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D.Pecker (Paris 6)
CONSTRUCTION DE SURFACES QUARTIQUES .

§1 INTRODUCTION : Sur le 16°™® probléme de Hilbert

. La géometrie algébrique étudie les figures géométriques définies
par des équations polynomiales., Kummer a classifié les surfaces
réelles du quatriéme degré selon leur nombre de points singuliers

coniques (1862,cf[2]). Harnack a montré qu'une courbe projective
(aD(a2)

2
composantes connexes , et que cette borne était atteinte en tout

plane réelle de degré d ne peut avoir plus de

degré 4 (1876). Mais ce n'est qu'avec le ﬁrogrés des idées
topologiquéé que Hilberﬁ a pu formuler la premiére partie de son

16éme probléme: la classification bopologique des variétés algébriques
réelles, et en particulier des courbes de degré 6 et des surfaces

de degré 4 .Dans un article publié en 1909 (cf [6]) il montre le
rapport entre ces deux questions et construit une surface quartique

de PBC[R) de rang maximal 12 ( r(M) = % dim(H (M’ZE)) Y(voir aussiﬂQ])
Ce n'est que récemment qu'on a pu répondre aux plus simples de ces
guestions:

Ia ClaSSlflcathn des courbes de degré 6 a été achevée en 1991
gréice aux travaux de Gudkov, Arnol'd et Rohlin ( vomr[’l] Vr] [9] [SD
Dans l'étude plus délicate des surfaces réelles de degré 4 les

progres ont été encore plus lents ...

Whitnej a montré gque tout ensemble algébrique M a un nombre fini
de composantes connexes en considérant les extrdmums 1lids de la
fonction 4(0,M) qui sont en général en nombre fini. Ensuite )
en utilisant la théorie de Morse, R.Thom a pu obtenir des bornes
explicites , dont certaines relatives aux rangs maximums des
hypersurfaces réelles projectives se sont avérées les meilleures

possibles (il obtient en particulier 1la borne 12 pour les surfaces
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quartigues de PB( R) ), Simultanément, appliquant la théorie de ilorse
a4 l'application normale de Gauss, J.Milnor a ol_atenu d'autres
inégalités, meilleures pour les hypersurfaces affines compactes :
dim H (M,Z) £ rl(d-»’l)r'\""I » Mais, dans ce cas les inégalités ne sont
pas les meilleures possibles: Kharlamov montre que le rang d'une
surface quartique compacte non-singuliére de IR3 ne peut dépasser 10 .
Sa démonstration utilise la théorie des surfaces Kz » gréce & laquelle
il parvient & classifier les surfaces gquartiques de 1R5(ci‘. [7] ,[8] )
le but de cet exposé est de construire explicitement, et
élémentairement,les types topologiques des surfaces gquartiques
compactes non-singulidres de fRa. Nous utiliserons pour cela les
constructions de Kummer (cf. [2}), oubliées sgmble-t-il par les
spécialistes, ., Ia méthode de Viro (1979 ci‘.[11]) semble cependant trés

proche de celle de Kummer .

§2 LA METHODE DE KUMMER .
Dans ce qui suit, si E est un sous-ensemble compact de la sphére g2
le double de E est obtenu en recollant deux copies de E par leurs
bords .
[ PROPOSITION (Kummer)
31 P est un polyndme de degré 4 tel que P'q(o) rencontre
transversalement s° et si k est assez petit la surfacetg d'équation 3

(X2+y2+zg-’l)2 + k P(x,y,2) = 0 est homéomorphe au double de - (J",OD[\SQ

~ Démonstration: Montrons tout d'abord que ,dés que k est assez petit,

chaque demi-droite dont l'origine est & l'intérieur de Seet qui

s'éloigne de 0 rencontre :S en au plus deux points

Une telle demi-~droite a pour paramétrisation :

x = xq% + x x,21+y,2l+z§=1
J =t + ¥, avec: X§+y§+ z§‘<1
z =zt + 2 XXq + ToFq + BoZq = 0 4 EPE Y0

On voit que la suite des coefficients du polynéme Q(t)



we IQCKEr

Q(t) = ( $° 4 xg + yg + zg - )2 + kP(x,y,2) , présente exactement
deux variations de signe , d'ou la conclusion par le lemme de Descartes,

e tel que

Considérons un champ de segments sortants de S
P_q(O)f\{x2+y2+z2:}1§ soit contenu dans la réunion U de ces segments.
Chacun de ces segments sortants est porté par une demi-droite sortante
dont l'origine est & 1'intérieur de la boule: x2+y2+za<f1-2- .
Choisissons k assez petit pour que 3 soit contenu dans la couronne

1-€ <x2+y2+22< 1+&£ ,et pour que toutes nos demi-droites rencontrent

ég en deux points au plus. Elles rencontrent done éf en deux points’
exactement,l'un intérieur & 82 l'autre extérieur. La projection le

long des segments montre que Sn x2+y2+22}1} est homéomorphe &

P~ (] Q_])ﬂS2. De mé&me 3ﬂ{x2+y2+z2.{ ’I} est homéomorphe & P~ (]-“,@})ﬂ'Sz
et 3 est donc le double du compact p~1 (]-",0])052 e W

§3 COURBES SPHf.RIQUES DE DEGRE 8 ET SURFACES QUARTIQUES .

Nous allons construire des courbes de degré 8 sur la sphére qui sont
l'intersection de la sphére et d'une surface quartique d'équation
P(x,y,2) = 0 ; on dira que P(x,y,z) = 0 est l'équation d'une telle
courbe sphérique. On sait depuis Hilbert qu'une telle courbe a au plus
dix ovales . Par projection stéréographique (voir la figure 1 ) nous
identifierons la spheére privée d'un point au plan. Une telle

, . - [
projection ‘'préserve les cercles ( c'est une inversion ).

Les projections stéréographiques.
*. Ce sont celles que I'on utilise pour
faire des cartes  des régions polaires

ou des régions du ciel.



Le plan ainsi identifié & la sphdre s'appelle plan inversif ,
Dans le plan inversif cercles et droites ont des équations de
degré 1 . Par convention 1'équation d'un cercle est négative &
l'intérieur de ce cercle .

FROPOSITION 1:I1 existe une courbe sphérique ayant une équation

de degré 4, possédant les symétries d'un tétraédre, et ayant dix
ovales sans relation d'inelusion .

Démonstration: Prenons quatre cercles du plan inversif disposés

comme sur la figure 2 . Ieur réunion a une équation de degré 4 :
T(x,7,2z) = O .L'ensemble des points de la sphere vérifiant

T(X,5742,) =& se compose de dix ovales sans relation d'inclusion .

=
C4a
)
FIGURE 2 : €405056, £ 0
Notons selon Utkin et Gudkov Rﬁ + ng une surface ayant une

composante connexe de genre k , Rﬁ s et q boules sans relation
d'inclusion extérieures a Rﬁ .Gréce au lemme on obtient immédiatement:
THEOREME 1% Il existe des surfaces guartiques de type R% et 1ORg .

‘De plus ces surfaces ont les symétries d'un tétraddre .

REMARQUES: Robn & construit en 1911 une surface de type 108G (4Bl
Utkin en 1967 @{Eﬂ)et Gudkov en 1971 avaient conjecturé (entre autres)
l'existence d'une surface quartique de type R; trouvée par Kharlamov
en 1977 et dont Viro donne en 1979 une construction "élémentaire"

utilisant le "catalogue" de Polotovskii (cfi, [8]£2D
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Nous allons maintenant construire d'autres courbes sphérigues par
la méthode des petites variations de Harnack-Hilbert-Rohn. appliguée
& des réunions de cercles sur la sphére .

FPROPOSITION 2. Il existe des courbes sphériques. ayant des équations

de degré 4 des types suivants :

(a) 10 ovales dont un seul est contenu dans un autre .

{(b) 10 ovales dont deux sont contenus dans. un troisiéme , les
autres étant sans relation d'inclusion .

(ec) 8 ovales dont trois seulement sont contenus dans un quatriéme,
les autres étant sans relation d'inclusion .

De plus les courbes (a) et (b) présentent une symétrie par rapport.

a un plan .

Démonstration :

(b) Soit C4,0,,C5 trois cercles de la sphére et.e1,e2,e3 trois
cercles. "perturbateurs” en pointillé sur la figure 5 .

Soit. K = C4CxC5 + 21919285 . On voit que la courhbe K=0 , qui est
trés proche de la courbe 010203=0 y & quatre composantes connexes
dont. une est "perturbée" . Sur la figure on a noireci la partie du.

plan inversif ou C4K <0 . .Ia courbe Cqk + & =0 avec & assez

petit , répond & la question .

G2




(a) M8me construction que (b) » mais eg, e2,'_e5 "perturbant"” 09.

(voir figure 4 ). ,il faut alors prendre & négatif .
(c) MEme démonstration ,mais e, et e, perturbent C, ,tandis que ez
’ -

perturbe C5 - On prend alors & négatif dans un petit cercle autour

de ez et positif ailleurs . [N

FIGURE 4 .

Dans toutes les configurations obtenues on peut diminuer le nombre
d'ovales en modifiant les dispositions des cercles . Grlce au lemme

on obtient :

FTHEOREME tOn peut construire par cette méthode 49 types différents

de sui'faces quartiques:

Rf:' + ng avec k+q £9 et kou g2

Rﬁ. + ng avec k 4 et q 3 3 Rg + i!-Rg
et aussi RY + Rg et deux sphéres concentriques .
REMARQUE :5i l'on admet l'assertion de Gudkov (c_£,‘[5] ) selon
laquelle les 31 types possibles de courbes. sphériques de degré 8
existent ,et que ces courhes ont des équations de degré 4 transverses
& la sphére, alors on peut construire TOUS les types de surfaces

quartigues : Rp +_ng avec k+q 9 , et les cas triviaux .
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PRIME IDEAL AND SIKORSKI EXTENSION THEOREMS FOR SOME ¢-GrRoOUPS

Daniel Gluschankof
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ABSTRACT. In the first part it is proved that the existence of prime
{-ideals in any &-group is equivalent to the Prime Ideal Theorem for
Boolean algebras (BPI). Moreover, the result implies that Birkhoff’'s
Representation Theorem BRT) for representable f-groups is equivalent to
BPI, which extends the analogous result of [FH] and [L] for f-rings. In
the second part, whose main theorem Iis equivalent with Sikorski
Extension Theorem (SET), we characterize the injective abelian #-groups
with strong unit.

1. EXISTENCE OF PRIME £-IDEALS IN ¢-GROUPS

For terminology and notations we refer to [BKW]. We shall work in
the axiomatic frame of Zermelo-Frinkel set theory (ZF) and explicitly
mention when BPI is added to the hypotheses of any theorem.

1.1. THEOREM. (BPI). Let G be an i-group, H a proper t-ideal,a € G\H.
There exists a prime subgroup P such that a ¢ P. In particular, there
exists a value of a.

1.2. COROLLARY. (BPIl). Let G be an abelian &-group, H a proper #-ideal,
a € G\H. There exists a prime f-ideal I such that a ¢ I and H < I.

1.3. COROLLARY. (BPI). Let G be a representable f-group, H a proper
{-ideal, a € G\H. There exists a prime f-ideal Fa which is maximal with
respect to the condition of not containing a.

Birkhoff’'s representation theorem for equational varieties (BRT)
(see [B]) states that in a given variety, any algebra can be represented
as a subdirect product of subdirectly irreducible algebras of the
variety. It was recently proved in [G] that in ZF BRT is equivalent to
AC. Since the non-constructive part in BRT involves, for each two given
different elements of the algebra a,b, finding a maximal congruence @
such that a and b are not congruent modulo 8 we can state the following.

1.4. THECREM. BPI implies BRT for the variety of representable {-groups.

To appear in extenso in the Proceedings arising from the workshop on
Ordered Algebralc Structures, August 1988, Kluwer Academic Publishers.



Since BRT implies the existence of such congruences we have the

1.5. THEOREM. In 2F are equivalent BPI and the statement "in any hyper-
archimedean {-group any proper i-ideal can be extended to a prime one”,

which implies the following:

1.6. COROLLARY. BPI is equivalent to BRI for the variety of
representable {-groups.

In [FH] and [L] it was proved that BPI is equivalent to BRT for the
variety of f-rings. Since any abelian f-group is representable and can
be also thought as an f-ring with the trivial product, we have that the
two results intersect for the variety of abelian I-groups.

To complete this first section we shall state two related results.

1.7. COROLLARY. (BPI). 1) Any hyper-archimedean &~group is lsomorphic to
a subdirect product of subgroups of R;

i1} Any archimedean &-group with strong unit is isomorphic to a
subdirect product of subgroups of R.

Observe that both results are well known but relying, for their
proof's, on Zorn,s Lemma, equivalent to AC (see [BKW]).

For the last result of the section, let’s recall a categorical
definition:

For a category €, an object A is injective if for any objects B and
C such that B is a subobject of C and an arrow f € Hom[B, 4] there exists
an arrow f € Hom[C, A] which extends f.

1.8. THEOREM. BPI is equivalent to the statement that R is Injective in
the category of hyper-archimedean {-groups and &-homomorphisms.

2. INJECTIVE ABELIAN ¢-GROUPS WITH STRONG UNIT

In the sequel we shall work in the category £%U of abelian f-groups
with strong unit. We shall consider the language of &-groups enriched by
the constant symbol u which shall represent the strong unit. We shall
denote one of those groups by G(u), pointing at the strong unit. The ho-
momorphisms shall be {-homomorphisms which preserve the strong unit.

2.1 THEOREM. In ZF the following statements are equivalent:
a) BPI;

b) In any group in ¥§U there exist prime #-ideals;

c)l In any group in ¥$U there exist maximal &-ideals;

d) R(1) is injective in ¥8.

Given a family (Gl(ul])ier S Ob(£5U), and an {-subgroup G of l'lGi

such that (ui)iEI € G, we denote by G*(ui)161 the é-group with strong

unit {g € 6 / 3n € N such that Igil = nu, for all i € I} and it is easy
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to prove that (HGl)‘(uiJIEI is the product of the family (G!(ul))iEI in
the category £§U. Making an abuse of notation, if G is an &-subgroup of
R' for some index set I, we shall denote by G’(l) the object of ¥5U with
underlying set {g € G / 3n € N such that Igll = n for all i € I}.

2.2. COROLLARY. (BPI). In ¥5U the products of copies of R(1) (in the
sense of the above stated remark) are injective ob jects.

For X a compact topological space, let G be an &-subgroup of D(X)
such that 1 (the constant map to 1) belongs to G. Consider the interval
[(0,1] € G, by defining =x = 1-x, we have a Boolean algebra structure in
the set B(G) = {x / x € {0,1] such that xv-x = 1 and xA+x = O}.

For a given compact space X we shall denote E(X.Ra) the &-group of
all continucus maps on X with values on the real line with the discrete
topoclogy. Observe that %(X,Rd)(i) and Q(X.Rd)*(l) denote the same object
in ¥54.

2.3. LEMMA. (BPI). Let G(1) be a complete and divisible &-group with
strong unit. If B € G a Boolean algebra which is subalgebra of B(G(1)),
then G is isomorphic to D($p(B(G)}) (1) « E(?p(ﬂtG)))‘(l)-

Cbserve that, for a complete f-group G ¢ rR* such that 1 € G are
equivalent the properties of being divisible and having all the constant
maps. Then we can state the following:

2.54 COROLLARY. (BPI). (Theorem of Stone-Weierstrass for £5U). If G(1)

is complete and has all the constant maps then it is isomorphic teo
#*

C(#p(B(G))) (1).

2.5. COROLLARY. (BPI). For any &-group with strong unit G(1), it is
complete and divisible (has all the constants) if and only if it is
isomorphic to €(X)*(1) for X extremally disconnected.

2.8. LEMMA. (BPI). The injective objects in ¥§U are archimedean.

For the last part we shall recall the statement of SET (see [S]):
Let B be a boolean subalgebra of a boolean algebra B’ and A a complete
boolean algebra. Any homomorphism f:B - A can be extended to all of B,

Now we can state our main result on Injectivity in #54:
2.7. THEOREM. In ZF the following statements are equivalent:

a) SET;
b) Complete and divisible groups are the injective objects in ¥%U.
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DE STURM A TARSKI OU DE L'ANALYSE DES EQUATIONS
A LA THEORIE DES MODELES. |

H. B. Sinaceur

Le théoréme d'algébre de Sturm fut présenté i I'Académie royale des sciences le 25 Mai
1829. Aprés un résumé [9] paru dans le Bulletin du baron de Férussac dont il était alors rédacteur,

Sturm publia un mémoire [10] qui constitue pour nous un document plus complet sur le théoréme.

Ce théoréme donne une méthode pour déterminer le nombre de racines réelles, comprises

entre deux nombres réels a et b, d'une équation polynomiale V=0 o V ala forme :
n n—1

X +ao X +...‘+ @G x+a.
Cette méthode consiste 3 calculer d'abord la dérivée V! , puis & appliquer l'algorithme
- d'Euclide pour trouver le p-g.c.d. (plus grand commun diviseur}de V et V'. On pose V' = V1 .
en sorte que V = V1 Q1 + R1 . On dévie alors de 1'emploi habituel de l'algorithme d'Euclide en
posant \/2=—R1 . On a donc V=V1 QI—V2.

On réitére 'opération avec V1 et V2 pour obtenir :



On recommence avec V2 et V3 et on poursuit le processus de division jusqu'd parvenir 4 un
reste Vr qui,si V et Vl n'ont pas de racine commune, cas auquel il est toujours possible de se
ramener, €st une constante numérique (l'indice r étant majoré par le degré de V). On obtient

ainsi le tableau :

V =V, Q,-V,
Vi =VyQy-V,
Vo =V3Q3-V,

-------------

La suite des fonctions polynomiales V Vl , V2 o Vr est communément appelée
"suite de Sturm", ou "chaine de Sturm" selon un usage introduit par Heinrich Weber dans le tome
T de son Lehrbuch der Algebra, § 91—95.

Etant donné deux nombres réels a, b, a < b, on écrit la suite S o des signes que
prennent les fonctions V, V1 A V2 y ey V y+ DOUr la valeur a ; et de méme la suite analogue Sb .
On compte le nombre Na, des variations de signe dans Sa , le nombre Nb des variations dans
Sb . On démontre que N - Nb est exactement le nombre de racines réelles de V = 0 comprises
entre a et b.

En son temps, ce théoréme fit, & lui tout seul, davantage pour la célébrité de Sturm que
tous ses travaux ultérieurs sur les équations différentielles du second ordre, dont 1'intérét ne fut
pergu que par la suite (théorie de Sturm—Liouville, & son tour mieux connue aujourd'hui de la
grande majorité des mathématiciens). La plupart des mathématiciens en furent trés impressionnés

et certains 1'accueillirent comme un "événement considérable". I figura aussitdt dans plusieurs

traités d'algebre et engendra dans les recherches de 1'époque ce que Sylvester appela un "cycle

-2~
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d'idées sturmiennes" c'est—3—dire un ensemble de travaux signés des plus grands noms (Sylvester,

Cayley, Hermite, et, plus tard, Kronecker).

I. DESCRIPTION DU CONTEXTE MATHEMATIQUE DE LA DECOUVERTE DE STURM.

1. Sturm a précisé que son résultat dérive de ses travaux sur les équations différentielles [11,12]. Il
Y @ donc chez lui une solidarité organique de méthode entre la résoluﬁon des équations
différentielles et celle des équations algébriques. Si la premiére fut guidée par une "analogie
algébrique " comme I'ont relevé certains historiens (2, p. 489], la seconde ne s'interdit, en principe,
aucun des concepts ou méthodes de l'analyse. Sturm fait la synthése entre un esprit
géométrico—analytique et un sens aigu de I'abstraction, définissant ainsi une approche qualitative
dans 1'étude de l'ensemble des solutions d'une équation différentielle [8, Qeuvres, 1,

P. XXI-XXII]. C'est peut étre la premiére fois dans 1'histoire aprés Leibniz que I'intuition
géométrique s'allie, non pas au caleul comme on le faisait traditionnellment depuis I'institution
par Descartes de la géométrie analytique, mais 3 une analyse formelle et a priori de situations

globales.

2. Sturm a reconnu sa dette envers Fourier [4], qui a trouvé, en partant de la régle des signes de
Descartes, une méthode pour majorer le nombre des racines réelles d'une équation algébrique.
Fourier applique Ia régle des signes non pas 4 la suite des coefficients de I'équation, mais 2 la suite
de ses fonctions différentielles. II fait ainsi basculer I'application de cette régle du cadre algébrique
qui était naturellement le sien & un cadre analytique ou interviennent les notions de fonction, de
fonction continue, de fonction différentielle, de variation infiniment petite, etc.. Et il utilise,
comme s'il 8'agissait d'une proposition évidente, le théoréme de Belzano, selon lequel toute
fonction continue et changeant de signe sur un intervalle réel s'annule au moins une fois sur cet
intervalle. Fourier apporte d'ailleurs une dimension théorique & sa méthode, en présentant la

résolution numérique des équations comme une application du calcul différentiel. Tirant la



conséquence du résultat d'Abel, connu en 1826, sur I'impossibilité d'une résolution algébrique pour
les équations de degré > 5, il fait dépendre le progrés de la résolution numérique des techniques
du calcul différentiel.

Sturm, ayant suivi les "principes" de Fourier et "imité" sa démonstration [9, p. 419],
participe naturellement de son esprit concordataire qui préne la collaboration des principes de
l'algébre avec ceux de 1'analyse et de la géométrie. La démonstration de son théoréme est inscrite
dans le cadre de ce qu'on appelait, au XIX* siécle, 1'"analyse algébrique", discipline qui indique
assez par son nom qu'on n'y concevait pas de séparation tranchée entre méthodes algébriques et

4

méthodes analytiques.

II. LA DEMONSTRATION DU THEOREME DE STURM.

I y a, malgré une parenté certaine de contenu, une grande différence de style entre Fourier
(4] et Sturm [10]. Si le premier montre son obstination & mener 'analyse cas par cas et 3 la
poursuivre jusqu'a parvenir au but, qui serait de connaitre la valeur numérique des racines réelles
des équations, le second pratique une analyse structurale, avec une aisance d'autant plus grande

qu'il a pu "étudier & loisir" le travail de Fourier avant sa publication.

1. Dans le théoréme de Fourier, I'application de la régle des signes de Descartes ne conduit pas &
un résultat univoque. Car la diminution du nombre de variations de signe, entre deux nombres
réels a < b, de la suite des fonctions différentielles f(m)(x), f(m_l)(x), ooy T'(x), f'(x), f(x) ne
correspond pas forcément & une racine réelle de I'équation f(x) = 0 ; il arrive, dans certaines
conditions, qu'elle corresponde & un couple de racines imaginaires, et ¢'est pourquoi Fourier
obtient seulement un majorant du nombre de racines réelles. En fait, Fourier doit accompagner
l'application de la régle des signes de nombreuses régles complémentaires, car il y a un seul cas ol

la diminution du nombre de variations de signe de la suite f(m)(x), f(m_l)(x), ey £1(x), £1{x), f(x)
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correspond univoquement & l'existence d'une racine réelle de f(x) = 0, c'est le cas ol pour une
valeur a de x ona:

f(a) = f(a) = 0 et ~1(a) = —i*+1) (5) |
Fourier constate la particularité de ce cas isolé dang la multiplicité des cas possibles; Sturm y voit
l'occasion de "forcer le destin". 1l décide a priori que les conditions réunies dans ce cas particulier
seront les conditions générales que devra satisfaire toute suite de fonctions dont on observera les
variations de signes. Il définit ainsi par la conjonction de quatre propriétés(l) un ensemble de
suites (les "suites de Sturm") dont chacune réalise la situation du cas particulier de Fourier : toute
diminution de variations de signe dans la suite correspond exactement 3 1'existence d'une facine
réelle de 1'équation proposée. I} s'agit d'une définition axiomatique avant la lettre, et, d'une fagon
générale, il n'est pas nécessaire de spécifier le mode de construction d'une suite particuliére ni,
a fortiori, d'analyser un A un les différents cas éventuellement ﬁroduits par c'ette construction.

