ORDERED ABELIAN GROUPS

by Daniel Gluschankof - (Universidad de Buenos Aires, Universit6 d ’ Angers )

§ 0+ Introduction, A basic goal in model-theoretic algebra is to obtain the
classification of the complete extensions of a given ( first-order ) algebraic
theory ,

Results of this type, for the theory of totally ordered abelian groups,
were obtained first by A.Robinson and E,Z&kon [5] in 1960 , later extended by
Yu ,Gurevich [ 4 ] in 1965 and further clarified by P. Schmitt in [6] ,

Within this circle of ideas, we give in this paper an axiomatization of
the first-order theory of the class of all direct products of totally ordered
abelian groups, construed as lattice-ordered groups (Z-groups )

We write groups for abelian &groups construed as structures in the
language ( v , A , + , - , 0> ( 11-11 is an unary operation ) . For definitions, the reader
is refered to [ 1 ] ,

b 1, First-order products. We recall that a group G is called projectable if ,
for all gcC we have g- xg11 = G. Bus ic if for all strictjy positive g there

exists b such that 0< bSg, and the interval [0 , b] is totally ordered, The

element b is called basic . A group is laterally complete if any orthogonal

subset of a has a least upper bound. It is known that a group is isomorphic to

a product of totally ordered groups if and only if it is project able, basic

and laterally complete,

We shall define some predicates to be used in the sequel

XL), iff I xIA I yI = 0 ( x and y are orthogonal ) ;

Bas(x) iff vJ,z( x>0 & (0 Sy, Zx + Hz or Ay) ) ( x is basic) ;

Mk>as( x, y) iff Vr(B&s( x) & xSI yI & {Bas( z) & n,x>0 & Zi yI -+ z$x) )
( x is maximal in the set of basic elements bounded by Irl ) ;

Ext( x, y) iff Vz(Mbas( z, x} # Mbas( z, y) & ( y+(-x) )lz)
( y "extends11 x; in case G is a product of totally ordered groups , this
means that x and y coincide in all coordinates where x is not zero ) ,

x = y, iff x c z-- & 3x’ ( x’ e z- & y = x + x’ ) ,
Z

A parattro en version compLdte dans The Journal of SymboLic Logic.
I
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The notions of basicity and project;ability are first order but lateral

completeness is essentially a second-order notione For the time being we will

consider a first-order version of it , namely, the notion of ’tdefinable lateral

completeness" : if P ( \ , ' ' , Xn ) is a formula such that , for given gl ' PI' gn_1 ,
the set { x / C h pt g , . . , g , x ) } is orthogonal, then it has a least uppern ' ' ' - --l ' ’ “n-l ' n
bound. Explicitly

(VP) : V\' ' ' \_llVxy(pC\ , ' ' ,Xn_1,x) & P(xl, ' ' ,Xn_1,y> + xLy) +
+ 3:wIN( (P(xl, ' . ,Xn_I,x) + x $ y) & ( (P(xl , ' ' ,Xn_1,x> + x $ ") +
+ y S p> ) > .

For later use we recall three corollaries of a result of S,Feferman and
R.Vaught on products of models ( see [ 3 ] ) :

Let f be a first-order language and (al ) aT a family of models for Z
where the set I is infinite:

Corollary 1 : There exists a countable subset J of / such that the products
FIQI and fTII are elementary equivalent .

Corollary 2 : For any given sentence p of the language g such that fjIII. k P there
exists a finite subset J of J such that , for any K ( JS KS 1) , FIU bp holds ,

I

Corollary 3: Suppose I = [N , Given a sentence p of the language E such that
[1 U. E p for each n € N , then p also holds in ntl ,ign t ' ' ' ' I t

Returning to the theory of abelian /-groups , for a projectable group a1 a

formula p and g c G, since f* is a definable /-subgroup of a1 we write the

relativization af P to al by P , Observe that this can be done in general

with a variable replacing the element g. If p = p ( x , , , , x ) and g , , , , g e a,I- - n - –I- ’ –n

we shall understand Pg(gl'' ' 'gn) as eg(q I g' ' ' 'gnI g) .
Now , for a formula p( x , . . , x ) define the new formula p ’ ( x , , , , x , v) by:I ’ ’ n ’ ' - I ’ ' n

'n e F' & Pv('I , ' ' ,'n) & V'’''’'(£*t( A' "’ ) & B''(') & ' e h'’“ & Xn = '’ 1 # &
& q.(xI, ' ' ,Xn_1,'’ ) + 3'“('" C ( v’+')“ & x = x" } A & Pv,+7(xI , ' ' ,\_l,x")))"

The meaning of p ’ ( x , , , , x , hr) is: 11p ( x , , , , x ) holds in v1 ' and wheneverrl

it holds for a suitable x’ in an extension F’“ of w'- , it holds for some x"

in any extension of the form ( v’ + z)“ by a basic element z I'

Now we are ready to add, for each formula p(xd , . , , x ) of our language, a
new axiom for our class of J-groups:

2
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(+p ) Vx. . . x FaXV Ir(p 1 ( x. 1..1 x 1 w) & Ext( Fa y) +I n - ' I- - n

+ P(xl''' 'Xn_1'x) & Py (xI''''Xn_1'x) ).

This axiom states that, whenever p’ ( x , . . , x , K) holds, there exists an elementr
x such that p ( x , , , 1 x , x) holds . Moreover , for any extension y of v, the:1- ' n-l
relativization p ( x , . . , x , x) holds,

y - I ' ' n-I

Lemma 1 : Let ( 1 ) aT be a family of totally ordered abelian groups, For any

formula p( x , , , , x ) 1 we have nl b (+p ) .

Now we shall characterize the elementary class generated by the products
of totally ordered abelian groups.

