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Corps de courbes sur C élémentairement
équivalents.

Jean-Louis Duret

Soit £ le langage constitué de deux constantes 0 et 1, et de deux fonctions + et - ; si
A est un sous-ensemble d'une structure de £, nous noterons L(A) le langage obtenu en
ajoutant a £ les éléments de A comme constantes.

A Introduction : le cas du genre différent de 1.

Tous les corps considérés seront commutatifs. Nous appellerons corps de courbe sur un
corps k une extension de k finiment engendrée de degré de transcendance 1 sur k. Si k&
est algébriquement clos, d’aprés le théoreme de la base séparante, un corps de courbe sur
k est de la forme k(u,v) olt u n’est pas élément de k et ol v est algébrique sur k(u). C’est
donc le corps de la courbe sur & d’équation affine P(z,y) =000 P(u,Y) est un polynéme
minimal de v sur k(u). C’est aussi le corps d’une courbe non singuliére sur k.

Nous appellerons ensemble de coefficients d’une courbe sur un corps k un sous-ensem-
ble A de k tel qu'il existe un systéme de générateurs de I'idéal de cette courbe dont les
coefficient sont des éléments de A.

Nous nous proposons de continuer I’étude des corps de courbe sur un corps algébrique-
ment clos commencée dans 'article Sur la théorie élémentaire des corps de fonctions [D].
On y avait démontré [D, proposition 21, p. 954] :

1. Proposition. Pour tout ¢ € N, il existe un ensemble d’énoncés, G,, du premier
ordre du langage L tel que, si K est un corps de courbe sur un corps algébriqguement clos,
alors K est de genre g si et seulement s’il satisfait G,.

Il en résulte donc immédiatement que deux corps de courbe sur un corps algébrique-
ment clos élémentairement équivalents dans le langage £, ont méme genre. 5’ils sont de
genre 0, ils sont donc k-isomorphes. D’ol la tentation, pour le genre > 2, d’appliquer un
corrollaire de la formule de Hurwitz [H, chapitre 4, exemple 2.5.4, p. 303] :

2. Proposition. Un morphisme dominant de courbes projectives non singulieres de
méme genre > 2, est un isomorphisme.

Vérifier I’hypothése de cette proposition se fait en appliquant une fois encore les idées
de [D] :



3. Lemme. Soient K un corps de courbe sur un corps algébriguement clos k, A un
ensemble de coefficients d’une courbe dont K est le corps et K' un corps de courbe sur k
élémentairement équivalent 4 K dans le langage L(A). Alors K et K' ont méme genre
et il existe un k-homomorphisme de K dans K'. Si C et C' sont des courbes projectives
non singuliéres sur k dont les corps sont respectivement K et K', alors C et C' ont méme
genre et il existe un morphisme dominant de C' sur C.

Démonstration. Soit C(x) une formule : Jy(z¢ +y? = 1), ot 3(d —1)(d —2) est stricte-
ment supérieur au genre de K ; C(x) définit k dans K et dans k' [D, proposition 10]. Soient
P(Xy,. .0, X, » Pa(Xi1,..., Xi) les générateurs & coefficients dans A d’un idéal (de
k[X1,...,Xm]) d'une courbe affine dont K est le corps ; K et donc K’ satisfont :

dz4,..., 2, (/ﬂ\ Pzy,...,z2m) =0 A \7—16’(3:,-))

=1 =1

Soit alors (ai,...,a,) un élément de K™ — k™ tel que pour ¢ = 1,...,n, on ait :
Fiay,...,am) = 0; k(ay,...,a,) est un sous-corps de K’ k-isomorphe a K.

La deuxieme partie du lemme est la réénonciation de la premiere a 'aide de [H, chapitre
I, corollaire 6.12, p.45]. a

Nous venons donc de démontrer :

4. Théoréme. Soient K un corps de courbe de genre différent de 1 sur un corps
algébriguernent clos k et A un ensemble de coefficients d’une courbe dont K est le corps
de fonctions (notamment, dans le cas du genre 0, A peut étre Uensemble vide). Alors
tout corps de courbe sur k élémentairement équivalent & K dans le langage L(A), lut est
k-isomorphe.

On peut aussi sans grande difficulié supplémentaire démontrer

5. Théoréme. Soit K un corps de courbe de genre différent de 1 sur un corps algébrigue-
ment clos k. Alors tout corps de courbe sur k élémentairement équivalent ¢ K dans le
langage £ lui est isomorphe.

Nous aimerions maintenant évidemment montrer la conjecture suivante {ainsi qu’une
conjecture analogue au théoréme 5) :

6. Conjecture. Si K est un corps de courbe sur un corps algébriquement clos &, il existe
un sous-ensemble A de £ tel que tout corps de courbe sur k élémentairement équivalent
a K dans le langage £(A), lui est k-isomorphe.

Pensant au théoréme classique de représentation des corps de courbe de genre 1 sur
C par des corps de fonctions elliptiques, nous nous limiterons au cas de la caractéristique
nulle et méme, ici, au cas ou & est C. Malheureusement, je ne sais pas traiter la généralité
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du cas du genre 1, et nous allons devoir ajouter aux hypothéses que K n’a pas de multi-
plication complexe (pour la définition, voir plus loin definition 19). De plus pour ne pas
dissimuler I'idée principale dans des difficultés supplémentaires, nous accepterons que A
dépendent des deux corps de courbe considérés. Nous nous proposons donc de démontrer :

7. Théoréme. Si K est un corps de courbe sur C sans multiplication compleze, tout
corps de courbe sur C élémentairement équivalent ¢ K dans le langage L(C), lui est
C-isomorphe.

B Réseaux et fonctions elliptiques.

8. Définition. Nous appellerons résequ un sous-groupe additif de C engendré par deux
eléments linéairement indépendants sur R (i.e. dont le rapport n’est pas réel).

9. Deux réseaux A et A’ sont semblables si et sculement si A’ est I'image de A par une
similitude du plan complexe (ce qui est évidemment une relation d’équivalence), i.e. si et
seulement s’il exixte un nombre complexe non nul  tel que : «- A = A’. Nous noterons
< wi,wz > le réseau engendré par {w;,w;}. Un réseau < wy,ws > est semblable & un
réseau < 1,7 > oll 7 n’est pas réel (v = =2, rapport de similitude : ;1;) En remplagant
éventuellement 7 par —7, on peut méme supposer que T est élément de H, demi-plan
supérieur ouvert de C.

10. Théoréme. Deuz réseauz < 1,7 > et < 1,7 > (ou T et 1" sont élément de H) sont
semblables si et seulement si 7 et 7' sont élément de la méme orbite du groupe (appelé
»

‘groupe modulaire”) d’applications de H sur H engendré par les deuz applications :
zr—~z+1 et z— —1 [DV, chapitre 3, § 26, p. 42].

11. Définition. Nous dirons qu’un réseau A a une multiplication compleze si et seule-
ment s'il est semblable & un réseau < 1,7 > oll 7 est un nombre algébrique quadratique (i.
e. est un nombre complexe de degré 2 sur Q). D’aprés le théoréme 10, c’est équivalent a :
pour tout 7 tel que < 1,7 > est semblable & A, 7 est un nombre algébrique quadratique.

12. Définition. Si A est un sur-réseau d'un réseau A’ (i.e. A’ C A) nous noterons :
R(MA)={aeC; aA DA}

13. Soit & étudier R(A,A’). Si A est un sur-réseau de A’, alors il existe une base de A’ ,
(w1,ws) et deux entiers naturels non nuls m et n tels que (=L, %2) soit une base de A [DV,
§63,p. 132). Ona:

Wy Wwo o

1
R(< _’E>’<w1’w2 >) ={ma; aeR(< —,—>,<1,ﬂ>)}.

mn n w wy



On se raméne donc & étudier R(< 1,7 >,< 1,7 >) que nous noterons R{n,7). On
remarque :

%:{%;kEZ—{N}CRWJ)

(quels que soient n et 7) et :
R(1,7) C R(n,T).
Pour justifier la terminologie, signalons que < 1,7 > a une multiplication complexe si et

seulement si : R(1,7) # % (un élément de R(1,7) — % n’est pas réel, puisque 1 et 7 sont
linéairement indépendants sur R).

14. Proposition. Si 7 n'est pas un nombre algébrique quadratique (i.e. 7 n’est pas
solution d’une équation du second degré 4 coefficients dans Q), alors :

R(n,7)= —é—

Démonstration. Soit o € R(n,7) . Il existe des entiers relatifs a, b, c et d tels que :
o
l=a—+bar et "r=cg+daf
n n

c'est a dire : 1 )
— = a—+br (1)
o n

l 1
—~T = c¢—+dr (2)
o n

Remplagant % dans (2), on obtient :
bl (= —dr-S=0
n n

et comme 7 n’est pas algébrique quadratique, on a : b = 0, 2 =det ¢ = 0. Dong, de

(1) on tire: £ = d. On a donc : % D R(n,7), et donc Pégalité d’apres la remarque

précédente. a

15. Définition. On appelle fonction elliptique sur un réseau A une fonction méro-
morphe dont Iensemble des périodes contient A.

Les fonctions constantes sont donc des fonctions elliptiques. Elles constituent un corps
canoniquement isomorphes & C (que nous noterons C).

16. Théoréme. L'ensemble £(A) des fonctions elliptiques sur A est un corps (pour
Paddition et le produit usuel des fonctions) de courbe sur C de genre 1. Réciproquement
pour tout corps de courbe sur C, K, de genre 1, il eziste un réseau A tel que K est
C-isomorphe d E(A) [H, chapitre IV, théorémes 4.12B et 4.14B, p. 327-328].
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17. Théoreme. Tout sous-corps de E(A’) de degré de transcendance 1 sur C est un
corps de courbe sur C de genre 0 ou 1. Pour tout sous-corps K de E(A') de degré de
transcendance 1 sur C de genre 1, il existe un sur-réseau A de A’ tel que K est égal a
E(A) [DV, théoreme 11.2, p. 196].

18. Théoréme. Deuz corps E(A) et E(Ap) sont C-isomorphes si et seulement si A et
Ao sont semblables. Une application ® : E(A) — E(Ay) est un C-isomorphisme si et
seulement sil existe un compleze B et un compleze non nul o satisfaisant ¢ : aA = A,
tels qu’on ait :

(Vf € E(M)(Vz € O)@(f)(z) = £(= +B))
[DV, § 88, p. 191].

19. Définition. Nous dirons qu’un corps de courbeX sur C de genre 1 @ une multiplica-
tion compleze si et seulement s'il est isomorphe & £(A) ot A a une multiplication complexe,
si et seulement si (d’aprés le théoréme 18), tout réseau A tel que K est isomorphe & E(A),
a une multiplication complexe.

C Démonstration du théoréme 7.

20. Soient K’ un corps de courbe sur C élémentairement équivalent a K dans le langage
L(C). D’apres le lemme 3, K’ est de genre 1 et il existe un C-homomorphisme de K dans
K' ; sans perte de généralité, nous pouvons supposer que K est un sous-corps de K’ :
K C K'. Pour démontrer le théoréme 7, il suffit donc de démontrer que, si de plus X et
K’ ne sont pas C-isomorphes, alors ils ne sont pas élémentairement équivalents dans le
langage L£(C), c’est-a-dire qu’il existe un énoncé de ce langage vrai dans K et faux dans
K.

D’aprés les théoremes 16 et 17, il existe un réseau A’ et un sur-réseau A de A’ tel
que K’ et K soient respectivement C-isomorphes & £(A’) et £(A) ; d’aprés 13, il existe
une base (wy,w;) de A’ et deux entiers naturels m et n tels que : A’ =< wi,wy > et
A =< ZL %2 > ; d’aprés le théoréme 18, K est C-isomorphe & £(< “i w, >) ; enfin
d’aprés le théoréme 18, K’ est C-isomorphe a £(< 1,7 >) et K au sous-corps E(< &7 >).
Désormais, nous noterons K' = £(< 1,7 >) et K = £(< 1,7 >).

Soient w un élément primitif de K’ sur K : K’ = K|w), u et v tels que : K = C(u,v),
P(X,Y) € C[X,Y] tel que P(u,Y) soit polynéme minimal de v sur C(u), Q(X,Y, Z) €
C[X,Y, Z] tel que Q(u,v, Z) € K[Z] soit polynéme minimal de w sur K (d°@ > 1). Soit
C(z) une formule définissant C dans K et K’ [D, proposition 10]. On a :

K B dz,y(-C(z) A P(z,y) =0 A V2(Q(z,y,2) #0))
Il suffit donc de démontrer :
K=V, y(~C(z) A P(z,y) =0 — 32(Q(z,y,2) = 0))
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Soient donc ug et vy des éléments de K’ tels que : ug € C et Plug,vp) = 0, et
®g : K — C(ug, vg) le C-isomorphisme défini par : Po(u) = ug et py(v) = v, 1 s’agit de
démontrer qu'il existe un C-homomorphisme de K’ dans K’ prolongeant ¢,. D’aprés 18,
il existe a, @ € C tels que , est défini par :

(vf € K)(Vz € C)Y®(f)(2) = (= + B)

(Cuo,v0) = E(a < 17 >)). Puisque par hypothése, T n’est pas un nombre algébrique
quadratique, d’aprés la proposition 14, o est un élément de ¥, et @ < 1,7 > est un
sur-réseau < 1,7 >. Le C-isomorphisme p: K'=E(< 1,7 >) > Ela < 1,7 >) défini
par :

(Vf € K')(vz € C)(®(f)(z) = (= +B))

est le prolongement cherché de . O

D Le cas avec multiplication complexe.

21. On voit que la démonstration précédente reste valide si Pon peut affirmer que le
complexe & qui est élément de R(n,7) est aussi élément de R(1,7). S’inspirant de [H
chapitre IV, théoréme 4.19, p.330], on peut calculer Rin,7) :

H

22. Proposition. S§i v est un nombre algébrique quadratiqgue : T = r + is\/d (od :
reQ,s €Q",deN et ound est libre de carré (i. e. 1 est le seul carré diviseur de d)),
alors :

Rin,7) = (E-i-bf)'l;a,bez et aoub#0 et n(r’+ ds?), E+2rbEZ
N n

23. Corollaire. Si: 7= L(k+ily/d) (ou: ke Z, I, me N—0 et ou d est libre
de carré), alors si m et n sont premiers entre eus et notamment si : m — 1), on a :

Rin,7) = R(1,7).

En modifiant ’énoncé avec les mémes idées, on peut obtenir aussi le résultat lorsqu’il
existe un nombre premier divisant n et ne divisant pas m. On obtient donc :

24. Proposition. Soient 7 = L(k+ilvd) (ot : k€ Z, [, m e N —0 et ou d est libre
de carré) et n € N. Sl existe un nombre premier diviseur de n et non de m, alors :

E(< 1,7 >) -Eé S(_< i—,'r >)
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SUBGROUPS OF SMALL INDEX IN ORDERED PERMUTATION GROUPS

To appear in: Quart. J. Math. Oxford

M. Droste (Essen) and J.K. Truss (Leeds)

§1 Introduction and results

This paper presents results supplementary to those of [11,12]
in the specific context of ordered permutation groups. The first type
of result concerns the least number of conjugates which are needed to
express an element f of the normal closure <g>G of some g € G
n h.

+
as a product of the form T (g-1) 1
i=1

. In [11] it was shown that far the

groups A{Q) and A{R) of all order-automorphisms of the rationals
(@,<) and the reals MR,<), respectively, this least number is 4,
Let us call an infinite chain (C,<) doubly homogeneous, if its
order-automorphism group A(C) = Aut(C,<) acts transitively on the
2-element subsets of (. Notice that such chains include, for example,
all linearly ordered fields; their automorphism groups A(C) are
important in the theory of ordered permutation groups, see [7]. In

[1] it was proved that if ¢ is any doubly homogeneous chain, then
the 'least number of conjugates' for A(C) is at most 8; in (4] this
result was extended to any ‘'large’ subgroup G of A(C) (precise
definitions are given below). It is our first aim to show by a
combination of the methods of [1,4,11] that for any such group G

the 'least number of conjugates' is actually 4.

The second kind of result, which concerns the "small index property”,
was initially proved in [2] for the symmetric group on a countably

infinite set, and was then extended to various other cases in [4,6,12].



To say that the permutation group G < Sym @& has the small index
property means that any subgroup of G of index < 2xo contains the
pointwise stabilizer G(F) of a finite subset F of . In [12]

the only group of order-automorphisms considered was A(Q); indeed
that was the only possibility since the goal was to look at permutation
groups of countable degree. The same argument used in that proof shows
however that A(R) has the small index property in a strong sense;
namel? that the only subgroup of A(R) having index < 250 g in
fact A(R) itself. It is this that we generalize here, considering
subgroups G of A(C) where C is dense in IR having the small
index property. The conditions we need to impose on C and G are
just that ¢ ig doubly homogeneous and that, as before, G 1is large
in A(C). The idea behind the notion of largeness is that it allows
us to perform many of the typical constructions possible in A(C)
also in G. However, to illustrate the scope of this extension we
cite various instances, such as the groups preserving certain
colourings, or the locally linear or locally differentiable homeo-
morphisms. Some care is required here to keep in mind which set the
group acts on; the finite set F whose stabilizer is contained in
the given subgroup of small index may need to be taken in the order-
completion C =R of C, rather than in C itself (so strictly
speaking we need to modify slightly the definition of the "small
index property"). This is immediately clear for instance in taking
for C the set of irrational numbers (where A(C) 1is "the same as"
A(@)). A sufficient condition for F < C when considering A(C) is

that |R ~ c| = 2%o,

Finally we use the methods of [11; §5] to distinguish large
subgroups of A(C) in some cases, and examine the numbers of

conjugacy classes of stabilizers of singletons.
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Before stating precisely our two main results, let us introduce
some notation. Throughout ¢ will be a chain (a linearly ordered set
with ordering X understood). In this paper (contrary to the
convention in [11]) permutations will act on the right, so that xg,
or sometimes xg, is the image of x under g. The support supp g
°f g € A(C) is {x € C: xg # x}. We let C denote the Dedekind-
completion of C and € = C U {-w,o} where =-w < x < @ for each

x € C. We regard A(C) as a subgroup of A(C) in the natural way.

Let G < A(C). We say that ¢ is closed under disjoint patehing,
if whenever {gi: 1 € I} are members of G whose supports are

pairwise disjoint, then g € A(C) given by

Xg = (x € C)

X9, if x € supp 95 for some i € 1
X otherwise

lies in G. We say that G is closed under piecewise patehing, if

whenever ai,bi € C for i € # are such that ai < ai+1, bi < bi+1

for each i €% and lima; = limb, and lima_, = limb_, in &
iveo * jre T iroo jre 71

and 9 € G are such that [ai,ai+1]gi = lbi'bi+1]’ then g € A(C)

given by

Xg = (x € C)

Xg4 if x € [ai,ai+1] (i € 1)
X octherwise

lies in G. Finally we say that G is large in A(C), if G acts
doubly homogeneously on C and is closed under disjoint patching
and piecewise patching. If g € G, we let <g>G denote the normal

subgroup of G generated by g. Now we can state our main results.