C'est a priori, c'est—a—dire dés la définition, qu'on est assuré qu'une suite de Sturm permet de

dénombrer exactement le nombre de racines réelles d'une équation.

2. Sturm [10] procéde en deux temps : 1* / un exposé "naif" avec construction explicite d'une suite

de Sturm ; 2* / un exposé plus abstrait avec énoncé des quatre conditions nécessaires et suffisantes

(1) Ces propriétés sont donc, pour une suite V, V1 » Vo s V. et un intervalle [a,b) :

1. Si une fonction V; s'annule pour une valeur a de l'intervalie (a,b] ,
Vi—l (@) =~ Vi_|_1(0-’) ;
2. Au voisinage d'une valeur a de l'intervalle [a,b] telle que V(a)=0, V (x) ale méme

signe que V'(x) ;
3. Deux fonctions consécutives ne s'annulent pas pour une méme valeur de l'intervalle [a,b] ;
4. La fonction V (x) ne s'annule pour aucune valeur de l'intervalle [a,b] et conserve donc

un signe constant sur cet intervalle.



de 'existence, en général, d'une suite de Sturm. Or, pour construire explicitement une suite de
Sturm, I'auteur se sert, non plus de la différentiation répétée de la fonction donnée, mais de la
division euclidienne modifiée comme vu plus haut. C'est 13 le procédé algébrique
traditionnellement employé dans la recherche des racines multiples. Conjugué & la régle des signes,
il rouvre une perspective 4 laquelle Fourier a volontairement tourné le dos et renoue avec une
tradition ancienne, notamment illustrée par Lagrange : chercher, autant que possible, des
démonstrations algébriques pour les propositions relatives 3 la théorie des équations.

Sturm n'a lui-méme aucunement souligné cette conséquence épistémologique de son usage
de I'algorithme d'Euclide & la place des différentiations successives. D'ailleurs, fidéle non
seulement & Fourier mais & toute 'école d'analyse du début du XIX* siécle, il pense naturellement
en termes de fonction, de fonction continue, de variation "par degrés insensibles", et utilise
constamment, sans en mettre 1'évidence en question, le théoréme de Bolzano. Mais d'autres
mathématiciens s'apercevront que ces notions fondamentales de 1'analyse ne sont pas essentielles 3
la démonstration du théoréme de Sturm et que celle—ci peut aussi bien étre faite dans le cadre de

I'algebre des polynémes, ol 1'on dispose d'une version algébrique du théoréme de Bolza,no(l).

3. Historiquement, cette interprétation algébrique de la démonstration du théoréme de Sturm a
été faite de trois fagons différentes. En premier lieu, Ch. Hermite [5] et J.J. Sylvester [13] ont
généralisé le théoréme de Sturm au cas de plusieurs équations inconnues en en montrant le rapport
avec la théorie de I'élimination algébrique et la théorie des formes quadratiques. Ils ont 1'un et
l'autre insisté sur le fait que leurs démonstrations reposent "entiérement et uniquement" sur des
notions purement algébriques. En deuxiéme lieu, la construction par E. Artin et O. Schreier de

I'algébre réelle [1] fournit enfin un fondement algébrique général & la théorie des équations et des

(1) Connue sous le nom de "théoréme du changement de signe" ou de "théoréme des valeurs
intermeédiaires”, elle énonce que si un polynéme P change de signe entre deux valeurs réelles

a < b, alors il existe une valeur c € [a,b] telle que P(c) =0.
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inégalités. Le théoréme de Sturm, aussi bien que d'autres propositions de 1'analyse
réelle (théoréme de Rolle, théoréme des accroissements finis, etc.), sont formulés et démontrés
dans le cadre de I'axiomatique algébrique des corps réels clos. A. Tarski, enfin, définit la méthode
d'élimination des quantificateurs pour la théorie élémentaire du corps ordonné des nombres réels
et des corps réels clos, en généralisant le théoréme de Sturm 3 des systémes mixtes comprenant &
la fois des équations et inégalités [14,15]. Tout en insistant beaucoup sur la possibilité offerte par
I'algorithme d'Euclide de construire des fonctions de Sturm par des "moyens purement
algébriques", Tarski ne songe guére & rapprocher le théoréme de Sturm des procédures classiques
de I'élimination algébrique comme, par exemple, le calcul du résultant de deux ou plusieurs
polyndmes. Aujourd'hui, on connait mieux, grace a certains travaux d'Abraham Robinson, le
parallélisme entre corps réels clos et corps algébriquement clos et le fait que le théoréme de Sturm
remplit, dans le premier cas, 1'office que le théoréme sur le résﬁltant (ou le théoréme des zéros de
Hilbert) remplit dans le second.

Nous laisserons de c6té la transformation du théoréme de Sturm par Hermite et Sylvester
et l'algébre réelle d'Artin et Schreier pour nous intéresser a la méthode d'élimination des

quantificateurs de Tarski.

III. LA METHODE D'ELIMINATION DES QUANTIFICATEURS DE TARSKI.

Elle est définie dans le fameux mémoire sur la complétude et la décidabilité de l'algébre et
de la géométire élémentaires dont il est intéressant, du point de vue historique, d'étudier les deux

versions sucessives [14 et 15].

1. Deux sources semblent s'étre conjuguées pour donner naissance & la généralisation par Tarski du
théoréme de Sturm & des systémes mixtes d'équations et d'inégalités. D'une part, les termes dans

lesquels Hilbert et Ackermann [6, p. 72—81] posérent le probléme de la décidabilité et 'atmosphére



générale des recherches logiques dans leur école accordaient une place particuliére 3 l'arithmétique
et aux méthodes numériques. Tarski [15] rappelle, en introduction le role de Hilbert qui cherchait
& traiter les formules logiques d'une "fagon numérique qui correspondrait & peu prés i la théorie
des équations en algébre". L'analogie de la résolution numérique des équations algébriques était
donc bien claire. D'autre part, Tarski s'est intéressé en particulier an résultat de Langford [7] sur
la décidabilité de la théorie élémentaire des ordres linéaires denses. Dans son séminaire de
1'Université de Varsovie on s'occupe notamment [17, 159—160] d'étendre le résultat de Langford
aux ordres discrets. Or Langford considére un langage avec deux symboles de relations primitives,
le symbole de 1'égalité et celui de 1'ordre, les formules atomiques étant du type x =y ou'x>y.
La théorie élémentaire de l'ensemble ordonné des nombres réels peut naturellement étre formulée
dans ce langage. Et pour formuler la théorie élémentaire du corps ordonné des nombres réels, il
suffit de I'enrichir en ajoutant des symboles pour les quatre opérations rationnelles (en fait Tarski

se contente de l'addition, de la soustraction et de la multiplication).

2. 11 est clair, surtout dans [15] qui définit formellement les notions de polynéme, de degré, de
dérivée, de racine multiple, que Tarski voulait construire un "systéme d'algébre de réels" oii 1'on
ptt formuler ou transposer "des parties importantes" de I'algébre des polynoémes. La notion de
fonction continue est trop large pour ses besoins ; en particulier, avant d'adopter I'axiomatique
d'Artin et Schreier en 1951, Tarski choisit, dans la premiére version de son mémoire [14], un
systéme d'axiomes parmi lesquels figure la version algébrique du théoréme de Bolzano,
c'est—a—dire le théoréme des valeurs intermédiaires (axiome XVII'). C'est pourquoi Tarski se sert
du théoréme de Sturm d'une facon qui en élimine tous les aspects non algébrigues. Il donne un
relief particulier 3 la construction de la chaine de Sturm par division euclidienne et souligne que
son lemme d'élimination des quantificateurs se "réduit", sur le plan mathématique, 4 la possiblité
de fournir "un critére (une condition nécessaire et suffisante) purement algébrique permettant de
constater que toutes les équations et inégalités (considérées) possédent au moins une solution
réelle commune" (14, Traduction francaise, p. 218]. Ainsi I'existence d'un critére algébrique pour

Vexistence d'une solution réelle commune aux équations et inégalités d'un systéme mixte est
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I'indice mathématique de l'existence d'une procédure métamathématique d'élimination des
quantificateurs. Le théoréme de Sturm est, en f: it, une procédure d'élimination des
quantificateurs, et sa validité dans la théorie élémentaire des corps réels clos montre que cette
théorie admet 1'élimination des quantificateurs. Le parallélisme entre élimination des
quantificateurs et élimination algébrique est donc mis en évidence sans considération des
procédures d'€limination algébrique pour les corps algébriquement clos. Il reviendra & Robinson de

combler cette lacune.
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Corps p-valués différentiels de caractéristique 0

C. Michaux

Apres que I’existence d’une modele-complétion pour les corps différentiels de
caractéristique 0 ait été prouvée d’abord par A. Robinson (voir [Robinson 1959])
puis axiomatisée par L. Blum de fagon beaucoup plus simple (voir [Blum 1968]),
plusieurs résultats sur la théorie des modeles des corps différentiels parurent:
citons entre autres ceux de C. Wood [Wood 1973, 1974, 1976] oi: I’existence d’une
modeéle-complétion pour les corps différentiellement parfaits de caractéristique
p # 0 est prouvée et ceux de M. Singer [Singer 1978a, 1978b] qui prouvent
I’existence d’une modéle- complétion pour les corps ordonnés différentiels.

Plus récemment les corps valués différentiels ont été étudiés par M. Rosen-
licht [Rosenlicht 1979, 80, 81] en liaison avec 1’étude des corps de Hardy.

Dans cette note, nous prouvons 'existence d’une modéle-complétion pour les
corps p-valués différentiels de caractéristique 0 et en donnons une axiomatisation
a la “maniére de Blum”.

Nous ne donnerons pas ici le détail de la preuve qui sera publiée ultérieurement.

Un corps valué différentiel est un corps valué muni d’une dérivation. Dans
un premier temps, nous introduisons la notion de corps hensélien différentiel,
c’est~a-dire un corps K valué différentiel, hensélien dans le sens ordinaire du
terme et satisfaisant le schéma S d’axiomes suivants (nous notons val(a), la
valuation d’un élément a € K):
pour tout polynéme différentiel f(X,X",..., X ("‘)) a coefficients dans I’anneau
Og de valuation de K

(Beo,...,an € OK)(VaI(E-}%—'([,T,(ao,...,an)) = 0 et flag,...,an) = 0)) =

((Ve)(32) (f(z,...,2")) = 0 A /n\((a; # 0 A val(z!)) = val(es)) V (s = 0 A
val(z{") > val(e)))). -



Approximativement cet axiome dit que s’il existe une solution ag,..., o,
pour 'équation polynomiale f (Xo,...,X,) = 0, alors il existe une solution
différentielle proche de gy,
On peut montrer que cette théorie est consistante (voir Michaux 1989).
Un corps p-valué de caractéristique 0 est constitué d’un corps F de ca-
ractéristique 0, d’un Z-groupe G (c’est-3~dire un groupe ordonné abélien avec un
plus petit élément noté 1, qui vérifie I’axiome suivant (Vz)(Fy)(3z)(z = ny + 2
et 0 < z < n); - la théorie des Z-groupes est une théorie modeéle-compléte), une
valuation val : F — @, un élément p € F, une “cross section” y : G — F telle
que val(xg} = g et x1 = p. En plus, F, le corps résiduell de F est Fj, le corps &
p-éléments.
On peut montrer que la théorie des corps p-valués henséliens de caractéristique 0
est la modele-complétion des corps p-valués de caractéristique O (voir [Robinson
1968] ou [Ax-Kochen 1966]).

Un corps p-valué différentiel de caractéristique O est un corps p-valué de
caractéristique O muni d’une dérivation. Cette théorie peut étre axiomatisée de
fagon universelle.

On montre alors:

Théordme. La théorie des corps p-valués différentiels de caractéristique 0
qui sont henséliens différentiels est la modele-complétion de la théorie des corps

p-valués différentiels de caractéristique 0.
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CARACTERISTIQUE DE G. W. LEIBNIZ ET THEORIE DES MODRLES
SELON A. ROBINSON.

H. B. Sinaceur

Résumé.

Dans un article nécrologique sur Abraham Robinson, Simon Kochen [4] consignait une
impression de Godel que je voudrais mettre & I'épreuve de I'histoire. Godel, qui s'intéressait
beaucoup aux travaux et i la philosophie de Leibniz, voyait dans les résultats d'Abraham
Robinson la meilleure réalisation de 1'idéal leibnizien d'une logique constituée en ars inveniendi
pour les mathématiques. Ce Jjugement concorde avec la volonté de Robinson, manifeste dans ses
premiers articles [10, 11, 12, de faire de la logique "un instrument efficace de recherche
mathématique". Le but de l'exposé est d'établir un paralléle entre 1'idée d'art d'inventer chez
Leibniz ef 1a conception que Robinson a concrétisée dans la théorie des modéles, en invoquant

lui-méme le patronage de Leibniz [10, 694).

L. QU'EST-CE—QUE L'ART D'INVENTER ?

Leibniz distingue l'art d'inventer de 1'art de démontrer. Si celui—ci permet d'établir avec
certitude des vérités "connues confusément et imparfaiterment", celui—13 permet de "dévoiler" des
vérités inconnues. Leibniz décrit 'art d'inventer comme une sorte de fil d'Ariane "qui dirige la

recherche" et permet non seulement de trouver un résultat mais surtout de le prévoir [7, 161).



Inventer c'est donc moins donner des solutions particuliéres qu'établir des méthodes générales.
L'idée de "caractéristique", c'est—a—dire de langage symbolique, joue un réle primordial
dans l'art d'inventer. Les "caractéres” ou symboles du langage, qui représentent les éléments de
nos pensées, fonctionnent simultanément comme des aiguillons pour l'esprit ; ils le poussent &
"concevoir des notions universelles" [5, V, 269]. Trouver une méthode c'est trouver "une régle de
passage d'une pensée & une autre" et donc une régle de passage d'un caractére & un autre. Il y a la,
bien siir, 1'idée de calcul symbolique, qualifié par Leibniz de "calcul universel", susceptible
d'interprétations diverses, algébrique, géométrique, logique, musicale, cryptographique, etc. [5, IV,
459-460]. Mai il y a surtout l'idée que 'activité symbohque se développe selon la double polarité
du formel et du concret, du général et du spécial, de la méthode et de ses "échantillons", de la
théorie et de ses modeéles [8]. C'est pourquoi, si le "calcul universel” représente le but de l'art
d'inventer ou, comme dit Leibniz, sa "derniére perfection", il ﬁ'en épuise cependant pas toutes les
ressources [6, VII, 169]. Certaines de celles—ci sont contenues dans une analyse de la
caractéristique elle—méme qui, de mode d'expression privilégié, devient objet d'étude.
Intéressons—nous, par exemple, aux régles du calcul algébrique plutdt qu'a ses éléments, les

quantités finies, et nous serons préts d'inventer, comme 1'a fait Leibniz, I'analyse infinie. Leibniz a
insisté sur le fait que I'invention du calcul infinitésimal était une application de son idée de
caractéristique universelle. De méme sa conception des "nombres fictifs" pour représenter les
coefficients des équations d'un systéme de plusieurs équations 1'a conduit 3 préfigurer notre
¢criture actuelle des déterminants [3]. De méme encore 1'analogie symbolique qu'il reléve entre le
développement d'une puissance d'un bindme et le développement de la, différentielle d'un produit
de deux facteurs [5, V, 377-381], lui fait voir le parallélisme des langages du calcul algébrique et
du calcul différentiel. On a bien 13, en germe, la démarche propre 4 la théorie des modéles :
constituer une métathéorie de théories mathématiques différentes par I'analyse de leurs langages.

| Comme dans la théorie des modéles 3 ses débuts 1'algébre tient une place particuliére dans
I'art d'inventer de Leibniz. C'est qu'elle est 1'échantillon par excellence de la caractéristique. Elle
nous habitue d'entrée de jeu & l'indétermination des signes, et nous pousse 4 concevoir par la

généralisation des signes ambigus représentant simultanément diverses opérations ou par analogie
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des signes représentant autre chose que des nombres : points, relations, quantités ou qualités de
propositions logiques, etc.. Elle nous enseigne ainsi I'art de la généralité et de I'analogie, essentiel
pour former ce que Leibniz appelle la "méthode de 'universalité". Bien qu'elle ne soit ni le tout
des mathématiques ni méme la voie royale de l'invention, 1'algébre joue un role inducteur
remarquable. Ce n'est pas qu'il faille introduire l'algébre partout ; par exemple, pour la géométirie
il vaut mieux raisonner directement sur les positions et les figures que par l'intermédiaire des
nombres ; mais on doit établir, autant que faire se peut, des "formules universelles" analogues &

celles de la résolution des équations afin de formaliser et généraliser les raisonnements [5,11,229].

II. CARACTERISTIQUE ET THEORIE DES MODELES.

A premiére vue, il y a un certain paradoxe 3 rapprocher la théorie des modéles de la
caractéristique leibnizienne dans la mesure ot celle—ci était congue pour étre universelle. Or, on
sait bien que la théorie des modéles a tiré la lecon du paradoxe de Richard (1905) et des théorémes
d'incomplétude de Godel (1931), qui montrent qu'on ne peut concilier les exigences d'une langue
exacte avec celles d'une langue universelle. Mais il y a chez Leibniz une ambition de principe et
une position de fait. L'institution d'une caractéristique universelle étant une "perfection”
irréalisable d'un seul coup, Leibniz ne se prive pas, ici et maintenant, d'analyser les notations
existantes, d'en introduire de nouvelles, de mettre en évidence des analogies formelles, car il faut
d'abord "avancer nos connaissances".

Les écrits d'A. Robinson ne laissent pas supposer une lecture de 'oeuvre de Leibniz en
dehors de quelques textes relatifs a la justification du calcul infinitésimal, cités dans [16] ou [17] et-
de la lettre & Huyghens citée dans [10]. Cependant ils sont parcourus par une réflexion explicite
sﬁr l'art de I'analogie et de la généralité, ancrée, dans un premier temps, dans 1'étude des
structures algébriques. L'analyse logique de celles—¢i doit conduire & en subordonner la mutiplicité
a des principes généraux qui révéleront 1'identité formelle de structures analogues. C'est ainsi

qu'on découvre les "théorémes métamathématiques de 1'algébre" [9; 9], c'est—a—dire des



théorémes algébriques découverts par des méthodes logiques. Au premier rang de ceux—ci
viennent les fameux principes de transfert comme celui de Tarski—Seidenberg. Mais il y a aussi
Iinvention de concepts nouveaux, comme celui de cloture différentielle [13], analogue pour un
corps différentiel de la cloture algébrique d'un corps et de la cléture réelle d'un corps ordonné. Les
trois clotures sont, en fait, des échantillons de la notion logique de modéle—complétion d'une
théorie [14 ; 5.5., 128—136]. Bref on voit comment la logique est bien devenue un art, d'inventer
des mathématiques : en faisant de l'analyse du langage mathématique une méthode systématique
de découvertes d'une généralité inaccessible par un autre moyen.

Pour justifier I'invention de calculs nouveaux Leibniz avait recours aux "fictions" ou
"notions idéales" dont 1'usage est autorisé pour abréger le discours et faciliter la découverte [5;
1V, 9293, 98, 110]. Par exemple, les infiniment petits, dont il est difficile de décider s'ils
correspondent & des entités existant actuellement ou potentieliement, ont le statut de fictions. Ce
statut spécial permet de laisser (provisoirement) de c6té les discussions philosophiques sur
P'existence de 1'infini pour libérer I'imagination mathématique. On reconnaitra dans une telle
attitude une disposition générale du formalisme mathématique. Robinson y a consacré quelques
réflexions, peut—étre & partir de ce qu'il avait lu de Leibniz, mais aussi et surtout a partir des
discussions soulevées par le fameux article de Hilbert [2]. Pour lui, seul un point de vue formaliste
permet d'accepter les entités symboliques ou les théories abstraites, ¢'est—a—dire celles dont
l'interprétation, indirecte faute d'un modeéle fini, extrapole du fini  'infini. Ces entités ou théories
abstraites sont un élément essentiel de la production mathématique, qui se multiplie dans ce
va—et—vient entre fini et infini. Elles ont bien pour ancétres les "fictions" de Leibniz, mais
seulement d'une certaine fagon. Car, contrairement i Leibniz, Robinson ne distingue pas, parmi
les notions mathématiques, les réelles des imaginaires. Du point de vue ontologique, elles ont,
toutes le méme mode d'existence. Par exemple, un infiniment petit d'un modéle non standard
n'est "ni plus ni moins réel", ni plus ni moins fictif qu'un irrationnel standard [16 ; 281-282].
Robinson se sépare de Leibniz et de tous ceux qui associent, de quelque fagon que ce soit,
formalisme mathématique et réalisme métaphysique [18]. Le formalisme se soutient de lui~méme,

par ses résultats, il n'a besoin du réalisme ni comme repoussoir ni comme appui. Nous
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n'admettons les processus infinitaires ni malgré leur absence de "réalité", comme le voulait
Leibniz, ni 3 cause de leur "réalité" comme le prétendent les adeptes de l'infini actuel. De fait,
nous les admettons parce qu'ils sont un prolongement fécond de processus finis, et parce que les
refuser c'est couper les ailes 3 V'invention mathématique. La logique ne saurait pas davantage s'en
passer que les mathématiques abstraites. Celles—ci nous ont suffisamment persuadés de leur
puissance générative. A son tour, la théorie des modéles nous montre la puissance générative des
concepts ou méthodes métamathématiques. L'analyse du langage d'expression des modéles

mathématiques est un produit "naturel" [12 ; 51] du formalisme des mathématiques modernes.

4
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INTRODUCTION.

We propose here axiomatizations written in the language of fieids, the
models of which are Rolle fields (i.e. fields with the Rolle's property for
every order) having exactly 2" orders (n = 0 ). In fact, for n=0 we
obtain an axiomatization of the theory of real-closed ‘fields ; for n =1, we
get exatly the axiomatizations given for the theory of chain-closed fields by
the author in [Gl].

In fields having a finite number of orders, we characterize Rolle fields
as those which are pythagorean at level 4 and do not admit any algebraic
extension of odd degree. In the more general setting, we characterize Rolle
fields as real fields, pythagorean at level 4 , such that K does not admit
any algebraic extension of odd degree and K® is a fan.

We also give the lattice of algebraic extensions of a Rolle field having
exactly 2" orders and prove that such a field K is the intersection of
n + 1 real closures of K .

Finally we make a study of chainable Rolle fields, where chainable is
equivalent, as we have shown in a previous paper, to the existence in K of

an element o such that «° is not a sum of fourth powers in K .



O-RESULTATS PRELIMINAIRES.

Dans tout cet article K désignera un corps commutatif et on notera par

4]
Y K? I’ensemble de toutes les sommes d’un nombre fini de puissances 2"-émes.