Definition: A group is called a fo-product ( first-order-product) if and only
if it is projectable, basic, definably laterally conplete and, for any formula

IP satisfies the axiom (+p) ,

The subgroup G = { z / z(n) is eventually constant} of Zu is an example of

a fo-product group which is not laterally complete (and hence not isonorphic

to a product of totaljy ordered groups ) ,

Lemma 2: Let a be an fo-product, x, be a, x+ 0.

i ) if Bas ( b) and bS 1 x! there exists and unique be such that Bas( ba ) , b and

bQ are comparable and Mbas( ba , 1 xF ) ;

ii ) x = VB - VB’ where B = { b / Mbas( b, x ) } and B’ = { b / Mbas( b, x ) } ,+

Now we are ready to prove the main theorem of the paper:

Theoren: Given a fo-product group G there exists a family E= ( Es )ses of totally
ordered groups such that a is elenentary equivalent to the product FIL .

S

Proof : First, using the downward li5wenheim-Skolem theorem, we can assume that

G is count able ( any non-trivial /-group is always infinite ) ,

Observe that the maximal totally ordered subgroups of a are exactly those of

the form d- with g € G and Bas( g) ; furthernore there are at most count ably

many of then, Let Z denote the family of those gubgroupso if El is finite, it

is easy to verify that a is isomorphic to the product of the nenbers of f, We

nay &ssune Z count able, indexed by DIe Define f '.G r al by

3



if be L , Mbas( b , r ) ;
S S 6 +

if bel , Hb&s( b , f ) ;
S S 8 -

if for all be 1 Mb as( b, Efl ) does not hold+

It is not hard to verify that f is well defined, and a one-one homomorphisnp

We shall show that f is an elementary embedding, To check this , it is

enough to show that for every formula p( x , , , , , x ) with free variables among

x1, . . . ,Xn, and gI, , . . ,gn_1 C a, if RIsk 3\P(/(gl),. . . ,/(q_1),Xn> then there

exists an element gn in a such that yEsb P (/ ( q ) , Be ,/ ( gn_1 ) ,/ ( gn ) ) e For

notational simplicity we shall identify a with its image in FII and assune
S

n = 2 ' Since yEsb 3x2P( q , xa ) , exists gz in gIs such that ElsE P( gl' gz ) and,
expanding our language with new constant symbols for ( and go by corollary

2 , there exists no c [N such that , for all KS [N with {0 , ' ' , ao} = K we have

ghb p<gl 1 k ' qI k) C''here with gIF we denote the prajecti'n 'f g t' the
subgroup FIs ) ' Choosing positive elements hs C ts (0 S sS no) and defining
he GS nl by h( s) = b if s $ n and h( s) = 0 otherwise , we have thatNs - - ' s O

Ph(gl1 gz ) , hence P’ ( gl, gz , h) , holds in G' Now , since ( +P ) is an axiom for G we

can find a g; eG such that a b p(gl , g ) and for all h’ C G such that

Ext(h,b’ ) , h’“EP(gI Ih,,< th,) ; in particular, since we can chose h’ such
that { s / h’ ( s) # 0 } is finite , we have that , for all finite J = K,

gIBb P(gl IJ' 41 J> inplying' by cor'11&ry 3' th&t Ptql%> h'Ids in RIB •

/ 1 gl (s> =

Remark: Observe that the property of being def in ably laterally complete is
inplied by the axiom-scheme (+p ) , so we may dispense of that property in
the definition of fo-products

b 2 . Final ren&rks, Since a fundamental result of P, Conrad , J. Harvey and Ce

Holland [2 ] states that any abelian Z-group is isomorphic to an /-subgroup of
a Hahn product of totally ordered ( archimede an ) abelian groups, it is an
interesting problem to find an axiom-scheme which implies that the embedding
is e] ci,rent ary, The direct approach which consists in rewriting the axiom ( +p )
does not work because corollaries 2 and 3 do not hold for Hahn product;se
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G£OMETRIE LOCALE DES POLYN6MES HYPERBOLIQUES
Ivan Meguerditchian

R£surn6 : Si P est tIn polln6me Lypetbohque (cad aVant toutes ses racincs r€ellcs) de degt£ n , et s &n
ender plus petit pre n , all d£terminc dans quel9 cas iI e=i3tc un poIgnant de degt€ 8 qq’on pu Age ajoutn
a P sans sortit des polgn6mes hgperbolique3. Cette question, en paNic trait€e pat Arnol ’d, est ici t€solue
complitement dans Ie cas local

Local geometry of hyperbolic polynomials

Abstract : (;iucn P a hyperbolic polgnomial(that is all its roots are real) ol degree n and s < n, is a
possible to And a polynomial Q of degTee s sach that P+Q remains hyperbolic ? This question, partly treated
by Arnol’d, is here completely solved in the local case

D6finitions :
Un polyn6me unit:aire a coefficients r6el8 est dit hIpetbolique si toute8 8e8 racine8 sont r6elles.
it;ant donna deux entier8 n et 8 tel8 que 0 $ 8 < n, un polyn6me hyperbolique P = an + Atan-1 + ' ' ' + An
est diC localcmcnt s.marimal (re8pectivement localcmcnt 3-minimal ) 8’iI exi8te dans Rn un voi8inage de P
• P 6tant identiEd au n-uplet (A1, . . . , An) - dans lequel aucun polyn6me de la forme P+coz’+clz’-1+' ' -+c,
avce co > 0 (respectivement ca < 0) n’wt hyperbolique
Si P est un polyn6me hyperbolique il s’6crit de mani are unique P = (X – rr)-11 . . . (X – =b)mk
al > r2 > - . . > at el le k-uplet (ml, . . . , mb) s’appelle uecteur-mulliphcrt£ de P.
A tout vecteur-multiplicit6 d’un polyn6me P on aqsocie l’entier sp d6fini de la mani are sui%rIte

i) si P n’a que des racines simples, sr = –1

ii) shan on pose sp = EJ (mi–2)+1 o& I est le nombre de de Mquences impaires de 1 cons6cutifs dans
/ >2

le vecteur-multiplicit6, en ne tenant compte que du s6quences comprises entIre deux multiplicit6s sup6rieures
ou 6gales X 2
Un polyn6me hyperbolique est dit dr oit lorsque son vecteur-multiplicit6 commence par une s6quence paire
de 1, et gauche dang Ie cas contraire.