Theorem 1.1. Let ¢ be any doubly homogeneous chain and G

a large subgroup of A(C).



(a) Let f,g € G such that f € <g>G. Then f = gl-ggl-gs-g;l
for some conjugates g, of g 1In G.
(b) There are f,g € G with <f>G = <g>G = G, but f 18 not

the product of three conjugates of g or g_l.

Moreover, we show that Theorem 1.1(b) even remains true for the
cosets of £ and g in G/(G N0 B(C))}, where B(C) is the normal
subgroup of A(C) comprising all those h € A(C) whose support is
bounded above and below in C.

If G <A(C) and F c T, let F® denote the set of images of

elements of F under members of G.

Theorem 1.2. Let C be any dense doubly homogeneous subset of

R and G a large subgroup of A(C). Then for any subgroup H of

) ¥
IG : H| < 5o if and only if H = G gy and ]FG] < 279

for some finite subset F c R.

G,
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UNE BorRNE OPTIMALE POUR LA PROGRAMMATION ENTIERE QUASICONVEXE

Bernd BANK , Joos HEINTZ , Teresa KRICK , Reinhard MANDEL
& Pablo SOLERNG

Résumé ~ Soient Pyy...,F;€Z[Xs,.0..9Xn] des polyndmes qua-
siconvexes de degré majoré par d 2, et A une borne pour
la longueur binaire de leurs coefficients. On montre que
si le systeme F, £ 0,...,F; £ 0 admet une solution entidre,
alors il existe une telle solution & longueur binaire ma-
jorée par (8d)°" L (ot ¢ est une constante, indépendante

de g,d,n et d). Le caractire simplement exponentiel de

cette borne est intrins2que au probléme, On obtient aussi
uhe borne similaire pour le probléme de minimisation cor-

reapondant.

INTRODUCTION ET NOTATIONS.-

En 1983, I.G.Khachiyan et S.P.Tarasov ([13],[6 1) ont
annoncé que S8i Fy,...,F;, sont des polynbmes convexes en m
indéterminées, de degré d; 2 et a coefficients entiers,
tous de longueur binaire majorée par L, alors le systéme
d'inégalités polynomiales % £ O,..., P54 0 admet une solu-
tion entiére s8i et seulement si il admet une solution en-~

b 1

tidre contenue dans une boule centrée & llorigine et de
rayon entier R, de longueur binaire majorée par d{ma) Ca')E
(o M := min{s,'f_i.} et ¢ est une constante indépendante
des paramdtres considérés). L'intérét de cette question
est qu'elle représente une solution effective pour le pro-
bléme de stabilité correapondant au probléme d'optimisa-
tion (de minimisation) pour la programmation entidre a

contraintes polynomiales convexes, générallsation naturel-



le du probléme de la programmation lindaire entidre.

Dans ce travail, nous nous intéressons en premier lieun
a ce méme probléme de calcul d'une borne géométrique pour
le cas des polyndmes guasiconvexes. |

Pour préciser les résultats, fixons tout d'abord les no-
tations:
Dans ce qui suit, R représentera le corps des nombress ré-
els et %Z l'anneau des entiers, Soient XiveeeyXpn des. indé-
terminées sur R. On dit qu'un polyndme Fe RIX4yos09X,] est
quasiconéexe si pour tout £t€R , l'ensemble de niveau
{xelR“: P(x)c 4| est un sous-ensemble convexe de R™.
Pour un ensemble fini V¢ Z" de vecteurs & coordonndes en-
tieres, nous noterons par‘,ﬂ(V) la longueur binaire maxi-
male des coordonnées de tout vecteur de V. De méme, ai
OTQ'E[Xi,...,an est un ensemble fini de polynGmes & coef-
ficients entiers, A (@) notera 1a longueur binaire maxima-
le des coefficients des polynomes de ﬁd.
La boule fermée de rayon R€ IRy, et centrée a l'origine seo-
ra indiquée par B(0O,R). Nous adopterons aussi la notation
standard O(n), n¢IN, pour désigner une fonction linéaire en
n, c'est-a-dire, il existe ‘une constante ¢, indépendante

de n,telle que 0(n)< en,
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Passons maintenant a 1'&noncé des x"ésultata::

THEOREME 1.~ Soient P ,...,R € Z[Xsy.¢e9Xn] des polynbmes
guasiconvexes a coefficients entiers, de degré majoré par
d> 2 et tels que J:= /E({Fi,...,FS} )

Il existe un rayon Re N, de longueur binaire l(R):(sd)O(“?f.
tel gue si l'ensemble {xE.Z“: By (x)£0y40ayF (x)s_o} est
non vide, alors il contient un point (entier) dans la boule
B(O,R), |

Ce rayon R ne dépend pas du caractdre particulier des poly-
nomes BpreesyE mais seulement des parameéetres e,d,'n,a'- con-

sidérés,

Etant donné gue les polyndmeés convexes constituent un cas
particulier des polyndmes quasiconvexes, ce résultat géné-
ralise et améliore la borne annoncée par Khachiyan et Tara-

20V,

D'autre part, le caractére exponentiel de la borne obte=
nfe est intrinsdoue au probldme, comme le prouve l'exemplg
suivant étudié dans [13] : les auteurs considdrent les poly-
L, om=x2-x,,

sesy Fo= x,ﬁ_i- Xn et montrent que toutes les solutions du

ndmes quadratiques et convexes Fp= =X, + 2

systeme F,(x)<¢0,...,F,(x)40 se trouvent en dehors: de la
. -4 .

boule B(O,R), o A(R)= " L. Ceci signifie que la borne

du Théoréme 1 est optimale en fonction dea param@tres cons.

sidérés, en tant que mesure générale de complexité.

Ce théoréme géométrique entraine aussi le résultat algo-
rithmigue suivant:

COROLLAIRE.~ On peut décider a4 l'aide d'une machine de
Turing non déterministe si 1l'ensemble {xe 7" P, (x)40,...,
Fe (x) eo} est non vide en temps (sd)om?l. En d'autres;
mots, le probléme de la programmation entisére & contrain-

-3 -



tes polynomiales quasiconvexes appartient & la classe de
complexité NEXPTIME ("non de terministically siiply expo-
nential time"). Ceci signifie qu'an peut vérifier si un
candidat & solution du systéme considéré est effectivement

une solution en temps simplement exponentiel.

Finalement, les méthodes appliquées pour montrer le Thé-
oréme 1 entrainent aussi le résultat d'optimisation entis-

re a contraintes polynomiales quasiconvexes correspondant:

THEOREME 2.-" Soient Py Fyy.c. B € Z[X4y000 9X,] des poly-
némes quasiconvexes & coefficients entiers, de degré majo-
ré par 432 =} tels gue il ,ﬂ( {F,Fi,...,Fs}) et posons
M= {xem“: P, (x) éO,...,FS(x)eoi .
Si 1lt'ensemble MnZ"™ est non vide et

inf 2F(x): xe an“} = M > -0
(ou inf note 1'infimum),
alors il existe un rayon Re N, de longueur binaire
L(R)=(8a)™L tel que

m = inf {p(x): xeMnZ"NB(O,R)] .

PREUVES DES RESULTATS.-

Preuve du Théoréme 1 — Le Théoréme 1 est une conséquence

des nouveaux résultats en géométrie semi-algébrique algo-
rithmique (&limination "rapide' des quantificateurs dans ls
théorie. élémentaire des corps réels cloa) quton trouve
dans [12,[37, (47,051 et [9), appliqués au problame grace
& des techniques de r éduction pour la programmation quasi-
convexe développées dans [1], chapitres 4 et 5, et simpli-
fides dane:[2 ]. Nous considérerons ici plus en détail les
méthodes nouvelles particulidres @ notre probldme, nous
remettant aux travaux cités ci-dessus pour les démonstra-
tions des résultats préliminaires qui y figurent, Une bor-

ne légerement moins précisey avee les preuves complétes,

- 4 -
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eat aussi présentée dans [7:1
Dans le but de fournir la démonstration la plus claire

possible, nous la diviserons en différentes sections,

1, Propriétés fondamentales des polynSmes quasiconvexes.
Nous décrivons ici quelques propriétés théoriques gui
sont indispensables pour l'obtention de la borne annon-

cée.

Propriété d'"uniformité”: Soit PeR[X y+.0.0Xn] un poly-
nome quasiconvexe. Soient x,ucR™, use 0, fixés.
Si le polyndme F(x + Tu), en 1'indéterminée T, est stric-

tement décroissant (reépectivement constant) alors, pour
tout yeR , le polyndme P(y + Tu) est strictement dé-

croissant (respectivement constant).

Preuve: Nous utiliserons la définition égquivalente de
polynéme quasiconvexe suivante, gul est plus opérative:
PeR[X4y..09sXn] eat quasivonvexe ssi pour tout x,ye R™
et pour tout A€M, 0K A £1, on a:

P(otx + (1-o)y) & max {¥(x), F(¥)}
I1 est facile de vérifier gu'un polynome guasiconvexe
non constant FER[X] (en une seule variable) n'admet pas
de maximum local, et que donc, s'il est de degré pair,
son coefficient conducteur est positif et s'il est de de«
gré impair, la fonction qu'il définit est strictement
eroigssante ou décroissante suivant le signe de son coef-

ficient conducteur.

La preuve de la propriété d'"uniformité” suit maintemant
de la définition de polynome guasiconvexe gui implique que
si x,y,ue R™ , u# 0, alors F(x + Tu) et ®(y + TQ) sont

ou bien tous deux constants ou bien de méme degré 4 ¥ 0,-1
et ont méme coefficient conducteur. Voir [1], Ghapitre 4,

ou [2__] pour les détails. .



Propriété de "linéarité" d'une forme homogine quasiconvexe:

So0it PER[X 9. ouyXn] une forme homogéne gquasiconvexe de de-
gré diy 1, et soient L= {xem‘“ P(x) = 0}
K 1= {x€IR" : P(x) <0}
Alors. - I est un gous-eapace linéaire de R",.
- 8i d est pair, K= L )
~ 5i 4 est impair, I, est un hyperplan et K est un

L]

des demi-espaces limités par I.

Preuve: C'est une conséquence immédiate de la propriété
antérieure (Voir [1], Chapitre 4, ou [2 ] ), il

Nous montrerons maintenant une version effective de cet-
te propriété, qui exhibe une base 73 de I (et un systeme
de générateurs g de K) construite a partir des coeffi-

cients de la forme homogéne quasiconvexe P.

Lemme 1: Soit PeZ[Xyy...,X,] une forme homogine quasi-
convexe (a coefficients entiers) de degré d, et soit d:=
max 22,:1} é

Alors le sous-espace linéaire I = {xe‘lRm' 2 P(x) = 0} ad-
met une base entisre 73 telle que L() = 'aocr)(,ﬁ(P)_-iun)
ou M =M - dimTRI., et, 8i d est impair, le demi-espace K

admet un systéme de générateurs entier (i.e. K={2 A .V,
A7

A20}) tel  que L(g)= U8B, “ed

Preuve: On observe tout d'abord que 8i P est quasiconve-
xe, il existe une variable xé- telle gue degI' P=4 (voir
C1] m:l[z 1 pour les détails). Sans perte de igénéralité,
Supposons que X; est cette variable.

On procéde par induction en m :

Soit my2. Si L §0), soit uel- {0} . 1e fait que
pour tout te R, P(tu) = th(u) = 0 implique par la pro-
priété d'"uniformité" que pour tout xeR™ » le polynome

P(x + Tu) est constant comme polynome en T; c'est-a-dire
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que pour tout xe R™ , P(x) = P{xsu).’
Ainsi:
( ) P(X) = P(X+u): pour tout uel
Posons:
P(X X, ) = a/ (X x )xd (x x )x®1

19 0ser A ad JEREEE R YR Y] + ad_l VAR nt R4 +

ss o + al(xzp--o,xn)xi"ﬁ B.O(Xz,.--,x,n_)

hY
ou ad(xl_,...,xn) ¥ 0, et, pour tout 0<i<4d, ai(xz,...,xn)
€ Z[X)9.404X, | est une forme homogeéne de degré d-i {i.e.

ad(xlyooogxh) = ad GZ . {0} et ad_l(xz'...,xﬂ) M ZE,;“'.bkxk

est une forme linéaire entigére).

Evaluons le polyndme P en X+u = (X+ UgpoeeorX+ u )
d d-
P(X+u)= ad.(Xfui) + (M%nbk.(kak)).(xfui) +ooe

oot a0(§2;u2'°"'x7‘-+u“)
== P(X) + xif (dadui-+b2;abkuk) +eses + P(u)
(ol les termes compris dans les points de suspension sont
de degré en X; inférieur a (d-1)),
Par ( & ), on conclut que Lc Li:z {uezm“ : dadui +
;‘\;nbkuk = 0}
L'hyperplan L* admet la base entiere
{(=by,d84,0,...,0),...4 (b, 0,...,0,d8,)]
(qui se compledte & une base dii de R" en ajoutant le
vecteur (1,0,...,0);.de maniére gue ,i(ﬂ&?) = A4 log,d).
Si la forme homogeéne P restreinte a L' n'est pas la forme
nulle (c'est-h~dire si L ¥ L'), on pose:
P (YpreeesYng) = P(=By¥y=.o=b Y, q,d8,Y, .00, da,Y, )
et on obtient la forme homogéne guasiconvexe P! en {(n-1)
variables, qui représente (dans la base*ﬁf‘) la forme P
restreinte a L.
Pl vérifie 1'estimation suivante:
L(P*) £ A(P) + d(logia + L (B")) + nlog,(asd)
= (d+1) £(P) + 2d.10g,d +nlog,(dsl)
= E‘(,f(P) +n) (ou ¢ east une constante univer-

selle).



Etant donné que L ¥ 1t s la forme gquasiconvexe P! n'est
pas la forme nulle et on répéte la procédure avec elle.
Supposons que L = L' , pour un certain 0<+v<m), c'est-a-
dire gque la forme P™' restreinte & L' est la forme nulle,
alors dimgL=m-r et A"y IV L(p) 4 @w-1)n)
De plus, on a: ,g(ﬁr)é ,g(PM‘) + log d =

""‘"‘”(zm + r-1)n)
(ot 73" est 1a base corr espondante de 1, écrite en termes
de la base ﬁni de 1™%),
On récupére final ement 1'écriture canonique 72 de 1a base
7 de L en multipliant T matrices de pasaage, a coeffi-
cients de longueurs binaires contrSlées par (1-4)(/&(?) +
(r-1)n), obtenant ainsi:

ARy < (r-11ogmn + @V Lp) + r-1)m))
=3 0() ).

La borne pour ,@(?) y81 d est impair, est claire. .

Ce lemme a la conséguence suivante:

Corollaire: Soit F = Z B; € Z[X44e004Xn] un polyndme
ocied
quasiconvexe éerit comme somme de formes homogénes de de—

gré i, et soit d:= max {2,d} .
Alors, pour tout 0% 4 <d, l'ensemble:
est un sous-espace linéaire de R™, qui admet une base
entitre #3; avec [ () = 3°™ J(p)
et l'ensemble.
K.(F)= {erRW : Pd(x}=0,...,I;;H_(x):o,PL(x) éOf

est ou bien un demi-sous-espace de R™, qui admet un

- n.lO('ﬂ-)
systeme de générateurs entier 94-, avec ,ﬂ( ?é) = d ,ﬁ(F)

ou bien coincide avec L.(F).

Preuve: C'est une application immédiate du fait que si P

est un polyndme quasiconvexe, sa forme homogéne P, de plus



Bank—Heintz—Krick—Mandel—Solerno

haut degré est aussi guasiconvexe, et du lemme précédent.®

Aprés ¢es considérations d'ordre général sur les poly-
ndmes guasiconvexes, passons au caractére particulier de

notre probléme.

2. Elimination des contraintes superflues et réduction

2 un ensemble borné.

Soient Py,..0 k€ B[Xyy...,Xn] des polynomes gquasicon-
vexes de degré majoré par d> 2, et soit ,€:=.£(-\Fi,...,FS})
Soit M l'ensemble convexe défini par:

s {X‘E]R% : Fi(X)éO,ao.’FS(X)QO}

Le but de cette section est d'étudier lesquelles des con-

traintes F,...,F, sont de trop, c'est-a~dire de détermi-
ner & partir des contraintes #, (l<.<s) qui définissent
M un ensemble convexe M' d'aspect plus uniforme que M et
vérifiant principalement la condition:

MnZ™# B <=> MnZ" o9
Pour cela, faisons le raisonnement suivant:
Supposons qu'il existe une direction ue]R“—{O} telle
gue F, (Tu) sdit strictement décroissant et F,{(Tu),...,
Fs(Tu) soient décroissants ou constants (dans ce cas on
dit que u est une direction de récession de Fj,...,Fs,
non constante pour F.'l)' et supposons de plus gque ue Z™.
Seit alors x,€ Z" tel que P,(x,)€0,.009P (x,) <03 1'hy-
pothése et la propriété d'"uniformité" de F, impliquent
que F, (x, + Tu) est strictement décroissant et on peut
choisir teIN de maniere que P,(x,+ tu)<o0 .
Posons t= X, + tu. Le méme argument que ci~dessus mon-
tre que pour 2€4i €S 4 F.(x) = P, (x, + ’cu).{F‘-_(xi)éo.
Donc, xe€ Z™ est tel que Fi(x})€0,.00yPs(x)<£0, et dans
ce cas nous dirons que F, est une contrainte superflue,
Il est clair gue le role de F, peut &tre joué par n'im-

porte quelle contrainte F} (15* <s ), et pour la consi-

- g -



dération de l'ensembl e M, nous supprimerons la contrainte
Superflue. Une fois éliminée une contrainte superflue, on
peut répéter le procéds Jusgu'a la suppression (dens un
certain ordre) de toutes les contraintes superflues,

Les questions qui se posent sont alors les suivantes:
Comment choisir les directions de réc esaion entiéres u 9
Que se passe-t-il guand il n'y a plus de contraintes su-
perflues ?

La réponse eat dans 1lg propogition suivante:

Propogition: Il existe {Lj, ...,iei = {l,. ..,S} tel que
si M':= {xcB®" : Fig(x)€ 0,000, Fi (x)20}  , alors

(1) MaZ"™ 4 @<= mnz™ 4¢

(ii) A partir de chaque point entier x' eM', on récupe~

re un point entier x< M de maniére que
Lxy= a"Lxry + a0y
(Dans le cas ou L=5, on peut choisir x'=0)

(11i) M' =V 4+ (M AV ), ol V est un sous- espace 1li-
néaire de R"™, qui adnet une base entiere B telle
que L(A) = a%L et mav: est un sous-en-

semble compact de R™ .