L'axiomatisation, dans le langage des anneaux enrichi d’un symbole
de constante o , de la théorie des corps chaine-clos a-chainables donnée
dans [Gl] me parait devoir trouver sa généralisation en ajoutant. nzo0
symboles de constante o au langage des anneaux sous la forme suivante :
1- axiomes de corps commutatif ordonnable ( noté ensuite K ) H
2- K est pythagoricien au niveau 4 ( ¥x Vy 3z x' + y‘ =z )};

3- aucun des 2" - 1 produits de « distincts ( notés désormais 8 ;)

n’appartient a % ¥ K® :
4- pour tout 71 =3 BJ , "axiome :
VxVyEIz(x2+'a'jy2=zzvx2+71y2=7122);

1 2 .
™1 classes : K . -Kz. alKZ. -aIK , ocsz, -or.zK .

5- K est la réunion de 2
n n
2 2 2 2
o aloczK . -—aluzl( S , sglai) K*, -[l;flul) K°;

6- tout polynéme de degré impair a une racine dans K .

Remarquons que ce systéme d’'axiomes peut étre écrit dans le langage des
corps : il suffit de remplacer les axiomes 3, 4 et S par un axiome disant

qu’il existe des a satisfaisant les axiomes 3, 4, et 5.

Avant de montrer que les modéles de ces théories sont les corps de Rolle
ayant un nombre fini ( 2" avec n = O ) d’ordres et d’étudier ceux-ci il

convient de rappeler un certain nombre de définitions et résultats connus.
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Définition 0.1. ([Dell]). Un corps ordonné K est un corps de Rolle s’il a la
propriété de Rolle (i.e. pour tout polyndéme P e KI[X] et pour
tous a < b dans K vérifiant P(a) = P(b) = 0 , 1l existe
ceK , a<c<b tel que si P est la dérivée formelle

de P, on alt P'(c) = 0 ).

Proposition 0.2, ([B-C-P2]). Si K a la propriété de Rolle pour un ordre

alors il a la propriété de Rolle pour tous ses ordres.

Cette proposition 0-2 résulte en fait de la suivante :

Proposition 0.3. ([B-C-P2]). Un corps K est de Rolle si et seulement si il
existe une valuation hensélienne v sur K telle que le
corps résiduel kv soit réel-clos et le groupe des valeurs
vK soit m-divisible pour tout entier m impair (nous

dirons désormais impair-divisible).

Notation. Dans la suite on notera V(K) I’ensemble des valuations ayant

les propriétés de la proposition 0-3.

Proposition 0.4. ([B-C-Pll}. Si K est un corps de Rolle alors :
(i) K est héréditairement pythagoricien ;

(ii) K est superpythagoricien .

Un corps ordonnable est dit héréditairement pythagoricien s'il est
pythagoricien, et si toute extension algébrique ordonnable de ce corps est

aussi un corps pythagoricien.



Rappelons qu'un corps superpythagoricien est un corps ol K® est un f an.
Un fan (voir [Be2] par exemple) est un préordre T (T+TS€T, T.T<T,
Oetlsontdans T, -1¢&¢ T, T' est un sous groupe de K. } tel que pour
tout sous-groupe U de K =K - {0} contenant T et tel que -1¢ U, le
sous~groupe U soit additivement fermé.

On dit aussi d’un corps K superpythagoricien qu’il est strictement
pythagoricten ; cette derniére notion se généralise au niveau 2" . un corps

n

K est 2"-strictement pythagoricien si K® est un fan (c.f. [Be2] ).

Enfin un corps K pythagoricien au niveau 2" est tel que

n n n
2

Z Lk = K . Un corps 2"-strictement pythagoricien est bien sir

K
pythagoricien au niveau 2" .
Précisons pour terminer que K superordonné signifie que ¥ K® est un

fan, mais K n'est pas nécessairement pythagoricien.

Proposition 0.5. ([B-C-P 2j). Si K est un corps de Rolle alors :
(i) K n’admet pas d’extension algébrique de degré impair ;

(ii) Toute extension algébrique ordonnable de K est un

corps de Rolle.

Proposition 0.6. ({B-C-P 1]). Si K est un corps ayant p ordres, alors K
est un corps de Rolle si et seulement si K admet 2p-1
extensions minimales et K admet une seule place réelle

(i. e. une seule R-place).

Proposition 0.7. {[Las2]). Soit K un corps de Rolle et v une valuation de
V(K) , alors K a exactement 2" ordres si et seulement si

la dimension de vK / 2vK comme l-'z—espace vectoriel est n .
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Notation. Dans la suite nous désignerons par M(K) 1'ensemble des places

réelles (i.e. R-places) du corps K.

Signalons que dans [Del]l ou [De2] on trouvera plusieurs résultats de
théorie des modéles des corps de Rolle, notamment le fait qu'étre un corps de
Rolle est une propriété du premier ordre dans le langage des anneaux et que la
théorie des corps de Rolle est décidable.

Dans [J] on pourra également trouver comme cas particulier des résultats

sur les corps de Rolle. )

Exemples. Des exemples simples de corps de Rolle sont donnés par les corps
réels-clos et les corps chaine-clos. Un autre exemple 'd0 4 F. Delon est donné
par les corps de séries formelles généralisées K = R((G)) ol R est un
corps réel-clos et G est un groupe abélien ordonné impair-divisible ; le
nombre des ordres de K est alors égal a 2! ou d désigne la dimension de

G comme Fz-espace vectoriel,



I-THEORIE DES CORPS DE ROLLE AYANT UN NOMBRE FINI D'ORDRES.

Théoréme 1.1. Un corps K est un corps de Rolle ayant exactement 2" ( avec
n 2 0 ) ordres si et seulement si c’est un modéle de la théorie
suivante (écrite dans le langage des anneaux) et notée Tn H

(i) axiomes de corps commutatif ordonnable ( noté ensuite K ) 5

(ii) K est pythagoricien au niveau 4 ( ¥x ¥y 3z x° + y‘ =z');

(iii) il existe dans K n éléments « tels que :

1) aucun des 2" -1 produits de « : distincts n’appartient 2 t ¥ K®

2) K est la réunion de 2" classes : K?, -K%, ale, -aIKz, cszz, -aZKZ,

n n
...... i alasz, - ocsz, =, {Elal) K® , _{Exmi) K ;

(iv) tout polynéme de degré impair a une racine dans K .

Remarquons que pour n = 0 on retrouve bien une axiomatisation des corps
réels-clos ( K corps commutatif ordonnable tel que K est la réunion
de K° et de - K2 » K n’admet pas d'extension algébrique de degré impair
et K pythagoricien au niveau 4 (qui équivaut ici &4 K pythagoricien au
: 2 2 . 2 3
niveau 2 car K =K" v - K° montre que si x € K° alors x € K' donc que
K? = k* ). Pour n =1 on trouve une des axiomatisations des corps
chaine-clos que nous avons donnée dans [G1] & la remarque suivant le théoréme

3 , ce qui rejoint le résultat de [Di] disant que les corps chaine-clos sont

les corps de Rolle avec exactement deux ordres.

" Le théoréme résulte immédiatement des deux lemmes a et b démontrés ci-dessous.
Lemme a. les corps de Rolle ayant exactement 2" ordrec sont des modéles

de la théorie Tn .
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Démonstration du lemme a.

Les corps de Rolle sont évidemment des corps ordonnables par définition
méme. Ils sont pythagoriciens au niveau 4 {et donc aussi au niveau 2
puisque ordonnables, c.f. [H] ) : il suffit d’appliquer le lemme 1 de [D-G]
qui caractérise les éléments qui sont une puissance 2" dans un corps
admettant une valuation hensélienne telle que le corps des restes soit
réel-clos ; (démonstration : soit v une valuation hensélienne & corps
des restes réel-clos, considérons x* + y‘ y si v(x) = v(y) alors on a
x4 y4 = x* (1 + (y/x)" ) , les éléments de la parenthése sont des restes .

dans un corps réel-clos et leur somme est donc une puissance quatriéme ; si

v(ix) # v(y) , alors x* + y" « x* par exemple et 4 | v(x4+y4) ) .les axiomes

(i) et (ii) sont donc satisfaits.

Un corps de Rolle ayant 2" ordres est tel que si v € V(K) la dimension
de vK/2vK , considéré comme Fz-espace vectoriel, est n (d’aprés la
proposition 0-7). Si ( El e En ) est une base de vK/2vK , soient

g € vK tels que gl/ZVK = g , et sojent kl e K tels que v(k,) =g -
Les kl obtenus satisfont les propriétés imposées aux o des axiomes
énoncés ci-dessus. En effet les 2" ordres de K sont déterminés par une
condition de signe sur les n éléments kl donc aucun produit de kl
distincts n’appartient & * K° . Enfin un corps de Rolle est
superpythagoricien, donc K> est un fan et K ayant 2" ordres | K s x* |
vaut 2™ ; K satisfait donc bien les axiomes de (iii) 1) et 2) .,

Un corps de Rolle n'admettant aucune extension algébrique de degré impair

le dernier axiome (iv) est lui aussi satisfait.

Lemme b. Tout modéle de Tn est un corps de Rolle ayant exactement 2"

ordres.

Démonstration du lemme b.



Soit K un modéle de Tn ; le corps K n'admettant pas d'extension
algébrique de degré impair, alors toute extension finie .non triviale contient
une extension quadratique (voir la preuve de la prop. 5 de [D-G]) ; les
extensions minimales de K sont donc les extensions quadratiques.

K étant ordonnable et pythagoricien au niveau 4 est aussi pythagoricien
a tout niveau 2" ( [HI cor. 2-4 ) ; montrons que le préordre K® est un fan
donc que K est superpythagoricien : pour cela on utilise que le nombre de
classes modulo K° étant fini, K n’admet qu'un nombre f ini d’ordres ; K
ayant un nombre fini d’ordres alors K admet un nombre fini de places réelles .
(c.f. la surjection de Xk I'ensemble des ordres de K sur M(K) , voir
par exemple [L2) page 73 ).

K étant pythagoricien au niveau 2" pour tout n et [M(K)| étant fini
on en déduit par le résultat de Harman ([H]} cor.2-9) que K est strictement
pythagoricien 4 tout niveau 2" (donc en particulier que K est
superpythagoricien } et que K n’admet qu'une seule place réelle.

Il suffit de compter les extensions minimales dont on sait qu'elles sont
ici les extensions quadratiques : il y en a clairement 2" W d’apreés les
axiomes (iii) ; on dénombre ensuite les ordres de K : le nombre de classes
modulo les carrés étant 2™ et K2 étant un fan , K admet exactement 2"
ordres ([L2]} p. 129 par exemple).

On utilise alors la proposition 0-6 caractérisant les corps Rolle pour
_ conclure : le modéle K de Tn ayant 2" ordres, ayant une seule place
réelle et admettant exactement 2" - 1 extensions minimales est un corps de

Rolle.

Remarque. Si on supprime 1’axiome (iii) 1) du théoréme I-1 on obtient une

axiomatisation des corps de Rolle ayant au plus 2" ordres.
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Le corollaire suivant donnera Ilui une axiomatisation des corps de Rolle
ayant exactement 2" ordres avec n = 1 , c'est & dire des corps de Rolle
qui sont des corps chainables ; car les corps de Rolle étant pythagoriciens a
tout niveau, dés qu'il existe une constante « n'appartenant pas a4 % K®
alors on a automatiquement que «® n'est pas une somme de puissances
quatriémes dans K donc que le corps K est chainable, et méme bien

chainable et a-chainable au sens de [G2].

Corollaire 1.2. Un corps K est un corps de Rolle ayant exactement 2" ( ou
ici n 2 1) ordres si et seulement si c’est un modéle de la
théorie suivante (dans le langage des anneaux) notée T; g

(a) axtomes de corps commutatif ( noté ensuite K ) ;

]
N
]
N
-

(b) K est pythagoricien au niveau 2 ( Vx Vy 3z x2 + y2
(¢) K est pythagoricien au niveau 4 ( ¥x Yy 3z x4 y4 =z );
(d) tl existe dans K n éléments @ tels que :
1) aucun des 2" - 1 produits de « . distincts (notés désormais BJ )
n’appartient 4 * ¥ K® ;
2) pour tout a'J = # 3] , ' axiome :
2

Vx Vy 3z xz+7jy2=zz v x2+7,y2=712:

3) K est la réunion de 2'“1 classes : Kz, -KZ, ale, —acII{z, aZKz, —asz,
n n

2 2 2 2

veerres alazK R alazk b Feecw, {glal) K, {Elal) K ;

(e) tout polynéme de degré impair a une racine dans K .

Démonstration.
Un corps de Rolle ayant 2" ordres satisfait ces axiomes car le théoréme

I-1 montre que (a), {c), (d) 1) et 3), et (e) sont vérifiés ; il suffit alors



d’utiliser le fait que K de Rolle est superpythagoricien et que donc K?
est un fan pour démontrer (d) 2) : dans [Br] on trouve en effet la
caractérisation suivante des fans " un préordre T est un fan si est
seulement si pour tout a telque -a¢T ona: T+aT=TuvaT " qui
donne immédiatement le résultat.

Réciproquement i{ suffit de montrer qu'un modéle de T; satisfait les
axiomes du théoréme I-1. Pour cela il suffit de vérifier que le corps K est
ordonnable ; puisque ici n = 1, il existe un élément « dans K tel que
« ¢ * K2 ; si le corps K n’était pas ordonnable, - 1 serait une somme de ’
carrés et donc un carré dans K ; alors on peut montrer que 1'élément
- 1 + « n'appartient pas a K> ua K> ce qui est impossible d’aprés (d) 2) ;
en effet si - 1+ a = x° , alors « = x° + 1 serait un carré dans K ce

qu'il n'est pas ; si -1+ &« = a x> alors -1=a (%%

-1), s -1 est
un carré alors x- - 1 est aussi un carré (qui ne peut étre nul en raison de
Pégalité ci-dessus) on obtiendrait alors a« = -1 ( x* -1} ! = - yz ce qui

est aussi impossible.

Théoréme 1.3. Soit K un corps ayant un nombre Fini, supérieur ou égal 4 1
d’ordres ; alors les propriétés suivantes sont équivalentes :
(i) K est un corps de Rolle ;
(ii) K est pythagoricien au niveau 4 et n’admet pas d’extension algébrique
de degré impair.
De plus on sait qu’alors il existe n = 0 constantes « & + K° telles
2 2 2 2 . n
que K=K uv-K \JJ' { BJK (VIR ;3JK ) ol les BJ représentent les 2 -~ ]

prodults de @ distincts, et que le corps admet exactement 2" ordres.

On retrouve bien sO0r, si K a un seul ordre, les corps réels-clos , et si

10
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K a deux ordres, les corps chaine-clos.

Démonstration.

(1) » (ii) est bien clair car on a déja montré (c.f. démonstration du
lemme a ) qu'un corps de Rolle était pythagoricien au niveau 4 et on sait
par la proposition 0-5 qu'un corps de Rolle n'admet pas d’extensions
algébriques de degré impair.

(ii) » (i) soit K wun corps admettant un nombre fini p = 1
d'ordres, pythagoricien au niveau 4 et n’admettant pas d’extension
algébrique de degré impair. K ordonnable et pythagoricien au niveau 4
entraine que K est pythagoricien & tout niveau 2" ({([H)} cor.2-4) : K
ayant un nombre fini d'ordres alors |M(K)| est fini .; K pythagoricien a
tout niveau 2" et |M(K)| fini entraine ([H] Cor. 2-9) que |M(K)| =1 et
que K est 2"-strictement pythagoricien pour tout n ; K est donc en
particulier superpythagoricien et admet une seule place réelle.

K n’admettant pas d’extension algébrique de degré impair alors toute
extension minimale est une extension quadratique (déja utilisé au lemme b } ;
K est donc un corps ayant p ordres, superpythagoricien dont les extensions
minimales sont les extensions quadratiques ; d’aprés (b) = (a) du theoréme 6-1
de [B.C.P.2] , K admet exactement 2p-l1 extensions minimales.

Enfin par la proposition 0-6 le corps K ayant p ordres , 2p-l
extensions minimales et une seule place réelle est donc un corps de Rolle.

L'affirmation finale sur le nombre des ordres résulte du fait que K
ayant un nombre fini d'ordres il existe n tel que | k' / < | =2™! , le
corps K étant superpythagoricien K? est un fan d’'oll on déduit que le nombre
d’ordres de K est 2" (voir {L2] p.129 par exemple). L’existence de n = 0

constantes « et l'allure du corps résulte alors immédiatement du fait que

11



le corps K étant de Rolle, 1] satisfait les axiomes du théoréme I-1,

Le théoréme suivant est une généralisation de celui obtenu dans [D-G] pour

les corps chaine-clos.

Théoréme 1.4. Les extensions algébriques ordonnables d’un corps de Rolle
i ayant exactement 2" ordres sont des corps de Rolle ayant 2"
ordres et le treillls des extensions algébriques d'un corps de

Rolle avec 2" ordres est le suivant :

EXTENSIONS ORDONNABLES EXT. NON ORDONNABLES :
CLOTURES REELLES DE K ' CLOTURE ALG. DE K
: ] . DeGRE :
. |
LT
/ /\\ / | 2™-1 EXTENSIONS
SR
Va ) KOvV=a)l  ....... K(V7a ) K(V-1a)| | K(i) 2

\ /
2

+1
-2 EXTENSIONS

A

1

Démonstration.

12
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Une extension algébrique d'un corps de Rolle ayant 2" ordres est un
corps de Rolle ayant au plus 2" ordres. Cela résulte du fait qu’une
extension algébrique d'un corps de Rolle est un corps de Rolle {proposition
0-5) ; de celui qu'un corps de Rolle avec 2" ordres admet 2™ - 1
extensions minimales qui sont toutes quadratiques et sont explicitables par
les axiomes du theoréme 1 ; et enfin du fait gu’une extension quadratique d'un
corps de Rolle ayant exactement 2" ordres est un corps ayant au plus 2"
ordres : en effet un ordre de K s'étend a K(\/ﬁl) si et geulement si .Bl
appartient a {’ordre, or .(31 appartient & 2l ordres de K mais pour
chacun de ces ordres il y a exactement deux extensions possibles.

Il reste a montrer qu'une extension quadratique de K a exactement 2"
ordres ; on reprend pour cela la preuve faite dans [D—C] pour montrer qu’il
existe sur K une valuation hensélienne avec corps des restes réel-clos, vK
impair-divisible et | vK / 2vK | = 2n ; en utilisant la proposition 0-7 on
concluera que le nombre d’ordres est bien exactement 2"

Soit v € V(K) ; si M est une extension algébrique de K , v se
prolonge de facon unique &4 M et reste hensélienne, !'extension kv < mwr est
algébrique et vK & vM rationnelle (c’est a dire que vM se plonge dans la
cléture divisible de vK ). Le théoréme d’Ostrowski ( [R1]} p. 237 ) nous
dit, pour [ M : K} fini que [M:K]=Imv:kv](vM;vK).Si
[ M:K]=2, oubjen [ m kv ] =2 et m_ est algébriquement clos,
donc M non ordonnable (et donc égal & K(i) en utilisant le théoréme I-1),
et vM = vK ; ou bien mv=kv et (v ; vK ) =2 ; dans ce cas 1a, M
reste un corps de Rolle ayant exactement 2" ordres car v est hensélienne
sur M m = kv est réel-clos, vM reste impair divisible car M n’a pas

d’extension algébrique de degré impair et satisfait | vM / 2vM | = 2n a

cause de la relation ( vM ; vK ) = 2 . Compte tenu du théoréme I-1 il y a

13



n+l

2 - 2 telles extensions .

Théoréme 1.5. Soit K un corps commutatif, sont équivalents :
(i) K est un corps de Rolle ayant 2" ordres ;
(it) K admet n+1 ordres P, P, .. P , tels que PAPnA.nP =K
0 1 n 0 1 n
et pourtout j de 0 4 n , P, est distincte de K ;
K est Pythagoricien au niveau 4 ;

K n’admet pas d’extension algébrique de degré impair.

Démonstration.

(i) » (ii} est clair :
en appliquant le thécréme I-! : on définit Pl s, pour i de 0 & n-1, comme
étant l'ordre qui rend une des n constantes A négative et toutes les
autres positives, et l=’n comme l'ordre tel que les n constantes @« , pour
i de 0 a n-1, soient positives.

(ii) = (i) :

Montrons que les conditions (ii) entrainent que K a un nombre fini
d’ordres. Puisque Pln e Pn n'est pas égal a K® il existe @  non
dans K? mais appartenant & Pn ..AnP ;donc « ¢ P et o € - P et

i n 0 ¢ [+ 0
aussi- o € Plr\ e Pﬂ - On peut ainsi trouver n constantes o« i de O
a n-1, qui sont distinctes, appartiennent a Pn et telles que pour tout |
x € - Px et pour tout |j différent de i « € Pj . Alors tous les
produits de o distincts sont dans des classes modulo KZ qui sont
distinctes car ils n'ont, deux & deux, jamais le méme signe pour tous les
ordres de K .

Considérons alors F = % K2 vt Bk K2 ou les Bk représentent tous les

14
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produits possibles de @ (i de 0 & n-1 ) distincts. Supposons que F
ne soit pas égal & K ; il existerait alors dans K un élément 7 ¢ F ; si

7 E F’n ,» alors on regarde pour chaque i de O A n-1 si ¥ appartient a

Pl oua - Pl ; on note £ I'élément 1 si 7 ¢ P‘l et 1'élément a si
ye-P J alors il est clair que €, € - &7 est un élément de
Pon Y Pn_l ; d’aprés I’hypothése c’est aussi un élément de Pn , c'est

donc un élément de Kz ce qui entraine, le produit des € étant un produit

de @« , que I'élément y appartient & F ce qui est impossible. Si ¥ e - Pl_1

on définit de méme des m, par n = 1 si v € - Pl et n = e si ¥y ¢ P1 ‘

alors I'élément % % ... 7 ¥ est dans -Pn...n-P ; C'est aussi
0 1 n-1 1 n-1

un élément de - 1'-‘n , c’est donc un élément de - ]".2 ce qui entraine aussi

¥ € F et qui est donc impossible. Donc F = K et K n’a qu'un nombre fini
) A . b 2% n+l n
d’ordres ; enfin puisque | K /K" | =2, K a auplus 2" ordres.

Le corps K n’ayant qu'un nombre fini d’ordres, alors en utilisant la
caractérisation donnée par le théoréme I-3, on obtient bien que K est un
corps de Rolle. Compte tenu de la décomposition de K en réunion de
classes modulo les carrés obtenue ci-dessus et du théoréme 1-1 X a

n
exactement 2 ordres.

Remarque. Ce théoréme contient en corollaire la caractérisation 4-3 des corps

chaine-clos donnée dans [H] : "soit R un corps ayant une chaine (Pi)‘ &N

alors R est chalne-clos si et seulement si Po n Pl = R? et R n'admet pas
d’extension algébrique de degré impair”.
En effet si R est chaine-clos R est un corps de Rolle ayant exactement

2 B
et le méme

2 ordres qui satisfont donc d’aprés le théoréme 1-5 Po a} P1 =R
théoréme montre que R n'admet pas d’extension algébrique de degré impair.

Réciproquement, si un corps R chainable par une chaine (Pl) LN n’admet
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pas d’extension algébrique de degré impair et est tel que Po n P1 = R® ,

alors le raisonnement fait au début de la preuve de (ii)-» (i) du théoréme
1-5 montre que R admet au plus deux ordres, et puisqu’il est chafinable
eéxactement deux ordres. La condition Po N P1 = R? montre que R est
pythagoricien, et il suffit alors d’utiliser la derniére partie du résultat de
[Bei] (cor.2 p.43) qui donne la chaine d’un corps n’ayant que deux ordres pour
déduire que R est Pythagoricien au niveau 4 ; le théoréme 1-5 donne alors
que R est un corps de Rolle ayant exactement deux ordres et R est donc un
corps chaine-clos.

