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D,Pecker (Paris 6)

CONS:PRUCTION DE SURFACES QUARTIQUES +

91 INTRODUCUION : Sur le 16eFne probl dale de Hilbert
La g6ometrie alg6brique 6tudie les figures g6om6triques d6finies

par des 6quations polynomiales, Kummer a classifi6 les surfaces

r6elles du quatriane degr6 selon leur nombre de points singuliers

coniques (18629cf [2] ) , Harnack a montr6 qulune courbe proJectjve

plane r6elle de degr6 d ne petIt avoiD pIus de (d-1)(d-2) +I

composantes connexes , et que cetlie borne 61;ait atteinte en tout

degr6 d (1876) , Mats ce n1 est qulavec le progrds des id6es

topologique$ que Hilbert a pu formuler la premi6re partie de son

16eme prob16me : la classification topologique des vari6t6s alg6briques

r6elles , et en particulier des courbes de degr6 6 et des surfaces

de degr6 4 ,Dans un article publ16 en 1909 (cf [6]) il mont;re le

rapport entre ces deux questions et construit une surface quartique

d, b( rR) d, r,ng maximal r2 ( rCM) = a dim(A (m,Z2)) )(v,ir ,u,siHa])
Ce n1 est que r6cemment qu1 on a pu r6pon(ire aux plus simples de ces

questions :

la classification des courbes de degr6 6 a 6t6 achev6e en 19’71

gTa,, ,w, tr,vaux d, Gudk,v, Arnor'd ,t R,brin ( v,iT[1] ,\+1 ,[9] /[31)
Dans lt6tude plus d61icate des surfaces r6elles de degr6 4 les

progrds onI; 6t6 encore plus lentis , , ,
Whitney a montr6 que tout ensemble alg6brique M a un nombre fini

de composantes connexes en consid6rant les extremums li6s de la

fonct;ion d(0IM) qui sont en g6n6ra1 en nombre fini, Ensuite t
en utilisant la th6orie de Morse , R, Thom a pu obtenir des bornes

exDlicites , dont certaines relatives aux rangs maximums des
hypersurfaces r6elles projectives se sont av6r bes les mei11eures

possibles (il obtierit en particulier la borne 12 pour les surfaces
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quartiques de Pq( in) ) , Simultan6ment, appliquant la th6orie de Ho=se

a 1 ' application norma:Le de Gauss, J,Milnor a obtenu d'autres
in6galit6s, mei11eures pour les hypersurf aces af£ines compacties :

dim H (Ma) 4 d(d-I )n-l , Mats 1 dans ce cas les in6galit6s ne sent
pas les mei11eures possibles: Kharlamov montre que le rang dlune

surface quartique compact;e non-singuliare de Ri ne petIt d6pa8se:r IO o

Sa d6monst;ration utilise la th6orie des surfaces Kx 9 mace a laquelle

iI pa,„i,.t a ,I,,,tri,, 1,, ,U,r,,,, qu,,tiqu,, d, M(cr. [7] ,t81 )
Le but de cet expos6 est de construire explicitement9 et

616mentairement;, les types topologiques des surfaces guar'biques

compact;es non-.singuliares de RI, Nous utiliserons pour cela les

constructions de Kummer (cf , [2] ) ? oubli6es semble-t-.il par les
sp6cialistes. , in m6t;bode de Viro (1979 cf ,[12]) senble cependant tr6s
proc Ile de cel:Le de Kummer ,

52 LA IYIEISiOD:E; DE KUMMER +

Dans ce qui suit, si E est un sous-.ensemble compact de la sph6re sa
le double de E est obtenu en reco11ant deux coDie8 de E par leurs

t>or(is ,

PROPOSIUION (KIImrner)

Si P est; un polyn6me de de$r6 4 tel que p-1 (0) rencontre

transversalement S2 et si k est assez petit la surface J d'6q IIation :

(x2+y2+,2--b2 , k P(x,y,,) = O ,,t h,m6,in,ppb, au d,uble d, pa(J+,d)n?
D6monst;ration: Montirons tout d'abord que 9d6s que k est assez petit9
chaque demi- Motte dont ltorigine est a 1ljat6rieur de S2et .qUi

sl6joigne de 0 rencontire 3 en au plus deux paUl;a :
Une te:Lle demi-.droite a pour param6trisation :

fx = >[It + xo f g + yi + z q = 1

I y = 11by I t + y o &Ire c : < x: + y : + z i < 1

Lz = zqt + zo lxoxl + yoy1 + zoz1 n O ! t),to)/ O

On volt que la suite des coefficients du polyn6ne Qd) :

= 2



I ecrcer

Qd) = ( t2 + x: + y: + z: -. 1 )2 + kP(xgy gZ) 3 pr§sente exactement

deux variations de signe , dtoa la conclusion par le lemme de Descartes .