Preuve: Selon le raisonnement fait auparavant, le procé-
dé consiste & trouver des directions entidres de réces-
gion u, non constantes pour une contrainte donnée,
Pour tout Fe Z[X4y...,X, | guasiconvexe, posons:

L(PF):= {uemm’ : sup {F(tu), t eR] <+ }
et K(F):= {ue‘jﬁ'vL : sup {F(tu), t2 O}<+o=>}
I1 est alors clair que ueZ” -~ {0} est une direction de
récession de Fpeese v Fe , non constante pour F; 81 et seu-~
lement s1 ue K(F)O...NK(F ) et u¢L(Fé_)
Dans [1 ], Chapitre 4, ou [2 ], il est montré que pour
tout F = Z:JIQ quasiconvexe, éctit comme somme de formes:

e 4%

homo genes de degré L , il existe io, 1 £ iog d, tel que

- 10 -
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L(F) = {ueE" : P,(u)=0,...,B, (u)=0}
et K(P) = jueR" : P (u)=0,...,B,,,(u)=0,P, (u)< 0}
C'est-a-dire, suivant la notation du Corollaire, L(F) =
Li{F) et K(P) = K;(F); ainsi, une direction ue Z‘“-—_{O}
e3t de récession de F «++y F. non constante: pour F#- si
et seulement si u ¥ 0 appartient au ebne polyhedral (i.e.

a ltintersection d'un nombre fini de demi-~espaces de IR")

K(Fy) Niedn K( F¢) mais non au sous-espace lindaire I( Fgr).
La. preuve de la Proposition s‘'obtient maintenant & 1'aide

des résultats suivants:

Lemme 2: Dans les conditions de ls Proposition, suppo-~
sons gue K(F;) N...N K(F; ) Q’L(F,o;), et soit xiez“ tel
que F; (x,) <0, pour tout i¥j}, alors il existe xe MnZ"
tel que A(x) = d(/e(xi) + doha,e).

Preuve: Si le cbne polyhedral K(F;) N...0 RK(F,) n'est
pas contenu dans I( By )y il existe un générateur u du cbdne
qui n'appartient pas a L(Fg- }. D'apres la démonstration du
Théoréme de Farkas-Minkowski-Weyl (qui affirme qu'un cbne
convexe est polyhedral si et seulement si il gdmet un
nombre fini de générateurs; voir par exemple [11], Corol-
lary 7.1.a, ou[10]) et les bornes énoncées dans le Lem-
me 1, 111 existe un systdme de générateurs entier du
cone polyhedral K(Fy) N...0 K(F;) tel que ﬂ((d'l) = dO(@/e-
Ceci montre gu'on peut choisir ueZ™ - {0}, tel que

A(u) = d“"’.”,é’. Le raisonnement présenté auparavant montre:
aussi ocu'il existe teIN tel que F#' (x, + tu)<0. Un tel
t dépend de la taille des coefficients du polynome

Fj (x, + Tu), c'est-a-dire des coefficients de Fj » de x,
et de u (voir par exemple [ 8] pour cette relation). On
pose alors: x:= x, + tu, et on obtient ,E(x) = d(,@(xi) +

a®™y). n

Pour compléter la preuve de (i) et (ii) de la Proposi-

- 11 -



tion, on procéde par récurrence en travaillant maintenant
avec les contraintes F., 1<is<s, ,L;(d'., et en suppri-
mant une & une, dans un cdr tain ordre, toutes les coniw
traintes superflues. On obtient ainsi un ensemble:

M*i= fxemTL : F,;i(x)so,...,.i?,@t(x)éo}
de maniére que pour tout .j, 1<jek, K(E) Nn... nK(F)c
L(an.). Cet ensemble vérifie la condit ion (i) de la Propo-
sition: MnZ" 4 F < M0 2" 44

Pour (ii), on a le lemme suivant:

Lemme 3: Soit M' défini comme précédemment, et soit x'e
M'n Z"™. Alors, il existe xeMn Z™ tel que

Lix) = a™ Lix') + a8 |
(Dans le cas ou M' n'est défini par aucune contrainte, on

pose x = 03},

reuve: Supposons sans perte de généré,lité que pour dé-
finir M', on ait supprimé, dans cettiordre, P o BTy ene g s
et gu'ainsi. M':= {erR“' : Fy(x)< O,...,Fr(x)éo}
31 on appliqua it récursivement le résultat du lemme pré-
cédent, on obtiendrait 1l'estimation suivante :
Lixy ¢ a®(L(x') + %)
puisqu'a priori la seule borne sur le nombre de contrain-
tes gu'on supprime est le nombre total § de contraintes.
Ceci n'eat pas l'estimation désirée étant donné que s ap-
parait dans 1'exposant. Le raisonnement suivant permet de
borner le nombre de répétitions de 1a procédure du lemme
par la dimension m de 1'espace ambiant.
Rappelons que si K<IR™ est un ensemble convex e,
dimgK:= min {dimRL, L sous-es pace linéaire de IR qui con-
tient K}

Et par simplicité, définissons:

Krat= K(F) Moo o0 K(PL)OEK(E,,)
et Ky = Kp  yNK(F.;) , pour tout iy1 .

- 12 -
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\

CIairement KS g Ks-ic-: CRCEE ] g Kr_',d_

On considérera en une seule étape tous les ensembles con-

vexes. K., de méme dimension, par exemple, soits |,
dim{RKr‘+1=‘-‘ e oo = dimIRKT"'J > dimRKr*'j"'i—: s e

Alors, pour tout 1 .4_4:5/} y le fait gu'on ait supprimé la

contrainte F_ ;, de l'ensemble {Fi,...,Fn_Lf implique que
Ump(K N L(F,;)) < dimeK,, ‘= ... = dimK . (lcisf)

n affirme gue dans ce cas on peut choisir u s 0, ue LW

tel que u¢g L(P.

‘i

) (Lei=j) (c'est-a~dire que la direc-
tion u va servir pour supprimer en une fois toutes les:
contraintes F.y ...,F.,, de 1l'ensemble {F,L....,FN”’ ).
Pour cela, on considére un systéme de générateurs ¢ du
cone polyhédral Kmd- y W2l gue ,@(%) - dO(m.'),ﬂ , et on
PoSe Uiz Vy+...+V, , OU -}vi,....vc} ;9— est un syste-
me linéairement indépendant maximal de % . la proprié-
té d'"uniformité" des polynomes quasiconvexes permet de
montrer l'affirmation, et d'autre part il est clair que
L(uy = a™ 4. |

Ce procédé permet de controler le mombre de répétitions
du lemme par la dimension m de l'espace ambiant, ce quii

fournit la bornet

) "
/g(x) = d"( L(x") +/ndO{ L ) = dwzg(x') + dO(-)/e ||

Finalement, étant donné que le fait que ltensemble
M'= {xeR™ : Py, (x) <0, eoesFiy (x) € 0} ne contienne plus
aucune contrainte superflue est équivalent a la condition
K(F,;i) Naeoan K(B}k) = L(F,;i) NeooN L(F,;k), on acheve la preu~

ve de la Proposition a l'aide du lemme suivant:

Lemme 4: Soient Fii....,F,;Eéﬁ[Xi,...,Xm] guasiconvexes
tels que K(Fil) NeooN K(Fit) = L(F;i) Ne..N L(E, )}, soit
Mt ? XEJR% H Fii(X)é(},.oo,F,ﬁt(X)éO} et soit /g::n
£ ¢ %F,;i,...,l?&}), alors:

M' = V4 (MAVL)

_13...



oU V est un sous-espace linéaire de R" qui admet une
base 72 telle que A () = a°™4 ot M vt eat un sous-

ensemble compact de R™ .,

Preuve: On définit v:= L(Iﬂ:i) N oo L(F,)

I1 est clair que V est un 2ous~espace linéaire de R"™ et
on peut facilement en construire une base #3 telle que
Leh)y = a™L (en utilisant le fait que chaquae L(F,-’.)
admet une base de longueur binaire mg jorée par do("'),?, ).
Soit maintenant x¢ My 11 existe une représentation de

x de la forme x =y + u, olyeV: et uev.

Alors, y = x « u ¢ N' (pulsque -u VvV et que par la défi-
nition de v, F,;k(x + (-u))« B (x)<0 (1 2ksk) ),
c'est-a-dire xe(M'AV:) 4 v,

L'inclusion réciproque se montre 8imilair ement,

I1 suffit de montrer maintenant que 1'ensemble (M' VY )
est compact : si 1'ensemble fermé et convexe M'n V- ne
1'était pas, il contiendrait une demi-droite {x + tu;
t20] , ol xeM'n V> et uem'"-{o} (voir par exemple
(10 ] ). Ceci entralnerait que la direction u est une di-~
rection de récession de Fiiveony Fiy + et ainsi, uev. D'un
autre coté, on obtient que ugvl: ; par conséquent, u=0,

cont radiction. [ ] S

. La borne semi-algébrique,

En vertu de la Proposition de la section précédente, il
suffit, pour conclure la démonstration du Thérdme 1, de
montrer que si l'ensemble M' AVl est non vide, alors il
contient un point entier %' de longueur binaire ,Q(x') =
(Sd)o(ﬂ),e ‘

Etant donné que M' se décompose comme somme d'un sous-~
espace linéaire de IR™ et 4'un ensemble compact, nous nous
réduirons & la considération d'un ensemble borné, de rayon

dépendant de celui du compact, et nows appliquerons ensui-

- 14 ~
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te les résultats précis de géométrie semi-algébrique de
par exemple [12] ou [5] pour borner le rayon du com-
pacti.

Sans perte de généralité, on peut supposer dans cettie
section que M = {xeR": F,(x)<0,...,F(x)< 0} ne con-
tient aucune contrainte superflue (dans le sens donné
dans la section précédente), ce qui entraine que M= V 4
(MAVY ), od MAVY est compact et V linéaire admet une
base entiere 43 telle que M (A) = d"“’”’;@.

Observation:; Si MnZ"™ est non vide, alors M contient un
roint entier dans l‘*ensemble M nV‘L+ B, ou Bi:= fZ: ﬁ”;)f,
0¢ fy<1} . e

Preuve: Soit xe& MoZ" . On a la décomposition x = Y + 4,
yeEMAVY etrueV. Soit fR:={vi,...sVm} la base entidre

de V et soit u=ojVy+e..4d V, (d1yeeeydy€ R) la repré-

sentation de u dans la base 73.
Pour tout 1 <4i<¢m , posons:
oAi = Lotid » s ou LeudeZ et 0<€B3:< 1
et soit Xi= ¥y + (BgVateeetP Vi » Alors X = x —(loulva +...
coitlot v )e 2™. De plus, Xe M + V< M; par conséquent,

XeMnZ ™ et XeMnVYt+ B, »

Ceci signifie que si ltensemble MnZ" est non vide, il
contient un point "prés" de 1l'ensemble borné Ma V' . E-
tant donné que la base 73 de V est telle que L (AB) = do(“.')/@
pour conclure la démonstration du théoreme, il suffit de
montrer l'existence d'un rayon RcIN tel gue Mn vie B{(O,R)

et A(r) = (sa)™4.
N . o('nja
Lemme 5: MnV ¢ B{O,R), ol Re¢IN est tel que ,Q(R) = (s@&) . L.

Preuve: IL'ensemble semi~algébrique Mn V' peut &tre dé-
fini & 1'aide d'une formule sans quantificateurs du lan-

gage de premier ordre de IR a constantes dans 2, dans

- 15 -~



laquelle apparaissent les coefficients des polyno mes Fd.’ e
«e9F, et les éguations de V' . On peut alors déerire
1'ensemble semi-algéorique Si:= {PcR : Mn V's B(0,£)}
par la formule ¢ suivante ( qui a un seul bloc de gusn-
tificateurs):
®: (¥X) ( XeMnv: o (|x|2< PY)

ou x:n(xi.. ..,Xn) sont les var iables lides de @ et P
est la seule variable libre,
S5i on appligue a @ ltalgorithme rapide d'élimination des
quantificateurs pour le cas particulier d'une formule & u-
ne variable libre et un bloc de quantif icat eurs. (voir par
exemple [12 ] ), on obtiemt une formule ¥ sans quantifi-
cateurs, en la variable f, qui déerit exmctement 1'ensem-
ble S.
V est une disjonction de conjonctions de conditions de
signes sur certains polynbmes §,,.. ey G, € Z[P]. Etant
donné que dans la formule originale ¢ tous les parame-
tres sont de longueur binaire majorée par dO(M/a et le
nombre et les degrés des polynOmes peuvent 1'@ tre par s et
d respectivement, l'algorithme d'élimination des quantifi-~
cateurs garantit que ces polyndmes Gipee o9G, Vvérifient:

deg(G;) = (s8)°™ (l<iem) et 246 4eees6}) = (sa)"(’f)ﬁ
De plus, si o€ R est la plus grande racine réelle qui ap-
parait dans les polyndmes G,,...,G,,, On observe que la
formule ¥ est toujours vraie ou toujours fausse dans
1rint ervalle]o( .+oo[ (puisqu'a la droite de o, il n'y a
changement de signe d'aucun des polyndmes Gy, ...,G,. ).
comme Y est vraie pour + oo , ¥ doit 8tre vraie dans 1'in-
tervalle Jo y+00[ , et par conséquent il suffit dekborner
la plus grande racine réelle des polynbmes Gy, ... + G, pour
obtenir le rayon R cherché.

La borne sur les degrés et la longueur binaire des coef-

- 16 -
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ficients des polyndmes G,y ..., G, produit directement une
borne Re IN pour leurs racines réelles, telle gue L(R) =
(s d)O(%),ﬂ (on applique par exemple l'inéganlité de Cauchy,

(s 1.

Ainsi s'acheve la preuve du Théorseme 1. =

Preuve du Corollaire =~ Celle-ci est immédiate puisque,
sachant que si l'ensemble {xe?Z'"’ t P(x)<0,.0.,0 (x)& 0}
est non vide, il contient un point dans la boule B(O,R),
ol R est tel que A(R) = (sa)’ ™4 , 11 suffit de vérifier
si un point entier xeZ™ , de longueur binaire majorée

par cette borne vérifie les conditions Po{x)€0,.0.4F (x}=0

Cela peut bien stir s'effectuer en temps (sd)oﬁa,(’_ y en te-
nant compte du degré de FiyeoeyFg et de /E(-{Fi,....Fs}).
(Observons qu'une borne déterministe est de l'ordre de
2-‘(5d)0(4'0’e puisqu'il faut évaluer les polynomes F,,...,F
‘éen  tous les points entiers de la boule B{(O,R) ). ]

Preuve du Théoreme 2 = On applique ici a nouveau les mé-

thodes utilisées pour montrer le Théoreme 1: suppression

des contraintes superflues et réduction & un ensemble com-

pact., Nous ne fournirons pas ici une preuve compléte mais

simplement une esguisse de la démonstration, nous remet-
tant & [ 7 ] pour les détails.

(1) Etant donné que MaZ'# @, il existe x, € M~ Z"nB(0,R)
o A(R) = (5a)°™L (Théoreme 1), et f(F(x,)) =
(sd)oﬁ% .

(ii) Etant donné gue m:= inf {F(x): Xe unzz"‘}> - CO
F(x,}> m , et, par conséquent, si Ni= {xe R"™: Fd_(x)éo,
coos Po(x) £O,F(x)$F(x°)} , NnZ™ est non vide et
m = inf {F(x); xe an”‘} .

fn procede alors & la suppression des contraintes super-

flues de la succession Froeoar K ,F—F(xo)", de maniére & ob-

tenir un ensemble N', défini par éventuellement moins de

_17...



contraintes, comme dans la Proposition de la preuve du
Théoreme 1. (ii) implique que dans cette procédure, on
n'élimine jamais la contrainte P-P(x,), et par consé-
quent . inf {F(x): xe Nn Z"‘} = inf {F(x): Xe N'nm""}
Comme aupsravant, on a la décomposition:
N'= W+ (N'AWt)

ol W est un sous-espace linéaire de R", qui admet une
base entiédre £ telle que [ (f3) = (sd)ocm,?, , et
N'n Wl est un sous-ensemble compact de IR™ qui vérifie:
N'n Wt B(O,R), avec A (R) = (sa)®™L .
On montre ensuite que:
inf -{ P(x): xeN'n 'E"‘} = inf {F(x): xe (N'n W 4 B)n N'n ‘ZZ’"}
o B::«L}'gﬁ’ﬁq.u‘ » 03 <1}
et on achéve la démonstration en récupérant 3 partir du
paint entier %' de N'NnZ"™ gui se trouve dans ltensemble
N'nwh B et tel que F(x') = m , un point entier x
MNZ™ qui vérifie J(x) = (sd)o(ﬂ,ﬂ et F(x) = m,

Cbservons, avant de conclure, que 1*'hypothése du Théo~
reme, inf {F(x): x€ Mo 2?.“] =m> -oco entralne que le ré-
sultat ne fournit pas une procéiure de recherche de m,
mais i1 est facile de mentrer que dans nos conditions
rartieuliéres, si MnZ™ est non vide, alors

inf {F(x): Xe Mn 'E'“} >-00 <=» inf -{P(x):rxxeM] 5 —co
et par conséquent, é&tant donné qu'on peut vérifier rapi-
dement & 1'aide de 1'élimination des quantificateurs ([5TD
si inf {F(x): X€ M})-—co y on obtient une procéddure de

recherche de m, &
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§.1 INTRODUCTION

If F is a field and g(X),h(X)e F[X], then f(X)=g(X)oh(X)= g(h(X))e F[X] is their
(functional) composition, and (g(X),h(X)) is a functional decomposition of f(X). Given
f(X)e F[X], there exists a complete decomposition in the form:

{(X)=f,(X)ofy{X)o.....of (X), where “o" denotes substitution of polynomials and £(X) are
indecomposable polynomials over F[X], see Pilz .

The functional decomposition problem over F[X] can be stated as follows: given

f(X)e F[X] of degree n=rs, to determine whether there exist g(X),h(X)e F[X] of degrees r,s
respectively, such that f(X)=g(X)oh(X)=g(h(X)) and, in the affirmative case, to compute them. For
some time, this problem was considered to be computationally hard, but since 1986 there are
several polynomial-time algorithms working in the "tame" case, i.e. when the characteristic of F
does not divide 1, (see Kozen & Landau presented the first polynomial-time algorithm, in 1986,
Gathen el al. , Gutiérrez el al. ).

Regarding extensions of this important problem, recently Kozen & Landau have found (in
the tame case) a solution when the polynomial f(X) has coefficients in a commutative ring, but
assuming that the polynomials involved are monic.