Notons aussi que bien sor pour n = 0 le théoréme 1-5 redonne une

caractérisation connue d’un corps réel-clos.

Corollaire 1.6, Soit K un corps de Rolle ayant 2" ordres, alors il existe
sur K n + 1 ordres P1 tels que K = R0 NN Rn , ou Rl désigne la
cléture réelle de K pour l'ordre P1 .
Remarque. Ce corollaire généralise le résultat de [Bel] qui montre que les
corps réel-clos généralisés (i.e. corps de Rolle ayant exactement deux ordres)
sont I'intersection des deux clétures réelles.
Démontration.

Par le théoréme I-5 on sait qu’il existe sur K n + 1 ordres Pl
ayant les propriétés : Pon Pln we Pn = K? et pour tout j de 0O a n )
ngPl est distincte de K°

Soit L = R0 n...n Rn 2 K , notons P; I'ordre induit sur L par
celui de Rl qui prolonge donc 1'ordre P1 de K . On a lr:\OP; 2 L% don
aussi 1§0P; nK 2 L% K et donc d’aprés I’hypothése K? 2 L? n K. L ne

contient donc aucune extension quadratique de K ce qui prouve, K étant un

corps de Rolle, que L =K .
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II-THEORIE GENERALE DES CORPS DE ROLLE.

Théoréme 2.1. Soit K un corps commutatif, les propriétés suivantes sont
équitvalentes :
(i) K est un corps de Rolle ;
(il) K est ordonnable, pythagoricien au niveau 4 , tel que K?
soit un fan et que K n’admette pas d’extension algébrique de

degré impair.

Remarque. Nous avions initialement démontré que (ii) = (i) a I'aide de divers
résultats dont en particulier une partie de la preuve de (b) = (c) du théoréme
6-1 de [B-C-P2} qui n’utilise pas réellement que le noﬁbre d’ordres du corps
est fini,

F. Delon nous a fait remarquer que les corps de Rolle avaient déja été
¢tudiés dans le cadre plus général des corps héréditairement S-pythagoriciens
dans [J]. L’hypothése faite dans [J] lorsque 1'on considére le cas particulier
de S = {2} est celle d’'un corps K ordonnable, ou K' est un fan et ou K
n’admet pas d’extension algébrique de degré impair. Il est clair que cette
hypothése entraine (ii) de II-1 car si K' est un fan alors K> en est aussi
un (voir [Bel] p. 64) ; par contre K® est un fan n’entraine pas en général
que X* en soit un.

A la suite de cette remarque, nous avons préféré changer la preuve et

utiliser le résultat de [J] pour montrer que (ii) = (i) .
Démonstration.

(i) = (ii} est clair :

on sait par définition que K est ordonnable ; par les propositions 0-4 et
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0-5> on sait aussi que K est superpythagoricien et n’admet pas d’extension
algébrique de degré impair ; enfin la démonstration du fait que le corps K
est pythagoricien au niveau 4 faite dans [D-G] et déja utilisée au lemme a

reste valable ici.

(ii}) » (i) :
K corps ordonnable pythagoricien au niveau 4 est pythagoricien a4 tout
niveau 2" pour n =z 1 (d’aprés [H] cor. 2-4).

2

K" étant un fan par hypothése le corps K est superpythagoricien.

Le corps K étant superpythagoricien, on en déduit que, si on note
FK)={neN| Kzr1 est un fan de K } , alors 1 € F(K} qui n'est donc pas
vide. On peut alors utiliser le résultat 3-17 de [Be2] et en déduire que
'ona | MK) | s 2.

On vutilise a4 nouveau un résultat de Harman (cor.2-9 de [H]) pour
montrer que puisque K est pythagoricien au niveau n pour tout n =1 et
que | M(K) | est fini, alors K est 2";strictement pythagoricien pour tout
n , donc qu’en particulier K est un fan .

Le corps K est donc ordonnable tel que K* est un fan et que K
n'admet pas d'extension algébrique de degré impair ; il est donc
héréditairement {2}—pythagoricien au sens de Jacob. Dans [J] il est montré
que les corps héréditairement S-pythagoriciens admettent une valuation
hensélienne a corps des restes réels-clos, et les corps héréditairement
{2}—pythagor-iciens n'admettant pas d'extension de degré impair ces derniers

satisfont donc la caractérisation des corps de Rolle donnée & la proposition

0-3, ce qui termine la preuve.
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Corollaire 2.2. Une axlomatisation des corps de Rolle dans le langage des
anneaux est donnée par la théorie T suivante :
1- Axiomes de corps commutatif ;

2

Pour chaque n =1 l’axiome : Vxl....Vxn A (-1= xf + ..+ x: )
3- ¥x vy 3z x4+y4=z4 H

2 2
v y2+xz =t

4- ¥x Vy ¥Vz 3t ((x =-1
5~ Pour chaque p =1 [’axiome :

on -V " Iy ( x2p

2 =0vxo+x1y+...+x y =0 )

+1

Preuve.

Cette axiomatisation se déduit immédiatement du théoréme II-1.

Remarque. On peut aussi y remplacer le schéma d’axiome 2 par Paxiome 2’ :

2-¥x ¥y 3z { 2 (-1 = x5 A x2+y2=22).
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II1-CORPS DE ROLLE ET CHAINABILITE.

[B1] et IH) sont les références de base sur les ordres de niveau supérieur
et sur les chaines d'ordres de niveau supérieur, cependant sur le sujet des
corps chainables on pourra aussi consulter I'exposé en francais [G4).

Un corps qui n'admet qu’un seul ordre n’est Jjamais chaina;ale, les corps de
Rolle ayant exactement un ordre qui sont les corps réels-clos sont donc non
chainables. Dés qu’un corps de Rolle admet au moins deux ordres alors il est
chainable car il existe au moins un élément o de K qui n'est ni un carré
ni un opposé de carré : le corps étant pythagoricien au niveau 4 , si, pour
tout o dans K, o était une somme de puissance‘s quatriémes alors il
serait une puissance quatriéme et o serait un carré ou un opposé de carré ce
qui est faux comme on i'a vu. Un corps de Rolle ayant au moins deux ordres est

donc toujours chainable et méme bien chainable au sens de [G2].

Théoréme 3.1. Si K est un corps de Rolle ayant au moins deux ordres,
alors pour toute extension algébrique L de K il existe
une chaine d’ordres de niveau supérieur de K qui ne s’étend

pas fidélement 3 L .

Démonstration.
D’aprés ce qui précéde on sait que toute extension algébrique ordonnable
d’un tel corps contient une extension quadratique K(V&) avec a ¢ * K° . Le

corps K étant pythagoricien au niveau 4 , o ¢ K entraine que a? 35 x*

et le corps K est donc a-chainable (voir [G2])} ; il admet donc au moins une
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a-chaine (i.e. une chaine (P l)i N telle que o« € P, ) qui ne saurait
s'étendre fidelement & K(V&) car o € ¥ Kva)* ¢ P, - pour tout ordre P,

de niveau exact 2 de K{¥x) , ce qui termine la preuve.

Théoréme 3.2. Un corps de Rolle chainable (i.e. ayant au moins deux
ordres) est totalement chainable (i.e. tout ordre peut étre
inclus dans une chalne d’ordres de niveau supérieur, voir [D-G]

et [G2]) et de plus toute paire d’ordres est le début d’une

chaine d’ordres de niveau supérieur.

Démonstration.

Cela résulte du fait que si K est un corps de Rolle il existe une
valuation hensélienne a corps des restes réel-clos kv { c.f. prop.0-3 }. Une
telle valuation est compatible avec tous les ordres du corps K et tous les
ordres résiduels coincident avec 1'unique ordre de kv

Il suffit alors d’appliquer le corocllaire 1-5 de [H] (deux ordres Po et
PI sont le début d'une chaine d’ordres de niveau supérieur si et seulement si
il existe une valuation compatible avec ces ordres telle que les ordres
induits sur le corps résiduel coincident) pour obtenir que non seulement tous
les ordres sont chalnables mais que toutes les paires d'ordres sont le début

d’une chaine d’ordres de niveau supérieur.
Une question naturelle est de chercher si un corps de Rolle est

simplement chainable (i.e. par chaque ordre de niveau supérieur il ne passe

qu'une chaine voir [G2]). On peut répondre par le théoréme suivant.
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Théoréme 3.3. Seuls les corps de Rolle ayant exactement deux ordres, c’est

d dire les corps chaine-clos, sont simplement chainables.

Démonstration,

Cela résulte de la caractérisation des corps simplement chainables donnée
dans [G2] : un corps chainable K est simplement chainable si et seulement si
pour toute valuation réelle de groupe des valeurs vK on a | vK 7 2vK | = 2,

et du fait que si un corps de Rolle K a 2" ordres pour v € V(K) on sait

(voir [Las2]) que vK / 2vK a pour dimension n comme le-espace vectoriel.

Remerciements. Je tiens a remercier ici F. Delon qui a bien voulu me consacrer

du temps pour de trés utiles discussions notamment a propos du corollaire I-6.
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THE REAL RIEMANN SURFACE OF A RING
by M. J. de la Puente

Let A be a real commutative ring with unit. The aim of this note is to present the
definition and main properties of the real Riemann surface of 4, as a topological space
§. Two concepts, those of real spectrum of 4 and of Riemann surface of a field (in the
algebraic sense of [Z-S]) are combined together to give rise to S. Essentially, the points of
S are pairs (<, B), where < is a total order in the quotient field x(p) of the domain A/p,
and Bis a valuation ring of x(p), convex with respect to <, as p runs through SpecA. In
practice, the points of § are defined in a slightly different way, but soon we will see the
advantages of such a choice. For example, we get an easy proof of the compactness of S.

The chief results are construction 12 and theorem 14. Proposition 13 is interesting
too, and also serves us as an useful piece of language. In 12 and 14 we show how the
topology of S accurately expresses some algebraic facts about convex valuation rings, such
as composite valuations. More precisely, a point (<',€) in S lies in the closure of another
one (<, B) if and only if

(i) <'is a generalization of <, (roughly speaking, inequalities involving < are also true
for <') and

(ii) there exists a decomposition B' and B of B » (in the sense of proposition 11) such
that either (a) C = B or (b) Cis the restriction of B to an adecuate residue field of 4.

Not only the topology of S is well suited to the study of questions about convex valuation
rings of residue fields of 4, but also the very definition of the points of S helps in this
task. For example, the property (ii) (b) above is expressed by an extraordinary simple
intersection formula, (see claim, construction 12).

To come to an end, we show in theorem 15 that § has some of the topological
properties of the real spectrum of A, the space over which S is constructed.

We start with an easy

Example 1. A = R [z], z is transcendental over R . For each B € SpecgA, let p be its
support, supp(#)} = 8N —p3, and consider all the valuation rings Bover R , of the quotient
field «(p) of A/p, which are convex with respect to <g i.e.,

if a €k(p),beB,0<pa<zb=>acB.

It is well known that Specgd = {a,at,a™:a € R } U {oo™, oo~ }.

Now, let @ € R . The ordering represented by a has residue field R. and this is the
only valuation ring over R , convex with respect to <,.

The residue field of a* is R (z) and the only valuation rings over R , convex with
respect to <,+ are A(s—q) and R (z). Similarly, for a~, we have convex valuation rings
A(z-—a) and R (1:)

Finally, the valuation rings of the residue field R (2) of cot convex with respect to
this ordering are R [1/ z](1/2) and R (z). The same holds true for co™.

1



If we gather this information in a space §, whose points are pairs (8, B), with 8 in

SpecpA and Ba valuation ring as above, we get the set—theoretical real Riemann surface
of A;

§={(a,R ): (G.+, A(::—a,)): (a'+1 R (z)),(a", A(z—a))) (a",R (z)):a € R }U

{(°°+5 R [1/3](1/2))2 (°°+1 R (z))a (00_! R [l/z](llz))v (oo_’ R (”))}
Below we have a picture of §, containing 5 copies of R and 4 points “at infinity”. An

arrow from a point (3, B) to a point (7, C) means that the latter belongs to the closure of
the former. This will be clear after we study the closure of a point in theorem 14.

(e*,R(z)) (oo, R(z))
I !
(a®, Ap_a)) (00T, R[1/2](1/2))
: .
(a,R)

L

(007, R[1/2](1/2)) (a7 A(z—a))
I -
(007, R(z)) (a7, R())
One of the two main ingredients of the real Riemann surface is:

Definition 2. The Riemann surface of A is the collection T of valuation rings B of the
fields k(p) as p runs through SpecA. In this situation, p is called the support of B.

We establish a bijection between points of T' and subsets of 4 x A:

T4 94%4 | k(p) DB B = {(z,y) € Ax Ay & p, 5/5 € B},

where Z denotes the class of z modulo p.

We identify T with its image ¢(T'). The advantage of the B’s over the B’s is that the
former avoid the difficulty of working with subsets of different sets x(p), p running through
SpecA.

T is endowed with a topology, called the W topology, which has the following family
as a sub-basis:

{W(z,y):(z,y) € 4 x 4},

where W(z,y) = {B € T:(z,y) € B}. This topology in T is a natural generalization of
the Zariski topology, considered in [Z-S], in the following sense: if p C A is a prime ideal
and T, is the Riemann surface of «(p) then, in the embedding T, C T, the restriction of
the W topology to T, coincides with the Zariski topology on Tj,.

The W topology is weaker than the Tychonoff topology, induced on T as a subset of
2A><A-
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Definition 3. The real Riemann surface of A is the collection S of pairs (3, B), where
B is in SpecgA and B = ¢~ 1(B) is a valuation ring of k(p), convex with respect to <8
where p is the support of 8. In this situation we say that 8 and B are compatible.

We give to § the initial topology for the projections:

S X, (8,B) — B
] |
SpecgA B

This is the weakest topology in $ making both 7, and m, continuous, and the following
family is a sub-basis for it:

{W(i;z,y):t € A,(z,y) € A x A},
where W(t; z,y) ={(8,B) € S:t¢ 3, (z,y) € B}. We call it the W topology.
Theorem 4. T and S are compact.
Sketch of the proof. It is enough to show that T and § are Tychonoff closed in 24*4 and
in 24 x 24x4 respectively, because the topologies of T and S are weaker than the Tychonoff
topologies in those spaces. A proof similar to the one done for the real spectrum in [L, p.
783] shows that T is Tychonoff closed. Indeed, we axiomatize the properties of the sets B

of type B = ¢(B), and observe that those properties are expressed in terms of € and ¢
conditions. A similar argument works also for S, (see [P] for more details). m

We turn to the study of the properties of S. Let B be an ordering of A with support p.
As the collection of valuation rings of x(p) which are convex with respect to <g is totally
ordered by inclusion, we view S as a union of totally ordered fibers over SpecgpA. Thus,
we have studied the map m: 8§ — SpecpA and have pointed out several sections of Ty
whose images are homeomorphic to SpecpA. We proceed with their description.

The trivial valuation ring of a field is the field itself. Accordingly, the trivial points of
the real Riemann surface of A are (B, s(suppB)), where 8 runs through SpecpA.

Proposition 5. The map
p:SpecgA — S ; f = (B, s(supp B))
is a continuous section of 1y and it is a homeomorphism onto the image.

Proof. To check that p is continuous, it is enough to show that the composites 71p and
mep are continuous, since S has the initial topology for 7, and 7z. Clearly, mp is the
identity. So, all we need to check is that, for any z, y € A, the set (myp)~'W(z,y) is open.
But this is so since, if # denotes the class of z modulo supp(8), then

(m2p)"'W (2, y) = {B € SpecpA:y & supp(B), 7/5 € x(supp )} =
= {B € SpecgA:y & supp(8)} = {B ¢ SpecpA:y <g 0} U {8 € SpecgA:y >z 0}

is an open set in Specpd. m



Fixing a subring A4, of A, we obtain some other sections of m;. In the applications, we
are interested in the cases Ay = Z , A1 = A and, if k is a field and A is a finitely generated
k—algebra, A; = k.

Let B be an ordering of A with support p and let p; = pnN A;. Consider the convez
hull OgAqof A;/p; in k(p), with respect to the order <g. The ring OgA, is the smallest
convex valuation ring of x(p) containing A;/p;:

Opd1 = {%/7 € x(p): |2/7| <p @, for some a € A;}.
Proposition 6. The map

0:SpecgA — S ; B+ (B8,054;) -

is a continuous section of m; and it is a homeomorphism onto the image.

Proof. As in the proof of proposition 5, it is sufficient to show that, for any z, y € 4, the
set {(728)~1W(z,y) is open. But this is clear from the expression

(m28) "W (z,y) = {8 € SpecpA:y ¢ supp(B), |2/9| <g @,for some a € A1} =

| {8 € SpecpA:y ¢ supp(B), —ay? <p 75 <p ay’}. w
a€A1
Definition 7. A point (8, B) in the real Riemann surface of A is finite (relative to A) if
OsA C B.

It is rutinely checked that this condition is equivalent to A x {1} C B.

Now we devote ourselves to the study of the relation between #7(8) and #7'(7) , for
orderings 3, v of A with 8 C 4. This is done in theorems 12 and 13. These results are
achieved by “weaving” some well-known facts, (here numbered 8, 9 and 11) about the real
spectrum and about convex valuation rings. With the help of 12 and 13, we “discover” in
14 what it means for a point (7, C) to be in the closure of another one (8, B), in terms
of the “classical” valuation rings Band Crather than in terms of the “formal” valuation
rings B and C.

In addition, 12 and 14 show how simple it is to express, in S, certain concepts about
valuation rings.

Finally, 13 and 14 are a first sample of why it is useful to have constructed S.

As to notation, mg denotes the maximal ideal of a valuation ring Bof a field K and
Apg denotes the residue field B/mg. An order < in K making B convex induces an order
in Ag, and throughout these notes, Ag will be tacitly endowed with this order.

Proposition 8 [Br p.149]. Given an ordered field (K, <), a subring A C K and a convex
prime ideal @ C A then, the convex hull Hin K of the localization Ag is a valuation ring
of K with

Q=myn A

4
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Moreover, Ay is an archimedean extension of the quotient field of Ag.

Proposition 9 [B~C—-R p.82]. Let 8 be an ordering of A with support p. There is
a bijection 1 between the orderings v of A containing § and the prime ideals ¢ C A
containing p which are convex with respect to <g. More precisely, ¥(y) = supp(y) and
¥ (q) =qUB.

Definition 10. (a) Given a field K, a subring A C K and a valuation ring D C K

containing A, the ideal
Q=mpnA

is called the center of Dat A.
(b) Let (8, B) be a finite point of S, p = supp(8) and let

g/p=mpNA/p

be the center of Bat A/p. Then, the preimage q of ¢/p under the canonical homomorphism
A — A/p is called the center of B (at A).

Proposition 11. Given an ordered field (K, <), a convex valvation ring B C K and
a convex valuation ring B of Ag, then B' = {z € B:2 + mg € B} is a convex valuation
ring of K contained in B. Moreover, if m' is the maximal ideal of B', then B!, = B and
B'/mg = B.

In other words, given (K, <) and Bas above, there is a bijection between the family
of convex valuation rings of Ag and that of convex valuation rings of K contained in B.

This fact follows from realizing that convexity is preserved throughout the proof of the
analogous result in [N p.35].

Construction 12. Let 8 C « be orderings of A with p = supp(8) , ¢ = supp(y). In 8,
take K = «(p), A = A/p, @ = q/p and let Hbe the convex hull of (4/p),, in x(p). It
follows that x(g) C Ay is an archimedean extension of fields.

For each valuation ring B of A compatible with 3, we define a valuation ring C of x(g),
convex with respect to <,. The ring C depends on (8, B) and y. Afterwards, we claim
that the valuation ring C = ¢(C) is expressed by an easy intersection formula.

Given B compatible with 8, consider B = ¢~1(B). If B C H, then B/my is a convex
valuation ring of Ay, by proposition 11. Therefore, B/my N k{q) is a valuation ring of
#(g), convex with respect to the order <., induced on x(g) by <g. Let

= B/my Nk(q), if BCH,
x(q), otherwise.

Clearly, if C = ¢(C) then, (v, C) belongs to S.
Claim. C=BnAx(4A\g).
Proof of the claim. The center of Hin A/p is ¢/p, by proposition 8, i.e.,

g/p=myNA/p.
5



This equality means that, if y € 4 and y ¢ p then,
YyEcgq v JEmy,

where § denotes the class of y modulo p. Then, in the inclusion x(q) C Ay, the element z /§
is identified with (Z/§) + my, where § denotes the class of y modulo ¢. As a consequence,
the definition of Cmeans that, for every y ¢ g (hence y & p, 7 ¢ my and 2/§ € «(q)), it
holds:

Z/feC < z/je€B/my += Z/FeB.
Thus,

(,9)€C < y¢q,3/§€C < y¢q,3/§cB < (z,9) € BnAx (A\q),

as was to be shown. m

Theorem 13, Let 3 C ~ be orderings of A. The map

T (B) = 7' ()5 (8,B) = (1,0),

given by construction 12, is surjective. Moreover, this map preserves the trivial section
and the section determined by any subring A; of A.

Proof. Let p, g, Cand H be as in 12. Consider the convex hull 7 of Cin Ay and let
H' C H be as in proposition 11. Then, H' N A x (A\ ¢) is the valuation ring of A associated
to

H fmu N k(g) = HNk(g) =C.
Thus, C = H'N A x (A g), and this concludes the proof of the surjectivity.
Now, the trivial point of 7] 1(ﬁ) is mapped to the trivial point of 7] 1(’7) since
Ax(A\P)NAX(4\q)= A% (4\q).
Finally, let A; be an arbitrary subring of A. Then, (B,O0gA,) is mapped to (v, 0, 4;) since
Opd1N A x (A\ q) = O,4;.

Indeed, let (2,y) € Oy4;. Then y ¢ ¢ and there exists a € A; such that |#/§| <, @ and
so +aey — ay® € v. As 8 C +, then +zy — ay® ¢ B. Thus, (z,y) € Ogd1NAx(A\g).
Conversely, if y ¢ ¢ and there is ¢ € A; such that |z/3]| <g @, then +zy +ay® € § C «.
Hence |3/§| <, a + 1 and (z,y) € OyA;, concluding the proof. m

Now we turn to the study of the closure of a point {3, B) in S. From the definition of
the W topology, it consists of those points (v, ) with 8 C v and ¢ C B.

Theorem 14. Let (8, B) be a point of the real Riemann surface of A. The points (v, C)
in the closure of (8, B) are of two types:
(a) B=vandCC B or



M.J. de la Puente

(b) B C v and there exists a valuation ring D of x(supp B), convex with respect to <g,
such that D C B and C = D/mg N k(supp~y). i

Proof. Let p = supp(8) and ¢ = supp(y). First, if (v, C) is of type (a), then C C B.
Conversely, if (v, C) is in the closure of (3, B) and 8 = «, then necessarily C C B.

Suppose now that 8 # v. If (v, C) is of type (b), then C = DN Ax(A\¢)C B, hence
(7,C) is in the closure of (8, B). Conversely, we will be done if we find a valuation ring D
of A, compatible with 3, contained in B and such that ¢ = DN A x (A\ ¢). But in the
proof of 13, we have seen that

C=HnNAx(4\q),

for a certain valuation ring H' of A, compatible with 8. As the valuation rings of A
compatible with # form a set totally ordered by inclusion, we have either H' C Bor
B C H'. If the former holds, we are finished, taking D = H'. Otherwise,

CCBNAx(A\q)CH NAx(A\q) =C,

and letting D = B, we are done too. =

To close this note, we present a list of properties common to the real spectrum and
the real Riemann surface.

Theorem 15. (a) The closure of a point (8, B) contains a unique closed point.