Th6orame : Un polyn6me hyperbolique P est
localement &maximal et localement s-minimal si 0 $ 8 < sp
localement sp-maximal mds non localement sp-minimal si P est droit

et localement sp-minimal mais non localement sp-maximal 8i P est gauche
iI n’est ni localement s-maximal ni localement s-minimal pour 6 > sp

Ce r6sultat s’exprime plus lisiblement sur le tableau suivant, pour un polyn6me droit (respectivement
pour un polyn6me gauche)

8p + 1 non

oui (rwpectivement non8P

QUisp – 1

On d6signe par ptopri€t€ A l’en8emble da r6pon8e8 n6gativ% de ce tableau et par ptopti€t€ B 1’ensemble
des r6ponse8 positives.
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On remarquera que le r6sultat ne d6pend que du vecteur-multiplicit6, c’e8t a dire de l’ordre des racines
et de leur multiplicit6, mais pas des racines elle8-m6mm

Soient P de degr6 n et s < n . Notons que trouver Q = coX’ + . - - + c, tel que P + Q soil hyperboUque
revient i trouver une courbe y = –O(#) coupant n fats la courbe y = PCr)

Exemples : Soient X (fig.1) et B (fig.2) deux polyn6mes hyperboliques de degr6 6, re8pectivement de
vecteur-multiplicit6 (2, 1, 1, 2) et (1, 2, 1, 2)

6g I _a+7 £g 2

11 existe des courbes y = c &\’ec c > 0 et y = cr + d avec c + 0 coupant 6 fois le graphe de A ce qui
est impossible pour y = c avec c < 0, ce qui signifie que A est 0-maximal mds ni 0-minimal, ni 1-maximal,
ni 1-minimal. Semblablement il existe des courbes y = c3 + d avec c < 0 coupant 6 fois le graphe de B ce
qui est impossible pour y = c avec c + 0 et y = cr + d avec c > 0, ce qui signifie que B est O-maximal,
0-minimal, et 1-minimal, mais non 1-maximal

DEMONSTRATION DE LA PROPRIETE A :

Proposition 1 :

La propri6t6 A est v6rifi6e pour P tel que sp = 0

D6monstration

L’hypoth ase signifie que P ne poss ide que des racines simples ou doubles et que son vecteur-multiplicit6
ne contient que des s6quences paires de racines simples. Dans Ie cas oil P est droit, ses racines doubles sont
des minima locaux de la courbe y = P(z) et ses maxima locaux sont n6cessairement au-dessu8 de 1’axe Or
On not;era q le minimum des valeurs prises par P en ces maxima locaux. On a bien entendu q > 0 . Cela
nous permet d’affirrner que pour e e]o, 17[ la droite y = c coupe in courbe n fois, ce qui assure que P n’est
pas localement (bminimal. Appelons a le minimum de 1’ensemble des racines de P et des ab8ci8sa des points
d’intersection de la courbe avec la droite y = ? et b le maximum de cet ensemble. Soit R un polyn6me non

,,„,t,„t, o„ ,,it q„, I m < M / V = e [,, b] m $ R(,) $ M. Da, I„,, ,i ,n pm, Q(r) = Ew ,,ec
0 < c < 77 on aura V = C [a, b] 0 S O( z) $ V. Par cons6quent la courbe y = QCa) coupe n fois la courbe
y = PCr) ce qui montre que, pour s ? 1, p n’est ni localement s-maximal ni localement &minimal.
On proc ide de maniire semblable pour un polyn6me gauche

Proposition 2 :

La propri6t6 A est v6rifi6e pour P quelconque

D6monstration

Au polyn6me P = (X – al)m1 . . . (X – ar)mp on a8&ocie done l’entier sr = Li/mb>2(mi – 2) + 1 . Dans
chacune des / s6quences impaires on choisit une racine simple que 1’on d68igne par qj-pour I allant de 1 a

I . Formons le polyn6me Q(x) = [1 (x – zi)m'-2 11(x – q,) . On a deg<2 = sp , a divise p , et, en
/ >2 1=1

notant Pr Ie quotient, sp, = 0 . En utilisant le fait que si Pr +R est hyperbolique alan Q(Pl + R) = P +QR
6galement et en appliquant Ia proposition 1 a Pl on a la proposition 2 pour P

2
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DEMONSTRATION DE LA PROPRIETE B

On note xh(c) (respectivement Xf (c) ) et on appelle uari£t£ de Vandermonde r6clle (respectivement
complete) d’oran k , 1’ensemble alg6brique de R11 (respectivement Cn ) d6fini par le8 t 6quations suivantes

D6finition :

al

at{

+

+

+ rn Cl

Ch

Proposition 3 :
+ at

Les vari6t6s de Vandermonde complexes d’ordre k 80nt de codimension k

D6monstration

(Zll••• lan) 1 1(81l••• IBn )

L’application 9 est surjective et a fibres finies. Soit Y le (n – E) – plan de Cr1 obtenu en fixant les
valeurs des & premi ares coordonn6es. La pr6image X par 9 de Y est une vari6t6 de Vandermonde d’ordre
I . La restriction a X de 9 est encore une application polynomiale , a fibra finiu et surjective gul Y de
mime que la restriction a une composante irr6ductible Xi de X : bPI xi : Xi –+ h = p(XI). Sachant que, Xi
6tant irr6ductible , b 1’est aussi, on peut affirmer que dang un ouvert non vide de Yi la dimension des fibres
vaut (bmX i – dimE , dorIC que dim;t i = dimYi . Par ailleurs, de X C Y on d6duit d’abord dimYi < n – I
puis dim;ti $ n – I pour tout i, et enfin dim;K < n – k . On ach ive la d6monstration en remarquant que A
polyn6mes dans Cr1 d6finiment un ensemb]e alg6brique de dimension au moins n – k
Remarque : La dimension de la vari6t6 r6elle correspondante est inf6rieure ou 6gale a n – I . (en pa8sant de
C i R la dimension petit chuter mats en aucun cas elle n’augmente)

la j-i6me somme de Newton et P : (Rn

Si Xi(c) contient un point ayant au moRi s t coordonn6es distincte8, alors dim;Vt(c) = n – I