On the other hand several generalizations of the decomposition problem have been posed
for multivariate polynomials. Barton & Zippel proposes the following: given a polynomial

f(X)e F[X,,...X ] they wish to know if ihere exist a g(Y)e FiY,...Y, ] and hi(X),..., h_(X)e
F[X,,...X_] such that:
(X5 X )=20,(X),....h (X)). This seems more difficult than the decomposition of univariate

polynomials; but even partial solutions would be an aid to algebraic simplification and evaluation

problemns. Gathen and Dickerson solve the following problem: given f(X) € F[X,....X ] of
(total) degree n=ts, and r not divisible by the characteristic of the field F, to determine when there
exist g(X)e F[X] and h(X)e F[X,........ X, ] of degrees r,s respectively, such that

(X X )=gh(X,,...X ) and, in the affirmative case, to compuie them. Dickerson presented

the first polynomial-time algorithm in 1987 and Gathen (1990) presented a conceptually simple
Newton approach that yields polynomial-time algorithms for densely presented inputs, and random

e



polynomial time for imputs given by arithmetic circuits.

Now, we remark thal solving in all generality the problem of decomposition of
polynomials in one vari able over a factorial domain will imply the solution of the decomposition
problem forpolynomiials in several variables over a field, in a sense different to the one above stated
by Gathen, namely, considering the given polynomial as a polynomial having as coefficients
polynomials in one less variable and proceeding to an iterative decomposition, once an ordering has
been choosen in the variable (c.f.Definition 2.1 below). Moreover, every decomposition in the
sense of Gathen is also a decomposition in the new sense of definition 2.1, but no conversely, as
shown by the following example:

fIX,Y) = (X3+1)Y2%4 2X Y+ X2 1)o(Y2+Y+X) =
= (XP+DY2+Y+X)? + 2X(Y2+Y+X )+ X2+1

is a decomposition in our sense but the polynomial £(X,Y) is “indecomposable” according to
Gathen's criterion. The solution of the decomposition problem for factorial domains is precisely the
content of §3 of this paper. Besides we survey bri efly the algorithm of Gutiérrez & Ruiz de
Velasco working in a field F; we also study and solve the more general problem of finding (and
defining) a complete decomposition in indecomposable clements, stating some uniqueness results
concerning this decomposition. As a consequence we can recover Gathen's decomposition and
clarify also some of the concepts of Kozen & Landau with regard to complete decompositions
(which were obscure to us as they were stated over non neccessarily integrity domains, see Remark
2.3).

In section 4 we coment very briefly some applications of the functional decomposition of
polynomials.

§2 SOME GENERAL CONCEPTS AND RESULTS

Let R be a commutative ring with identity. I is very useful, in order to work with the
functional decomposition of polynomials to consider the near-ring (R[X],+,0), see Pilz . If Risa
domain the units in the near-ring R[X] are the linear polynomiais aX+b, where a is an unit. As

usual Ry[X] will denote the set of all polynomials over R whose constant term is zero, that is

Ry[X]:= (f(X)e R[X] / £(X)o0=£(0)=0}.
Ry[X] is a subnear-ring and agrees with the zero-symmetric part of R[X).

Given a polynomial f(X), we denote the degree of f(X) by deg(f(X)).
Firstly, we need some definitions.

Definitioms.2,1. As in ring theory, we say that an element f(X)e R[X] is
indecomposable provided that :
i) f(X) is non-constant and non-unit

i) f(X)= g(X)oh(X), (g(X),h(X)eR[X]) implies g(X) or h(X) is an unit.
Otherwise we say f(X) is decomposable.
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Of course, if R=F a field, then f(X)e F[X], non-zero and non-unit is indecomposable if
and only if f(X)=g(X)oh(X), implies deg(g(X))=deg(f(X)) or deg(h(X))=deg(f(X)).

A decomposition of f(X) is a set of polynomials £,XfX), ....£(X)eR[X] such that:
f(X) = f,(X)ofy(X)o....of {X).
The £,(X) are componentes of the decomposition. IfR js a domain the product of the degrees of the
f.(X) is the degree of f(X).

A complete decomposition is one where all the £(X) are indecomposable. + .

Remark 2.2

If D=F is a field, every polynomial f(X) has complete decomposition in F[X], with a
strong uniqueness property :
First of all, given a polynomial f(X) over any field, with n=deg(f(X)) prime to the characteristic
(therefore without any restriction if the characteristic is zero) in order to find a decomposition of
f(X) we can assume that f(X) is monic and n>1, Jet say

£ = X0+ AO X1 4 AQXD2 o AOxMHiy A0 X 4 AL

Then we are going to find indecomposable polynomials g;(X), go(X) ,......, g/(X) of
degree > 1 such that;

(8) f(X)=g;(X)ogy(X)o....og(X) .

(b) g{(X) are monic polynomials for alli.

© gX)e KolX] fori=2,.....r.
The main step is to find a polynomial h(X) and verifiying f(X)=g(X)oh(X) for some polynomial
&(X). Then we compute g(X) and proceed recursively,
Let m be a strict divisor of n and let h(X),

h(X)=Xm 4 bll‘(m'1 + bzxm'2 Feeviont by 1 X € Fy[X], then h(X) a good candidate for

the decomposition of f(X) if and only if the remainders of the h(X)-adic divisions of f(X) in h(X)
are constant elements of F, that is

fX) = qX)hEX)+rX)
q1X) = X)hX)+r(X)

91X) = X h(X) + 1, 1(X)

qX) = 0.hX)+ r(X).
where tm=n and therfore q4(X) =1. Note that if h(X) is a good candidate for the decomposition of
f(X) then the sequence of h(X)-adic divisions compute the coefficients r; of g(X) (r}(X) = 5=



q;(0)) such that f(X) = g(X) o h(X), where tm=n and therfore q¢(X) =1 and r_;(X) must be

constant. Imposing this last condition we obtain a system of equations in the b;'s. Actually (see the
proof Gutiérrez & Ruiz de Velasco if

qi(X) = X0km . ak yn-km-1,  Akyn-km-i g Ak xodkm-(m-1y for
all k then
by =(A% ),
Ak = Akl b foralik and
Ci= Al + Al o AV
Morcover

by = (A% -b1Cy)/,
AKXy = Ay - by A¥| - b, for all k and

and so on until by, ; is computed , The complexity is O(n2*%), where § is an arbitrary small
positive constant ( se¢ Gutiérrez et al (1988 ).
Finally we note assuming that h(X) is monic and h(0)=0, then h(X) is unique, (see Gutiérrez &

Ruiz de Velasco or Gathen) . e.

Remark 2.3. Kozen & Landau give a "similarity” definition for an arbitrary commutative ring
but this one does not agree with Definition 2.1 when D is not an integral domain. In fact, if we take

as R=Z,, the ring of integers modulo 4: then

2X4 X3 = X3 (2X2+X)
is a complete decomposition ("tame case”) in the sense Kozen & Landau, but notice that is not a
complete decomposition as definition 2.1, because 2X2+X is an unit in the near-ring Z ,[X]:

X =( 2X24+X Yo(2X2+X)

Nevertheless Kozen & Landau's proof of their decomposition theorem over monic polynomials

seems to use implicitly a concept of decomposable element that agrees with our Definition 2.1. ¢,

§.3 DE COMPOSITION OVER FACTORIAL DOMAINS

In this section we prove our main result, i.e. that if D is factorial domain, then every
polynomial in D[X] has a complete decomposition. Throughout this paper, we denote by D an
unique factorization domain and by F its field of fractions.

In order to get a complete decomposition of f(X), we can assume -without loss of
generality- that f(X) is in Dg[X]; in fact, f(X)= a,X"+a X"+ +2aX+a,=
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(X+ap)o(a, X +a, , X 1+.... +a,X) is indecomposable if and only if
a,X™ a X! +.....+ a,X is indecomposable.

The key lemma for proving the complete decomposition of f(X) is:

Lemma 3.1. Let g(X),h(X)e D,[X] be primitive polynomials, then their composition is

primitive,

Lroof. Suppose g(X),h(X)e Dy[X] are primitive but f(X)=g(X)oh(X) is not. Then there

exist an ireducible element pe D such that p does not divide g(X) and h(X) but p divide f{X). We
consider the domain P =D fp) We now apply the composition ring homomorphism (i.e. ring and

near-ring homomorphism) see Pilz & So ) of D[X] onto D[X]. We arrive to a contradiction with
the fact that if D is a domain and g(X) and h(X) are polynomials in D[X] with positive degree then

£(X)eh(X) is a polynomial with positive degree. ¢
Theorem 3.2. If f(X)e D,(X] is primitive then f(X) is indecomposable in D[X] iff f(X)
is indecomposable in F[X].

Proof. Suppose that f(X) is decomposable in F[X]: f(X)=g(X)oh(X) where
£(X).h(X)e F[X] and deg(g(X))>1, deg(h(X))>1. We can find ac F such that:

f(X)= aX o g'(X) o.h'(X) with h'(X),g'(X)e D{X] primitives. Using the lemma, we have ac D and
hence f(X) is decomposable in D[X]. Conversely, if f(X) is indecomposable in F[X] but f(X)
decomposable in D[X], then f(X)=I(X)oh(X) or f(X)=g(X)om(X) where deg((X))=deg(m(X))=1
and 1(X), m(X) are not units in the near-ring D{X]. If f(X) =(aX+b)oh(X), we observe that a

divides f(X). Likewise we proceed in the case f(X)= g(X)om(X). ¢
Proposition, 3.3. The subnear-ring RX:=(rX/reR} is isomorphic to ring R.

Proof. The map rX — ris a ring isomorphism . ¢

An immediate consequence of Theorem 3.2 and Proposition 3.3 is the complete decomposition:

Corollary 3.4. Given f(X)e D[X] non-constant, there exist indecomposable

polynomials f;(X).f,(X)....£(X)e D[X] such that: f(X) = £, (X)ofy(X)o....of (X). ¢

Remark, 3.5. To determine a complete decomposition of a polynomial f(X) over a
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domain R, we observe that the assumption "R factorial domain" can not be omitted as shows

Proposition 3.3 ¢.
Algorithm_3.6.

Input: f(X)=a X"+a_ X1+ .. +a,X+ay € D[X] of degree n=rs, and r not divisible by
the characteristic of D.

Output: g(X),h(X)e D[X] wth f(X)=g(X)oh(X) and deg(g(X))=r, if such a decomposition
exits; and "no decomposition” otherwise.

A.L. Find &.,Be D such that f(X)= (aX+B)of(X) where f(X) is primitive. Take o =

G.c.d(a,a, j,.....,3)), P= a,

A.2, Use the standard algorithm decomposition over F[X], with input £(X). If no
decomposition of (X) in F[X] exist, relurn "no decomposition”,

If 1(X)=g'(X)oh'(X) is returned with h'(X)e F{X] and monic,
h(X)= X*+ (bs_llcs_l)xs'1+ ....... +(b/cX, return

g(X)= (aX+B)og'(X)o(1/8)X and h(X)= 86X oh'(X), where

o= L.cm.(c,, CogreenensCy )

Using Lemma 3.1 and Theorem 3.2 we see that the algorithm correctly determines whether

f(X)e D{X] has a decomposition with the required degrees, and if so, computes a decomposition.

If we suppose that G.c.d. (deg(f(X)).characteristic(D))=1, since the number of divisors of
deg(f(X) is finitc and using Proposition 3.3, we obtain an algorithm to decompose f(X) into

indecomposable polynomials. ¢.

We end with some interesting results about the "uniqueness” of a decomposition of f(X).

Corollary 3.7. Let f(X)e D[X] be of degree n=rs; with G.c.d.(deg(f(X)), char(D))=1,
The following holds:

() I f(X)=g(X)oh(X)=g'(X)oh'(X) with deg(h(X))=deg(h'(X))=r and
h(X),h'(X)e D4[X], then h(X) and h'(X) are associated in F[X]. In particular, if they are
indecomposable polynomials, then they are associated in D[X].

(ii) Let f(X)=m1(X)omz(X)o...omr(X)o £ (X)ogz(X)o...ogu(X) and

f(X)=Il1(X)onz(X)o...ons(X)ohl(X)ohz(X)o...ohv(X) are
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two complete decomposition of f(X) with deg(my(X))=deg(n(X))=1 and dcg(gj(X))>1,
deg(hj(X)>1. then,

ml(X)omz(X)o....omr(X)=n1(X)on2(X)o....ons(X) and r=s. Moreover,
£,(X)ogy(X)o....0g, (X) = h; (X)ohy(X)o....oh (X), u=v and the sequences <deg(gj(X))>,

<deg(hj(X))> are permutations of each other.

Proof. (i) It is a consequence of a strong uniqueness property (see Gutiérrez & Ruiz de
Velasco or Gathen ) and the algorithm.
(ii) Use Theorem 3.2. and the results about the "uniqueness” of a decomposition of a

polynomial over a field, see Schinzel . ¢

More results about the "uniqueness” of a decomposition of polynomials over a field
appear in the book of Schinzel.

§ 4. APPLICATIONS.

Solvi lynomisl fions 4.1

Let f(X) be a decomposable polynomial, f(X) = g(X) o h(X). Then to compute the zeroes
of f(X), first compute those of g(X), z;; so the zeroes of f(X)} are the zeroes of the polynomials

hj(X) = h(X) - z; . For example, the polynomial f(X) e Q[X]
1(X)= X12 +3x114 3x10 _ 5%9 - 12x8 . 6x7 +12X6 +12X5 - X* - 9X3 42X + 5, is an
irreducible polynomial over the rational integers, but

fX)= (X3 -X +5)o(X4+X3 - 2%).

So we have reduced the problem to compute the zeroes of an irreducible polynomial of
degree 12 to compute the zeroes the polynomials of degree 3 and 4. Of course f(X) is a polynomial
resoluble by radicals.

The operator SOLVE in the REDUCE System does not give any solution for
£(X)= X12 +3x114 3x10. 5%9 - 12%8 . 6x7 +12X6 +12X5 - X4 - 9X3 42X + 5, but it resolves

the equation by appliying the above comment. ¢.

() Let X) € F[X] such that Xf(X) is a decomposable polynomial, then f(X) is a
reducible polynomial.
Wehave Xf(X)=g(X)oh(X), then
X£(X) = cgh(X)t + ¢ h(X)E + coh(X)t2 +.......... +¢;.1h(X) , so h(X) is a factor of Xf(X) and
since deg(h(X)) > 2 we can get ( trivialy) a factor of f(X).

(it) Let f(X) € F[X], such that a primitive g(X) of f(X) ( i.e. g'X) = f(X), g’(X) is the



formal denivative of f(X) ) is a decomposable polynomial, then f(X) is a reducible polynomial.
We have g(X) = g(X) o h(X), applingthe properties of the formal derivate,
fX) = (g"(X) o h(X) ) h"(X), since degh’(X)) > 1, h’(X) is a factor of i(X).

(iii) Finally, to determine when the polynomial (f(X) - f(Y ))/(X-Y)E F{X,Y] is a reducible

polynomial. ( See Fried ) +.

There is a similar application of potynomial decomposition to the n-partition problem, Given a set

A={a,,..., a_} and a rational-valued function q: A— Q, we want to compute a partition of A into

m disjoints subsets B,.,...., B_of of n elements each such that for 1<i<m we have:
1 1 m

>, a@)=LY q@)

aeB; aEA
In certain instances, we can use polynomial decomposition to solve this problem:
we construct the polynomial f{X) as follows:
mn
£00 =] | (X - qcap).
i=1

Assume that f(X) has a decomposition f(X)= g(X)oh(X), with deg(g(X))=m and deg(h(X))=n and
let g(X) factor in an extension of Q as;

gXy=[] x - By.

i=1
Then

f(X)=gh(X) =] | t(X) - B).

i=1
It follows that the roots of the h(X)-B, give us the values of an n-partitioning of A ( for details see

Dikerson(1989). +.

In this section we consider polynominals f(X) with coefficients over afinr'te field IF q of order g=p©

where p is a prime number and ¢>1, then f(X) is called permutation polynomial of IFq if the

associatedpolynomiial function from IF q into Fq is a permutation of Fq . Permutation polynomials
have been studied since Hermite and Dickson , and recent interest stems from possible applications
in public-key crytography (see Lid! & Mulien ). A very good sumary concerning with permutation
polynomials of Fq is Lidk Niederreiter. In their survey paper, Lidl & Mullen pose as an open
problems:

P2, Find new classes of permutation polynomials.
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P3. Find news classes of permutation polynomials that are useful crytographically,
Our question is:

characterize polynomials h(X)e F glX] such that X +((X9- X)h(X) is decomposable. So we

obtain permutation polynomials and its inverse. .

End s Tnvertibility 4.5,

This last application of multivariate polynomial decomposition is to the problem of endomorphism
invertibility:
Given oe EndpF(X, »--sX, ), determine if 6 is invertible, and if it is, compuie its inverse.

Let 0 be an automorphism definided as follows:

oX) - h(X,..X).

Suppose the inverse of s is given by:

0‘1(xi) - g(X;X)) where

X; = g0 (X e X Dreerernsiy (X o X)) for all i, .

Finally we only want to remark that the algorithms presented here - for one a multivariate
case - are implemented in REDUCE and they are avalaible upon request.
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A COMBINATORIAL GEOMETRIC STRUCTURE ON THE
SPACE OF ORDERS OF A FIELD

M. A. Dickmann
CNRS — Université Paris VII

Note. This is a draft of the introduction to a paper in preparation under the title above. Even at
this early stage, it may be useful to some readers, insofar the underlying intuitions and many of
the ideas are explained in detail; we include exact statements of the main results, but proofs are

omitted. a

Notation.

— A total order < onafield K is identified with its positive cone: P = {x € K | x > 0}.

— x(K) denotes the set of all (total) orders on the field K . In using this notation we do
assume that the field K is formally real (= orderable; abbreviated, fr.), whence the set x(K) is

non—empty.

INTRODUCTION.

In the extensive literature on formally real fields the set x(K) has hitherto been
considered as a topological space, endowed with the so—called Harrison topology generated by the

family of sets



HK(al,...,an) = {P € x(K) | a2y € P},
for all finite sequences ay,-» 2, €K, as a base of open (in fact, clopen) sets.

The purpose of this paper is to introduce another —combinatorial— way of looking at
x(K) and develop at some length the ensuing theory. This yields many new (and, we hope,
interesting) results, but a part of our task consists also in recasting in terms of the new concepts a
part of the existing theory; the most fruitful aspects of this reinterpretation lie in the link with the
combinatorial theory of quadratic forms, developed essentially by Marshall and Brocker (see [8],
9], {10, [11], 21, [3])

An informal notion of an "independent" set of orders has been around for some time,
specially in some papers by Brocker, see [2; p. 149]. However, this notion never was used as any
more than a terminology. It never was the object of systematic investigation using the concepts
and tools of the theory where it belongs, namely the theory of matroids. The idea of checking
whether this vague notion of independence —or rather the corresponding notion of closure— did
satisty the matroid axioms occurred to me in November 1988. The immediate positive answer
provided the impetus to continue (in particular, to become familiar with the theory of matroids).
In a few months I essentially had the contents of §§ 1, 2 and one—half of § 3 below. The link
with the work of Marshall contained in § 5 came later, in December 1989, after a conversation
with E. Becker. The results of § 4 and its appendix, giving a geometric interpretation to, and
generalizing the Baer—Krull theorem were obtained in the spring and summer of 1990.