Consid6rons un champ de segments sortants de S2 teI que

p-kO)n£x2+y2+za >13 soit contenu dans la r6union U de ces segments,
(;hacun de ces segments sort;ants est port;6 par une demi-<iroite sor'bante

dont ltorigine esti a lljnt6rieur de la boule : x2+y2+z2<1=E ,

Choisissons k assez petit pour que J soit contenu dans la couronne

l••.•E<x2+y2+z2< 1+£ let pour que toutes nos demi-droities rencont;rent

:5 en deux points au pI.s, Ell,, r,n,,ntT,nt d,n, J ,n d,ux points‘
exactement,I'un int6rieur a 62 I'autre ext6rieur. Ia projection :Le

long d,s s,gm,a, m,ntT, qu, §n{„2,y2,,2 >lj ,St b,m6omorph, a
p-1(1-“ oJ )n 82. D, me„, 3n{x2,y2,,2(13 ,,t b,m6,n,rph, a r-1( JA,ol)n-sz

et (f est donc le double du compact p-l(]H/O])OS2 , a

S) COURB£S SPH£RIQUES DE DEGR£ 8 ET SUR7AC XS QUARgIQUES ,

Nous allons construire des courbes de degr6 8 sur la sph6re qui son Ii

11 intersection de la sphare et d'une surface quartique dl6quation

P(x,y, z ) = O ; on dira que P(xgyt z) = O est 1l6quation d ' une belle
CO tube sph6rique, On salt depuis Hilbert qutune te11e courbe a au plus
dix ovales , Par projection st6r6ograDhique (voir la figure I ) nous

identi£ierons la splldl:e priv6e d'un point au plan, Une t;elle
projection 1’pr6serve les cercleJ ( c 1 est une inversion ) ,

projections st6r6ographiques.
que 1’on utilise pourCe son

fain des cartcs des regions polaires

ou des r£gions du cicl.

FIGURE I



In plan ainsi identifi6 a la sph6re slappel ILe plan invers:If o
Dans le plan inversif cercles et (trotties ont des 6qual;ions de

degr6 1 , Par convention 1l6quation dlun cercle est n6gat;ive a
11 int6rieur de ce cercle ,

PROPOSIUION l: Il exist;e une courbe sph6rique ayanb une 6quatzion

de degr6 4, poss6 clan ii les sym6tries dlun t6traadre, et ayant; dix
ovales sans relation d1 inclusion .

D6monst;ration: Prenons quatre cercles du plan inversif dispos6s

comme sur la figure 2 , leur r6union a une 6quat;ion de degr6 4 :
T(x,y,z) = 0 ,1,1 ensemble des points de la sph6re v6rifi ant

CP(x,y,z, ) = E se compose de dix ovales sans relation d1 inclusion ,

FIGURE 2 : GIC2G3C4< 0

Not;ons selon Ut;kin et Gudkov R; + qR: une surface ayant une
composante connexe de genre k 9 RE 9 et q boIl:Les sans relation
d' inclusion ext6rieures a Rg ,Grace au lemme on obtient inn6diatement:

THEOREME it Il existe des surfaces quartiques de type Rg et IC>R g ,
De plus ces s.ur:faces out les sym6tries d'un t6tra6(ire ,

REBURQUES, R,bn a ,,n,truit en q9rr un, ,ur£a,e d, tW, IOR: @DOI)

Ut;kin en 1967 @N) et Gu cHav en 1971 avatent conjectur6 (entire aut;res.)

jlexistence dlune surface quartique de type R; trQUv6e par KbEplanov

en 1977 et dont Viro donne en 19'/9 une construction 11616nentaire11

utilisant le "catalogue" de Polatovskii (c£, [8]/82])