D6monstration

Soient 1 1’application de Rn dans Rt associant a un n-uplet ses k premibre8 sommes de Newton
a = (al , . . . , a„) un point de R" ayant I coordonn6es distinctes, et c 1’image de a par i

Proposition 4 :

Jac a (f) =

Les mineurs d’ordre t de la mat;rice jacobienne sont proportionnels a da d6terminant8 de Vandermonde , il y
en a donc au moins un non nuI , celui correspondant a t coordonn6eg distinctleg de a . La mat;rice jacobienne
est done de rang maximal k au point a et I est une subrnersion en ce point. La dimension locale en a de la
vari6t6 Xl(c) = /-1(c) vaut dans ce cas n – k , Comrne sa dimension globale cgt inf6rieure ou 6gale i n – 1 ,
elle est exactement n – k

Supposons Xt(c) de codimension k exactement , alors
i) Leg points singuhers de Xt (c) sont les points de Xt(c) ayant moins de I coordonn6es distinctes
ii) Les points critiques de st+1 sur la partie r6guh arc de Xl (c) sant les point8 de xh(c) ayant exactement

I coordonn6e8 distinctles

Proposition 5 :

D6monstration

i) La matrice jacobienne de xb(c) est identique a la matrice jacobienne de I
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ii) On sail que si = = (r1, . . . , rn) est un point critique de st+1 sur Reg;Kr (c) don iI existe k nombre$
p1, . . . , PE , appe16s nombres de Lagrange , tels que dsE+1 = pld81 + . . . + PEdsb au point a . Si Z est la
fonction de Lagrange &ssoci6e , L = st+l – p1(61 – c1) – ' . . – ph(sb – ct) , on obtient Ies points critques
cherch6s en r6solvant le systame : dE = 0, 51 = c1, . . . ,sk = ch . Notant F(z) = (k+ 1)re –kpkzh–l–---–p1
on a : dl, = 0 ++ F(ni) = 0 , Vi e {1,2, . . . , n}

Maintenant si = est un point critique , ses n coordonn6es &ont racine8 de F , c’e8t a dire d’un polyname
de degr6 k ,et dorIC = a au plus k coordonn6es distinctleg , en r6alit6 1 exactement pui8que c’est un point
r6gulier

R6ciproquernent soit = e Xi (c) ayant exactement E coordonn6e8 distinctes zr , . . . , a a 1’aide desquelles
nous formons le polyn C>me F(2) = (1 + 1)(z – il)(z – a) . . - (z – a) . Le d6veloppement de F d6termine de
maniare unique A nombres de Lagrange p1, . . . , pt . Alors z v6rifie bien le systlime pr6c6dent,

Etant fix6 un point critique = de st+1 sur xk(c) on ordonne ses I coordonn6e8 di8tincte8 zr > . . . > a , on
note mi le nombre de fois oil li apparait dang = = (rl, . , . , rn) et on pose ri = mi – 1
Alors la difT6rentielle seconde de sb+1 sur Xt(c) au point = est la somme d’une forme d6finie positive sur Ra
(oil a = r1 + r3 + - . - ) et d’une forme d6finie n6gative sur Rb (oCr b = r2 + r4 + - - ' )

Proposition 6 :

D6monstr at ion

Toutes les donn6es 6tant invariantes par permutation des coordonn6es on peut 8upposer que a 8’6crit

£=(zl,-..,z1,z2,'• ',Z2,.„,Zh,•• ' , a ,z1,'•• , gb)
\–\B''\–-\+/ \–\n=

,, fois ,a fois rk foi8

Dans la matrice jacobienne de Xt (c) un mineur non nuI d’ordre k est obtenu en s61ectionnant leg I derniares
colonnes. Cela signifie en particulier que les n– I premi ares coordonn6e8 forment un 8)rst ime de coordonn6es

locales de xI(c) au voisinage de r . Dans ce systime on a toujours dl, = 0 . De 8££i = 0 si i + j et de

g+ = F’(ri) on d6duit

d2L,,(hl, , h„–b) = (hI + + h?,)F’(gl) + ' - ' + (hi-e-r, + + hn–k)F#(zk)

C’est bien une forme quadratique non d6g6n6r6e puisque, F n’ayant que des racines simple s , F1(a) + 0
pour tout i . On obtient la signature en remarquant que F1(11) > 0, F1(22) < 0, P(23) > 0 etc
La proposition 6 a pour corollaire imm6diat la proposition 8uivante :

Proposition 7 :

Un point critique = sera un minimum local de sr+1 sur Xt(c) si son vecteur-multiphcit6 est de la forme
(r, 1, s, 1, . . .) et un maximum local si son vecteur-multiplicit6 est de la forme (1, r, 1, 8, 1, . . .)

Un polyn6me hyperbolique de vecteur-multiplicit6 (ml , . . . , mb) est dit attern£ droit si mh = 0 pour tout i
et altern6 gauche si mH+1 = 0 pour tout i

D6finition :

Proposition 8 :

Un polyn6me hyperbolique P altern6 droit (respectivement altern6 gauche) est localement sr-maximal (r&
spectivement localement sp-minimal)

D6monstr at ion

Soient P un polyn6me altern6 droit ayant exactement t racines r6elles distincteg et xh(c) la vari6t6
de Vandermonde r6elle d’ordre I a laquelle appartient le n-uplet des racines de P . Ce dernier, not;6
= = (rr , , . . , an) , a pour vecteur-multiplicit6 (r, 1, s, 1, . . .) et est par cons6quent minimum local de sb+1 sur
xb(c) . Supposons maintenant que Q soit un polyn6me hyperbohque dont leg I premibre8 80mmes de Newton
sent 6gale8 a celles de P , ce que 1’on notera si(P) = si(Q) pour i C {1, . . . , k) . De la relation classique entre
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sommes de Newton et fonctions sym6triques 616mentairw on d6duit que les I premiir% fonctions sym6triques
616mentaires des racines de P sont 6gales a celle9 des racine8 de a ce que I’on notera ai(P) = ai(Q) pour
i e {1, . . . , b} , Si (2 est suffisamment proche de P on aura la relation %+1(P) S si+1(a) qui traduite
en termes de fonctions sym6trique8 616mentaires 8’6crit : (–l)£+la£+1(P) : (–l)#+lal+1(Q) c’est a dire
que le coefficient de Xn–t–I dang Q est plus petit que le m6me dang P . Ceci montre bien que P est
(n – k – 1)-maximal. On v6rifie alors &i86ment que sr = n – I – 1