(b) The set of closed points of S is homeomorphic to the set of closed points of Specgp4 ;
in particular it is compact and Hausdorff,

(¢) The retraction of S to the set of closed points is a continuous closed map.

Proof. (a) Let v € SpecpA be the maximal ordering of A containing 3. Then (v, O, 4,)
is the only closed point in the closure of (3, B).
(b) Take Ay = Z and consider the continuous map A that sends each ordering 4 of
A to the maximal ordering containing 8. Then, the restriction of 7; to the set of closed
points of § coincides with the composite continuous map m16Am; and has 6 as an inverse.
(c) This retraction is the continuous map 6Am;, and it is closed since the domain is
compact and the target is Hausdorff. m
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RINGS OF CONTINUOGUS SEMIALGEBRAIC FUNCTIONS
J.M. Gamboa

Let B be a real closed field andlet M C R® bea semialgebraic subset. We have studied
some elementary properties of the ring S(M) of continuous functions from M to R with
semialgebraic graph. First of all

Theorem 1. dim S(M) = dim M.

Of course dim S(M) is the Krull dimension, and dim M is the semialgebraic topological
dimension. The equality was proven by Carral and Coste, [C-C] in case M is locally closed.
The inequality dim M < dim S(M) is clear: if M is the constructible subset of the real
spectrum of R[z1,...,z,] associated to M, there exists an embedding of spectral spaces

M — SpecS(M): z — {f € S(M): f(=) = 0}

because given distinct points z, y € M and a polynomial P with P(z) > 0, P(y) < 0,
the semialgebraic function f = P — |P| verifies f(2) = 0, f(y) # 0. Hence dimM =
dim M < dim S(M), the first equality by [B~C-R], Ch. VII. The argument for the converse
inequality was inspired by M. Coste. Let Po & -+« € py be a chain of primes in S(M). We
can choose f; € p;\p;_1, 1< i< d. Let X C R™4 be the graph of the semialgebraic map
f=(f1,-.., Ja): M — R% andlet 915+ .-, 94 be the restrictions to the closure X of X of the
ca.nonic_a.l projections R*% s R onto the last d coordinates. We get ring homomorphisms
S(X) < S(X) 5 S(M), where j is the restriction map and u is the isomorphism which
sends F' € S(M) to G € S(M) defined by G(z) = F(z, f(z)). Thus if ¢ = (u 0 j)"1(p;),
then g; € ¢; \ gi_y and so g9 S +-- C ¢a. Whence dim S(M) < dim $(X). Also, since X is
locally closed, dim $(X) = dim X = dim X = dim M , and the proof is finished.

This result indicates some finiteness character of S(M). On the other hand we get

Theorem 2. (1) A prime ideal in S(M) is finitely generated if and only if it is the maximal
ideal of an isolated point in M.

(2) S(M) is noetherian if and only if M is finite.

Evidently the second part is the immediate consequence of the first one. Also, if
a € M is an isolated point, its maximal ideal my is generated by the function f € S(M)
that vanishes at @ and takes the constant value 1 outside. So we are concerned with the

“only if” part in (1). Let p = (fi,..., f;") be a finitely generated prime ideal in S(M). It
is rather obvious that f = ( e f2)3 generates p since the functions

g M- Rz {f,s(’«') (Zf=1 ff(z)) - if Z?=1 ff(z) #0
0 otherwise

are in S(M), because 0 < f¥(z) < Ele fi(z)ifz e M.

1



In particular, the zero-set Z of f is non-empty, and we claim that it contains exactly
one point. For, if f vanishes at two distinct points a = (@1,...580), b= (by,...,b,), we
consider g = z?=1($i - “‘i)z: h = E?:l(zi ~b)?, F = lg—h|—(g—h),G = |g—h|+ (g—h).
Clearly, FG =0 € p but F, G ¢ p because F(a) = 2h{a) # 0, G(b) = 2¢(b) # 0.

From now on, a denotes the unique zero of g. It is an isolated point in M. Otherwise, by
the curve selection lemma [D-K], there exists a continuous semialgebraic map v: [0,1] - M
verifying ¥(1) = a, ¥([0,1)) C M \ {a}. Moreover, since p = fS(M) is a prime ideal,
there exists a continuous semialgebraic function H & S(M) such that f(1 — fH?) is
identically zero on M, and in particular, 1 = f(v(£))H?(y(2)) for each ¢ € [0,1). But,
by [B-C-R] Ch. II, H? o 4([0,1]) is contained in some interval (—r,r) C R and since
fv(1)) = 0, fo(l8,1)) C (=#72,77%) for some 0 < § < 1. Hence, if ¢ = 1+ 8)/2,
1= |f(v(€))H*(v(e))] < »~2r? = 1, a contradiction.

Finally, all reduces to check that J generates m,. But, a being isolated, if a function

I € S(M) vanishes at a, then I = fu where u: M — R, maps a onto zero and coincides
with I/ f on M \ {a}.

In a forthcoming joint paper with J.M. Ruiz, we shall extend these results to a more
general setting: abstract semialgebraic functions on constructible subsets of the real spec-
trum of excellent rings.
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Machines sur les réels et problémes
NP-complets

(d’aprés L. Blum, M. Shub, S. Smale et al.)

par C. Michaux

Le but de ces deux exposés est de donner un survol de Particle [BSS] de L.
Blum, M. Shub et S. Smale intitulé “On a Theory of Computation and Com-
plexity over the Real Numbers: NP-Completeness, Recursive Functions and
Universal Machines”, en privilégiant certaines parties de Particle, qui ont déja

des prolongements chez d’autres auteurs.



Avant-Propos

Classiquement la théorie de la récursion concerne les entiers positifs ou des
structures essentiellement dénombrables (par exemple les structures récursives
au sens de Rabin). C’est toujours via une sous-structure dénombrable de R que,
par exemple, M.B. Pour-El et I. Richards ou H. Friedman et K. Ko traitent de
“fonctions calculables sur R”.
L’émergence depuis la fin des années septante des arbres de décision algébriques,
des R.A.M. { “random access machine”) en tant que modele de calculabilité sur
les réels, précédés par les U.R.M. {“unlimited register machine”) sur les réels de
Herman et Isard, n’a pas été suivi du développement d’une théorie analogue 3
la théorie classique des fonctions récursives sur N, quoique de nombreux articles
sur la complexité dans ces modéles de calculabilité aient été écrits (par exemple,
Dobkin-Lipton, Steele-Yao, Ben-Or, Preparata-Shamos, )
Le but des auteurs de |BSS| (et peut-étre particulitrement de S. Smale) est
justement de développer une théorie de la calculabilité sur les réels en vue
d’analyser des algorithmes courants en analyse numérique sans s’embarrasser
de la représentation décimale des réels (ni de leur approximation par des ra-
tionnels), dans le sens oil les U.R.M. sont un modile de calculabilité sur N qui
ne s’embarrasse pas de la représentation d’un entier sous forme de suites de 0,1
(voir Cutland). On peut trouver certaines de ces considérations dans S. Smale
(1985).

Tous les résultats présentés ici sont extraits de [BSS| sauf mention contraire.
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1. Exemples de machines sur R

Avant de donner une définition relativement précise des machines sur les réels,
nous allons décrire quelques exemples informels.
Exemple 1

Soit g: z — g(z) de C — C, une application polynomiale de degré > 2.

Lemme 3.1. - Il existe ¢, €R tel que |z| > ¢, implique

Jim |g*(z)] = 0o (g* désigne go---0g)

kfols
k A Y
La preuve est classique |g*(2)| se comporte presque comme |2% | (ot d est le
degré de g) quand |z| est suffisamment grand.

Dans ce qui suit C est identifié 4 R%. Considérons la machine M décrite par

le diagramme suivant:



M @ entrée € C

| z «— g{z)| on calcule g(z)
/ si|z|? > 2

|2[2 < c2 sortir z

L 2

Remarquons que |z|? est une fonction polynomiale de R? — R (i on identifie
C avec R?).

L’ensemble {25, des points oti M s’arréte (c’est-3-dire ol le calcul se termine)
est exactement I'ensemble des z tels que |g*{2)| — oo quand &k — oo.
On dira que {2 est récursivement énumérable sur R.
Remarque : £1;; est évidemment dans le cas présent non dénombrable.
Dans [BSS] s.ection 1, on trouvera une preuve du fait que 14, (le complémentaire
de {17) n’est pas récursivement énumérable sur R lorsque g{z) = 22+¢ avec le| >
4. Cet exemple est lié aux ensembles de Julia des endomorphismes rationnels
de C — €. Dans le cas g(z) = 2% + ¢, 15, est justement Pensemble de Julia de

z22 +e, e > 4.
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Exemple 2

entrée € R

Il est clair ici que le domaine 2y, de M est Z.

Z est donc récursivement enumérable sur R; nous laissons au lecteur le soin de
montrer que R\ Z est également récursivement énumérable sur R.

On dira que Z est décidable sur R ou pour rejoindre la terminologie usuelle en

calculabilité, que Z est récursif sur R.

Terminons cette introduction par un exemple qui sera repris plus tard.



Exemple 3

entrée € R**2

(@0,...18n,2) = (G0, .-, 8n, GnT™ + g1+ - + ao)

test

sortie. o

Clairement 1y = {(a0,...n,2)|anz" + ap_12™ 1+ - 4 ag = 0}; 'ensemble

de sortie de M = {(ao,...,a,)|3z €ER: 6,2" + ap_y2"~1 + . - + gy = 0}

2. Machines sur un anneau ordonné R

Dans cette section, nous allons décrire bri¢vement les machines sur un anneaun
ordonné; le lecteur trouvera une définition compléte dans [BSS] section 2, cer-
taines précisions seront apportées an cours de Pexposé,

Dans le reste de Pexposé R désigne un anneau ordonné commutatif intdgre avec
unité; les principaux exemples sont Z, @, R.

Approximativement, on peut dire qu’une machine sur R est semblable & une

“unlimited register machine” (dénotée U.R.M., voir Cutland, ch. 1) excepté
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que le contenu de chaque registre est un &lément de R (au lieu d’un entier
positif).

Une machine M sur R posséde un nombre fini ou infini de registres (formant
Pespace des états, dont la dimension est égale au nombre de registres; I'espace
des états est identifié avec R™ ou R™ = DnewR™ suivant les cas); chaque registre
contient 3 tout instant un élément de R. Les instructions - appelées noeuds dans
la terminologie de [BSS] - effectuées par M sont outre ’entrée de la donnée (un
uple d’éléments de R, Pespace des entrées possibles sera noté 7 et sera du type
I=R"n< o) et la sortie du résultat (également un-uple d’éléments de R,
Pespace de sortie sera noté O et sera du type O = R™,n < o), les instructions de
calculs (modification du contenu des registres par une application polynomiale !
& coefficients dans R), les instructions de branchement (comparaison du contenu
du premier registre avec 0) et les instructions de transfert entre registres (noeuds
de “cinquidme type” dans [BSS]), ces dernitres étants régies par le contenu de
deux registres spéciaux de M qui lors de Pinstruction d’entrée sont mis 2 1 et
lors des instructions de calculs sont soit mis i 1, soit incrémenté de 1.

Par applications polynomiales, on entend ici une application polynomiale de R™
dans R",m,n €N (g=(g1,...,9s)) telle que le contenu z; du registre n°1 est

remplacé par g;(zy,...,%y). Ce type de noeud sera souvent représenté par

Ifl""'xm f—-gl(zl,...,xm),...,g,,(a:l,...,zm)|

ldans le cas ot B est un corps, les fonciions associédes aux noeunds de calcul sont les appli-

cations rationnelles & coefficients dans R



On appelera dimension d’un tel noeud de calculs, le nombre de variables qui
interviennent ou sont modifiées effectivement dans g, c’est-i-dire max(n, m).
Le nombre de noeuds de M est fini, par conséquent le nombre d’applications
polynomiales associfes 3 M (et donc le nombre de leurs coefficients, appelés
coefficients de M) est fini.

Une relation successeur £ sur les noeuds de M détermine Vordre de leur
exécution, chaque noeud de M a un unique successeur excepté le noeud de
sortie qui n’a pas de successeur et les noeuds de branchement qui ont deux suc-
cesseurs, 'un exécuté quand le contenu du premier regist.'.re eat inférieur 3 zéro,
Pautre quand ce contenn est supérieur oun égal & zéro.

Remarquons que, & tout instant 7' d’une exécution, le contenu des registres
(appelé état 3 linstant T) est un uple ou une suite presque nulle ¢’est-3-dire
seul un nombre fini de registres ont un contenu non nul.

La structrure de la machine M est souvent représentée par un graphe dirigé et
étiquetté par des naturels dont les sommets sont les noeuds ou instructions, le
noeud d’entrée étant étiquetté par 1 et ainsi de suite, et o les arétes représentent
Ia relation successeur (voir [BSS]|).

Une machine fini-dimensionnelle sera une machine dont les espaces d’entrée, de
sortie et des états sont fini-dimensionnels. C’était un probldme ouvert dans une
premiére version de [BSS| d’établir si toute machine M sur R dont les espaces
d’entrée et de sortie sont fini-dimensionnels (c’est-3-dire ] = R™ et O = R"

avec n,m < oo) est équivalente 4 une machine M' fini-dimensionnelle sur R
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(c’est-a-dire M et M’ calculent la méme fonction). L. Harrington et les auteurs
de [BSS| donnent une réponse positive & ce probléme {voir page 28 de [BSS]),
on trouvera une autre preuve dans [Mi1].

La définition de machine présentée ici est en fait ce qui est appelé la forme

normale dans [BSS], section 3.

De la méme fagon que le comportement d’un automate est décrit par sa
fonction de transition, le comportement d’une machine sur B peut étre décrit
par une fonction de transition appelée dans [BSS], 'endomorphisme de calcul.

L’endomorphisme de calcul Hys d*une machine M est une application de
NxSdans NxS ot W= {1,..., N} est Iensemble des noeuds de M et F est
Pespace d’états de M , est-3~-dire R™ ou R suivant que le nombre de registres
est n on infini.

Le lecteur trouvera la construction explicite de Hyy dans [BSS|, section 3.
Par conséquent, la suite des instructions exécutées par une machine M sur R
avec P'entrée Z (T est un n-uple ou une suite presque nulle, z; dénotera la jiéme
composante de Z). est représentée par une suite R0y Z1y. 00y 8Ky 00 2 E NXS

vérifiant
(1) 2 2 =(1,7)

(2) HM(zk..l) = 2k

2Dans le cas ol D'espace d'états est infini-dimensionnel, il y a lieu d'entrer T dans les

registres de fagon 4 se ménager un espace de travail (voir [BSS]).



Ces conditions (1) et (2) nécessaires et suffisantes pour qu’une suite
20y.4018ky ..., O 2 € N X S soit une exécution sur la machine M (pour une
entrée T), sont appelées les équations des registres de la machine M.

Les conditions peuvent &tre transformées de fagon & s’exprimer
presqu’uniquement par des équations polynomiales i coefficients dans R (en
fait les coefficients de la machine M) et dans le cas ot R = Z,Q ou R (1) et (2)

gera équivalent 3 un systéme d’équations polynomiales (éventuellement infini).

Plus explicitement, on étend d’abord Hys A R x S par interpolation poly-

nomiale de fagon que Hps soit une compesition d’applications pelynomiales
et de la fonction caractéristique de L'ordre (x(%) = 1si z, > 0,x(F) = 0 si
21 = 0,x(F) = 1 si 2; < 0}, ceci est possible sans difficulté dans le cas d’une
machine n’utilisant pas d’instructions de transfert.
Dans le cas ot M utilise ces dernitres instructions, le résultat précédent n’est
vrai que si on restreint Has 3 R x Sy, ol Sy, est Pespace des états pour lesquels
les contenus des deux registres spéciaux (pour les instructions de transfert)
n’excédent pas k.

Ce résultat permet dans le cas oll tout élément positif de R est une somme
bornée de carrés (par exemple dans R,Z, Q) de transformer (1) et (2) en des con-
ditions polynomiales équivalentes (moyennant Pintroduction de nouvelles vari-
ables).

On trouvera des démonstrations de ces résultats dans la section 3 de [BSS].
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3. Mesure de la complexité dans le modéle de calculabilité

BSS

Parmi les exécutions effectuées par une machine M (toujours sur un anneau
R), on va g’intéresser i celles qui aprés un nombre fini d’étapes atteignent le
noeud de sortie de M. Plus précisément on congidére les suites finies (nk, Tx)
d’éléments de N x § qui outre les conditions (1) et (2) vérifient ny = N pour
T < 0o ol N est I'étiquette du noeud de sortie. Si on note (%) la fonction
calculée par M, le temps nécessaire 3 M pour calculer ©u (T) sera noté Tie (T)
et sera égal 3 lindice T tel que np = N pour une exécution effectuée par M
avec la donnée Z. On dit encore que la machine M s’arréte au temps T pour la
donnée 7. L’ensemble des entrées T pour lesquelles la machine s’arréte au temps
T est noté Tr.

Par définition les équations de registres jusqu'a Pinstant T seront les
équations (1) et (2) limitées au temps T avec la condition supplémentaire

ny = N, c’est-3-dire

(1) 20 = (1,%)

(2) Hylzx-1) =2 k=1,...,T

(8) 2r = (¥,77)

Remarquons que les %, k=1,... , T appartiennent & Sy défini comme dans la

section précédente (p. 10).
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Dans le cas ot M est fini-dimensionnelle, ces conditions sont équivalentes
4 un systéme (d’un nombre) fini d’équation polynomiales si (%) tout élément
positif de R est une somme bornée de carrés (exemple dans @, tout élément
positif est somme de quatre carrés).
Dans le cas ot M est infini-dimensionnelle, ce systéme n’est pas fini {(notamment
T est une suite infinie), il y a alors lieu de scinder en deux parties le systdme
(1) (2) et (3), une partie {qui est finie-dimensionnelle} réellement modifiée lors
des instructions effectuées par M endéans le temps T, l’autre partie inchangée
par ces mémes instructions (les applications polynomiales ne modifient qu’un
nombre fixe de coordonnées de 7, les noeuds de cinquidme type jusqu’aun temps
T ne modifient que les T premidres composantes de z, ... yIT).

La premitre partie du systéme sous 'hypothése (%) est équivalente 3 un
systéme fini d’équations polynomiales (voir section 4 de [BSS]).

Etudions pendant quelques instants le cas particulier de R.
Bien entendu dans ce cas (x) est vérifiée. De plus tout systdme d’équations
polynomiales est équivalent 3 un systéme quadratique (la fagon la plus brutale
de le voir est de remplacer chaque mondme z du systéme initial par une nouvelle
variable ¢,, d’introduire en plus une nouvelle variable ¢, pour chaque variable z;
- méme si z; n’apparait pas comme mondme dans le systéme initial - et d’écrire
outre les équations du systéme initial dans ces nouvelles variables, les équations
quadratiques tqls = to4 g ol tg représente un z;, qui ménent i la constitution

de chaqué monéme du systime initial 3 partir des z;, exemple: pour le monéme

12
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X3Y? on ajoutera les équations foitor = tog, toztio = t1z,t12t10 = taa, taotio =
ts3 avec 1o = X, toy = Y).
Puisque tout systéme quadratique est équivalent 3 une équation de degré au
Plus4 (f=0et g=0+ 2+ g% =0 dans un anneau ordonné), le syatéme (1),
(2) et (3) est équivalent 3 une seule équation de degré au plus 4.
On obtient alors e
Théoréme 8.1 [BSS) - Soit M une machine sur R, pour tout T € N, il existe
un polynéme fr : R®* x R* = R de degré > 4 tel que la machine M s’arréte
au temps T pour la donnée ¥ si et seulement s’il exist.‘.e un uple Z € R’ tel
que fT(yl,...,yK,.,E) = 0, oit Kr est le maximum de T et des dimensions
des noeuds de calculs de M (voir section 2) et s peut &tre choisi borné par un
polynéme en T (et donc le nombre de mondmes de Jr est aussi borné par un
polyndme en T).

De la preuve, nous dirons seulement qu’il s’agit d’un comptage attentif du
nombre de mondmes et de variables nécessaires dans les transformations qui

ménent 3 fr i partir des équations de registres (1) et (2).

Nous pouvons maintenant introduire les notions nécessaires pour mesurer la
complexité dans le modile BSS.

La longueur d’un élment 7 € R*(n < oo) est définie comme le plus grand
entier k tel que zx # 0 od T = (z1,%2,...,2£,0,0,.... Nous ne définirons la

hauteur (notée hr(z)) de = € R que dans les cas R = Z,R = Qou BR=R. §i
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2€ B,R=12hz(z) = |log(z+1)|,si R=Qet z = 5 avec p et ¢ premiers
entre eux € Z, hq(m) = max(hz(p), hz{q)}, si z € R, Ag(z) = 1; la hauteur de
% € R” sera le maximum des hg(z:) od T = (z).

La taille de 7 € RB" est maintenant définie comme le produit de la longueur de
Z par la hauteur de 7.

La proposition suivante est évidente :

Proposition 3.1 [BSS| - Soit M une machine sur R, soit 7 € 1, soit a(Z)
le nombre d’opérations arithmétiques élémentaires (+,.,—, 51 R est un corps
¢également <) et de 5idme noeuds utilisé pour calculer ppr(Z) alors a(F) <

kTar{Z), ot k est une constante dépendant de M.
|

On définit la fonction de cofit standard Cj,(Z%)} d’une machine M pour la
donnée ¥ comme le produit de T (Z) et du maximum parmi les hauteurs des

états de M pendant le calcul de pps(Z), explicitement:

A —
Cm(z) = Tu(3) B minax o h(z})

od H*(1,Z) = (nk,zx),mx € N,Zx € S,z}, identique & z sur les Kry, (3
premidres coordonnées, 0 sur les autres.
On dit qu'une machine M sur R est dans la classe P (temps polynomial) sur R

ou que s la fonction calculée par M est dans la classe P sur R g’il existe des

constantes ¢, g € N telles que
YE € T: Cp(Z) < cftaille(T))?

14
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Dans le cas R = Z, on retrouve la notion classique de calculable en temps

polynomial.

On appelle problime de décision sur R, une paire (Y, X)od XcYcT=
R (n < o). Un algorithme {ou machine} qui résoud le problime (Y, X) sur R
est une paire (M, Y') ot M est une machine dont Pespace des enirées admissibles
est Y telle que Vi€ ¥V o) (F)=1ou0et wm(¥) = 1 si et seulement si € X.
(v.X oY c R, est dans Ia classe P si et seulement si il existe un algorithme
dans la classe P qui le résoud. (Y, X),o0 Y C BR®, est dans la classe NP {temps
polynomial non déterministe s’il existe ¢,¢ € N et une machine M sur R dont

Pespace des entrées admissibles est ¥ x R, telle que
(3} em(¥.¥) € {0,1};
(i) (7, ¥') = 1si et seulement si geXet

(iif) pour tout § € X, il existe ¥ €T tel que em(@¥') = 1 et Cy(7, y) <

c(taille(y))?

De nouveau si R = Z, NP est 12 notion classique sur Z.

On notera Pr{N Pg) la classe de probRme de décision de classe P {de classe
N P) sur Panneau R.

On trouvera dans [BSS), un exemple de probléme de classe N P, autre que celui
présenté dans la section suivante de cet exposé,

Remarque : Dans le modéle de calculabilité BSS présenté ici, on peut montrer

que tout probléme de décision sur R est dans la classe “Linear Space”, c’est un

15



corollaire de la preuve du résultat présenté dans [Mil].