[
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D. Pecker

Nous allons maintenant construire dlautres courbes sph6riques par

la a6 I;bode des petit;es variations de Harnack..Hilberb--Roan. appliqu6e

a des r6unions de cercles sur la splrare ,
PROPOSITION 2, Il exist;e des coIn:bes sph6riques. ayant des 6quat;ions

de degr6 4 des types suivants :
(a) IO ovales dont un seul est contenu. dans un aut:ce ,
(b) IO avales dont deux sant contents dans un t=oi8i6ne + les

autres 61;ant sans relation d 1 inclusion o

8 ovales dont trois seulement sont contenug dans un qUatri6me1

les aut;res 6t;ant sans relation dt inclusion- ,

De plus les ecu=bes (a) et (b) pr6sent;ent une syn6t=ie par rapport.

a un plan ,

D6Inonst:ration :

(b) Soit cjIo2lo3 trois cercles de la sphdre et elle2 feI trot$
cercles tlperturbateurs" en point;il16 sur la figure 3 ,

Soit_ K = CIC2C3 + 8lel'2'3 , On voit que la aourbe K'O , qui eat
tr6s proche de la courbe CIC2C3nO T a qua iire aomposante8 connexes
dont une est ’tperturb6e11 , Sur la figure on a noirci Ia pal:tie du

plan inversif oa C1 K < O , .la courbe CIK + 8 nO avec a assez
petit , r6ponc1 a la question ,

(C)

C3



(a) P18me construction que (b) t mats e1 ! e2t.e3 'lpe=tu=bant'1 C)

(voir figure 4 ) ,il f aut alors prendre E n6gati£ ,

(c) Name d6monstration ,mats e1 et e2 perturbent; C299tan£iis aye e)
perturbe C3 , On pre,ld alors & n6gatif dans un petit cercle aut;our
de Bej et positif ailleurs

Cl

FIGURE 4 e

Dans toutes les configurations obtenues on petIt diminuer le nombre

d'ovales en modifiant les dispositions des cercles , Grace au lemme

on c>bt lent :

THEOREME gOn petIt construire par cetit;e m6t;bode 49 types diff 6rent8
de surfaces quartiques :

RE. + qR: avec k+q 89 et k ou q < 2

RE + qR: aIrec k 44 et q g 3 ; R g + Z+Rg

,et aussi RR + RR et deux sph6res concentriques ,
REmARQUE : Si 1lon amet 11 assertion de Gudkov (cf, [5] ) 8elou
l&que11e les jI types possib:Les de counbes sph6rique s de deg=6 8
existent ,et que ces courtles out des 6quation3 de degr6 4 transveraes

a la spbare I, alors on peut construire TOUS les types de surfaces

quartiques 8 RE +_aRg avec k+q ( 9 t et les cas t=iviaux ,

= 6 M
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PRIm£ ID£AL AND SIKORSKI EXT£NSION TH£OR£rI S FOR SOW Z-CROUPS ‘

Daniel Gluschankof
DtIO. de Matematicas, Facultad de Clencias Exact;as y Naturales
UnIversidad de Buenos Aires
1428 Buenos Aires
Argent ina

ABSTRACT. In the first part it is proved that the exIstence of prlne
Z-ideals in any t-group is equivalent to the PrIme Ideal Theorem for
Boolean algebras (BPI ) . }hreover, the result inF>IIes that Blrkhoff 's
Representation Theorem BRT) for representable Z-groups is equIvalent to
BPI , which extends the analogous result of [FHI and IL] for f-rIngs. In
the second part, whose main theorem is equivalent wIth Slkorski ‘
ExtensIon Theorem (SET) , we characterIze the InJectlve abellan Z-poup
with strong unit

1. EXISTENCE OF PRIME Z-IDEALS IN Z-GROUPS

For terminology and notations we refer to [BKW] . We shall work in
the axiomatic frame of Zermelo-Frankel set theory (ZF) and expIIcItly
mention when BPI is added to the hypotheses of any theorem.

1.1. THEOREM. (BPI ) . Let G be an t- group , X a proper Z- Ideal, a c G\H .
There exists a prime subgroup P such that a d P. In partIcular, there
exists a value of a.

1.2. COROLLARY. (BPI ) . Let a be an abeIIan t- group, X a proper Z- Ideal,
a c G\A . There exists a prime Z– ideal 1 such that a d I arxi A S I.