Proposition 9

Soient al, . . . , ag des nombres r6els et P un polyn6me hyperbolique. Si P(X – al ) . . . (X – ag) est localement
(s + g)-maximal (re8pectivement minimal) a]ors P est localement s-maximal (respectivement minimal)
D6monstratlion :

II est clair que si P + (2 est hyperbolique alors P(X – al) . . . (X – ag) + Q(X - a1) , . . (X – ag) 1’est
wwi ce qui se traduit encore par : si P n’est pas localement s-maximal alor8 P(X – a1) . . . (X – ag) n’est
pas localement (s + q)-maximal, La proposition 9 est la contrapa86e de celloci

Proposition 10 :
La propri6t6 B est vraie pour les polyn6mes hyperboliques altern&.

D6montrons-la pour un polyn6me altern6 droit, P, de vecteur-multiplicit6 (r, 1, s, 1, . . .) . On sait, par la
proposition 8 , que P est localement sp-maximal et on souhaiterait montrer que P e8t localement s-maximal
pour 0 S s < sp . Soit q l’entier non nuI tel que s + q = sp . On construit Q1 = P(X – al) . . . (X – ag) avec
aq < . . . < al < min{ racines de P } ce qui revient i ajouter des 1 a la fin du vecteur-multiplicit6 de P pour
obtenir celui de Ql . Le polyn6me Q1 est hyperbolique altern6 droit et SQ, = sp. D’aprbs Ia proposition 8,
QI est localement sp-maximal, dorIC P est localement s-maximal d’apris la proposition 9.
On construit Q2 en gardant a2, . . . , aq comme ci-dessus mds al est choisi tcl que al > mar{rac£nes de P}
On applique alors la propositon 8 au polyn6me altern6 gauche Q2 pour obtenir que P est localement s-
minimal

La propri6t6 B est vraie pour tout polyn6me hyperbolique.

D6monstration

Soit P = (X – rr)m= . . . (X – rp)mp avec rl > =2 > - - . > rp . On peut toujours transformer chacune
des s6quences paires de 1 cons6cutifs comprises entre deux multiplicit6s 8up6rieures ou 6gales a 2 en une
s6quence impaire par la multiplication de P par (X – at), at 6tant un nombre r6el non racine de P , AprBs
un nombre nni d’op6rations on obtient Q = P(X – al ) . . . (X – ag ) polyn6me altern6 avec sQ = sp + q . La
propri6t6 B 6tant vraie pour a on la d6duit pour P i !’aide, une fois encore, de la proposition 9

Proposition 11 :
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SUR LA PROJ£CTION D£ VARI£TES ALCEBRIOUCS R££LL£S

DanIel Pecker

iI . Introduction,

Dans ce travall nous nous Int6ressons au probldme de trouver

ensemble alg6brique, si possible irr6ductlble, se proJetant sur un ensemble

semi-alg6brique donn6

Notre r6sultat principal est de nature g6om6trlque :

Th6ordme 2. Un semi alg6brique de IRn est la projection d’ un ensemble

alg6brique irr6ductlble de IRn+1 si et seulement sI son adh6rence de

Zariski est un ensemble alg6brlque Irr6ductlble.

On commencera par le r6sultat alg6brique suivant d’611minatlion relative des

in6galit6s. (On note x=(x1 , . . . , Xn ) )

Th6ordme I. Soit S un ensemble semi-alg6brlque contenu dans V une var16t6

irr6ductible de RN non r6duite a un poInt

II existe un polyn6me P (x , t ) eR [x, t ] dont la r6ductlon modulo 1 (V) est un

pol)'name irr6ductible de IR(V) [ t ] tel que :

EcS A x€V et 3t€1R, P(x, t ) = 0

Comme un ensemble alg6brlque r6el d'6quatlon Irr6ductlble n’ est pas

forc6ment irr6ductlble on utlllsera, pour d6dulre le th6ordme 2 du th6ordme

1, une g6n6ralisation du critdre de changement de slgne (qui permet de

d6dui re sous certaines condItIons 1 ’ irr6ductlblllt6 d’ un ensemble

alg6brique r6el de l’lrr6ductibillt6 de ses 6quatlons)

Dans le cas oCr le semi-alg6brlque est localement ferm6 d’ Int6rleur non
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vlde, une d6monstration plus expllclte des th6ordmes I et 2 figure dans

IP1 ] , tPo] et IPR] . Dans le cas g6n6ral abord6 IcI, on utIlise un

argument de densit6 d6dult du th6ordme d’ irr6ductlblllt6 de HIlbert qu’ on

rappelle au paragraphe 2

Le cas oa S est ferm6 pour la topologle euclldlenne est plus slrnple, toutes

les projections peuvent alors 6tre cholsies propres, et les 6quations des

ensembles alg6briques unit;aires (cf . [P4] ) .

En g6n6ral, ce n’ est plus Ie cas , mats les fIbres des projectIons

obtenues dans cet artIcle sont finies.

Enf in, on donne des r6ponses a la plupart des questIons pos6es dans les

premiers travaux sur ce sujet (cf . [Mott ] , [Mot2] , [ A. Gl] , [A.G2] ) . Pour

d’autres d6tails, on pourra se reporter a [P2] ou a [P3] .

92. L’61imination relative des in6gallt6s.
on

)eR“= U Rn on note X=0 sI et seulement sI tous les
n=1

x, 20 .