Since most likely only few readers will be familiar with both sides of the link established in
this paper, I have decided to precede it by a lengthy and somewhat leisurely introduction,
intended to anchor the intuitions behind the main notions and results.

In §1 we introduce the closure operator on y(K) and show that it satisfies the axioms

for a combinatorial geometry. Further, we show it verifies rather special axioms such as:
() "Lines consist of two points",

as well as the following properties, particularly significant when x(K) is infinite, a case which by

no means we want to exclude:
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(i) "A point in the closure of a set is in the closure of some finite subset",
(iii) (Local finiteness) "The closure of a finite set is finite".

Moreover, it is easily checked that the closure of an n—element set has cardinality < ot The
possible cardinalities that the closure of a finite set may take on have been determined, as a
function of its rank, by Brocker [3].

Next, a well-known theorem of Brocker (cf. Lam [6; Thm. 10.5]) is used to characterize the

free matroids (i.e., those whose closure operator is trivial) of type x(K) in terms of the field K :

Theorem 1. x(K) is a free matroid iff the field K has the strong approximation
property (SAP). O

With these basic facts established, the first question which comes to mind is: in which of
the best known classes of matroids considered by combinatorists do the geometries x(K) lie? We
give a very satisfactory answer to this question in §2:

Theorem 2. For every (f.r.) field K, the matroid x(K) is binary. o

Here x(K) may be infinite (in which case the representing vector space over I, is

infinite—dimensional). This result is proved in two steps:

— Firstly, if M = x(K) is finite (or, more generally, M is a finite flat of x(K)), we use the
following well-known criterion (cf. White [14; Thm. 2.2.1(8)]) : a (finite) matroid is binary iff no
coline (= flat of corank 2) is contained in four or more hyperplanes (= flats of corank 1). The
verification of this criterion is carried out by means of "dual basis" elements.

— Secondly, in order to pass from the finite to the infinite case, we use an ultraproduct
construction to put together the binary representations of finite flats of x(K) given by the
previous step.

The existence of an obvious map



x 2
x(X) —> Hom(K /EKX ’ lg)
P — sgnp

where sgnp is induced by the characteristic function of P , raises the question whether this is a
matroid representation of x(K) into the dual of the Z,—vector space K/ EK"2 . We show that
this is actually the case.

One way or another, the preceding theorem gives an invaluable piece of information, from a
conceptual point of view, at this stage. Another important result is proved by the same type of

"dual base" argument as in the previous theorem, namely:

Theorem 3. Every circuit of x(K) has even cardinality. o

(Matroids with this property are called bipartite. A circuit is a minimal dependent set.)

Notice that the results mentioned above show that circuits are finite (cf. (ii)), of cardinality > 4
(since any three elements are independent, by (i)). A corollary of Theorem 3 is that finite spaces
of orders of the form x(K) have a coordinatization by odd vectors of Zg , that is, vectors with
an odd number of non—zero coordinates.

Once we know that the matroids x(K) are binary, the next basic question suggested by
matroid theory is : which of them are unimodular 7. A point of caution is in order here: what do
we mean by a unimodular, possibly infinite, matroid ?. We shall take it to mean that every finite
flat is unimodular in the usual sense.

In fact, there is a simple example of a non—unimodular matroid x(K) , namely for
K =R(X, Y, Z). This is shown as follows ; since it is known how all orders of a rational function
field k(X) which extend a given order of k are constructed (cf., . ex., Dickmann [5; Ch. I, § 5)),
by placing the elements X, Y, Z, in suitable positions with respectto one another, we construct
eight orders Pl""’PS of R(X, Y, Z) whose dependencies can be explicitly computed. The

resulting configir ation is a three—dimensional cube (= 3—dimensional affine space) over Iy:
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The presence of this configuration as a minor in (R(X, Y, Z)) makes it non—unimodular, by
Tutte's famous excluded minor characterization of unimodular (binary) matroids : Fano's plane
F is obtained from the cube by contraction of any (one) vertex, and its dual, F*, by deletion.
(If the presence of many other orders in R(X, Y, Z) bothers you, consider instead the formal
power series field R((X))((Y))((Z)), which only has eight orders.)

Which is, then, an example (at least a non—trivial one) of a field K so that y(K) is
unimodular?. Familiarity with the example above shows that the argument proving
non—unimodularity depends essentially on having three variables, since the cube has rank four:; it
breaks down for R(X, Y). Another candidateis Q(X). (We exclude R(X) since it is
unimodular for trivial reasons: it is SAP and hence its closure operator is trivial.)

Before explaining the general solution to this problem, let us take a further look at the
cube above. Such a configuration is an example of a notion crucial in quadratic form theory: that

of a fan. This notion is defined as follows:

Definition. Let K be afr. field. A fan of K is a preorder T such that any multiplicative
subgroup S of K™ sothat TCS , [K* S]=2, and -1 ¢S, isan order. 0

The following characterization of fans brings us to our point:



Proposition (Brécker (2; p. 149, (a)]). A preorder T of K is a fan iff for every three different
orders Py, P 1 Po containing T', the closure cIK( {PO, Py Pz}) has cardinality four (this is

the largest cardinality it can have). il

In this case, clK(PO, Py, Pg) is necessarily a four—element circuit of x(K) . In our geometric
language it is more telling to redefine this notion as follows: a subset § C x(K) is a fan iff any
three distinct elements of § are contained in a four—point circuit contained in F.

It is an easy matter to show that there is a unique fan of rank n for every integer n> 1 ;
it has 2" elements. In terms of the coordinatization by odd vectors mentioned above, the fan of
rank n is exactly the geometry of all odd vectors of Ig . Concrete examples : (i)} If K is a field
with a unique order, then the fan of rank n > 2 is isomorphic to the matroid x{K( (Xl,...,Xn_l))).
(i) If L is a Rolle field with 2" orders, x(L) is the fan of rank n + 1. Lam [7; Ch. 5] contains
a comprehensive analysis of fans (in their disguise as preorders) and their role in quadratic form

theory.

Returning to the problem of characterizing the fields K such that x(K) is unimodular,
we obtain a very satisfactory solution in terms of the so—called stability index of K, a

magnitude considered in quadratic form theory, the meaning of which we explain below:

Theorem 4. Let K beafr. field. Then x(K) is unimodular iff the reduced stability index of K

is at most 2. o

One-half of the proof, the implication (&), is based on Brocker's local—global principle for
stability indices [1; Thm. 3.19], which reduces the question to an analysis of the structure of the
order spaces x(K;) of the residue fields K; of K, for all real valuations v of K. For the
other implication, (=3), we use a characterization of the (reduced) stability index in terms of

fans, cf. {7; Thm. 13.7] and [12] :

st(K) = max {n € N | x(K) contains a fan of cardinality 2"}

C—6—
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(st(K) = w if x(K) contains fans of arbitrarily large finite cardinality). Thus, if st(K) > 3, then
x(K) contains a fan of at least 8 elements, hence a fan of 8 elements, i.e. the affine cube

designed above. By Tutte's criterion again, x(K) is not unimodular.

Examples. Here are some examples of fields K such that st(K) <2 :
(a) st(K) =0 iff K has a unique order .

(b) st(K) <1 iff K is SAP (iff x(K) is free); cf. [1; Satz 3.20] .
(¢) st(@(X)) =2, st(R(X,Y))=2. s}

(For an explicit "drawing" of x(¢(X)), see below.)

The same technique can be used to improve the preceding result in a way which underlines
the sharp dichotomy between the spaces of orders of 2-stable fields (stability index < 2} and

those with a larger stability index. The result is as follows:

Theorem 5. Let K be a fr. field. Each of the following conditions is equivalent to st(K) < 2 :
(a) x(K) is a graphical matroid.

(b) x(K) is a cographical matroid.

(¢) x(K) is a planar graphical matroid.

(d) x(K) is a series—parallel matroid. o

As in the case of unimodular matroids, the meaning of these notions for infinite x(K) is that
every finite flat has the stated property. Well-known excluded minor characterizations for each of
these classes of matroids (cf. White [13; pp. 146—147]) are used in the proof.

The point in the proof of Theorems 4 and 5 is that Brocker's local—global principle,
together with Theorem 1, implies that the space x(K) has a very simple structure if the field K
is 2—stable. Indeed, each connected component of x(K) (in the matroid sense) is either a single

point or it is a (possibly infinite) slab of the form:



e 4 9 @ * 9 e . 8 @

¢ * & = . - - @+ 8 T ® 8

A particularly transparent example is that of x(Q(X))}, where the components are either single
points {corresponding to Archimedean orders or, equivalently, transcendental cuts on Q), or slabs
as above containing 2r points (i.e., of rank r + 1). Foreach r> 1 there are countably many
such slabs, classified by the polynomials F ¢ Q[X] with exactly r real roots, say @ <. <o
The 2r orders are those obtained by placing X infinitesimally near each real root o of F,

either to the left (= ai_) , or to the right (= a";') .

+ + + + + +

&y oy ) %4 B “r
. L] +

L] L _
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A (non—trivial) component of x(Q(X))

It is widely known that any inclusion of fields i: K >—> L induces a dual map
p: x(L) —> x(K) given by the restriction of orders from L to K. The map p is just the
(real) spectral dual of the inclusion i. From a combinatorial point of view, p is a strong map of
the geometry x(L) into x(K), i.e. a map preserving closures (P € clp (X) == p(P) € cly(p[X]);
cf. White [13; Prop. 8.1.3]). The interpretation of a well-known result from valuation theory (cf.

Lam [7; Prop. 3.17]) in our geometric language yields:

Theorem 6. Let < K, v >C <L, w> be an extension of valued fields, where w is a real
valuation. Let x(K, v} denote the set of all orders of K compatible with v ; similarly for
L,w. If <L,w> isanimmediate extension of < K, v >, then

prx(L, w) : x(L, w) —>x(K, v) is a matroid isomorph ism. In particular, if K%h denotes the
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henselization of < K, v >, then p is an isomorphism of x(KV’h) onto x(K, v). o
(Recall that an immediate extension is an extension of valued fields such that the canonical
inclusions of the value groups r,>— I‘w and of the residue fields Kv >—> LW are
isomorphisms.)
The preceding theorem implies that a subset of x(K) of the form x(K,v), v areal

valuation of K, is itself the space of orders of a field, namely that of the henselization Kv’h;

As a motivation for our next theme, we recall a result of Baer and Krull (cf. Lam [7; Thm
3.10 and Notes on Ch. 3]). Let v be a real valuation of a f.r. field K. Two objects are associated
toeach P e x(K, v):
1) The push—down order P of P on the residue field K; , defined by :
F:{XIMV | xe A NP}.
2) A character P* ¢ Hom(I‘v/QFV, L,) , essentially induced by the sign function on K*/ E(K")Z ;

T, denotes the value group of v. Actually, P* is in the dual of the I,—vector space Fv/QI‘ ,
v

but is not intrinsically defined.
The formal definition of P* is as follows. Denote by v' the composition of the valuation
v:K'—> I‘V and the canonical quotient map I‘V ——>'I‘v/2F . Let us choose a system of
v
representatives a = {a; [ 1€} C K> such that {v'(a;) | i€} formsa Iy—base of Lolop -
v
We define P* by specifying its action on the chosen base, as follows:

a
0 if a,eP

P;(v'(ai)) = sgnp(ay) = { 1 if a ¢ P

and extending to all of T o/or by linearity.
v

The result we have in mind is:



Theorem (Baer—Krull) The map

& XK ) ——> x(Ky)x Hom(T, /., 1,)

P —> < P,P*>
a

is a bijection. 0

A refinement of the technique employed in proving the surjectivity of this map (lifting a

residual order along a character y e Hom(I“v/ZF y L)) suffices to prove the following result:
Vv

Theorem 7 (The rank formula). Let v be a real valuation of a field K . Then :

rg(x(K, v) = IT(;(X(R_V)) + dimzz(Hom(FV /2FV, )= IK;(X(R:) + dimz2(I‘V /2FV) .o

The proof shows that lifting a base of x(K) along the constant character 0 plus lifting, e.g.,
any residual order along each membe: of the dual base of {v'(ai) | i € T} results in a base for
x(K, v) .

All along the proof of Theorem 7 the subgroup 2T (= v[%( Kx)z]) can be replaced by the

subgroup v[T], where T is an arbitrary preorder of K ; we obtain:

Theorem 7* (The rank formula, sharpened). Let v be a real valuation of a field k . Let
XCx(K,v), T=n{P|PeX}, and X = {P|PeX}. Then:

1 (%) = rK;(f ) + dimzzz(Hom(FV /V[T] L)) = IK;@) + dbng(F v/ V[T]) : o

The rank formula allows to compute, inductively, the rank of an arbitrary (finite) subset of
x(K), whether it is included in x(K, v) for some real valuation v , OT not .
A further question suggested by theforegoing; results is whether the set—theoretic bijection

between x(K, v) and x(K;) x Hom([" vlor 5 L,) established by the Baer—Krull theorem has a
v

geometric interpretation. Since x('K;) and H om(I“v/2P , 12) each have a natural matroid
v

_10-
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structure, we may ask, for instance, whether these structures induce on the cartesian product a

matroid structure which makes the Baer—Krull map g_ into a matroid isomorphism. The answer
a

is positive whenever x(K, v) is finite; more generally, we show:

Theorem 8 (Geometric form of the Baer—Krull theorem).

Let T be a preorder of K and v be a valuation fully compatible with T . Assume x(K, T) is
finite. Let d = diml2(Hom(I‘v/V[Tj ,Iy) and r = t(x(K, T)). Let a= {ag.,a4) C K™ be

such that {v'(a}),...,v'(a ¢} i3 a basis of the I ,—~vector space T V/V[T]'
The set x(K, T) Hom(I‘V/V[T » L) can be endowed with a matroid structure so that
the Baer—Krull map

g :x(K, T)—> X(RV, T) HOH’I(FV/V[T], z,)
a P —> < P, P* >
a

is a matroid isomorphism. This matroid structure is defined by taking as bases all families of sets
of the form
{<R1., X;> | i=1,..,d}U {<Qs, P> | s=1,.,r}
such that :
i { XprsX d} is a basis of the 12—Vector space Hom(T v'/v[T] , 22) .
(ii) {Q)--,Q,} is a basis of x(K;, T).
(iii) {Rl""’Rd} is a non—empty subset of x(K;, T) of cardinality < d and {wl,...,wpr} isa
non—empty subset of Hom(I‘v/V[T], L,) of cardinality < r (repetitions allowed) .
(iv) The matrix I . — NE is non—singular, where
e Ir is the r = r identity matrix .
— N is the r x d matrix (with entries in 22) of linear dependencies of { wl,...,wr} with respect
to the basis {Xl""’xd} , le.

~-=11.—



— E is the dx r incidence matrix of {RI"“’Rd} with respect to the basis {QI’“"Qr} in
xGTV , T), i.e., the matrix with entries eij (1<i<d,1<j<r) in 12 defined as follows : eij is
1 or 0 according to whether i belongs or not to the fundamental circuit of Rj with respect to

{Ql""’Qr} (cf. White [13; p. 129]). 0

Section § 5, is devoted to the decomposition theory of the matroids x(K) . The main tool
used in this part is the approximation theorem for V—topologies, a very efficient instrument in
dealing simultaneously with orders and valuations.

Matroids are naturally split in connected components by the circuit—connectivity relation:

for p,qe M,

pya iff either p = q or there is a circuit containing both p and q.

The circuit axioms (see White [13; p. 301—302]) imply that % is an equivalence relation; the
equivalence classes modulo 5 are the connected components of M . A corresponding external
operation of direct sum of a (possibly infinite) family of matroids can be defined in such a way
that a matroid is isomorphic to the direct sum of its connected components (considered themselves
as matroids under the induced closure operator).

In (3] Brocker introduced a natural way of splitting the spaces x(K); for P, Q¢ x(K),

P~Q iff either P = Q or thereis anon-trivial valuation of K

compatible with both P and Q .

Since Archimedean orders are characterized by the fact that only the trivial valuation is
compatible with them, the class Arch(K) of such orders, if non—empty, gets split into singletons
modulo ~ . The approximation theorem for V—topologies implies that the classes modulo & are

flats of x(K). Furthermore, it implies:
Theorem 9. Let K be a f.r. field. Then:

(a) The operator clp is trivial on Arch(K) , ie. clp(X) =%, for X C Arch(K) .
(b) Arch(K) is a separator of x(K) (cf. White [14; pp. 175—176]). Hence

-12—
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x(K) = Arch(K) @ (x(K) — Arch(K)) .

(¢} Every P € Arch(K) is an isthmus of x(K) (cf. White [14; pp. 128-130]) . 0

The connection between the relations e and o is as follows:

Proposition 10. (a) Circuit—connectivity implies Brécker (valuation) —equivalence.
(b) Every Briscker class of x(K) is the direct sum of the connected components of y(K)

contained in it. 8]

Circuit—connectivity admits a characterization in valuation—theoretic terms, namely :

Theorem 11. Let P, Pye x(K). Then :

PIEP,‘Z iff Pl =P, or there is P3 #Pl, P2 and a non—trivial valuation v
compat ible with Pl’ P2, P3 such that I‘V is not 2-divisible. 0

The main technical tool used in proving this result (as well as Theorem 12 below) is the
Baer—Krull theorem mentioned above.

This characterization suggests that circuit—connectivity is a finer relation than Brocker—
equivalence. In fact, this is the case, and there are well-known examples: the field R{(X)), or any
chain—closed field, has a Brocker—connected space of orders of cardinality 2 which necessarily
splits into two one—point (i.e., trivial) components (cf. Dickmann [4]) . We present a non—trivial
example of the same situation by constructing a field K with Brécker—connected order space

x(K} of cardinality 8 which splits into two 4—element connected components.

Our main result concerning circuit—connectivity in order spaces is:

Theorem 12. Let K beafr. field, and P, Q € x(K). Then :
P~ Q iff P=Q or there is a 4—element circuit containing both P and Q. a]

—-13 -~



This turns out to be the crucial property of the geometries x(K) . In order to understand its
significance (and its origin), let us recall that Marshall [8] considered, in the context of a
generalization of the spaces x(K) called by him abstract order spaces, a relation equivalent, to
that on the right—hand side of the statement of Theorem 12. We shall denote this relation by 5
obviously, it is reflexive and antisymmetric. Showing that it is transitive is a non—trivial matter
requiring the use of yet poorly understood notions pertaining to the combinatorics of quadratic

forms. Of course, Theorem 12 yields at once:

Corollary 13 (Marshall [10; Thm 2.3]). The relation #, 18 an equivalence relation. s!