1.3. COROLLARY. (BPI ) . Let G be a represent able t- group , X a proper
t- ideal , a c G\A . There exIsts a prime Z- ideal Fa whIch is naxinal wIth
respect to the condition of not containing a.

Birkhoff ’s representation theorem for equat tonal varIetIes (BRT)
(see [B] ) states that in a given variety, any algebra can be represented
as a subdIrect product of subdirectly irreducIble algebras of the
variety. It was recently proved in [G] that in ZF BRT is equivalent to
AC. Since the non-constructive part in BRT Involves, for each two gIven
different elements of the algebra a, b, fIndIng a maximal congruence 0
such that a and b are not congruent modulo 8 we can state the followIng.

1.4 THEOREM. BPI impIIes BRF for the variety of represent able t- groups .

To appear in extcn80 in the Proceedlng8 arlslng from the workshop
Ordered AlgebraIc Structures, August 1988, KIkI+tor Acadenlc Publl8her8,
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Since BRT implies the existence of such congruences we have the

1.5. THEOREM. In ZF are equivalent BPI arxi the statenent "In any hyper-
arch imedean t- group any proper Z- Ideal can be exterxied to a pr Inc one" .

which implies the followIng:

1.6. COROLLARY. BPI is equivalent to
represent able t- groups .

BRF for the varIety of

In [FH] and IL] it was proved that BPI is equIvalent to BRT for the
variety of f-rIngs. SInce any abelian Z-group is represent;able and can
be also thought as an f-rIng wIth the trIvIal product, we have that the
two results Intersect for the variety of abeIIan Z-groups.

To complete thIs first section we shall state two related results.

1.7. COROLLARY. (BPI ) . 1 ) Any hyper-archlmedean t- group is IsomorphIc to
a subdirect product of subgroups of IR;

ii ) Any archimedean t– group wIth strong unIt is IsomorphIc to a
subdirect product of subgroups of IR.

Observe that both results are well known but relying, for theIr
proofs, on Zorn, s Lemma, equivalent to AC (see [BKW] )

For the last result of the section, let's recall a categorical
def init ion:

For a category B, an object 4 is infect ive if for any objects B and
C such that B is a suk>obJect of a and an arrow f c Ham[ B, 4] there exIsts
an arrow f c Ham[C, 4] which extends f

1.8. THEOREM. BPI is equIvalent to the statement that R is Infect Ive in
the category of hyper-archimedean t- groups arxi t-homomorphlsns .

2. INJECTIVE ABELIAN t-GROUPS WITH STRONG UNIT

In the sequel we shall work in the category WU of abeIIan Z-groups
with strong unit . We shall consider the language of Z-groups enriched by
the constant symbol u which shall represent the strong unIt. We shall
denote one of those groups by G(u) , pointIng at the strong unIt. The ho-
momorphisms shall be Z-homomorphisms which preserve the strong unIt.

2. 1 THEOREM. In ZF the followIng statements are equIvalent:
a) BPI

b) in any group in mu there exist prime t- ideals ;
c) in any group in WU there exIst maxImal Z- Ideals;
d) R( 1 ) is Inject Ive in EVII.

Given a family (a1 Cut ) ) leT S Ob (£gl£) , and an Z-subgroup G of IIGa

such that (ul)leI € G, we denote by d(ul)ICI the Z-group wIth strong
unit {g c G / 3n e N such that I gsI s nu1 for all I c 1} and it is easy

2
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to prove that (ac1)'(u1)1€1 is th, p,,d„,t ,f the tal,try (61(u1))1€1 in
the category WU. Fhklng an abuse of notatIon, if a is an Z-subgroup of
RI for some index set 1, we shall denote by C'(1) the obJect of WU wIth
underlyIng set {g € G / in c N such that Ig1 1 s n for all I e 1} .

2.2. COROLLARY. (BPI ) . In mu the products of copIes of R( 1 ) ( in the
sense of the above stated renark) are Inject Ive obJects.

For X a compact topologIcal space, let a bean Z-subgroup of D(X)

such that I (the constant nap to 1) belongs to G. ConsIder the Interval
[0, 1 ] S G, by defInIng =x = 1-x, we have a Boolean algebra structure in
the set BCG) = {x / x € [0, 1 ] such that XVHX = 1 and rAnI = 0} .