Soit ak (x)=xk+1 (xl+x2+. . . +xk) k=1, 2. . . et a(x)=(al (x) , a2(x) , . . . ) .

Remarquons que g(x)20 si et seulement si xzO ou -xzO.

D6finissons les polw6mes Pn(x, u) et An(x) par r6currence

P1 (X, u ) =u–x1 Al (X)=x1

Pn+1 (X,u)=Pn(al (X) , . . . , an(X) , (u-(xl+. . . +xn+1 ) )2)

An+1 (x)=An(at (x) , . . . , an (B) ) . An est une somme posltlve de mon6mes.

Proposition 1.

(i) Pn et An sont homog6nes de deg,6 211-1

( ii ) Pn est unitalre en chaque varIable.

( Iii ) Sl KeRn, eo A lteR, Pn(x,t2)=0

(iv) Sl X€Rn, X=0 et ue]o,2(xI+. . .+xn) [ alors IPn(X lu) IEAn(B)

(v) Sl X'R11 't r' u' de, *i<O, '1,'' Pn(X, t2)kIAn(X) I

2
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D6monstration. (i ) et ( Ii ) sont faclles, (III ) est d6montr6 dans IP2] .

D6montrons (iv) par r6currence.

Le cas n=1 est clair , IPI (x, u) 1 = 1 u-xl zx sl ud]O,2x [ . Supposons la propri6t6

vraie pour n, et montIrons la pour n+1

On a : Pn+1 (X.u)=Pn(a1 (X) , . . . an(X) , (u- (xl+. . . 'xn,, ) )2)

or (U–(XI+. . . +xn+1 ) )2> (xl+. . . +xn+1 )222(al (X)+. . . +an(X) )

D’ oil par l’hypothdse de r6currence :

Pn+1 (x, u) I ZAn(al (x) , . . . . an(X) )=An+1 (E)

(v) par r6currence : pour n=1 c’est vrai

O„ , , Pn+1 (X, t2)=Pn(,1 (X) , . . . , ,n(X) , ((t2-(xl+. . . +xn,1 ) )2)

St a(x)20, par la remarque on volt que -xz0.

On a alors en utllisant (iv)

1 Pn+1 (X, t2) 1 =Pn+1 (-Z, –t2) [zI An(al (-X) , . . . , an(-XJ ) l=IAn,1 CX)

,, qui m,nt,, 1’affi,m,tr,n dans ce cas, Pn+1(X,t2) 6tant unitarre
ne pouvant s’annuler , son signe est constamment posIt:If .

Sinon c’est que 1’ un des a1 (x)<0, et par r6currence :

Pn+1 (x, t2)=IAn(al CX) , . . . , an(X) ) I =An,1 (X) •

t et

Dans la suite de ce travall, on notera V un ensemble alg6brique

lrr6ductible non r6duit a un point contentl dans RN, I (V) son Id6a1, k=R(V)

le corps des fractions de iR[V]=iR[x]/i (V) et k’ =C(V)=k [1 ] .



Proposition 2. Soit S un sous-ensemble semI-alg6brlque de V donn6 par la

formule : S={x€VICICx)ZC), . . . ,Cn(x)za,B1 (E)>0, . . . Bm(x)>0} .

Supposons qu’ il exlste un poInt de V oa tous les polw6nes Ai et B 1

prennent une valeur strlctement posItIve.

Alors il existe un polyn6me P(x, t ) de IRlx, t] , et un polyn6me a(x) de

IR [x] –I (V) tels que

( i ) sl x€V, BcS A 3t€1R, P(x, t)=0

(ii ) si x€V et xes PCE, t )ZIa(x)

( iii ) si KeV, P(x,A)Zl

( iv) P ne peut 6tre constant pour x€Cn que sI a(x)=0, et P(x, t )=1.

D6monst ration

(C 1 F # # p p C n r B 1 p p p + p B m 1 p h r t 2 )\ – – --- – –I- - - –ln /

Par la proposItIon 1 P(x, t ) a une racIne r6elle sl et seulernent sl

C1 CE)20, . . . Cn(x)=0 , B1 (x)>0 , . . . Bm(x)>0. De Plus on a P(x, t )= ja(x) 1 sI

I’ un des Ci<0 ou 1’ un des Bi=0, avec a(x) donn6 par :
m+n-1

(C 1 1 p + F 1 C n p ]B1 1 1 + n + 1 ]81 m 1 1 L) p

a(X)=0. Dans Ie cas oa aucun des B, ne s’annule on utlllse dlrectement la

proposition 1

On volt que a(x)dI (V) car a(x) est une somme posltlve de mon6mes en les ci

et B 1 qui sont tous strlctement positlfs en un certaIn poInt de V

E:nf in, P ne peut 6tre constant que sI B1. . . Bm=0 et a ce moment-la aCE)=0 et
P(x, t )=1 . •

Dans la d6monstratlon du th6ordme sulvant , on va utlllser le th6or ame

d’ irreduct ibi lite de Hilbert (cf . tLr ] p. 225 , 236 et 239) . Rappelons-le sous

la forme quI nous Int6resse IcI :

a (X)=(Bl . . . Bm)2 Am+n

m+n-I

Soit P(X, t )=(Bl. . . Bm)2 Pm+n

\ 1 2 m/

En effet si 1’ un des Bi est 6gal a z6ro, An+m n’6tant pas unltalre on a
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Si A est un anneau de type f ini sur IR, k son corps des fractIons quI n’ est

pas alg6brique sur IR, k' une extensIon alg6brlque flnle de k, et PCA, t)

un polyn6me irr6ductlble dans k [X, t] . Alors ll exlste An€A, tel que

PC;IA, t) salt Irr6ductlble dans k’ It] .

Th6ordme I (EIImination relatIve des In6gallt6s) .