I think that the point of Theorem 12 is that it offers an elucidation of Marshall's relation
2 and puts the heart of his work in a natural and, hopefully, fruitful perspective. Of course,
Marshall's work takes place in the more general context of abstract order spaces, and is of 4 more
difficult technical nature due to the absence of valuation—theoretic tools. However:
1) In spite of its usefulness (for example, in the investigation of the stability index of real
varieties and related matters, cf. [12]), it is not known whether abstract order spaces yield
anything different from the concrete spaces x(K) , at least as far as isomorphism types is
concerned (in the finite case it does not, see [8; Thm. 4.10]) .
2) Our combinatorial geometric approach works equally well for Marshall's abstract order spaces;
in fact, I do not (yet?) know of any property of these abstract spaces which is not shared by the
concrete order spaces of fields.
3) Our approach helps to elucidate other, ill understood, points of Marshall's work, as well (for
example, the Basic Lemma 3.1 of [§]).

The interaction of the combinatorial geometric approach presented here with Marshall's
work is the subject of joint work in progress with A. Lira, to which the present paper serves as

background.
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Constructing models by games for infinitary languages

Tapani Hyttinen

In the model theory of infinitary languages one of the main problems is the
almost total lack of methods of constructing models. For example elementary
chains does not work, Ehrenfeucht-Mostowsky models work only in some very
limitted cases, ultraproducts need large cardinals and so on. In this paper we
demonstrate one construction, namely generalized Henkin construction (sometimes
called also Hintikka game), that does work for languages like L., L.+, and also
for infinitely deep languages like My, and M+, (for the definition see [Ka] or
[H1]). For this paper one needs to know about M-languages only that Ly, is a
sublanguage of M),.

The history of the generalized Henkin construction is roughly the following.
The idea of generalizing inductive constructions by long games is due to J. Vaana-
nen and J. Oikkonen. First formulations of generalized Henkin games are due to
J. Oikkonen and first succesful applications of the method are due to the author.

We demostrate the method by proving an old and easy theorem (Hanf, Scott)
that if 2% < & for all A < & and « has the tree property then L, is weakly
compact. Here we use large cardinals but it is the theorem that needs them not
the method. In this example we end up with a proof more or less similar to the
proof of this theorem in [Je]. So are these games needed? In this example no but
in more untrivial cases, especially with infinitely deep languages, yes.

By this construction we can prove for example that if k<* = x and & is
regular then the separation theorem is true for M+, (this is not true for L.+, )
and "there is no decending k-sequences” is not expressable in M+, ([H1], stronger
form in [Tu]). With the construction we can also instead of one model construct
two models and some morphism between them and prove preservation theorems
and normal form theorems for M, ([H2]).

1 Definition. Let ¥ be a set of L,+,-sentences of similarity type u.
Assume |Z| < k. Let C = {c4|la < k} be a set of new constant symbols. The
generalized Henkin game H(X) is a game of length x played by A and E. During
the game E interprets symbols of y1 to the set C to make C' a model of ¥.. This
is done so that at every move a < k first A asks a question and then E answers
the question by choosing some set S, of L+, -sentences. There are eight different
ways to form the question: Assume game is in move a < «k and let S!, = Us<a Ss-

1. A chooses some ¢ € T; then E must choose S, = S, U {¢}.



2. A chooses a closed term t; then E must choose S, = §', U {t=tt=c} for
some c € C.

3. A chooses t = 1' € S|, where t and #' are closed terms; then E must choose
Sa =S, U{t =1},

4 A chooses 32¢4(z) € S!,; then E must choose S, = 57, U {¢(e)} for some
cel.

3. A chooses VE§(T) € S!, and some sequence ¥ of closed terms; then E must
choose S, = S, U {¢(%)}.

6. A chooses \/ ® € S,,; then E must choose Sy = S' U {$} for some ¢ € &

7. A chooses AP € S, and ¢ € &; then E must choose S, = S, U {¢}.

8. A chooses t =" and ¢(t) from S, where t and t' are closed terms; then E
must choose Sq = S, U {#(¢")}.

Furthermore E must obey the following rules.

9. For all atomic sentences ¢ either ¢ or —¢ does not belong to S,,.

10. I E, in her answer, uses new constants from C that do not appear in the
sentences of S;, then E must choose them so that they are minimal (in the
ordering ¢ < ¢g iff o < f8) among such constants.

A wins if for some o < « E cannot find S, satisfying the rules. Qtherwise E wins.

2. Theorem. Let ¥ be a set of L+, -sentences of cardinality < k. Then
% has a model if and only if A does not have a winning strategy for H(L).

Proof. ” = ” If ¥ has a model A then E always wins H (Z) by playing
according to A in an obvious way and so A has no winning strategy.

” <" Let T be a strategy of A for H (2) such that if £ moves are played
then A has asked all the possible questions. Such a strategy is for example the
following. Let ¢ : £ — & X & be one-one and onto such that always if g(a) = (8,7)
then 8 < . At each move « A lists all the possible questions he can ask at this
move, let the list be g5, # < «, and asks the question ¢, where (v,v) = g(e).
By assumption this is not a winning strategy and so there is a play in which A
has used 7 and lost. Let S,, o < &, be the answers of E in this play. Let
S = Ua<x Sa- As in the usual Henkin construction we now make a model for &
out of the new constants by using S as a set of instructions. o

3. Theorem. (Hanf, Scott} Assume 2* < k for all A < & and & has the
tree property. Then L, is weakly compact.

Proof. Let ¥ be a set of L, -sentences of cardinality < k. Assume that if
L' C X has cardinality < & then T’ has a model. For a contradiction assume
¥ has not a model Then by the Theorem 2 A has a winning strategy 7 for
H(X). Let T be a set of all sequences (90,50, 19}, @ < &, such that gz =
7(505 -0y Sy, .. )y<p and for all § < « Sp satisfies, as a move of E in H(T), all
the conditions of the Definition 1. In other words let T be the set of all initial
segments of plays in which A has used 7 and E has not lost yet. We order T by
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the initial segment relation. Then T is a tree. Because 7 is a winning strategy T
has no branches of lenght . Because of 10 in the Definition 1 and the assumption
that 2* < & for all X < «, all the levels of T' are of cardinality < x. By the tree
property |T'| < k. Let &' be the set of all sentences of & that belong to some
Sy from some sequence in T. Then 7 is a winning strategy of A for H (), too
and by the Theorem 2 ' has no model. On the other hand, because 17| < &,
IZ'] < & and so by the assumption X' has a model. A contradiction. o

Almost exactly the same proof would show that if 2* < & for all A < & and
% has the tree property then M,, is weakly compact (originally proved by using
ultraproducts in [Ka]).
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UN EXEMPLE DE CORPS INDECIDABLE DONT TOUTES
LES EXTENSIONS FINIES PROPRES SONT DECIDABLES
(D’aprés une remarque de L. van den Dries)

Zoé Chatzidakis

Cet exposé a pour but de montrer I'existence d'un corps dont la théorie élémentaire
est indécidable tel que toutes ses extensions algébriques finies propres ont une théorie
décidable. Cette observation a été faite par Van den Dries et se démontre facilement 3
partir des résultats de Jarden [J], et Van den Dries, Smith [DS].

Nous commengons par rappeler plusieurs définitions qui seront utilisées dans ’énoncé
des théorémes.

Définitions

Rappelons d’abord qu’un corps K est dit pseudo-algébriquement clos (PAC) si
toute variété absolument irréductible définie sur K a un point K-rationnel.

Un corps K est hilbertien s’il satisfait la propriété suivante: Si un polynéme f(7,X) €
K[T, X] est irréductible, alors il existe une infinité d’éléments a de K tels que f(a,X)
soit irréductible.

Bien évidemment, aucun corps algébriquement clos n’est hilbertien. Les exemnples
les plus connus de corps hilbertiens sont le corps des nombres rationnels Q et les corps
de fonctions rationnelles K(#). Notons aussi que toute extension algébrique finie d’un
corps hilbertien est hilbertienne; ceci ne se généralise pas aux extensions algébrigues in-
finies. Pour plus d’informations sur ces corps, on pourra consulter le livre de Fried et
Jarden [FJ].

Le groupe de Galois absolu d’un corps K y qQue nous dénoterons par G(K), est
le groupe de Galois de la cloture séparable K, de K sur K. CPest un groupe profini, et
done compact.

Si o est un ensemble d’éléments de G(K), nous dénotons par K,(0) le sous-corps de
K, fixé par les éléments de o; le groupe de Galois absolu de ce corps est alors le sous-
groupe fermé de G(K') engendré par les éléments de o.

Le corps des nombres absolus d’un corps K est l'intersection de K avec la cloture
algébrique du corps premier. Nous le dénotons par K*bs,

Enfin, le groupe F', est le groupe profini libre sur un ensemble générateur infini
dénombrable. Il peut étre obtenu de la facon suivante:

Considérons le groupe discret libre F sur un ensemble générateur infini dénombrable
X. 51 N C M sont deux sous-groupes normaux de F', il y a un épimorphisme canonique
TnM : F{N — F/M. On définit alors

A~

F., =lim F/N

ot N parcourt 'ensemble des sous groupes normaux d’indices fini de F qui contiennent
un ensemble cofini de X, et les morphismes sont les épimorphismes 7.



Reésultats que nous utilis erons.

Les théories élémentaires de corps PAC sont maintenant bien connues et ont fait
I'objet de plusieurs artides, voir par exemple [A], [JK], [J], [CDM] et [E]. Le résultat le
plus général étant un peu long & énoncer, nous nous contenterons du résultat suivant,
dé & Jarden [J], et qui est une généralisation au cas infini des résultats de Ax [A] et de
Jarden, Kiehne [JK]:

Théoréme A. Soient K et L des corps PAC dont les groupes de Galois absolus sont
isomorphes 3 F,,. Alors
K=L <+ K"~

De plus, la théorie des corps PAC de groupe de Galois absolu isomorphe & I, est
décidable.

Théoréme B. [J] Soit K un corps hilbertien dénombrable. L’ensemble des w-uplets o €
G(K)“ tels que K, (o) soit PAC et ait groupe de Galois absolu isomorphe a F,, a mesure
L.

Nous ne donnerons pas la définition de la mesure utilisée, qui est un produit de
mesures de Haar. Il nous suffit ici de savoir qu’il existe beaucoup de corps avec les pro-
prietés qui nous intéressent.

Théoréme C. Soit N un sous-groupe normal fermé de F,. Alors tout sous-groupe ou-
vert propre de N est isomorphe & F,.

Ce résultat est dit & Van den Dries et Smith [DS], et & Mel'nikov [M]. Il peut étre en
fait enoncé de maniére bien plus générale. Notons aussi que Mel'nikov définit des invari-
ants qui décrivent complétement les sous-groupes normaux de F,,.

Lemme. Soit S un ensemble de nombres premiers, et considérons l'intersection N de

tous les sous-groupes ouverts normaux de F,, dont 1'index est produit d’éléments de 5.
Alors, pour tout nombre premier p l'on a: p € S siet seulement si N n’a aucun sous-
groupe normal ouvert d’indice p.

D émonstration: Supposons d’abord que p n’appartienne pas & S, et soit U un sous-
groupe normal ouvert de F = F, d’indice p. Puisque U n’est contenu dans aucun sous-
groupe ouvert de F' contenant N, il n’est pas contenu dans N et donc U N N est un
sous-groupe normal ouvert de N d’indice p.

Pour la réciproque, soit U un sous-groupe normal ouvert de N d’indice p; puisque N
est fermé dans F', il existe un sous-groupe ouvert V de F tel que

U=VnAN.
Définissons ensuite

Vo=[1V! e U=VnN= N ve.
geEF g€EF
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Comme [F : V] est fini, V n’a qu’un nombre fini de conjugués distincts, et donc V est
un sous-groupe normal ouvert de F', et Uy est un sous-groupe ouvert de N. Pour tout
g € G, U9 est un sous-groupe normal ouvert de N d’indice P, ce qui implique que

[N : U] = p*® pour un entier e > 1. Nous avons alors

[F: Vo] = [F : Vi N][VoN : V4]
=[F: WN][N : V3N N]
= [F: Vo N][N : Ug]
= [F : VuN]p*

La définition de N implique alors que p n’appartient pas & S.

Démonstration du résultat

Comme Q(t) est hilbertien, Q(t) possede une extension algébrique F qui est PAC
et dont le groupe de Galois absolu est isomorphe & F, (Théoréme B). Choisissons un en-
semble non-récursif § de nombres premiers, soit N le sous-groupe fermé de £, = G(E)
défini dans le lemme, et soit K le sous-corps de E laissé fixe par N. Observons ensuite
que pour tout nombre premier p, K a une extension de Galois de degré p si et seulement
si K = dzVy y? # z. Cela provient, du fait que K contient toutes les racines primitives
de 'unité. Nous avons alors:

KEdzVyyP £z < p¢ S,

et donc Th(K) est indécidable. Soit L une extension algébrique finie propre de K. Par
le Théoreme C nous avons G(L) ~ F,,. Théoreme A nous donne alors la décidabilité de
Th(L): en effet, Th(L) est obtenue en adjoignant 2 la théorie des corps PAC de groupe

de Galois absolu F,, une collection d’énoncés exprimant que I contient la cléture algébrique

de Q.
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THE ELEMENTARY CLASS OF PRODUCTS
OF TOTALLY ORDERED ABELIAN GROUPS

by Daniel Gluschankof - (Universidad de Buenos Aires, Université d’Angers)

& O.Introduction. A basic goal in model-theoretic algebra is to obtain the
classification of the complete extensions of a given (first-order) algebraic
theory.

Results of this type, for the theory of totally ordered abelian groups,
were obtained first by A.Robinson and E.Zakon {5] in 1960, later extended by
Yu.Gurevich [4] in 1965 and further clarified by P.Schmitt in {61.

Within this circle of ideas, we give in this paper an axiomatization of
the first-order theory of the class of all direct products of totally ordered
abelian groups, construed as lattice-ordered groups (£-groups)

We write groups for abelian {-groups construed as structures in the
language {v,m,+, -,0) ("-" is an unary operation). For definitions, the reader
is refered to [1].

% 1.First-order products. We recall that a group G is called projectable if,
for all g€ G we have g xg'= G. Basic if for all strictly positive g there
exists b such that 0<kSg, and the interval [0,b] is totally ordered. The
element b is called basic. A group is laterally complete if any orthogonal
subset of G has a least upper bound. It is known that a group is isomorphic to
a product of totally ordered groups if and only if it is projectable, basic

and laterally complete,

We shall define some predicates to be used in the sequel:
xLy iff |xfa|ly]l = 0 (x and y are orthogonal);
Bas{x) iff Vyz(x>0 & (0%y,25x = y<z or z%y)) (x is basic):

Mbas(x,y} iff ¥z(Bas(x) & x<|y| & (Bas(z) & zax>0 & 2=yl = 2£x))
(x is maximal in the set of basic elements bounded by |y|);

Ext{x,y) iff Yz(Mbas(z,x) =3 Mbas(z,¥5) & (y+(-x))Lz)
(¥ "extends" x; in case G is a product of totally ordered groups, this
means that x and y coincide in all coordinates where x is not zero).

x=y|ziff xez7 eI (X €2 & y=x+ x).

i ] B ]
A paraillre en version compléte dans The Journal of Symbolic Logic.



The notions of basicity and projectability are first order but 1lateral
completeness is essentially a second-order notion. For the time being we will
consider a first-order version of it, namely, the notion of "definable lateral
completeness": if @(Xl""xﬁ) is a formula such that, for given ,%}..,g;_,

1

the set {x / G E p(gi,..,g »X )} is orthogonal, then it has a least upper
1&] n= n

1
bound. Explicitly:
Vo ): “ae . X
(Vp): ¥x X Varlelx,oox ,x) & Plx x4 5) = xiy) =
= Enyw((qo(xi,..,xh_i,x) = x < y) & ((go(xi,..,xn_i,x) = x X W) =2
For later use we recall three corollaries of a result of S.Feferman and
R.Vaught on products of models (see [3]):
Let £ be a first-order language and (‘HL)'EI a family of models for &£
L
where the set I is infinite:
Corollary 1: There exists a countable subset J of [ such that the products
I;I‘H_ and I}‘H_ are elementary equivalent.
B L
Corollary 2: For any given sentence ¢ of the language £ such that I;I‘II_L#: ¢ there
exists a finite subset J of I such that, for any K (J < K< Iy, E‘ch ¢ holds.

Corollary 3: Suppose I = IN. Given a sentence @ of the language &£ such that
LQ ‘Uil= @ for each n € N, then ¢ also holds in l;i‘ui.
n

Returning to the theory of abelian {-groups, for a projectable group G, a
formula ¢ and g € G, since g" is a definable {-subgroup of G, we write the
relativization of ¢ to g* by @ . Observe that this can be done in general

g
with a variable replacing the element g If ¢ = go(x1,..,x ) and gi,..,g € G,
n 2]

hall understand 5. . .

we shall understan qu(glg 'gn) as pg(gilg' ’gnlg)

Now, for a formula {a(xi,.. yX ) define the new formula qo’(xi,..,xn,w) by:
i}

" 1l ]

X €W &@ (X,.09x) & Vx'w z(Ext(w,w’') & Bas(z) & z& w'* & x = x &
n v o1 N n IW
. ] 3 ] 1" 'y il = 1" - 1"t "
& (ow’(xj.' )X _ X ) = Ax" (X" € (w'+2)*" & x = ¥ | w & Pu’«-z(xi’ 1 X _ 0% 1))
The meaning of tp’(xi,..,xn,w) is: "qo(xi,..,xn) holds in # ' and whenever

it holds for a suitable x’ in an extension w'‘‘ of W', it holds for some x"

in any extension of the form {#'+ 2)'* by a basic element z ".
Now we are ready to add, for each formula qo(xi,..,x ) of our language, a
n

new axiom for our class of {-groups:
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{*p) Vx..x WEXV.V(@,(X yersX yw) & Ext(w,y) =
1 n i n

—-"‘-‘-‘?@(Xi,..,x ,X) &ﬂo (X geeg X ’X))-
n- v 1 n-1

i
This axiom states that, whenever @’(x;,..,x +#) holds, there exists an element
n
x such that p(z;,..,x 1,x) holds. Moreover, for any extension y of w, the
=

relativization ¢ (x,..,x ,x) holds,
y 1 n-1

Lemma 1: Let (L)iea be a family of totally ordered abelian groups. For any
L

formula p(x ,..,x ), we have [IL k (*p).
1 n I

Now we shall characterize the elementary class generated by the products
of totally ordered abelian groups,

Definition: A group is called a fo-product (first-order-product) if and only
if it is projectable, basic, definably laterally complete and, for any formula
¢ satisfies the axiom (¥*p).
w
The subgroup & = {z / z(n) is eventually constant} of Z is an exaaple of

a fo-product group which is not laterally complete (and hence not isomorphic

to a product of totally ordered groups).