4. Un probléme N P-complet sur R

Adoptons la représentation suivante dans R® pour les polyndmes de degré 4
de R" dans R: f sera représenté par (4,n) suivi par une suite de (a,aq) ot
o= (a1, 09,0s,a4),05 €{0,...,n},0; < iy et ao €R, la paire (@, a,) code
le mondéme a,%q, T4, Zay Ta +» ONL pose Tp = 1 pour permettre les mondmes de
degré < 4. Les (@, a,) sont rangés selon I'ordre lexicographique sur les o.

Considérons le probléme {Fy, F, ;4r0) O Fy est Pensemble des polyndmes de
degré < 4 de R" dans R représentés comme ci-dessus et f € F, s géro 8 et

seulement §’il existe Z € R™ tel que f(Z) = 0.
Proposition 4.1 [BSS] - (Fy, F, ;¢.,) est de classe NP sur R.

Preuve - Soit f € Fy, la machine M (qui prouve que (Fa, Fy ggro) et de
classe NF) prend comme entrée admissible (f,y') et teste si f(y'} = 0, ce test
nécessite "évaluation de f. Cette évaluation est réalisée en temps polynomial

(par rappert & la représentation décrite ci-dessus de f )-

Problémes :
e Les classes PR et N P sont-elles distinctes 7

* Quel est le rapport entre la question Py # N Pret PR# NPR?

16
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On dira que le probléme de décision (¥, X) sur I’anneau R est NP-complet
sur R #'il est de classe NP et si pour tout probldme de décision (V’,X’) de
classe NP sur R, il existe une application 1 : ¥’ — Y satisfaisant les propriétés

suivantes.
(1) ¥(¥) € X si et seulement si g€ X'

(i) ¥ = oa /Y’ pour une machine M de classe P, c’est-a-dire 1 est calculable

en temps polynomial.

Pour le cas R = Z, on retrouve la définition classique du probléme N P-complet.

Théoréme 4.1 [BSS] - (Fy, F, .. ) est N P-complet sur R.

Preuve - Il nous reste i prouver que (Fy, F. 4+ zéro) st N P-complet.

Soit M, la machine non déterministe de la définition NP pour un probléme
(Y, X} de classe NP sur R. Soit f; le polyndme de degré < 4 obtemu par le
processus suivant:

Considérons les équations de registres (1), (2) et (3) jusqu'a Pinstant T (7, ¥')
pour § € Y,y € R® plus équation z7,, (¥, ¥') = 1; ce systéme par une légire
modification du théoréme de la section 3 est équivalent 3 un polynéme f; de
degré < 4,

L’application ¢ requise par la définition de probléme N P-complet est ici: ¢ :
Y — Fy : § — fy, le fait que 4 est calculable au temps polynomial est une
conséquence du fait que la taille de f; est polynomiale en temps Thy (¥, y') et

que Tps (7, Zf") est lui-méme borné par un polynéme dépendant de la taille de

17



(cela découle de la définition de la classe N Pj).

Il est facile (en utilisant les définitions) de montrer que y € X ssi fy € F b 2erD
n

Corollaire 4.1 [BSS] - 8°il existe un algorithme d’élimination des quantifica-
teurs de classe P sur R pour IZf(%) = 0, f de degré < 4, alors P = NP sur

R.
|

Contrairement au cas R = Z (voir [Garey-Johnson] pour le cas R = Z), on
connait trés peu de probléme N P-complet sur R.
Soit d > 4, clairement (Fy, F, ¢ ) défini de fagon analogue i (Fy, F, zéro) €8t

N P-complet puisque F, C Fy.

Corollaire 4.2 [BSS] - Soit F Pensemble des représentations (définies de fagon

semblable au cas Fy) des systémes polynomiaux constitué d’équations du type

X:X; = X; et d’une équation ZXi = c. Soit Fzéro’
i€

qui ont un zéro dans R, alors (¥, Fr4ro) est N P-complet.

les systémes de ce type

Preuve - C’est une conséquence du théoréme ci-dessus et des techniques de

réduction utilisées pour obtenir f;.
|

Trés récemment, Eberhard Triesch a montré que les problémes (F2, F, 5¢,0)
et (F3, F, ,¢,) sont de classe P sur R.

En fait, on peut facilement montrer que tout polynéme i coefficients réels de
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degré impair en n variables, a toujours un zéro dans R, donc il reste & montrer
que (F3, F, ;4. ) est de classe P.

La preuve utilise essentiellement une réduction 4 un probléme linéaire.

Kiaus Meer a montré que le problime (Fe Fy pgro. ) ot F, géros €8t l'ensemble
des polyndmes de degré < 4 qui ont un zéro positif dans R, est N P-complet sur
R.

C’est une conmjecture que (Fz, F, zéro +) est NP-complet ou du moins que

(Fz, F, géro) est dans N PR \ PR sous ’hypothise P 95 NPg.

5. Un peu plus loin sur les ensembles récursivement énu-

mérables sur un anneau ordonné

Soit M une machine sur R, rappelons que le domaine {Ipr de M est le sous-
ensemble de. T (Pespace d’entrée de M) sur lequel M s’arréte (c’est-a-dire 3 €
{1 ¢'il existe une exécution avec la donnée % gui atteint Je noeud de soriie de
M aprés un laps de temps fini).

Comme dans le cas classique, un emsemble X C R"(n < oco) est dit
récursivement énumérable sur R (r.e. sur R) si et seulement si X est le do-
maine d’une machine M sur R, c’est-3-dire X = Q5. X C R™*(n < o0) sera dit
décidable (ou récursif) sur R si X et son complémentaire X* sont r.e. sur R.
Il est clair, an vu des définitions précédentes, que (Ips est la réunion des Ir
(TT = ensemble des éléments de {1y, pour lesquels M s’arréte au temps T,

c’est-a-dire atteint le noeud de sortie A la Tieme étape).
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Soit T € _fr, soit la suite de calculs associde 3 F : 2z = (1,%),z, =
(r1,71),...,20 = (N,%7), la suite des noeuds Lny,...nro1, N est appelée
le chemin de calcul de T dans M, il sera noté (%).

Notons V; I'ensemble des éléments § de T tels que 4(%) = 4(%). On a donc

Iy = U,V; oti ¥ est un chemin quelconque de longueur T dans M (ily enaan

plus |N|T).

Théoréme 5.1 [BSS] - Soit -y un chemin de longueur T
(i) V., est un ensemble semi-algébrique de base

(i) 77 est un ensemble semi-algébrique

(3ii) Das est une réunion dénombrable d’ensembles semi-algébriques.

Preuve - (ii) et (iii) sont évidents dés que (i) est prouvé. Clairement en suivant
le chemin « & travers la machine M et notant les branches choisies 3 chaque

noeud de branchement de +, on voit que V, est défini par des inégalités du type.

el (ks (95, (B} < 0

et

G (- - - (955 (95, ()1 < O
ol |; désigne la projection sur la premiére composante et ol les g; sont les
applications polynomiales de A (ou rationnelles si R est un corps, dans ce cas

on obtient ce résultat en remarquant que f < 0 si et seulement si (p<0Ag >

0)V(p>0Ag<0))
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Remarquons que dans le cas ot M est infini-dimensionnelle, le nombre de coor-

données intervenant dans les équations est Kp.

Remarquons que @, restreinte i V. (et aux Kr premidres coordonnées) est

une application polynomiale (rationnelle si R est un corps).

Corollaire 5.1 [BSS| - Tout sous-ensemble récursivement énumérable sur les

réels a ur nombre dénombrable de composantes connexes.

Preuve - C’est une conséquence triviale du théordme et du résultat bien connu
qui dit que tout semi-algébrique a un nombre fini de composantes connexes
{Milnor].

[ |

Le corollaire fournit un critére facile pour donner des exernples d’ensembles
r.e. non décidables, par exemple le complémentaire de ’ensemble tryadique de
Cantor est un ensemble r.e. sur R mais non décidable, voir [BSS].

On peut remarquer dans le théoréme 5.1 que Pensemble §' des coefficients
des polyndmes (ou fonctions rationnelles) qui apparaissent dans la description
de 1y comme une union dénombrable d’ensembles semi-algébriques de R, est
finiment engendré, c’est-i-dire Z[S] est un anneau finiment engendré sur Z (si
R est un corps, @(S) est finiment engendré sur Q). Cela découle trivialement
du fait que le nombre d’applications polynomiales associées & une machine M

sur R est fini, on a donc
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Corollaire 5.2 - Tout ensemble r.e. sur R est une union dénombrable fini-
ment engendrée d’ensembles semi-algébriques de R (ot finiment engendrée est

employé dans le sens décrit ci-dessus).

Corollaire 5.8 - Soit X C R"™ un ensemble r.e. sur un anneau ordonné R.
Supposons que ty,...,¢, sont algébriquement indépendants sur Q(cy,...,c)
oll ¢1,...,¢c¢ sont les coefficients d’une machine dont le domaine ;s est X. Si
(to;--.,ta) € X, alors il existe un ouvert O (pour la topologie induite par Pordre
de R) contenant t;,...,t, tel que O C X.

La preuve est triviale et découle du corollaire 5.2.
n

Ce résultat donne un nouveau critdre pour construire des ensembles r.e. non
décidables,

Intéressons-nous momentanément au cas des ensembles r.e. sur R.
11 est facile de montrer que N, Z sont décidables sur R, en utilisant un compteur,
nous en laissant le soin an lecteur (voir 'exemple 2, section 1 et aussi [BSS]).

En fait, tout sous-ensemble S < N est décidable sur R. Soit r le réel dont
Pécriture binaire est

0.?’1.1’2 P
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ol
1l sinesS

n =

0 autrement

Soit z € R, tout d’abord on décide si z € N ou non, si z € N, on utilise la

machine suivante.

M [a] entrée € N

sortie € {0, 1}
| ] denote la partie entidre de .
z € 5 si et seulement si la sortie est 1; 5 est le seul coefficient éventuellement

irrationnel de la machine M.

Proposition 5.1 - ([Mi2]) Toute union dénombrable finiment engendrée
d’ensembles semi-algébriques de R est un ensemble récursivement énumérable

sur R.

De la preuve, nous dirons simplement qu’elle est assez facile {c’est un argu-
ment de codage} dés qu’on remarque que le fait que tout sous-ensemble § ¢ N

est décidable sur R, implique que tout sous-ensemble de I[X;,..., X,,.. ] est
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décidable sur R (en utilisant une représentation semblable i celle de la section
4 pour les polynémes et le fait bien connu que 2[X;,..., Xn,...] est un anneau

récursif au sens de Rabin ([Ra])).

Lors de ces exposés M. Ziegler a remarqué que tout ouvert de R est r.e. sur R. 11
suffit de remarquer que tout ouvert de R est une union dénombrable d’intervalles
ouverts et que tout réel est limite d’une suite de rationnels.

Les ensembles r.e. sur un anneau R ont été défini comme les domaines des
fonctions ps calculées par les machines M sur R. Les ensembles de sortie sont
les ensembles images de ces mémes fonctions. Dans le cas classique {sur N on
sur Z), la classe des ensembles r.e. est égale i la classe des ensembles de sortie.
Ce n’est pas le cas pour un anneau ordonné quelconque (voir [Mi2]}, mais on a

cependant le résultat suivant:

Proposition 5.2 [BSS] - Pour un corps réel clos, la classe des ensembles de

sortie est égale i la classe des ensembles r.e.

Preuve - Pour tout anneau ordonné, on a clairement que la classe des ensem-
bles r.e. est incluse & la classe des ensembles de sortie. La preuve de Iinclusion
réciproque dans le cas réel clos est basée sur le fait que les corps réels clos
admettent une procédure effective d’élimination des quantificateurs dans le lan-
gage < +,.,—,<,0,1 >. Plus explicitement, soit E C R*(n < o0}, 'ensemble
de sortie d'une machine M. Une machine M* dont le domaine est E, exécutera
la procédure suivante: soit T I'entrée, M* dispose d’un compteur qui au départ

est égal & 1, pour chaque valeur T du compteur M* exécute la routine suivante

24



C. Michaux

(excepté si M* s’est arrétée 3 P'étape T — 1): construire les équations de re-
gistres de la machine M limitée au temps ¢ (mise sous la forme d’un systéme §
d’équations polynomiales - voir section 3), ces équations expriment I'existence
d’une exécution de longueur T par la machine M. Via une machine (qui réalise
l'algorithme de Tarski-Seidenberg par exemple voir [vdD]), M* élimine les quan-
tificatenrs et teste #'il existe une exécution de M (c’est-A-dire une solution au
systéme ' S) qui sort T, si la réponse est affirmative M* g'arréte, sinon M*
incrémente le compteur d’une unité. Il est clair que {lp+ = E. Pour plus de
détails, on lira [BSS}. |

Dans larticle (BSS], apparait la question de caractériser les anneaux or-
donnés commutatifs qui satisfont la propriété de la proposition 5.2 (cette pro-
priété sera désormais notée E = §). On remarque aisément (par le théoréme
3.1} que R satisfait la propriété E = § si et seulement si R satisfait la propriété
“la projection d’un ensemble r.e. est encore un ensemble r.e.”. Ceci éclaire le
fait que cette propriété E = § est liée 4 'élimination des quantificateurs.

En fait, on a le lemme suivant:

Lemme 5.1 [Mi2] - Si R satisfait £ = &, alors Pensemble 4, =
{{a0,...,8n_1,an) ERFz € R : Gpz™ + -+ a9 = 0} est un ensemble r.e.
sur R. De méme, Pensemble B, = {(co,...,cn-1,¢,) € R(¢)|3Fz € R(5) :
¢nZ" + -+ co = 0} est un ensemble r.e. sur R (od 1* = —1 et R(5) est identifié

avec R?, donc B, C R?"2),
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Preuve - Ay, est I'ensemble de sortie de la machine décrite par I’exemple 3 de
la section 1. Il est aussi facile de montrer que B,, est ’ensemble de sortie d’une

machine sur B.
]

Au vu du théoréme 5.1, cela montre que la formule 3X (an X"+ t+ag =0) .
est équivalente dans R a une disjonction dénombrable de formules sans quantifi-
cateurs du langage < +, —,., <,0, 1, Cr(rer) > mais ol seulement un nombre fini
de constantes additionnelles ¢, apparaissent dans la disjonction dénombrable;
donc si R satisfait £ = S, R a une élimination “faible” des quantificateurs pour
les formules existentielles.

Dans le théoréme qui suit, nous résumons les résultats de [Mi2)].

Théortme 5.2 - Soit R un anneau ordonné commutatif intégre,
(i) si R est finiment engendré sur Z, alors R satisfait E = S

(i) si R est un corps finiment engendré sur @, alors R satisfait £ = § (on
permet d’utiliser les fonctions rationnelles dans la définition des machines
sur R c’est-a-dire ~! dans le langage, sinon ce résultat n’est plus valable,

voir (i));

(iii) si R est archimédien et trq R (le degré de transcendance de R sur Q) est
infini et si les ensembles B, n > 1 (défini dans le lemme 1) sont r.e. sur

R, alors R est un corps réel clos:
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(iv) si R est dense dans sa cléture réelle et tr R est infini, alors R satisfait

E = S ssi R est un corps réel clos.

De la preuve, nous dirons simplement que (i) et (ii) sont obtenus en adaptant
la preuve du cas classique R = Z, (iii) est obtenu par une preuve  la “McKenna,
Macintyre, van den Dries” (voir [MMV]), (iv) est obtenu par une généralisation
de (iii).

|

On peut montrer (voir [Mi2]} que si {r;,s € w} est un ensemble dénombrable
de réels algébriquement indépendants, alors Z|r;,s € w] ne satisfait pas E = §,
quoigu’il soit récursif an sens de Rabin.

Jusqu’a présent, il n’y a pas i notre connaissance de classification générale des
anneaux ordonnés intégre dénombrable par rapport i la propriété E = §.
Macintyre a remarqué que si le prédicat de divisibilité dans un annean B réel
clos {voir [CD]) est récursif sur R, alors R satisfait £ = §.

Dans un article [BS] trés récent (non publié), L. Blum et S. Smale tentent
de classer les anneaux ordonnés dont tous les ensembles définissables (dans le
langage < +,.,—, <,0,1 >) sont décidables; cette hypothése sur R est a priori
plus forte que I’hypothése B,,,n > 1 est un ensemble r.e. sur R.

Signalons enfin que dans la section 9 de [BSS|, on trouvera une tentative de
caractérisation des ensembles r.e. sur R en terme d’ensembles diophantiens, et
dans la section 10, une démonstration du fait que les ensembles de Julia sur R

sont presque tous indécidables sur R.
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6. Terminons ce survol de [BSS| en mentionnant ’équivalence entre fonctions

calculables sur R et fonctions récursives sur R (voir section 7 de [BSS|) et

Pexistence d’une machine universelle sur R (section 8 de [BSS}).
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NOYAUX DE CHAINES ET CORPS CHAINABLES.
DANIELLE GONDARD-COZETTE

Université Paris VI

INTRODUCTION

Les corps ordonnables sont de deux sortes : les corps non chainables ou
toute somme de carrés est une somme de puissances quatriémes (par exemple R ,
D et ses extensions algébriques ordonnables), et les corps chainables ou il
existe un élément « tel que «® ne soit pas somme del puissances quatriémes ;
dans ce cas nous dirons que K est un corps «-chatnable (par exemple ®{X) et
R((X)) sont des corps X-chainables) .

La nécessité de faire intervenir une constante o a été mise en évidence
par les axiomatisations des théories des corps chainables et des corps
chaine-clos que nous avons données dans [Gl] . Ce point de vue a ensuite
permis d’obtenir des résultats du type 17ame probléme de Hilbert dans [D-G] et
de créer un analogue A l'algébre réelle dans [B-G] ou {B-G2], et nous le
conservons ici pour poursuivre 1’étude des corps chainables.

Le plan de cette étude est le suivant :
I-Noyaux de chaines ;
II-Corps uniquement a-chainables ;
IlI-Une autre extension du 17ame probléme de Hilbert au niveau n ;
IV-Corps bien chainables ;
V-Corps simplement chainables :
VI-Corps totalement chainables ;

VII-Extensions de chaines .



I-NOYAUX DES CHAINES D’UN CORPS CHAINABLE (Kernels of chains).

Définition I-1 : Un corps K sera dit a-chainable s'il existe dans K un
élément « tel que ocz ne soit pas somme de puissances

quatriémes d’éléments de K .

Définition I-2 : Un préordre T de niveau 2" (ie. T+ TST,T.TEST,

n n-1
K2 €T ) sera dit un a-péordre si o ¢ T (il est alors

n-1
. 2
de niveau exact 2" car ¥ K n’est pas contenu dans T ).
De méme un ordre P de niveau exact 2" sera dit un a-ordre

n-1

si a« ¢ P .

Definition I-3 : Nous appelerons «—chaine une chaine d'ordres de niveau

_ 2
supérieur (Pl)lEN telle que o & Pz'

Proposition I-4 : Un corps K est a-chainable si et seulement s’il existe
au moins une o~chaine.

Ceci résulte des définitions I-1 et I-3 et du résultat de Becker-Harman
qui donne I’expression suivantes des sommes de puissances :
¥ K = nP Jnk K* o P, désigne un ordre de niveau exact 4
quelconque de K . Donc si o’ n'est pas une somme de puissances quatriémes
dans K , il existe au moins un j tel que o’ & sz . D'aprés le corollaire
[-4 de [H] il existe au moins une chaine d'ordres de niveau supérieur passant

par ce sz .

Proposition I-5 : Dans un corps K a-chainable tout ordre Pn de niveau

exact 2" d’une o-chaine (Pl)le[N est un a-ordre.
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n-1 n-1
En effet si o & Pn , alors Pn est bien un a-ordre. Si of ¢ Pn
Pn étant de «-chaine o ¢ I:’2 » on en déduit qu’il existe i = 2 tel que
1-1 1
o ¢ Pl et o’ e P1+1 » puisque d'aprés la relation de chaine dés que
2P P+q
o est dans un P1 ona o qui est dans Pi+q pour tout q =1 ;

reprenons le début de la preuve du théoréme 2 p.5 de [Bell pour montrer que si
»*

aeK alors at2 appartient 4 un ordre P de niveau exact 2" entraine que

a€Pu-P :eneffet si ageP alors P + Pa est un préordre propre

contenant strictement P et donc P + Pa = K ,dol -1=u+vaavecuety
1
dans P et enfin a € - P . On déduit de ce résultat que o e P1+1 entraine

que o € P1+1 v - P1+1 » Puis par la relation de chaine
i-1

2 .
P1+1U_Pl+1_(P0nPl)U_(Ponpl) que ocl ePl ce qui est

contraire a 1’hypothése.

Lemme I-6 : Soit K un corps a-chainable.
-~

2

* n 1 n
Pour tout ne N , Tn =Y K2 - Y K est un a-préordre

propre (i.e. -1 ¢ Tu ) de niveau exact 2"

C'est tout a fait clair pour n=1 et n = 2 i pour n=z3 K étant

a~chainable o ¢ L K* et par la proposition I-4 il existe une «~chaine
n-1
2

(P} ; par I-5 tout P de a~chaine est un «-ordre donc « £ P et
I'1elN n n

la relation de chaine jointe au fait que Pn ] contient toutes les puissances

n-1 n-1 .
2 "-émes montre que - « €eP ;P contenant toutes les puissances
n n

2"-émes d’éléments de K contient donc Tn . Tn est clairement un préordre
n-1
de niveau 2" , et le niveau est exactement 2" car o n’appartenant pas
a P ne peut donc pas appartenir a Tn ; de méme - 1 ne peut appartenir a
n

Tn qui est donc propre.



corollaire I-7 : Dans un corps a-~chainable pour toute a-chaine (F’l)l eN
N k-1 k

Tk=}:l(2—a2 ):Kz <P, ,pour tout k=2.

on a

C’est clair d’aprés la preuve du lemme I-6.

Proposition I-8 : Dans un corps K a-chainable , tout Pn , ordre de niveau
n n-1 n
exact 2" qui contient Tn =7 K? - of YK % est un P

de a-chaine.
n-1 n-1
En effet seulement 'un des deux éléments o ou - o appartient a
Pn . Donc azn-l € Pn et on en déduit que toute chaine passant par Pn est
une o-chaine puisque si a® e P2 , en utilisant la condition de chaine (qui
s’exprime au niveau 3 par : P3 V) _Pa = (Pzn Po) v -(Pzn Po)) on obtiendrait

n-1
2 . 4 D s 2
a € P:a v - P3 d’'oi o € P3 ; on déduirait en itérant que « € Pn .
ce qui est impossible.

Toute chaine (Pl}le[N passant par Pn est donc une c«-chaine .

Proposition I-9 : Dans un corps a-chainable Tn est égal &4 l’intersection de
tous les w~ordres de niveau exact 2" (qui appartiennent a au

moins une o—chaine}.

D’aprés le théoréme 1 de Becker [Bell, un préordre propre de niveau 2"
est égal a l'intersection de tous les ordres de méme niveau , exact ou non,

qui le contiennent ; un ordre qui contient Tn est un a-ordre car
n-1 n-1
- of € Tn < F’n ce qui entraine que of & Pn ; enfin Pn est bien de
n-1
niveau exact 2" puisque ¥ K® n’est pas contenu dans Pn .
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Corollaire I-10 : Dans un corps K e-chainable , Tn est égal a !'intersection

N n - -
des P , ordres de niveau exact 2 des a-chaines.
n

Cela résulte immédiatement de 1-7, I-8 et 1-9.
2n 2n-l zn
Remarque I-11 : Dans un corps K a-chainable T = YK +a" Y K" est
toujours un préordre propre de niveau 2" mais il n’est pas forcément de

. n
niveau exact 2

Définition I-12 : Appelons , pour n = 2, Tn novau au niveau n des

a—chaines.