Solt VcIRN un ensemble alg6brique irr6ductlble non r6dult a un point,

1 (V) son id6al, k=R(V) ; k’ =k [ 1 ] , et S un ensemble semI-alg6brlque

contenu dans V. Alors ll existe un polyn6me PCE, t)cIR[x, t] tel que

(1 ) Si BeV, BcS A 3t€1R, P(x, t )=0

(ii ) La r6duction de P(x, t ) modulo I (V) est irr6ductlble dans k’ [t]

( iii ) P(x, t ) n’ est Identiquement nuI pour aucune valeur de x€CN

D6monst ration .

Salt s4J Sl, Sl={x€V Ici=o,. ..,C: =0, B:>0,...,Bi >0}. Quitt,
il

d6composer chaque Si en une r6unlon d’ ensembles du m6me type, on peut

supposer que pour chaque i iI existe un point 81 cV tel que : C} (81 )>0,

B;(81)>0, j=1 , . . . ,.1, k=1 , . . . .,„1

Pour chaque i , solt P1 (x, t ) et a1 (x) des polw6mes donn6s par la
proposition 2

Soit H(X)=a:(X)' . . . 'ai(X) , et Kx) .„ P,iwa., q„,1,,.q.,.
D6finissons P par la formule :

p(x, t )=( 1+H+H'A2(X) )Pr. . . Pi-H(B)

D6montrons que le polyn6me P a les propr16t6s voulues :
M

(1 ) Sl EcU Si 1’ un des P1 s'annule pour une certalne valeur de t, et
1

P(x, t ) prend une valeur n6gatlve ou nulle. Quand t tend vers l’ Inf InI

P(x, t) prend des valeurs strlctement posItIves. P s’annule dorIC pour une
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„,1,., ,6,II, d, t. D’,Ut,, P,,t ,I WU 51, PI(X, t)BaI(X), d’DtI

P?...PizH(x) ,t ,,1, r„,prrq„, q„, P(X,t)ZH2(X) et par suIte p(x.t)>o.
Ce polyname P a dorIC les bormes propr16t6s de proJectIon.

(ii ) En vertu du th6ordme d’lrr6ductlblllt6 de HIlbert, pour montrer

qu’ iI existe un polyn6me X de R tV] tel que P soit irr6ductlble dans k tV] iI

suff it de d6montrer le lemme sulvant :

Leme. Soit k un corps, B,H,K des 616ments non nuls de k, Ack Itt un

polyn6me non constant , alors P=(K+HX2) A2-B2 est Irr6ductlble dans k[X, t ] .

D6monstratlon du lemme

P n’ a pas de diviseur non constant dans k[t] , en effet ce diviseur

diviserait A, et par soustraction B ce qui est Imposslble pulsque B€k

Si P=(aA+B) (TA+6) avec a,p, 7, a dans kItt on a a•P•Ta#O et aT=HA2, aa+76=o

et p6=KA2–B2

De la deuxldme relatIon on tire par le lemme de Gauss : a=rT, B=-ra avec

ack, en reportant dans la trolsidme relation on obtient B2=KA2+r62 avec

K,r€k. Comme B est un polyn6me constant de kIt] et que A ne 1’ est pas, on

voit en identlflant que r=-v2K atl v€k, et par suIte B=K(A-ua) (A+ua) d’ aa

A+back, A-black ce quI impllque que Ack ce quI n’ est pas vral

La d6monstratlon du lemme, et dorIC de ( I1 ) est achev6e.

( iII ) Montrons enf in que le polyn6me obtenu P(x, t) ne s’annule

ldentlquenent en aucun polnt x de CN. Slnon, sI (l+H+HX2)=0 en ce poInt,

alors H=0 et par suite Pt. . .Pi=o ce gul est ImpossIble. ce polW6me ayant

une llmlte au moins 6gale a 1 qtland t tend vers I'inflnl.

Par suite la seule posslblllt6 c'est que Pi. . .Pi solt de degr6 O en t,

c’est-a-dire que chaque polyn6me P1 le solt, mats alors c’est que chaque
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al =o et chaque P1 =1 et par suIte p=pf

Remarques. L’ utiIIsatIon du th6ordme de HIlbert, sI elle permet un 6nonc6

beaucoup plus g6n6ral que celul trouv6 en [P2] et [P3] ne fournlt pas

vraiment d’ IndIcatIons sur la manidre de trouver le polynf>me ;\(x) . D’autre

part les degr6s (m6me en t) des polyn6mes obtenus solit plus 61ev6s que

ceux qu’ on obtient en [P2] pour des ensembles semI-alg6brlques localement

ferm6s.Enf in, dans le cas oil S est ferm6 le polyn6me P obtenu,

contrairement a ceux de [P4] n' est pas unIt:aIre. On pourralt en nc>dif lant la

d6finition de P faIre en sorte qu’ 11 le soit, mals au prIx d’ un degr6 plus

61ev6 .

93. Les projections de var16t6s alg6brlques r6elles.

Dans ce paragraphe nous allons d6dulre de 1’ Irr6ductlblllt6 des

6quations de certalns ensembles leur Irr6ductiblllt6 g6om6trlque. Une telle

d6ductlon n6cesslte 6vldemment quelques pr6cautlons : X2+Ya(Y+1 )2=0 est

bIen une 6quatlon irr6ductlble, mals l’ ensemble de ses z6ros ne 1’ est pas.

(D’aprds le th6ordme 1 cet ensemble a m6me une 6quatlon C-lrr6ductible) .

Notre outil sera une g6n6rallsatlon du crltdre de changement de slgne.

Commen<,ons par rappeler quelques notatIons : VeRN est un ensemble

alg6brique Irr6ductible, I (V) l’ld6al de R[x1, . . . , xN]HR[x] form6 de tous

les polyn6mes qui s’annulent sur V, IRIVt=IR[x]/I (V) et kqR(V) Ie corps des

fractIons de R tV] . On suppose que V n’ est pas r6dult a un poInt . Un

polyn6me de IR [x, t ] sera dtt Irr6ductlble modulo I ( V) , s’ i 1 est

Irr6ductlble, et sI sa r6ductlon nodulo I (V) est un polynf>me Irr6ductlble

de k [ t ] . On dlra enfln qu' un 616ment de R [x, t] est un polyn6me r6el.