Lemma 2: Let G be an fo-product, x,be G, x # 0.
i) If Bas(b) and b < |x| there exists and unigue l; such that Bas(lé), b and
LE are comparable and Mbas(lz,] x| );

ii) x = VB - VVB' where B= {b / Mbas(b,g+)} and B'= {b / Mbas(b,x }}.

Now we are ready to prove the main theorem of the paper:

Theorem: Given a fo-product group & there exists a family.f=(£;) cs of totally
1=

ordered groups such that G is elementary equivalent to the product glg.

Proof: First, using the downward Lowenheim-Skolem theorem, we can assume that
G is countable (any non-trivial {-group is always infinite).

Observe that the maximal totally ordered subgroups of @ are exactly those of
the form ¢&* with g € G and Bas(g); furthermore there are at most countably
many of them. Let £ denote the family of those subgroups. If £ is finite, it
is easy to verify that G is isomorphic to the product of the members of £. We

may assume £ countable, indexed by [N, Define f:G — EL by
=



b if be L , Mbas(b ,g );
s s s s 4
f(g)(s) =4¢-b if be L , Mbas(b ,g );
s -] S -] -
0 if for all be Ls Mbas(b, | g]) does not hold.

It is not hard to verify that 7 is well defined, and a one-one homomorphism.
We shall show that f is an elementary embedding. To check this, it isg
enough to show that for every formula p(xi,...,x%) with free wvariables among
XoereaX and g‘i,..‘,g,'ﬁ_i e G, if ELEF Hxhgo(f(gi),...,f(gh_i),xn) the-n there
exists an element gn in ¢ such that gst r,o(f(gi),..,f(gn_i),f(gn)). For
notational simplicity we shall identify G with its image in QLE and assume
n = 2. Since ELsh 3xzqo(gi,x2), exists g, in ELS such that gLsh {o(gi,gz) and,
expanding our language with new constant symbols for‘%.and g%’ by corollary
2, there exists Hb € N such that, for all XS N with {0’°"Eb} & K we have
ELSF go(gilk, 2|K) {where with glk we denote the projection of g to the
subgroup Elg). Choosing positive elements }g & Lrs {0 =< X Eb) and defining
he ¢ ELS by h(s) = hS if s = n and Ah(s) = 0 otherwise, we have that
qoh(gi,gz), hence qo’(gi,gz,h), holds in G. Now, since (%) is an axiom for G we
can find a gz’ € G such that @ E qo(g‘i,gz') and for all A € ¢ such that
Ext(h,h’), W' E p(g;lh,,g;’h,); in particular, since we can chose h' such
that {s / B’ (s) # 0} is finite, we have that, for all finite J 2 K,

’ : : .
I}st go(gild,gz IJ) implying, by corollary 3, that qo(gi,gz) holds in ELS |

Remark: Observe that the property of being definably laterally complete is
implied by the axiom-scheme (*¢), so we may dispense of that property in
the definition of fo-products.

£ 2. Final remarks:. Since a fundamental result of P.Conrad, J.Harvey and C.
Holland {2} states that any abelian {-group is isomorphic to an {-subgroup of
a Hahn product of totally ordered (archimedean) abelian groups, it is an
interesting problem to find an axiom-scheme which implies that the embedding
is elcwentary. The direct approach which consists in rewriting the axiom (%)
does not work because corollaries 2 and 3 do not hold for Hahn products.
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GEOMETRIE LOCALE DES POLYNOMES HYPERBOLIQUES
Ivan Meguerditchian

Résumé : Si P est un polynéme hyperbolique {cad ayant toules ses racines réelles) de degrén , et s un
entier plus petit que n , on détermine dans quels cas il existe un polynéme de degré s qu’on puisse ajouter
& P sans sortir des polynémes hyperboliques. Cetle question, en partie traitée par Arnol’d, est ici résolue
complétement dans le cas local.

Local geometry of hyperbolic polynomials

Abstract : Given P a hyperbolic polynomial(that is all its roots are real) of degree n and s < n, is i
possible to find a polynomial Q of degree s such that P+ Q) remains hyperbolic ¢ This question, partly treated
by Arnol’d, is here completely solved in the local case.

Définitions :

. Un polynéme unitaire & coefficients réels est dit hyperbolique si toutes ses racines sont réelles.

Etant donnés deux entiers n et s tels que 0 < s < n, un polynéme hyperbolique P = 2" + Ajz™1 4 ... 4 ),
est dit localement s-mazimal (respectivement localemeni s-minimel ) 8’il existe dans R™ un voisinage de P
— P étant identifié au n-uplet ()1, ..., A,) - dans lequel aucun polynéme de la forme P4-coa’+c12° =14 . .4e,
avec ¢ > 0 (respectivement co < 0) n’est hyperbolique .

Si P est un polyndme hyperbolique il s’écrit de maniére unique P = (X ~ z;)™ .. (X — &)™ avec
Ty > 22 > > xi et le k-uplet (my, ..., m;) s’appelle vecteur-maultiplicité de P.

A tout vecteur-multiplicité d’un polynéme P on associe I'entier sp défini de la maniére suivante :

i) si P n’a que des racines simples, sp = ~1.
ii) sinon on pose sp = Z (mi—2)+1 ol est le nombre de de séquences impaires de 1 consécutifs dans
ifm>2

le vecteur-multiplicité, en ne tenant compte que des séquences comprises entre deux multiplicités supérieures
ou égales a 2,

Un polyndme hyperbolique est dit droit lorsque son vecteur-multiplicité commence par une séquence paire
de 1, et gauche dans le cas contraire.

Théoréme : Un polynéme hyperbolique P est :

. localement s-maximal et localement s-minimal si 0 <s<sp

. localement sp-maximal mais non localement sp-minimal si P est droit

et localement sp-minimal mais non localement sp-maximal si P est gauche

. il n’est ni localement s-maximal ni localement s-minimal pour § > sp

Ce résultat s’exprime plus lisiblement sur le tableau suivant, pour un polyndme droit (respectivement
pour un polynéme gauche) :

8 localement s-maximal localement s-minimal
n—1 non non
sp+1 non non

sp oui (respectivement non) | non (respectivement oui)
sp—1 oui oul

0 oui oui

On désigne par propriété A 'ensemble des réponses négatives de ce tableau et par propriété B 'ensemble

des réponses positives.




On remarquera que le résultatne dépend que du vecteur-multiplicité, c’est a dire de I’ordre des racines
et de leur multiplicité, mais pas des racines elles-mémes.

Soient P de degré n et s < n . Notons que trouver @ = ¢gX* +---+ ¢, tel que P + @ soit hyperbolique
revient & trouver une courbe y = —@Q(z) coupant n fois la courbe y=P(z).

Exemples : Soient A (fig.1) et B (fig.2) deux polynémes hyperboliques de degré 6, respectivement de
vecteur-multiplicité (2,1,1,2) et (1 2,1,2).

OOV U

Il existe des courbes y = c avec ¢ > O et y = cz + d avec ¢ # 0 coupant 6 fois le graphe de A ce qui
est impossible pour y = ¢ avec ¢ < 0, ce qui signifie que A est 0-maximal mais ni 0-minimal, ni 1-maximal,
ni l-minimal. Semblablement il existe des courbes ¥ = cz + d avec ¢ < 0 coupant 6 fois le graphe de B ce
qui est impossible pour y = c avec ¢ # 0 et y = cz + d avec ¢ > 0, ce qui signifie que B est 0-maximal,
0-minimal, et 1-minimal, mais non 1-maximal.

DEMONSTRATION DE LA PROPRIETE A :

Proposition1 :
La propriété A est vérifiée pour P tel que sp = 0 .

Démonstration :

L’hypothése signifie que P ne posséde que des racines simples ou doubles et que son vecteur-multiplicité
ne contient que des séquences paires de racines simples. Dans le cas olt P est droit, ses racines doubles sont
des minima locaux de la courbe y = P(z) et ses maxima locaux sont nécessairement au-dessus de laxe Oxz.
On notera 5 le minimum des valeurs prises par P en ces maxima locaux. On a bien entendu 5 > 0 . Cela
nous permet d’affirmer que pour ¢ €]0, 5[ la droite y = € coupe la courbe n fois, ce qui assure que P n’est
pas localement (-minimal. Appelons ¢ le minimum de ’ensemble desr acines de P et des abscisses des points
d’intersection de la courbe avec la droite y = 7 et b le maximum de cet ensemble. Soit R un polynéme non

constant, on sait que Im <M /Y & €[a,b] m < R(z) < M. Dés lors, si on pose Q(z) = 5%‘%@ avec
m

0<e<nponauraVze[ab0< Q) <y Par conséquent la courbe y = Q(z) coupe n fois la courbe
y = P(x) ce qui montre que, pour s > 1, P n’est ni localement s-maximal ni localement s-minimal.
On procéde de maniére serblable pour un polynéme gauche.

Proposition 2 :
La propriété A est vérifiée pour P quelconque.

Démonstration :
Au polynéme P = (X — z)™ ... (X —z,)™» on associe donc l’entier 8P = 3 i/m:>2{mi —2)+1. Dans
chacune des I séquences impaires on choisit une racine simple que 'on désigne par z;, pour k allant de 1 &

!

{ . Formons le polynéme Q(X) = H (X — z)mi—2 H(X —2j,,) - On a degQ = sp , @ divise P , et, en
ifm.>2 k=1

notant Py le quotient, sp, = 0. En utilisant le fait que si P, + R est hyperbolique alors Q(P, + R) = P+ QR

également et en appliquant la proposition 1 2 P, on a la proposition 2 pour P .

2
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DEMONSTRATION DE LA PROPRIETE B :
Définition :
On note Xi(c) (respectivement XC(c) ) et on appelle variété de Vandermonde réelle (respectivement

compleze) d’ordre k , ’ensemble algébrique de R® (respectivement C® ) défini par les k équations suivantes :

nn + o+ oz = 0

Rli" + - + .’L‘ﬁ =
Proposition 3 :
Les variétés de Vandermonde complexes d’ordre k sont de codimension k.
Démonstration : n
Notons s; = Z :c',f la j-iéme somme de Newton et o : ct — Cn
=1
(1, s 80) — (81,...,84)

L’application ¢ est surjective et & fibres finies. Soit Y le (n — k) — plan de C™ obtenu en fixant les
valeurs des k premiéres coordonnées. La préimage X par ¢ de Y est une variété de Vandermonde d’ordre
k . La restriction & X de  est encore une application polynomiale , & fibres finies et surjective sur ¥ de
méme que la restriction & une composante irréductible Xide X : psx, : Xi = Y; = p(X;). Sachant que, X;
étant irréductible , ¥; I'est aussi, on peut affirmer que dans un ouvert non vide de Y; la dimension des fibres
vaut dimX; — dimY; , donc que dimX; = dimY;. Par ailleurs, de Y; C Y on déduit d’abord dimY¥; < n -k
puis dimX; < n —k pour tout i, et enfin dimX < n—k . On achéve la démonstration en remarquant que k
polynémes dans C" définissent un ensemble algébrique de dimension au moins n — k .

Remarque : La dimension de la variété réelle correspondante est inférieure ou égale & n — k . (en passant de
C 4 R la dimension peut chuter mais en aucun cas elle n’augmente}.

Proposition 4 :

Si X(c) contient un point ayant au moins k coordonnées distinctes, alors dimX e)=n—k.

Démonstration :
Soient f l’application de R™ dans R* associant & un n-uplet ses k premiéres sommes de Newton ,
a = (ai,...,an) un point de R” ayant k coordonnées distinctes, et ¢ I'image de a par f.
1 1 1
261 2&2 3. 2ﬂn
Jac o (f) = .
kaf~! kak=' ... kat-l

Les mineurs d’ordre & de la matrice jacobienne sont proportionnels 4 des déterminants de Vandermonde , il y
en a donc au moins un non nul , celui correspondant & k coordonnées distinctes de a . La matrice jacobienne
est donc de rang maximal k au point a et f est une submersion en ce point. La dimension locale en a de la
variété Xp(e) = f~!(c) vaut dans ce cas n— k . Comme sa dimension globale est inférieure ou égale an—k ,
elle est exactement n — k .

Proposition 5 :
Supposons Xy(c) de codimension k exactement , alors :

i) Les points singuliers de Xj(c) sont les points de Xk (c) ayant moins de k coordonnées distinctes

ii) Les points critiques de sg41 sur la partie réguliére de X} {c) sont les points de X;(c) ayant exactement
k coordonnées distinctes .
Démonstration :

i} La matrice jacobienne de Xi(e) est identique  la matrice jacobienne de f .

3



ii) On sait que si # = (z;,...,2,) est un point critique de sz 4q sur RegXy(c) alors il existe & nombres
P1,--- Pk , appelés nombres de Lagrange , tels que dspr1 = p1ds; 4 -+ -+ ppdsy au point z . Si L est la
fonction de Lagrange associée , I = Sk4+1 — p1(81 — €1) — -+ — pr(sg — c&) , on obtient les points critques
cherchés en résolvant le systéme : dI = 0,51 =¢1,...,5; = cx . Notant F(z) = (k+ l)z'“—Ic:p,;,z""1 ——p
ona:dl, =0¢= F(z;)=0,Vi€ {1,2,...,n}.

Maintenant si 2 est un point critique , ses n coordonnées sont racines de F , c’est & dire d’un polynéme
de degré k ,et donc x a au plus k coordonnées distinctes , en réalité k exactement puisque c’est un point
régulier.

Réciproquement soit z € X {c) ayant exactement & coordonnées distinctes z1,...,25 2 l'aide desquelles
nous formons le polynéme F(z) = (k + 1)(z — z1)(z—22)---(z— 2:) . Le développement de F détermine de
maniére unique k nombres de Lagrange py,...,ps . Alors z vérifie bien le systéme précédent.

Proposition 6 :

Etant fixé un point critique z de 5k41 sur Xg(c) on ordonne ses k coordonnées distinctes 2n1>...>2,,0n
note m; le nombre de fois ol z; apparait dans = = (£1,...,2n) et on pose r; = my; — 1 .

Alors la différentielle seconde de s34 sur X #(c) au point z est la somme d’une forme définie positive sur R
(ot @ =v; +irg+--- ) et d’une forme définie négative sur R* (o b=rg+ry+--- ).

Démonstration :

Toutes les données étant invariantes par permutation des coordonnées on peut supposer que z s’écrit :

z;:(zl,...,zl,zz,...,zg,...,z;,,...,zk,zl,...,z;,.)
RS- Nk N e
r, fTols rq fols ri fols

Dans la matrice jacobienne de X (c) un mineur non nul d’ordre k est obtenu en sélectionnant les k& derniéres

colonnes. Cela signifie en particulier que les n— & premiéres coordonnées forment un systéme de coordonnées
. N o 2 .. .

locales de Xi(c) au voisinage de z . Dans ce systéme on a toujours dL, = 0 . De 5%‘;; =0s1i#jetde

%% = F'(z;) on déduit :

P Lo(hy,. . hnk) = (B2 + - + B2 )F'(21) + -+ (i sy o+ B2 )F(28)

C’est bien une forme quadratique non dégénérée puisque, F' n’ayant que des racines simples , Fiz)# 0
pour tout i . On obtient la signature en remarquant que F*(z1) > 0, F'(22) < 0, F{23) > 0 etc.
La proposition 6 a pour corollaire immédiat la proposition suivante :

Proposition 7 :

Un point critique £ sera un minimum local de Sg4+1 sur Xi(c) si son vecteur-multiplicité est de la forme
(r,1,5,1,...) et un maximum local si son vecteur-multiplicité est de la forme (1,r,1,5,1,...)

Défini tion :
Un polynéme hyperbolique de vecteur-multiplicité (m1,...,my) est dit alterné droit si mg; = 0 pour tout 2
et alferné gauche si mo;y; = 0 pour tout i.

Proposit ion 8 :
Un polynéme hyperbolique P alterné droit (respectivement alterné gauche) est localement sp-maximal (re-
spectivement localement sp-minimal).
Démonstration :

Soient P un polynéme alterné droit ayant exactement k racines réelles distinctes et Xy(c) la variété
de Vandermonde réelle d’ordre k & laquelle appartient le n-uplet des racines de P . Ce dernier, noté
z = (%1,...,%q) , a pour vecteur-multiplicité (r,1,5,1,...) et est par conséquent minimum local de Sk41 Sur
Xi(c) . Supposons maintenant que () soit un polynéme hyperbolique dont les k premiéres sommes de Newton
sont, égales & celles de P, ce que P'on notera s;( P) = 8;(Q) pour i € {1,...,k} . De larelation classique entre

4
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sommes de Newton et fonctions symétriques élémentaires on déduit que les k premiéres fonctions symétriques
€lémentaires des racines de P sont égales a celles des racines de Q ce que l'on notera o;(P) = ¢;(Q) pour
i€ {l,...,k} . Si Q@ est suffisamment proche de P on aura la relation s84+1(P) < 8541(Q) qui traduite
en termes de fonctions symétriques élémentaires s'écrit : (D)o 1(P) > (=110, 1(Q) clest & dire
que le coefficient de X"~*~! dans Q est plus petit que le méme dans P . Ceci montre bion que P est
(n — k — 1)-maximal. On vérifie alors aisément quesp=n—k-~1,

Proposition 9 :

Soient ay, .. ., a; des nombres réels et P un polynome hyperbolique. Si P(X ~ay)...(X —a,) est localement
(s + ¢)-maximal (respectivement minimal) alors P est localement s-maximal (respectivemnent minimal)

Démonstration :

Il est clair que si P+ @ est hyperbolique alors PX-a1)...(X—a)) + QX —ay)...(X - ag) lest
ausst ce qui se traduit encore par : si P n’est pas localement s-maximal alors P(X —ay)...(X —a,) nest
pas localement (s + ¢)-maximal. La proposition 9 est la contraposée de celle-ci.

Proposition 10 :

La propriété B est vraie pour les polynomes hyperboliques alternés.

Démontrons-la pour un polynéme alterné droit, P, de vecteur-multiplicité (»,1, s, 1,. . .} . On sait, par la
proposition 8 , que P est localement sp-maximal et on souhaiterait montrer que P est localement s-maximal
pour 0 < s < sp . Soit g Pentier non nul tel que s +¢ = sp . On construit Q1= P(X ~ay)...(X —a,) avec
@g <...<a; < min{racines de P } ce qui revient & ajouter des 1 & la fin du vecteur-rmultiplicité de P pour
obtenir celui de @; . Le polynéme @ est hyperbolique alterné droit et 8@, = sp. D’aprés la proposition 8,
@1 est localement sp-maximal, donc P est localement s-maximal d’aprés la proposition 9.