II-CORPS UNIQUEMENT «-CHAINABLES (. uniquely wa~chainable fields).

Definition IT-1: Un corps a~chainable qui n'admet qu'une seule a-chaine

(Pl)lelN » & échange de Po et 1;’1 prés, sera dit uniguement
a-chainable.

Proposition II-2 : si un corps K a-chainable n'admet qu’une seule a-chaine
(PIJIE[N , a échange de Po et P1 prés, alors I'ordre de

niveau exact 2" de celle-ci est pour tout n = 2 ,
n n-1 n

- _ 2 2 2
P =T =LK' -o" F¥K

En effet par le corollaire I-7 toute «-chaine (Qi)iéN est telle que
Qn 2 Tn pour tout n = 2 , d’aprés I’hypothése faite que K n'admet gu'une

seule a~-chaine le corollaire I-10 donne alors Pn = Tu

Definition II-3 : nous appelerons coeur au niveau n de a-chaines (heart of

level n of a-chains) relativement au fan trivial P0 n P1
n=-1 n-1 n~-1

_ 207 2 2 X
Cn-):(PonPl) o ):(PonPl} ol n=2

Proposition II-4 : Soit K «a-chainable et P0 , P1 des ordres qui soient le

début d’une a-chaine (Pl)l eN

pour n = 2 , Cn est égal a l'intersection de tous les
a-ordres Pn le contenant ; de tels Pn sont alors de

D n -
niveau exact 2 et sont de «-chaine .

La démonstration est analogue a celle de I-10 dés que l'on a montré que

"8 (P) est une

C_ est un préordre propre de niveau exact 2 PieN
n
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n-1
a-chaine commencant par ]:’0 n Pl alors (P0 n Pl)2 < F’n : c’est vrai pour

n~=2 daprés la relatn:n:l-1 P2 v - P2 e (P0 n Pl) u - (PO n P1) , et par
récurrence si (Po n F‘l)2 < P’n alors par la relation de chaine, au niveau
n
U 2
n+l, P u-P l—(PonPn)u—(PonPn) on déduit que (PonPl)

n+l n+
n-1 n-1

est contenu dans P . P étant de a-chaine ocz ¢ P et - ocz e P
n+l n n I

donc on a Cn < Prl . On en déduit que Cu , qui est clairement un préordre de
niveau au plus 2" , est un préordre propre de niveau exact 2" . Il est donc

égal a !'intersection de tous les ordres P qui le contiennent, ceux-ci sont
n
de niveau au plus 2" car si le niveau était supérieur on aurait Y. K2 non
n-1 n
contenu dans P ce qui est impossible puisque ¥ (Po n Pl}2 2 Y K® . Le
n-1
niveau est évidemment au moins 2" puisque Y} K? n’est pas contenu dans P
n-1 .
qui contenant C ne peut contenir o® . Etant de niveau exact 2" et
n-1 n
tels que - uz € Pn , ces ordres P contenant Cr1 sont des ordres de

. n ~
niveau exact 2 de a-chaines.

Proposition II-5 : Si K a une seule wa-chaine (Pl)lElN , @ échange de P0

et P oprés, alorspour tout n=22 P =C =T
1 n n n

LY

Preuve analogue a celle de H-1 .

n
Remarque II-6 : Dans K «a-chainable si } K> est un fan
2n 2n—l Zn 211-1
alors T =LK' va ¥ K° ; de méme si ):(PonPl)
n-1 n-1 -1

n
2 2 2
estunfan‘,Cn-):(PonPl) v ):(PonPl)

Corollaire II-7 : Pour qu'un corps «-chainable admette une seule a~chaine , a

échange des deux premiers ordres prés, il faut qu'il existe

deux ordres P0 et F’1 tels que pour tout n = 2 CIl = Trl



Le corollaire II-7 résulte de II-5.

Corollaire II-8 : Dans K a-chainable sont équivalentes :
(i) K est uniquement e-chainable .
(ii) K admet deux ordres vrais Po et P1 , et deux

seulement, tels que pour tout n = 2

2n-l 2n—l 2n—l
Cn=E(PonP1) - E(PonPl} soit un

' n
ordre de niveau exact 2

zn—l 2n—1 2n—I
(iii) pour tout n22 T=}F K" -« T K est un
n

. n
ordre de niveau exact 2 .
Preuve immédiate en utilisant ce qui précéde.

On peut remarquer qu'on obtient une partie du résultat du coroliaire 2 p. 43
de [Bell si K est chainable et a exactement deux ordres car alors

Y K? = (P0 N P1) est un fan.

Dans certains cas, dont évidemment K simplement chainable ( c.f. la partie

V )}, les conditions de II-8 pour n = 2 suffisent.
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II-UNE AUTRE GENERALISATION DU 17éme PROBLEME DE HILBERT AU NIVEAU n.

Théoréme III-1: Soit K un corps chaine-clos a-chainable n’admettant qu'une
seule valuation hensélienne a4 corps des restes réel-clos, et
soit f € K(X1' ,Xp) = K(X) ; alors les propriétés
suivantes sont équivalentes pour n = 2

_ 2n 2n-l . 2n
(i) f e F KI(X) - & ¥ KX)®
(ii) ¥Xx € K® ot f est définie f(X) e P ,od P désigne

I'unique ordre de niveau exact 2" de K .

La preuve utilise le corollaire I-10 du présent ar‘ticlg et le lemme obtenu

avec Delon dans [D-G] suivant ;

Lemme III-2 [D-G] : Soient K et L deux corps chaine-clos tels que K € L
et K n'admet qu'une seule valuation hensélienne & corps
des restes réel-clos ; alors sont équivalents :

(i) KnL?=x? ;
(ii} K est relativement algébriquement clos dans L .

(iii) X4 L (ou "{" est une inclusion élémentaire ).

De I'expression d’un corps chaine clos «a-chainable sous la forme
K=K v-KvuqgK? U - oK et du lemme précédent il résulte si K n'a
qu'une seule valuation hensélienne & corps des restes réel-clos et est contenu

dans un autre corps chaine-clos a-chainable L , alors on a K { L

Preuve de III-1.

Il suffit de montrer le théoréme pour f € KI(X] car si f = g / h alors
1 n n

f = ghz R et 1'on sait que d’une part § K? ¢ Prl et que d’autre part



n-1 n
> YTKE?® estun préordre (voir & 1) .

T (K(X) = T K®? - o
Pour prouver (i) = (ii) il suffit de vérifier que si f ,-appartenant a
) K('f)zn - ozzn_l ¥ K(-)'(')Zn , est définie en x , alors f(x) appartient a
) Kzn - azn_l b Kzn . En effet dans un corps chaine-clos «-chainable K
I'unique ordre de niveau exact 2" est donné par les expressions suivantes :
n n-1 n n n-l _n

Pn =3 K> - o b K> =k vu-o® K ; la premiére forme résulte du

fait qu'un corps chaine-clos a-chainable est uniquement «-chainable et du
théoréme II-2 , et la seconde vient de !’expression des ordres de niveau
supérieur d’un corps n’admettant que deux ordres usuels donnée par Becker dans

[B1l.
_ 2n zn-—l _ 2n
La preuve du fait que si f , appartenant 4 ¥ K(X)* - « ¥ K(X)" | est
n n-1. n
définie en x , alors f(x) appartient a ¥ K? - o Y. K® est due &
Becker et nous le remercions de nous autoriser a la reproduire ici :
n n-1

Notons f € T K(X)* - o

_ zn 2n 2n-1 2n
¥ K(X) sous la forme f =} r’ - Y s

oules r , s, € K(X) ; soient x = (X, .or X ) & K, © le localisé
p x

en x KX _ et soient A : K(X) —> K la place définie par
( ){—xl s B Xﬁxp)
X = X, et V;\ ’anneau correspendant ; alors si f est définie en x ,

f e Ox € V, . Il suffit de montrer que ros fsj € V, d'ou 'on déduit

| A
2
¥ A(sj} €P_

A
— — 2 —
Alf) = f(xl, ...,xp) =} ?L(r‘i) o

n n-1
2

Soit par exemple r tel que v(r‘l} = min { V(r'l) ; v(sJ] b, osi r ¢ A
n n n-1

alors ona f = rf (1+F (rl/rl)2 - ot

A 1

I
¥ (sj/l"l)2 ] ; on sait que

fe VA et le crochet , noté =z dans la suite , dans l'expression ci~dessus

est une unité ce qui donne une contradiction ; en effet si z n'était pas

une unité alors dans le corps résiduel VA / m, = K on aurait, puisque les

rl/ r, et Sj/rnl ap]:i;‘tlenn:nt a V?L 2
Alz) =1+ % ylz - ) y32 = 0 ce qui est impossible puisque - 1 ¢ Pn .

L'autre cas ol I’on a par exemple s, défini par :

10
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v(sl) = min { v(rl) , v(sj) } se traite bien sir de maniére analogue,

(ii) » (i) . On considére la théorie des corps chaine-clos a-chainables et on
utilise le langage des anneaux augmenté d'un symbole de constante o . Dans le
corps K chaine-clos «-chainable I'hypothése (ii) se traduit, en notant f

par P/ Q avec P, Q € KIX], par la formule suivante :
n n-1 n

"VXIW 2 (QX) =0 v fE =y* v f® =-a® 2% )" ; dans K(X)
qui est a-chainable on fixe une a-chaine (Pl)iEIN et on considére L la
cléture chaine de K(X) pour cette chaine . D'aprés le lemme III~2 et

I’hypothése faite sur K on a K { L , donc dans L Ia méme formule

n n-1 n
"¥x Jy Iz (QX) =0 v f(x) =y v f(i"):—oczl zZ )" est

satisfaite ; on choisit alors X = X dans L et on obtient que f

n

appartient a l'unique ordre de niveau exact 2" de L ; cet ordre prolongeant

I’ordre 1'-‘n de niveau 2" de |I' a-chaine choisie sur K(X) , nous avons
aussi que f appartient a Pn . Ce raisonnement est faisable pour toutes les
o—chaine de K(X) , par conséquent f appartient a l'intersection de tous les
ordres de niveau exact 2" des o-chaines de K(X) dont on sait par le

n n-1

n
corollaire I-10 qu'elle est égale a ¥ K(X)* - o T KX)? .

1



IV-CORPS BIEN CHAINABLES (fatr chalnable fields).

Revenant maintenant a !'étude des corps chainables et plus précisément a
celle des corps a-chainables, il nous apparait indispensable de distinguer
deux cas et de poser quelques définitions.

Il est clair, le carré d’une somme de carrés étant une somme de
puissances quatriémes d'aprés [Beil, que si «® nlest pas une somme de
puissances quatriémes alors « n’appartient pas a + ¥} kK? . Par contre la

réciproque n’est pas vraie dans tout corps chainable.

Définition IV-1 : Un corps tel que pour tout o dans K le fait que «
n'appartient pas 4 * ¥} Kz entraine que on:2 n'est pas une

somme de puissances quatriémes sera dit bien chailnable.

Harman dans [H] a étudié le probléme de la réciproque de la propriété
"aezxy K » a’e I K* " si on désigne par (*) cette propriété
réciproque, Harman a montré que (*) était équivalent a4 la connexité de
'espace M(K) des R-places de K (muni de la topologie définie comme étant
la plus grossiére rendant continues les applications de M(K) dans R v {m} .
le compactifié de R , qui pour chaque a € K sont définies par A >—> A(a)).

Il a édgalement montré que pour un corps ordonnable K , K pythagoricien et
a la propriété (*) était équivalent a K pythagoricien au niveau 4
ou encore a K pythagoricien 4 tout niveau 2" . Becker a lui démontré que
(¥ K*? = T K* entrainait M(K) connexe et que la réciproque était vraie

dans le cas o K éfait pythagoricien.

Dans un tel corps Harman a pu montrer dans [H]} le lemme suivant :

12
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Lemme IV-2 {H] : Soit K un corps bien chainable ; si une puissance 2™ d’un
élément a est une somme de puissances 2"-é¢mes dans le corps
(avecn > m ) alors a est égal ou opposé a une somme de

. n-m
puissances 2~  -&mes.
Cela entraine le corollaire suivant :.

corollaire IV-3 : Dans un corps bien chainable si o€ty K? alors pour tout
n-i n

P evT K.

n>1l ona «

Du travail de Harman on peut déduire des exemples de corps bien
chainables : @(X) , QX,Y) , o(t) , ace N )y RX,...X} , R(t) ,
-~.» et bien slr les corps chaine-clos ou plus généralement d’aprés [G3] les

corps de Rolle admettant au moins deux ordres usuels ; Harman a en fait montré

que K bien chainable entraine K(X) et K({t)) bien chainables .

Une partie de l'intérét de la notion de bien chainable apparaitra dans

certains des paragraphes qui suivent.

13



V-CORPS SIMPLEMENT CHAINABLFS (clearly chainable fields).

Définition V-1 : un corps K tel que par tout ordre de niveau exact supérieur

ou égal & 4 il ne passe qu'une seule chaine (P1]1€IN , a

échange de P0 et P1 prés , sera dit simplement chainable.

Un corps chainable qui n’admet qu'une seule chaine, comme les corps

chaine clos ou R((X)) par exemple, est évidemment simplement chainable.

Proposition

¥-2 : Un corps chainable K est simplement chainabie si et
seulement si pour toute valuation réelle sur K de groupe des

valeurs 8 , B satisfait | B / Bz | =2.

La démonstration est un corollaire immeédiat des deux lemmes suivants :

Lemme V-3 :

Lemme V-4 :

(IB1] ou [L] page 135)

Pour tout ordre de niveau supérieur P , (K,P) a une seule
cléture réelle géneralisée, & K-isomorphisme prés, si et
seulement si pour toute valuation réelle de groupe des valeurs T

ona:ll"/l‘zlsz.

([H] corollary 4-9 )

Soit K un corps et P un ordre de niveau supérieur de K . Deux
clétures réelles généralisées de (K,P) sont K-isomorphes si et
seulement si elles déterminent la méme chaine (Pl)iEIN , a échange

de PO et Pl prés , de K .

14



D. Gondard-Cozette

Preuve de V-2 .

# clairement par V-3 un ordre P a une seule cléture réelle généralisée

€t donc, en utilisant V-4 , P n’appartient qu'a une seule chaine.

« si on suppose qu'il existe une valuation réelle de groupe des valeurs B
qui ne satisfasse pas la condition | B / Bz | =2, alors par V-3 il existe
un ordre de niveau supérieur P de K telque (K,P) na pas une
cléture réelle généralisée unique ; par V-4 on conclut que par ce P il passe

au moins deux chaines distinctes.

Corollaire V-5 : Les corps de Pasch sont des corps simplement

chajnables.

On rappelle qu’un corps ordonnable est de Pasch si et seulement si on a :
(1) pour toute valuation réeile de groupe des valeurs B , B satisfait

| B/ 81 =2 ;
(2) si pour une valuation réelle de groupe des valeurs 8 on a

| 8 7 Bz | =2 , alors le corps résiduel correspondant n’admet qu'un seul

ordre .

Un exemple est donné par R(X) qui est un corps de Pasch, @Q(x) luj n'est

pas de Pasch, mais ces deux corps sont simplement chainables.
Le corollaire V-5 résulte alors immédiatement de V-2.
Dans [G3] on trouvera un exemple de corps non simplement chainable : tout

corps de Rolle admettant au moins quatre ordres n’est pas simplement chainable

On en déduit que bien chainable n’entraine pas simplement chainable,

i5



Remarque V-6 : D’aprés [Bell ou [L] , si ( K, P ) a plus d’une cléture
réelle généralisée alors il en a une infinité. On en déduit que si dans K non
simplement chainable, en tout ordre de niveau supérieur P o0 il y a

croisement de chaines il se croise en fait une infinité de chaines.

Con jecture V-7 : Un corps simplement chainable est bien chainable.

16
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VI-CORPS TOTALEMENT CHAINABLES ( totally chainable fields).

Dans [D-G], écrit avec F. Delon, nous avons donné un corollaire du
théoréme principal valable dans certains des corps dont tous les ordres vrais
sont chainables, c’est a dire sont le début d’une chaine ; il conviendrait

donc d’essayer de caractériser ces COrps.

Définition VI-1 : nous appelerons corps totalement chainables un corps tel

que tout ordre est le début d’une chaine, et corps complétement totalement

chainable un corps tel que toute paire d’ordres est le début d’une chaine.

Des exemples de corps complétement totalement chainables sont donnés par
R((X)) et les corps chaine-clos ; de [Di2] on déduit que R(X) est totalement
chainable, alors que ®&(X) ne I’est pas .

Dans [G3] nous avons démontré que les corps de Rolle chainables,
c’est a dire ayant au moins deux ordres, étaient des corps complétement

totalement chainables.

Théoréme VI-2 : Un corps K complétement totalement chainable est bien

chainable.

Preuve de VI-2.

Supposons que K ne soit pas bien chainable ; alors il existe Bety K?
tel que ,B2 €y k* ; il existe donc deux ordres P0 et P1 tels que I'on ait
B e Po n - P1 et K n’admet pas de B-chaine. §'il existait une a—chaine de

début (Po’Pl) on aurait e« € Po n - P1 d’od on déduirait «f € P0 n Pl R

17



on obtiendrait alors ([H] 3-11) que I’ a-chaine considérée s’étend a

I'extension algébrique non triviale de K suivante : L = K(V aB8) ; dans L
on aurait alors «° = (V oqf's’)4 /B e Y L* et donc o appartiendrait 3
I'extension de l'ordre de niveau exact 4 de P a-chaine, ce qui est

impossible.

Remarque : @(X) est bien chainable

et pourtant d’aprés {Di2] ce corps n'est pas totalement chainable.

18
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VII-EXTENSIONS DE CHAINES (extensions of chains).

Nous avons montré dans [G3] que les corps de Rolle étaient tels que pour
toute extensjon algébrique L de K il existait une chaine de K qui ne
s'étendait pas fidélement & L . En fait la preuve n'utilise pas toutes les

conditions pour qu’un corps soit de Rolle et on a donc le résultat suivant :

Théoréme VII-1 : Un corps chainable K tel que K est pythagoricien au
niveau 4 et K n’admet pas d'extension algébrique de degré impair vérifie
que pour toute extension algébrique L de K il existe une chaine de K qui
ne s’étend pas fidélement a L .

Preuve de VII-1

K n’admet pas d’extension algébrique de degré impair entraine que toute
extension algébrique ordonnable de K contient une extension quadratique
K(\/:)avec ocsEiEKz.

K pythagoricien au niveau 4 entraine K bien chainable donc o> & K4 :

K est donc a-chainable.

Si une w«-~chaine s’étendait & K(/: ) fidelement on aurait :

ey (kKVa 1)) g ﬁz d'ot o e P, ce qui est impossible.

On peut alors se poser le probléme de la réciproque et essayer d'obtenir pour
les chaines un résultat analogue i la caractérisation des corps réels K

tels que pour toute extension algébrique L de K il existe un ordre de K
qui ne s’étend pas & L : " K est pythagoricien et K n’admet pas

d’extension algébrique de degré impair " (c.f. [R]).

19



Théoreme VII-2 : Soit K un corps totalement chainable. Alors K
pythagoricien et K n’admet pas d’extension algébrique de degré impair
entraine que pour toute extension algébrique L de K il existe une chaine

de K qui ne s’étend pas & L .

C’est clair en utilisant le résultat de [R] cité ci-dessus, car dés qu’il
existe un ordre qui ne s’étend pas il existe une chaine qui ne s'étend pas

fidélement.,

Conjecture VII-3 : un corps chainable K est tel que pour toute extension
algébrique L de K il existe une chaine de K qui ne s’étend pas
fidélement &4 K si et seulement si K est pythagoricien au niveau 4 et

n’admet pas d’extension algébrique de degré impair.

Lemme VI-4 : [Bel] Pour toute extension L de K contenue dans la cléture

pythagoricienne de K wun ordre de niveau supérieur s'étend fidélement &4 L .

Lemme VI-5 : [Bell Pour toute extension algébrique de degré impair L de K

un ordre de niveau supérieur s'étend fidélement & L .

Un sens résulte de VI-1.

Pour l’autre, le lemme VI-4 de Becker entraine que le corps est pythagoricien
(au niveau 2) ; d’aprés le lemme VI-5 un ordre admet toujours une extension
fidéle & une extension algébrique de degré impair, donc K n’a pas
d’'extension algébrique de degré impair.

Pour montrer que K est pythagoricien au niveau 4 il suffirait de montrer

que K doit étre bien chainable et d’utiliser le résultat de Harman suivant :
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K pythagoricien et bien chainable équivaut & K pythagoricien au niveau 4 .

Pour que la conjecture soit vraie il faut qu’un corps totalement chainable
qui est pythagoricien et n’admet pas d’extension de degré impair soit un corps
bien chainable. Becker a pu donner un exemple de corps pythagoricien
totalement chainable qui ne soit pas pythagoricien au niveau 4 , en prenant
la cléture pythagoricienne de R((t)) , mais ce corps peut avoir des

extensions de degré impair.
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ANALYTIC ELIMINATION THEORY
(d'aprés Denef et van den Dries)

M. A. DICKMANN
CNRS — Université Paris VII

§1. INTRODUCTION. In the first three sections of their paper [2], J. Denef and L.
van den Dries present a p—adic analogue of the real variable theory of semi—analytic
and subanalytic sets. In the fourth section the ideas arising in the p—adic context
are fed back into the real case to give new, shorter, more explicit and unified proofs
of many of the foundational results of the theory.

The presentation proceeds along a path parallel to one by now well
established in the study of semi—algebraic sets, both in the real and the p—adic
cases. In the first of these two lectures we gave a summary of the geometric theory
of real semi—algebraic sets, aimed at illustrating the line of argument. We omit this
part of the exposé, as the theory just mentioned is presented with wealth of detail in
Chapter IV of [3]. The fragment of the (cousin) theory of semi—algebraic subsets of
QB dealing with Milnor's curve selection lemma and dimension theory is developed

at length in [9].

The gist of the method consists in finding a language L in which the basic
mathematical objects under study —subanalytic sets and functions in Denef—van
den Dries' paper — coincide with those (parametrically) definable in the first—order
calculus associated to L. Usually, the identity between thege classes of objects is
established by means of a quantifier elimination theorem in the language L for the
- first—order theory of the structures under study.

For the case of real semi—algebraic sets the language L is the language for
unitary ordered rings consisting of the symbols +, —, ., 0, 1, <, and the elimination
theorem is Tarski's celebrated result.

For semi—algebraic subsets of Qg, the appropriate language L has been

introduced by Macintyre and consists of the symbols +, —, ., 0, 1 plus countably

-1 -



many unary predicates P2, P3,...; Pn is interpreted as the multiplicative group of

non—zero n—th powers. The elimination theorem required in this case was proved by
Macintyre in 1976; see [7] and [8].

In the case of real and p—adic subanalytic sets, Denef and van den Dries
succeeded in isolating suitable languages L = Lgn (same name in both cases,

although they are not identical), and proving elimination theorems which make
possible carrying out the program summarized above.

Owing to the audience's (and the lecturer's) preferences, we have inverted
the priorities of Denef—van den Dries' paper giving, in the second lecture, a
summary of their analytic elimination theory in the real case. In the next two
sections we present this summary, and in the last we describe the modifications to
be made in order to obtain a similar theory for the p—adic case; we also state an
important result with no meaningful real analog.