SI W est un ensemble alg6brlque r6el contenu dans Rm notons Wr le

,,.,-,.,,„br, d, C111 ,a tous res polW6mes de KW) s’annulent : uCdR=w.

SI W est Irr6ductlble, Wn 1’ est aussl
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On va utiliser un th6or6me classique en g6om6trie alg6brique sur un corps

alg6briquement clos, qui n’ a pas d’ analogue en g6om6trie alg6brlque r6elle

Ccf . [L2] page 36, ou aussi [Sam] ou [Sha] )

Th6or ame sur la dimension des intersections.

Salt UcCn une vari6t6 affIne irr6ductlble de dImensIon h. Soit PCE) un

polync->me de C[x] . Si Lh{P(x)=o} est non vlde, et sI P ne s’annule pas sur

U tout entier, alors toutes les composantes Irr6ductlbles de cette

Intersection ont la m6me dimension h-1. •

Corollaire. Soit a={(x,t)€VcxC IR(x, t )=0 } oa RCx, t ) est un polw6me ne

s’annulant identlquement en aucun point X€Vr. Soit W’ ceN+1 un ensemble

alg6brique, et a(x) un polyn6me non identiquement nuI sur V, alors si

a-{a(x)=0}cW’ on a aussi Qcw’

D6monstration. D’aprds le th6ordme sur la dImensIon des Intersections,

chaoune des composantes irr6ductibles de a est de dImensIon r, et aucune

d’elles ne peut 6tre contenue dans Gn{a (x)=O}=({a(x)=O}nVrxC)n{R(x, t )=C)}

quI est de dImensIon r-1 CIR(x, t ) ne pouvant s'annuler Identlquement sur

aucune des composantes de {a(x)=O}nVcxC puisque ces composantes sont des

cyl indres )

Salt Hi une composante irr6ductlble de a, comme WlcW’ U(On{a (x)=o) ) et

W1 c (an{acE)=0} ) , on a donc W1 cW’ et par suIte Gcw’ . 8

Proposition 3 (G6n6ralisation du crltdre de changement de slgne) .

Solt VcIR1\ un ensemble alg6brlque Irr6ductible, I (V) son Id6al, RCx, t )

un polyn6me r6el Irr6ductible modulo I (V) quI n' est Identiquement nuI

pour aucune valeur de x€Vc. Alors, st W={(x,t)€VxR IR(x, t )=0} se projette
vertlcalement sur un ensemble de m6me dImensIon que V , W est

irr6ductible

8
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D6monstration. Le cas oil V est un poInt 6tant trlvlal, on petIt donc

supposer que V n’ est pas r6dult a un poInt. On peut supposer aussi que R

est de n6me degr6 que sa r6ductlon nod trIo I (V) . Montrons que cette

hypothdse impllque que R est de degr6 mInImal au seng sulvant : solt P un

polyn6me de tRIx, t] non congru a z6ro nodulo I (V) , nuI sur un ferm6 WlcW de

dimensIon maxlmale, et de de8r6 mInImal en t parml tOIIS les polyn6mes ayant

ces propr16t6s. Le coeffIcIent b(x) du terme de plus haut degr6 en t de

P(x, t) n’appartlent pas a I (V) . On a la dIvIsIon dans RIx, t] :

bM(X)RCX, t )=X (X, t )P(X, t ) +RI (X, t ) .

Par la mlnlmallt6 de P, on volt que R1 est congru a z6ro modulo I (V) , et en

r6dulsant modulo I (V) on obtlent : bM(x)M )=M )W) . Conne n=x )

est irr6ductlble dans R(V) [ t] et m) n’ est pas de degr6 z6ra en t, on en

d6duit que P et R ont meme degr6 en t, c’est-a-dIre que R est de degr6

minImal

Supposons malntenant que le polyn6me Q s’ annule sur un ferm6 Hq(W de

dImension maximale. SI a(x)dI (V) est le coeffIcIent du terme de plus hatIt

degr6 en t de RCx, t) , on a la divIsIon (d) dans R[x, t]

(d) aD (X)Q(X, t )=R(X, t )RCX, t ) +RD (X, t )

Par la minimallt6 de R, on volt que RT€1 (V) It] .

Salt Q={ (x, t)€VcxC IR(x, t )=0 }

et W' ={ ( x, t )eCn+1 IQ(x, t )=O}

De 1’6galit6 (d) on d6du it que #-{a(x);0}cW’ . Par le corollalre, cela

impllque que acW’ , c’est-a-dIre que le polyn6me Q s’annule sur Q tout

entler, dorIC sur Hca a

Remarque. SI V+RN, la proposItIon 3 n’ est autre que le crltdre de

changement de slgne (volr [BCR] page 85 ou [Mll] p. 14)
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Nous sommes malntenant en mesure de d6montrer le r6sultat prIncIpal de ce

travai I

Th6ordme 2. Un semI-alg6brlque de Rn est la projectIon d’ un ensemble

alg6brlque irr6ductlble de Rn+1 st et seulement sI son adh6rence de

Zariskl est un ensemble alg6brlque Irr6ductlble.

D6monstratlon. Soit S ce semI-alg6brlque et V son adh6rence de Zarlski

qu’ on suppose Irr6ductlble, par le th6ordme I et le crltdre de changement

de slgne g6n6ralis6 (propositIon 3) on volt que S est projectIon d' un

ensemble alg6brique Irr6ductlble de Rn+1

La r6ciproque est facile : sI I'adh6rence de Zarlskl de S n’ est pas

irr6ductible, on peut trouver deux polw6mes PI et Pa non Identlquement

nuls sur S, tels que leur prodult solt identlquement nuI sur S. Par suIte

si WcRn+1 se projette sur S, ces deux polyn6mes ne sont pas Identlquement

nuls sur W, mais leur prodult l’ est, ce quI montre que W n’ est pas

irr6ductible . •

Remarque . Les projectIons obtenues Icl sont quasI-flnles , c’est-a-dIre que

leurs fIbres sont des ensembles flnls.
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