On construit @; en gardant a3, - -,8q comme ci-dessus mais a; est choisi tel que a; > mazx{racines de P}.
On applique alors la propositon 8 au polynéme alterné gauche @z pour obtenir que P est localement s-
minimal.

Proposition 11 :
La propriété B est vraie pour tout polynéme hyperbolique.

Démonstration :

Soit P= (X —a)™ (X —z,)™ avec 2y > 23 > -+ > £p . On peut toujours transformer chacune
des séquences paires de 1 consécutifs comprises entre deux multiplicités supérieures ou égales 4 2 en une
séquence impaire par la multiplication de P par (X — ax), ag étant un nombre réel non racine de P . Aprés
un nombre fini d’opérations on obtient Q = P(X —ay1)...(X ~ a;) polynéme alterné avec sg=sp+gq.La
propriété B étant vraie pour Q on la déduit pour P & I’aide, une fois encore, de la proposition 9 .
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SUR LA PROJECTION DE VARIETES ALGEBRIQUES REELLES

Daniel Pecker

§I. Introduction.

Dans ce travail nous nous intéressons au probléme de trouver un
ensemble algébrique, sl possible irréductible, se projetant sur un ensemble
semi-algébrique donné.

Notre résultat principal est de nature géométrique :

Théoréme 2. Un semi algébrique de R" est la projection d’un ensemble
algébrique irréductible de R 51 et seulement si son adhérence de
Zariskl est un ensemble algébrique irréductible.

On commencera par le résultat algébrique suivant d’élimination relative des

inégalités. (On note 5=(x1,...,xn)}.

Théoréme 1. Soilt S un ensemble semi-algébrique contenu dans V une variété
irréductible de RN non réduite a un point.
11 existe un polyndme P{x,t}eR[x,t] dont la réduction moduleo I(V) est un
polynéme irréductible de R{V}[t] tel que :

X€S e» xeV et JteR, Px,t) = 0.

Comme un ensemble algébrique réel d'équation irréductible n’est pas
forcément irréductible on utilisera, pour déduire le théoréme 2 du théoréme
1, une généralisation du critére de changement de signe (qui permet de
déduire sous certaines conditions 1’irréductibilité d’un ensemble
algébrique réel de 1’irréductibilité de ses équations).

Dans le cas ol le semi-algébrique est localement fermé d’intérieur non



vide, une démonstration plus explicite des théorémes 1 et 2 figure dans
[P1] s IPZ] et [Pg] . Dans le cas général abordé ici, on utilise un
argument de densité déduit du théoréme d’irréductibilité de Hilbert qu’on
rappelle au paragraphe 2.
Le cas ou S est fermé pour la topologie euclidienne est plus simple, toutes
les projections peuvent alors étre choisies propres, et les équations des
ensembles algébriques unitaires (cf.[Pa]).

En général, ce n’est plus le casg, mais les fibres des projections
obtenues dans cet article sont finies.
Enfin, on donne des réponses a la plupart des questions posées dans les
premiers travaux sur ce sujet (cf. [Mot1], [Mot2), [A.G1)], [A.Gz2]). Pour

d’autres détails, on pourra se reporter a [Pz] ou a [P3]

§2. L’élrmination relative des inegalités.

=]
Si §=(x1, xzp..)eRm=lJRn on note x=0 si et seulement si tous les
n=1

x.z0,
i

Soit ak(3J=xk+1(x1+x2+...+x

k) k=1,2... et a(§]=(a1(§), az(g),...).

Remarquons que a(x)z0 si et seulement si xz0 ou -xz0,
Définissons les polynémes Pn(z,u] et An(g) par récurrence :
Pl(g,u)=u—x1 A1(§)=x1
Pn+1(§.u)=Pn(a1(§),...,an(z), (u—(x1+...+xn 1%
An+1(§)=An{a1(§),...,an(g)}. An est une somme positive de mondmes.
Proposition 1.
(1) Pn et An sont homogénes de degré 2Bt
(ii) Pn est unitaire en chaque variable.

(111) Si xeR"”, x20 «> 3teR, Pn(z,t2)=0

n
(iv) Si xeR, x20 et u¢]0,2(x1+...+xn][ alors |Pn(§ 1u)|2An(¥}

(v) Si xeR" et 1'un des x,<0, alors Pn(g,tz)zlAn(g)I

2
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Démonstration. (i} et (ii) sont faciles, (3il) est démontré dans [Pz].

Démontrons (iv) par récurrence.

Le cas n=1 est clair, |P1(x.u)|=|u—x|2x si uel0,2x[. Supposons la propriété
vraie pour n, et montrons la pour n+l.

On a : Pn+1(§,uJ=Pn[a1(§],...an(g),(u—(x1+...+xn+1))2)

or {u-(x1+...+xn+1)]2>(x1+...+xn+11222(a1(§)+...+an(§)]

D’olu par 1’hypothése de récurrence :

|Pn+1(§,UJ|=An(a1(§)....,an(z])=An+1(§)

(v) par récurrence : pour n=1 c’est vrai.

2, _ 2_ 2
On a Pn+1(§.t )—Pn(al(g),...,an(g), ((t (x1+...+xn+1JJ ).
Si a(x)20, par la remarque on volt que -x20.
On a alors en utilisant (iv)
2, _ o a2 _ N -
[Py Gt [P (-x, -t Jz]A (a x), . a (=x))[=]A L ()]

ce qui montre 1’affirmation dans ce cas, Pn+1(§,t2] étant unitaire en t et
ne pouvant s'annuler, son signe est constamment positif,
Sincn c'est que 1’un des ai(§}<0, et par récurrence :
2 ——
Pn+1(x,t )Z|An(a1(§),...,an(zl)I—An+1(§J [
Dans la suite de ce travail, on notera V un ensemble algébrique
irréductible non réduit a un point contenu dans RN, I(V) son idéal, k=R(V)

le corps des fractions de RIVI=R[x]/I(V) et k’=C(V)=k[1i].



Proposition 2. Soit S un sous-ensemble seml-algébrique de V donné par 1la
formule : S={§EV]C1(5)=0,...,Cn(§)20,81(§)>0,...Bm(§)>0}.
Supposons qu'il existe un point de V ou tous les polynémes Ai et B,
prennent une valeur strictement positive.
Alors il existe un polynéme P(x,t) de R[x,t], et un pelyndéme a(x) de
RIx]-I(V) tels que

(1)  si xeV, xeS & 3IteR, P(x,t)=0

(ii) si xeV et xeS P(g,t)zfa(z)l

(1ii) si xeV, P(x,w)21

(iv) P ne peut é&tre constant pour gecn que si a(x)=0, et P(x,t)=1.

Démenstration.

m+n-1

Soit P(x,t)=(B,...B )? C,B,....B .Y t2].

pm+n[c1"" n'1 m-1'B_...B’

1 m
Par la proposition 1 P(x,t) a une racine réelle si et seulement si
C,(x)=0, ... C,(x)=0, B, (x)>0, ... B (x)>0. De plus on a P(x,t)z|a(x)| si

1’un des Ci<0 ou 1'un des Bi=0’ avec a(x) donné par :

,C ,B, B ———:L———J.

m+n-1

A C.,... -

m+n| "1’ n'"1 "m~1’BB ...B
1 2 m

B 2
a(g)—(Bl...BmJ

En effet =i 1’un des Bi est égal a zéro, A

n’étant pas unitaire on a
n+m

a{x)=0. Dans le cas ol aucun des Bi ne s’annule on utilise directement 1la
propesition 1.

On voit que a(x}¢I{V) car a(x) est une somme positive de mondmes en les Ci
et Bj qui sont tous strictement positifs en un certain point de V.

Enfin, P ne peut étre constant que sl B1"'Bm=0 et 4 ce moment-13 a(x)=0 et
Pix,t)=1. u

Dans la démonstration du thécréme suivant, on va utiliser le théoréme
d’irréductibilité de Hilbert {cf.[L1] p.225, 236 et 239). Rappelons-le sous

la forme qui nous intéresse ici :
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S5i A est un anneau de type fini sur R, k son corps des fractions qui n’'est
pas algébrique sur R, k’ une extension algébrique finie de k, et P(A,t)
un polynéme irréductible dans k[A,t]). Alors il existe AOEA, tel que

P(Ao,t) soit irréductible dans k’[t].

Théoréme 1 (Elimination relative des inégaliteés).

Soit VCRN un ensemble algébrique irréductible non réduit a un point,
I(V) son idéal, k=R(V) ; k’=k[i], et S un ensemble semi-algébrique
contenu dans V. Alors il existe un polyndme P(x,t)eR[x,t] tel que :

(1) Si xeV, xeS « 3teR, P(x,t)=0

(ii) La réduction de P(x,t) modulo I(V) est irréductible dans k’(t]

(1ii) P(x,t) n’est identiquement nul pour aucune valeur de KECN.

Démonstration.

M g
Soit s=Us,, s ={xev|cizo,...,ci 20, B'>0,...,B} >0}. Quitte a
1 i i 1 n, 1 m,

décomposer chaque Si en une réunion d’'ensembles du méme type, on peut
supposer que pour chaque i il existe un point X, €V tel que : Cj(51)>0’
i . _
Bk(gi)>0, J—l,...,ni, k—l,...,mi.
Pour chaque i, sgoit Pi(g,tl et ai(g) des polynémes donnés par la
proposition 2.
Soit H(§J=af(§)-...-a;(§), et A(x) un polynéme quelconque.
Définissons P par la formule :
2 2 2
P(x,t}=(1+H+HA (E))Pl---PM‘H(E)

Démontrons que le polyndme P a les propriétés voulues :

M
(i) si xel Si 1'un des Pi s’annule pour une certaine valeur de t, et
1

P(x,t) prend une valeur négative ou nulle. Quand t tend vers 1’infini

P{(x,t) prend des valeurs strictement positives. P s’annule donc pour une



M
valeur réelle de t. D’autre part si xelU Si’ Pi(;,t}la:(x), d’ olt
1

Pf...P;ZH(g) et cela implique que P(g,t)aﬂz(g) et par suite P(x,t)>0.

Ce polynéme P a donc les bonnes propriétés de projection.

(ii) En vertu du théoréme d’irréductibilité de Hilbert, pour montrer
qu’il existe un polynéme A de R[V] tel que P soit irréductible dans k{V] il

suffit de démontrer le lemme suivant :

Lemme. Scit k un corps, B,H,K des é&léments non nuls de k, Aek[t] un

polynéme non constant, alors P=(K+HA2)A2-B2 est irréductible dans k[a,t].

Démonstration du lemme.

P n’a pas de diviseur non constant dans k(t], en effet ce diviseur
diviserait A, et par soustraction B ce qul est impossible puisque Bek.

S1 P=(aA+B) (¥A+3) avec «a,8,¥,3 dans k[t] on a a+B+y320 et a7=HA2, ad+yR=0
et B3=KA®-BZ.

De la deuxiéme relation on tire par le lemme de Gauss : o=ry, fB=-réd avec
dek, en reportant dans la troisiéme relation on obtient Bz=KAz+r62 avec
K,rek. Comme B est un polynéme constant de k[t] et que A ne 1'est pas, on
voit en identifiant que r=—vk ou vek, et par suite B=K(A-vd)(A+vS8) d’oul
A+udek, A-vdek ce qui implique que A€k ce qul n’est pas vrai.

La démonstration du lemme, et donc de (1i) est achevée,

(iii) Montrons enfin que le polynéme obtenu P(x,t) ne s’annule
identiquement en aucun point x de BN. Sinon, si (1+H+th)=0 en ce point,
alors H=0 et par suite Pf...P;=O ce qui est Impossible, ce polynéme ayant
une limite au moins égale 4 1 quand t tend vers 1'infini.

Par suite la seule possibilité c’est que Pf...P; soit de degré 0 en t,

c’est-a-dire que chaque polyndéme P1 le soit, malis alors c’est que chaque
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ai=0 et chaque Pi=1 et par suite P=Pf...P;=1=0 ]

Remarques. L’utilisation du théoréme de Hilbert, si elle permet un énoncé
beaucoup plus général que celui trouvé en [Pz2] et [P3] ne fournit pas
vraiment d’indications sur la maniére de trouver le polynéme A(x). D’autre
part les degrés (méme en t) des polyndémes obtenus sont plus élevés que
ceux qu’'on obtient en [Pz] pour des ensembles semi-algébriques localement
fermés.Enfin, dans le cas ol S est fermé le polynéme P obtenu,
contrairement a4 ceux de [Pa] n’est pas unitalire. On pourrait en modifiant la
définition de P faire en sorte qu’il le soit, mails au prix d'un degré plus
élevé.

§3. Les projections de variétés algébriques réelles.

Dans ce paragraphe nous allons déduire de 1'irréductibilité des
équations de certains ensembles leur irréductibilité géométrique. Une telle
déduction nécessite évidemment quelques précautions : X +Y°(Y+1)%<0 est
bien une équation irréductible, mais 1’ensemble de ses zéros ne 1l’est pas.
(D’aprés le théoréme 1 cet ensemble a méme une équation C-irréductible).
Notre outil sera une généralisation du critére de changement de signe.
Commengons par rappeler quelques notations : VCRN est un ensemble
algébrique irréductible, I(V) 1’idéal de R[xl,...,xN]=R[§] formé de tous
les polyndémes qui s’annulent sur V, RI{VI=RIx]1/I(V) et k=R(V) le corps des
fractions de R[V]. On suppose que V n’est pas réduit a un point. Un
polynéme de Rix,t] sera dit irréductible modulo I(V), s'il est
irréductible, et si sa réduction modulo I(V) est un polyndme irréductible
de kit]l. On dira enfin qu’un élément de RIx,t] est un polynéme réel.

S1 W est un ensemble algébrique réel contenu dans R™ notons Hb le

sous-ensemble de C" ou tous les polyndmes de I(W) s’annulent : chRm=W.

Si W est irréductible, HC 1'est aussi.



On va utiliser un théoréme classique en géométrie algébrique sur un corps
algébriquement clos, qui n’a pas d’analogue en géométrie algébrique réelle

(cf.[L2] page 36, ou aussi [Sam] ou [Shal).

Théoréme sur la dimension des intersect ions.

Soit Ucc™ une variété affine irréductible de dimension h. Soit P(x) un
polyndme de €[x]. Si Un{P(x)=0} est non vide, et si P ne s'annule pas sur
U tout entier, alors tqutes les composantes irréductibles de cette
intersection ont la méme dimension h~1. N
Corollaire. Soit ﬁ={(§,t}eVCxC|R(x,t)=0} ou R(x,t) est un polyndme ne
s’annulant identiquement en aucun point gEVE. Soit W’CCN+1 un ensemble

algébrique, et a(x) un polynéme non identiquement nul sur V, alors si

fi-{a(x)=0}cW’ on a aussi ¥cW’ .

Démonstration. D’aprés le théoréme sur la dimension des intersections,
chacune des composantes irréductibles de W est de dimension r, et aucune
d’elles ne peut étre contenue dans Wn{a(§]=0}=({a(§)=0}nVCxC)n{R(x,t)=0}
qui est de dimension r-1 (R(x,t) ne pouvant s’annuler identiquement sur
aucune des composantes de {a(§)=0}nvcxc puisque ces composantes sont des

cylindres).

Soit W, une composante irréductible de W, comme W W U(lin{a(x)=0}) et

i
wic[ﬁn{a(§)=0}), on a donc W,cW et par suite ficW . m
Proposition 3 (Généralisation du critére de changement de signe).

Soit VcR™ un ensemble algébrique irréductible, I(V) son idéal, R(x,t)
un polyndme réel irréductible modulo I{V) qui n’est identiquement nul

pour aucune valeur de ngc. Alors, si W={(x,t)eVxR|R(x,t}=0} se projette

verticalement sur un ensemble de méme dimension que V, W est

irréductible.
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Démonstration. Le cas oll V est un point étant trivial, on peut donc

Supposer que V n'est pas réduit a un peint. On peut supposer aussi que R
est de méme degré que sa réduction modulo I{V). Montrons que cette
hypothése implique que R est de degré minimal au sens sulvant : soit P un
polyndéme de R{x,t] non congru a zéro modulo I{V), nul sur un fermé chw de
dimension maximale, et de degré minimal en t parmi tous les polynémes ayant
ces propriétés. Le ceefficient b(x) du terme de plus haut degré en t de
P(x,t) n’appartient pas a I(V). On a la division dans R[x,t]
bM(glR(z,t)=h(§,t)P(g.t)+Rl(§,t).

Par la minimalité de P, on voit que R1 est congru & zéro modulo I(V), et en

réduisant module I(V) on obtient : bM(g)R(g,t)=h(§,t)P(§,t). Comme R(x,t)

est irréductible dans R(V)[t] et P(x.t) n’est pas de degré zéro en t, on en
déduit que P et R ont méme degré en t, c’est-a-dire que R est de degré
minimal.

Supposons maintenant que le polynéme Q s’annule sur un fermé chw de
dimension maximale. Si a(x)#I(V) est le coefficient du terme de plus haut
degré en t de R(x,t), on a la division (d) dans Rix,t]

(@) aD(g)Q(z,t)=u(§.t}R(z,t)+R2(§,t}

Par la minimalité de R, on voit que RaeI(V)[t].

Soit W=( (x, t)eV xC|R(x, t)=0}

et W ={(x, t)ec™*|Q(x, t)=0)

De 1'égalité (d) on déduit que W-{a(x)=0}cW'. Par le corollaire, cela
implique que WcW', c’est-a-dire que le polynéme Q s’annule sur W tout

entier, donc sur Welf w

Remargue. Si V=RN, la proposition 3 n’est autre que le critére de

changement de signe (voir [BCR] page 85 ou [Mil] p.14).



Nous sommes maintenant en mesure de démontrer le résultat principal de ce
travail
Théoréme 2. Un semi-algébrique de R" est 1la projection d’'un ensemble
algébrique irréductible de Rn+1 sl et seulement si son adhérence de

Zariski est un ensemble algébrique irréductible.

Démonstration. Soit S ce seml-algébrique et V son adhérence de Zariski
qu’on suppose irréductible, par le théoréme 1 et le critére de changement
de signe généralisé (proposition 3) on voit que S est projection d’un
ensemble algébrigue irréductible de Rn+1.

La réciproque est facile : si 1'adhérence de Zariski de S n’est pas
irréductible, on peut trouver deux polynémes P1 et P2 non identiquement
nuls sur S, tels que leur produit soit identiquement nul sur S. Par suite
si WcRn+1 se projette sur S, ces deux polynémes ne sont pas identiquement
nuls sur W, mais leur produit 1’est, ce qui montre que W n’est pas

irréductible. |

Remarque. Les projections obtenues ici sont quasi-finies, c’est-a-dire que

leurs fibres sont des ensembles finis.
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