§2. THE REAL ANALYTIC ELIMINATION THEOREM; SUBANALYTIC SETS.
We shall be concerned with the interval I = [1, 1] construed as a structure in the
language L]gn consisting of:

—A binary relation symbol (interpreted as the order of I).
—A binary function symbol D (interpreted in I by the function

X
D(x, y) = ly
0 otherwise. )

—An m—ary operation symbol for each power series in R[[X »-X || converging at
1 m g

if x| < y| and y#0

every point of some neighborhood of I™ and sending ™ into L

Note that product appears in L]z:a,)n’ corresponding to the series Xl.XQ. Sum and

difference do not occur in L]a?n for + and — do not map 2 into I. However, Lgn

does have a "poor man's" substitute for these operations, namely %(X1 + X2) and
. %(X1 - X2). A similar device makes possible, for instance, to represent a statement
of form "f(Xl,...,X n) > 0", where f is any power series converging in a neighborhood
of 1™ (but not necessarily sending I into I), as an L]a)n——formula, by replacing the

function f by the term c.f, where 6 < ¢ < 1/sup{f(x)|x € I'™}.
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The paper's key result is:

Theorem 1. (Analytic elimination theorem; real case).
The first—order theory of the interval I construed as an Lg p —Structure (as above)

admits quantifier elimination. n]

The (rather technical) proof uses the Weierstrass preparation theorem to reduce an
occurence of a fixed (quantified) variable, say Z, in an Lgn—term (e.g., a power

series) of a given formula, to a polynomial occurrence. This can be achieved, while
simultaneously keeping at bay unwanted appearances of the term D. After this
reduction is performed, Tarski's quantifier elimination theorem is used to get rid of
the quantifier binding the variable Z. Quantifiers are eliminated, one by one, in this
way. The argument uses compactness of L.

The language Lg , has been taylored to make quantifier—free definable sets

coincide with subanalytic sets (in I™). Before dwelling on this point we define the
concepts involved.

Definition 2. (Semi— and subanalytic sets).
(a) A set S C R™ is called semi—analytic at a point X € R™ iff there is an open
neighborhood U of X in R™ such that U n S is a finite union of sets of form

{yeU| f(ﬂ=OAg1(§) >0A..Ag(y) >0}
where f, g1»++8} are real analytic functions defined on U.

(b) A subset of R" is semi—analytic if it is semi—analytic at each point of R™.

(c) Aset S CR%is subanalytic at X € R™ iff there is an open neighborhood U of x in
R", an integer m > 0 and a bounded semi—analytic set §' C R™T™ guch that
UnS=1Un x[S'], where = : RYT™ s R? s the projection which forgets the last
m coordinates.

~ (d) A subset of R is subanalytic if it is subanalytic at each point of R®. @

Thus, a semi—analytic set is a set which locally admits a description similar
to that of a semi—algebraic set, with polynomials replaced by analytic functions. Of
course, semi-—algebraic sets are semi—analytic, but many other sets are
semi—analytic as well. For example, so are certain sets with countably many
connected components, e.g., {x € R | x.sin(x) ? 0}, where ? is any one of the signs
>, <, or =. The projection condition defining subanalytic sets enlarges the class of
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semi—analytic sets; however, the first examples of subanalytic sets which are not
semi—analytic, occur in dimension 3:

3. Examples. (a) The set {<x, x.y, x.exp(y)}> | x, y € R} is subanalytic but not
semi—analytic at the origin.
(b) Another way to get subanalytic sets which are not semi—analytic is by means of
the following remark: let S C R™ be a subanalytic set; let C(S) C ™! denote the
cone with vertex at the origin over base S:

C(S) = {<tx1,...,txn,t> | t € Rand <KX > € S}.

Then C(S) is subanalytic (this follows easily from Theorem 4 below), but by looking
at the behaviour at the origin it is easily seen that C(S) is semi—analytic if and only
if 5 is semi—algebraic. See Hironaka [5; Remark 3.7, u!

The supporting pillar of semi—algebraic georrietry is the fact that
semi—algebraic sels possess a finite global deseription by polynomial equalities and
inequalities. Since the definition of subanalytic sets is of a local nature, it is not at
all clear that they admit a similar finite global description in terms of analytic or
related functions. The analytic elimination theorem shows that such a description
does exist indeed (at least within the class of bounded subanalytic sets).

Theorem 4. ([2; Cor. 4.15]). The following are equivalent for a set S C [~1, 1]™:
(1) § is defined in I by an LE n—Jormule (quantifiers and parameters allowed).

(2) S is a finite union of D-basic subsets (see definition below).
(3) S is subanalytic in R™. o

D—basic sets are sets of the form
{xeIl|fx)=0A g(X) > 0A..A g (x) > 0}
where the functions f, B8 I" —> I —called D—functions— are (arbitrary)

D. in other words,

finite compositions of the functions defining the language L an

* D—functions are those corresponding to terms of the language L]zi)n (under the

interpretation given at the beginning of this section).

§3. GEOMETRIC THEORY OF SUBANALYTIC SETS.
All the basic results concerning the geometric structure of subanalytic sets now

— 4 —
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follow in cascade from the two theorems of the preceding section. Here are the main
headlines.

Theorem 5. (Basic properties of bounded real subanalytic sets).

The family of subsets of I (some n> 1 ) subanalytic in R™ is:

(1) A boolean algebra. (The crucial result that the complement of a subanalytic set
is subanalytic is due to Gabrielov [4].)

(2) Closed under first—order definable operations such as closure, interior,
projections.

(3) Closed under images and inverse images by subanalytic functions. D

Note. A function f : § —> I, where S ¢ ™ is called subanalytic if its graph
Gr(f) = {<X, f(x)> | X € S} is subanalytic in R™D,

Theorem 6. (Existence of uniform bounds; [2; 3.2]).
For every subanalytic set S C ™™ there is an integer N so that for every 7€ I, if
the fiber S = {yel'| <z, y>¢ S} is finite, then card(S}) < N. Furthermore, the

set {ze I" | S s finite} is subanalytic. o

Theorem 7. (Selection theorem; [2; 3.6]).

Let SCT™™ pe g subanalytic set and 1 :R™T" —> R™ the projection which forgets
the last n coordinates. There is a subanalytic map f: nfS]—> I" whose graph is
contained in S. O

Theorem 8. (Partition theorem; [2; 3.14)).
Each subanalytic subset of I is a disjoint union of finitely many subanalytic
manifolds. ]

Note. By a manifold we mean a real analytic manifold which is Hausdorff and of the
same dimension at each of its points. A subanalytic manifold is a subanalytic set
which is a manifold in this sense.

A well-behaved dimension theory stems from Theorem 8 upon defining
dim(S) as the maximum of the dimensions of subanalytic manifolds contained in S.
This theory produces results similar in many respects to those known for
semi—algebraic sets.



Theorem 9. (Dimension formula; [2; 3.16]).
Let 3-8, be subanalytic subsets of ™; then dim( u,S; } = max{dz'm(Sz.) |

i=1,.,n}; the same holds for countably many sets Si , provided Uz'Sz’ is

subanalytic. o

Theorem 10. (Product formule; [2; p. 111)).
Ifs,cr, Sy € I'™ are subanalytic sets, then dim(S, x Sp) = dim(S,) + dim(S,). o

Theorem 11. (Invariance of dimension; [2; 3.21]).
The image of a subanalytic set under a subanalytic map does not increase dimension.
If the map is injective, dimension is preserved. 0

Theorem 12. (Characterization of dimension; [2; 3.23))

Let §C I be q non—empty subanalytic set. Dim(S) is the largest integer d,
0< @< m, so that the image of S under some projection " —> [ has non—empty
interior in Id o

Theorem 13. (Dimension of closure; [2; 3.26)).

Let SCI™ be subanalytic and cl(s) denote the closure of S in I'". Then
dim(cl(S) — S) < dim(8).

In particular, dim(cl(S)) = dim(S). 0

This result is crucial in obtaining subanalytic stratifications (cf. Hironaka [5; Prop.
I, p. 179]). The following theorem establishes a connection between subanalytic
and analytic, functions:

Theorem 14. ([2; 3.29]). Given SC I'" and @ subanalytic map f: § —> I", there is a
partition of S into finitely many subanalytic manifolds M 1""’Mk 80 that each

restriction f| M. 8 an analytic function. o
i

The analytic elimination theorem may be combined with the embedded
resolution of singularities in order to yield a new proof of Hironaka's
rectilinearization theorem. This result establishes a globa] relationship, by means of
well-behaved analytic maps, between (arbitrary) m—dimensional subanalytic sets of
R™ and semi—analytic subsets of R™ of a particularly simple form; for details, see [2;
pp. 132~134]. Among the consequences of this theorem we have the following

-6 —
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results, originally proved by Lojasiewicz [6; Thms. 1 and 2, p. 127):

Theorem 15. (a) One—dimensional subanalytic subsets of I (any m > 1) are
semi-—-analytic.
(b) Every subanalytic subset of Pis semi—analytic. o

§4. THE p—ADIC CASE.
The theory summarized in §3 can be reproduced, with suitable modifications, for the
field of p—adic numbers (p a fixed prime number). All results obtained in [2; §§ 2, 3]
for this case are new.

The ring Ip of p—adic integers plays the role of the interval I (recall that lp

is compact in the p—adic topology). p—adic analytic functions are, of course,
functions which admit a development in power series convergent in the p—adic
topology. The elimination language LIa)n should be modified as follows:

—The binary relation symbol < is replaced by countably many unary relation
symbols P, as in Macintyre's language for p—adic semi-algebraic sets (cf.

Introduction).
—-The function symbol D is interpreted as follows:

D(x, y} = [ z/y if v(y) <v(x)andy#0

where v denotes Qp's valuation.

otherwise,

The analytic elimination theorem takes, in the p—adic context, a form very
similar to that of Theorem 1:

Theorem 16. (Analytic elimination theorem; p—adic case).
The first—order theory of the ring lp of p—adic integers construed as an

- Lla) n —Structure (as indicated) admits quantifier elimination. o

Exact analogs of Theorem 4, and of all the results mentioned in §3, hold in
the present case as well. In addition, Denef and van den Dries prove versions of the
following results —well-known in the real case—, for arbitrary subanalytic subsets

f 7™
0 Ip
(17) Milnor's curve selection theorem ([2; 3.34]).

7 —



(18) The Lojasiewicz inequalities ([2; 3.37)).
(19) The rationality of the Lojasiewicz exponents ([2; 3.37)).

Proofs of these results for real semi—algebraic sets can be found in Dickmann [3;
Chs. IV and VII]; a proof of (17) for p—adic semi—algebraic sets is given in
Scowcroft—van den Dries [9].

Most important among results for the p—adic case without a meaningful real
analog is an extension of Denef's theorem on the rationality of the Poincaré series
from semi—algebraic sets to subanalytic sets.

Definition 20. Let S be a subset of ZII?. For each integer n > 1 we denote by S,
(C (l/pnl)m the image of S under the (m—fold product of the) residue map
I —> l/pnl. Let N_(S) denote the cardinality of S,- The series Po(T) =

l e =

Nn(S)Tn is called the Poincaré series associated to the set S. o
=0

Theorem 21. (Rationality theorem; [2; 2.8]).
If§¢ IT; is a subanalytic set, then the Poincaré series PS( T) is a rational function

of T. a)

For semi-algebraic S this was proved by Denef [1], solving a long—standing
conjecture. For subanalytic S this gives a complete answer to a question raised by
Serre and Oesterlé.
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SUMS OF 2n-TH POWERS
OF
MEROMORPHIC FUNCTIONS

Jesds M. Ruiz
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28040 Madrid, Spain

In this paper we shall be concerned with real meromorphic functions.
Thus, we fix from now on a compact connected real analytic manifold M of
dimension m. By the identity principle, the ring AM) of (global) analytic
functions on M is a domain, and its field of quatients M) is the field of
meromorphic functions on M. In other words, a meromorphic function on M is a
quotient h=f/g where f,g are analytic functions, 8#0. The set of poles Z
of h is the zero-set of all g’s appearing as denominators of k. Since M is
compact, @AM) is noetherian, and so Z is the zero-set of finitely many g;s.
Then if h=f/g, The usual s.0.5. trick gives h=}fg /g Hence, any
meromorphic function can be written h=f/g with set of poles Z=zero-set of
8- We are interested in the sums of 2n-th powers of meromorphic functions on
M, i.e. sums of 2n-th powers of the field #AM). The key result to anmalyze

these sums is, always, Becker’s valuative criterion:

Theorem 1 [B].- Let F be a formally real field, and hEF a sum of squares.
Then h is a sum of 2n-th powers if and only if v(h) is a multiple of 2n for

every real valuation v of F.

A natral simplification of this criterion is to substitute the very
large family of all real valuations by a smaller ome. This has been done
when F is the field of rational functions of a real algebraic variety:
[Br-Sc],[K-P]. Here we shall do it when F is the field of real meromorphic
functions $#M). Also, we shall obtain some topological properties of sums of

2n-th powers of ${M). Of course, the first result is



Theorem 2 [J],[Rz1].- A function h€HM) is a sum of squares if and only if

it is positive semidefinite,

Consequently, we concentrate our attention on the valuative criterion.

We have:

Theorem 3.- Let I" be a finiiely generated ordered abelian group and d=0 such
that the rational rank of I' is =<m-d. Then a positive semidefinite
meromorphic function h€HM) is a sum of 2n-th powers if and 6nly if v(h) is
a multiple of 2n for every (real) valuation v of $M) whose value group is I”

and whose residue field is a pure transcendental extension of R of degree d.

The proof of this theorem is based on the same approach that led to the
geometric criterion of [Rz2] (cf. [K] for a different proof if dim(M)=2). In

the end, that criterion becomes an easy corollary of Th.3:

Proposition 1.- A meromorphic function he&M) is a sum of 2n-th powers if and

only if for every analytic curve o:(-£,£) M, we have hoa=atv+..., with a>0

and v a multiple of 2n.

Proof.- The only if part. Every o:(-§,6)=M gives a homomorphism
OM)—R{t}: f-Taylor expansion of fos at 0,

whose kernel we denote by p. Then ﬂM)p is a regular local ring, and the

real valuation v induced by the embedding AM)/p—R{t} lifts to another one

v of HAM)=qf(@M )p)' Now, if h is a sum of 2n-th powers, v(h) is a multiple

of 2n, which using the construction implies v(h) is a multiple of 2n too.

. But if haa=at°+..., then v=v(h) and 2n divides v. On the other hand, koo is

positive semidefinite by Th.2, and so a>0.

The if part. Suppose heHM) is not a sum of 2n-th powers. If h(x) <0 for
some xEM, the conclusion is inmediate., Otherwise, by Th.2, h is a sum of

squares and by Th.3 with I'=Z, d=0, we find a homomorphism @: AM)-R[[t]) with
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(o(h)=atv+..., and 2n not dividing v. Let m be the inverse image of the
maximal ideal (t) of R[[t]] and xEM the point corresponding to m (which
exists because M is compact). Then ¢ can be extended to a local momomorphism
(0:0; —R[[t]], where ﬂx is the local ring of germs of anmalytic functions at
x. As is well known g =R{xl,...,xm}, so that ¢ can be approximated by local
homomorphisms $:0 —R{t}. If the approximation is good enough, ¢(k)=e(h)
mod t’*! and so ¢(h)=at”+... Finally, ¢ gives an analytic curve o:(-¢,6)-M

with a(0)=x, and hoo=¢(h)=at’+... We are done.

Now we shall use the precedent criteria to analyze some topological
properties of the A’s which are sums of 2n-th powers for all n. These A's

are called positive units.

Proposition 2.- Let h&HM) be a positive unit and denote by Z its set of

poles. Then:
(1) h is positive definite off Z.
(2) cod(Z)=2.

Proof.- (1) By Th.2, h is positive semidefinite on M~Z. Then suppose h(x)=0
for some x&Z, and pick an anmalytic curve o:(-¢,6)>M\Z with a(0)=x. We get
hoa=at”+..., with v=1, since hoa(0)=h(x)=0. By Prop. 1, A is not a sum of

2v-th powers, which is a contradiction.

' (2) Suppose Z has an irreducible component Y of codimension 1. Then the
ideal p of Y is a heigth 1 real prime ideal of @M). Since 0(M)l’ is a
regular local ring, we conclude it is a real discrete valuation ring, whose
valuation we demote by v. By Th.l, 2n divides v(h) for all n, and this
implies v(h)=0. Hence, % belongs to &IM)F, i.e. h=flg with g&p. This means
{g=0}DZDY, but also gg&p=ideal of Y, a contradiction.

Finally we shall show with two cxamples the limits of the topological

conditions (1) and (2) above.



Example 1.- For any (global) analytic subset Z of M, there is a sum of
squares h&HM), whose set of poles is Z, and is positive definite off Z, but

which is not a positive unit.

Indeed, take amy equation g of Z and set h=1/g". Clearly Z is the
critical locus of h and h|M\Z>0. Furthermore, pick any x€Z and 0:(-5,6)>M
such that a(0)=x, o(t)&Z for t+0 (this is the curve selection lemma). Then
hoo=at’+..., with a>0 p=1, because hoo(t)>hea(0) =h(x) = 1/g(x)*= + 0.

Consequently, A is not a sum of 2v-th powers.
Anyhow, we can construct many positive units.

Example 2.- For any (global) analytic subset Z of M of codimension =2, there
is a positive unit h€ HM) with set of poles Z.

The construction requires some previous work with Z. Firstly, consider
the irreducible components Zl,...,Zr of Z, and pick in each Zi a regular
point x. which does not lie in anmy other Zj. Here regular means there are
global amalytic equations of maximum rank, which vanish on Z and describe Z,

locally at x . Taking the first one of them, say f;, we have
rank(JI‘(fi))=l, {_f;=0}:)Z.
Now choose a global analytic function g, which vanish at X for j#i but
not at x, and consider f=grfl+...+g rfr . Clearly in(f)=gi(xi).lxi(f;) and
rank(in(f))=l, {)‘;=0}:)Z.

Finally, denote by U the open set of regular points x of Z such that
rank(JI(f))=l. Clearly, XX €U, so that ecach intersection UﬂZi is a
non-empty open set of regular points of Z. This implies that any analytic

function vanishing on U, vanishes on the whole Z.

On the other hand, let g be any equation of Z and put
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2, 42
=2h Hh
2.2
h1+hz )
We claim h is the function we sougth. Clearly, v(h)=0 for any real valuation

h where h =f+ig".

of M) and so, by Th.1, h is a holomorphy unit. Furthermore, the set of
poles Y of h is contained in

0=h =f+g’ f=0
S i.e. in 5
0=h:z =f+2g =0

which are equations of Z. Conversely, we have ZCY. For this, it is ¢nough to

show UCY. Hence fix x€U. Then
Jx(h1)=";(ﬂ’ as x€Z={g=0},

and so x is a regular point of dimension m-1 of H£={hi=0}. Moreover, x is
adherent to Hi\Hj, because otherwise HlnH2=Z would have dimension m-1 at x.
Thus, there is an analytic curve ai:(-s,s)—>M, ai(0)=x, ai(t)eHi\Hj for t+0,

and:
2h (g, () +h,(a (1))

hoa (t)= 2 ; = i
k(0 (1) +h (3 ()

when t50, i.e. when ai(t)->x. Whence, h cannot be extended to x.

Finally, we shall sketch the

Proof of Theorem 3.- Consider a sum of squares h €M) which is not a sum of
2n-th powers. We look for a valuation v of $#M) with value group I' and
residue field R(zl,...,z d), such that v(h) is not a multiple of 2n. If h=flg

we replace h by g°h=g"""'f and can assume from now on that A€ M),

First, Th.1 gives a real valuation v A of #M) such that v 0(h) is not a
multiple of 2a. Fix an ordering a of #M) compatible with v ,» and let V be
the convex hull of R in M) with respect to a. One casily sees that the
value of A for V is not a multiple of 2n, and can so suppose V is the ring

of v,- Also, V dominates a local ring dM)m where w_ is the maximal ideal

X



of a point x€EM (here we use M in compact). Then by Hironaka’s resolution of
singularities, V  dominates a regular local ring of dimension m,
B=aM)[g 1""’gk]uC$(M)’ with residue field R. Furthermore, there are

P, P
regular parameters YooY €8 and a unit ¥ of B with h=uyl’...ym'“

Then, since vo(h)=plvo(yl)+...+pmv°(y) is not a multiple of 2n, some
P, say p, cannot be either. Once we have this, the valuation v, will be
substituted by another one. First, making 2n quadratic transforms of B,

always dividing by ¥,» we obtain:

q

q
h=uylly:'2 m

-y (with new yz,...,ym)
and q =p +2n i P, is not a multiple of 2n. Let A be the 2n-th quadratic
i#Fl
transform. Then
i) A= J(M)[hl,...,hs]mcﬁ(M) is regular of dimension m, with residue
field R. '
(i) There are regular parameters Ypes¥ € and a unit ¥ of A such

9. 4q
that h=uy ...y ™, where q, is not a multiple of 2n.
1 m 1

(iti) The localizations A(y v) dominate ﬂM)m and have residue
oY,

X

field R(zj+ l,...,zm), the residue classes z, of Y, algebraically independent

over R.
Some further work with the extension 6{M)nl —0 =R{xl,...,xm} shows that
X

(iv) There is a local embedding A—)R{yl,...,ym}.

After this preparation, which follows closely [R2z2], we can construct a

new valuation v with the required value group and residue field.

First case: rank I'=1.

Since I' is finitely generated, we may find 1=f,,~--:f,ER rationally
independent with I's¢ lZ+...+¢:’rZC R. Thus the hypothesis on the rational rank

of I' is r<sm-d=j, and we have a diagram
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R{y}, - —REDIY TR {Hire D

I [ T

Ay — R@IYT-25 R,

where y=(yl,...,ym), y’=(yl,...,yj), z=(zj+l,...,zm), [[tr ]] means formal
power series with cxponents in I (cf. [F]), and ¢ is defined by the
substitutions _

¢(yi)=t¢1 for i=1, ‘....,r,

{¢(yi)=th(1+d5i(tfr)) for i=r+1,...,j,

with t,di” l,...,(PJ.GR[[t]] series analytically independent of order =1. This
latter  condition  guarantees that the resulting local homomorphism
A(y,)—)R(z)[[tr 11 is inyective. Consequently, it .induces a valuation v in

qf(A(y,))=33{M): this is the needed valuation.

For, its residue field is in between the one of A - and the one of
R(z)[[tr 1], but these are both R(z)=R(zj+l,...,zm). Hence v is a real
valuation and its residue field is a pure transcendental extension of R of
degree m-j=d. On the other hand, the value group of v is obviously contained
in I, but in turn contains v(yi)=§i ,1<ix<r, which generate I'. Finally,

qQ a_ ) 4y 9
¢(h)=¢(uyl Y )=un1t.¢>(yl Y, ), and we find
v(h)=ql¢'l +.aee +qr£r+2nqt+l+... +2nqj=(ql+2nq)61+q2£2+... +qt¢'r

(remember ¢ 1=1). Now since & l,...,{f are rationally independent, and 2n does

not divide q, it cannot divide v(h).

Thus, the proof in the case rank I'=1 is finished.

Second case: rank I'>1.

Let I' be a maximal proper isolated subgroup of I', so that I’ =1"II"1 has
rank 1. Denote by r the rational rank of I'’. Then, the procedure of the case

already solved gives a real valuation »’ of Q(M)=qf(A(y.)), Y = ppeesy)



with residue field R(zHl,...,zm) and such that v’(h) is not a multiple of

2n. Now we have:
rational rank of I‘l=rational rank of I" -r<(m-d)-r=(m-r)-d,

and this condition allows us to find a valvation v of R(::Ir H,...,zm) with
value group I and residue field a pure tramscendental extension of R of

degree d. We end by taking the valuation v of M) composite of v’ and V.
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