For a gIven conpact space X we shall denote g(X, Ra) the Z-group of
all contInuous maps on X with values on the real IIne wIth the dIscrete
topology. Observe that g(X, Rn) (1) and B(X,Ray(1 ) denote the sam obJect
in !gII.

2.3. LEMMA. (BPI ) . Let G(1 ) be a complete arxi dIvIsible t-group with
strong unIt. If B SG a Boolean algebra which is subalgebra of 8(C(1 ) ) ,
then G is IsomorphIc to D(yp(BCG) ))'(1) „ F(gp(8(G) ))'(1) .

Observe that, for a complete Z-group G S IRA such that 1 cC are
equivalent the propertIes of beIng dIvIsIble and havIng all the constant
maps. Then we can state the followIng:

2. 54 COROLLARY. (BPI ) . (Theorem of Stone-Weierstrass for WU) . If a(1 )

is complete and has all the constant maps then it is IsomorphIc to
g(yp(BCC) ) ) '( 1 ) .

2.5. COROLLARY. (BPI ) . For any t- group wIth strong unit G(1 ), it is
complete and divisIble ( has all the constants ) if arxi only if it is
isomorphIc to g(Xy(1 ) for X extrenally disconnected.

2.6. LEMMA. (BPI ) . The inject ive obJects in !gU are archlmedean.

For the last part we shall recall the statement of SET (see IS] ) :
Let B be a boolean subalgebra of a boolean algebra B’ arxi 4 a conplet e
boolean algebra. Any homomorphism f : B + 4 can be extended to all of B’ .

Now we can state our maIn result on InJectlvlty in WU

2.7. THEOREM. In ZF the followIng statements are equIvalent:
a) SET

b) Complete and dIvIsIble groups are the JnJectlve obJects in WII.

3



REFERENCES

[B]

[BKW ]

[rH]

Birkhoff , G. , Subdirect unIons in unIversal
Math. Soc. , 50 ( 1944) , 764-768.

algebra, Bull. An.

Bigard, A. , K.Keimel and S.Wolfensteln, Groupes et anneaux rd-
ticulds. Springer LNM 608, New York ( 1977) .

Feldman, D. and M. Henrlksen, f-rings , subdlrect products of
totally ordered rings , and the prime ideal theorem, Proc.
KonlnkliJke Nederlandse Akademle van Wetenschappen, SerIes A
91 (2), (1988), 121-126.

[G]

[L]

Gratzer, G. , Blrkhof f ’ s representatIon theoreu is equIvalent to
the Axiom of Choice, Algebra Unlversalls, 23 1 ( 1986) , 58-60.

Luxemburg, W. A. J. , A remark on a paper by D. Feldman arxi X.
Henriksen concernIng the definitIon of f-rIngs, Proc. Kon. Ned.
Akad. Wet. , Series A 91 (2) , ( 1988) , 127-130.

[S] Sikorski , R. , a theorem on extension of honomorphlsns , Ann. Soc.
Pol. Math. 21 ( 1948) , 332-335



DE STURM A TARSKI OU DE L'ANALYSE DES EQUATIONS

A LA TH£ORr8 Dns MODBLns.

H. B. Sinamur

Le th6or6me dlaJgdbre de Sturm fut pr6sent6 i 1IAcad6mie royale de8 sciences Ie 25 Mai

1829. Aprds un r6sum6 [9] paul dans le Bulletin du baron de F6russac dont il 6tait alors r&iacteur,

Sturm pubha un m6moire [10] qui constRue pour nous un document plus complet sur le th&)r6me.

Ce th6ordme donne une m6thode pour d6terminer le nombre de racina r6elles, comprises

entre deux nombres r6els a et b , dlune 6quation polynomiale V = 0 oCr V a la forme :

an xn + an_1 xn–1 + ... + al x + ao .

Cette m6thode consiste i calculer d'abord la d6riv6e V1 , pui8 i appHquer llalgodthme

dIEuclide pour trouver le p.g.c.d. (Plus grand commun diviseur) de V et V1 . On pose V1 = Vl ,

en sorte que V = Vl Q1 + R1 . On d6vie alors de llemploi habituel de I'algodthme dfEuclide en

PO gant V2 = – R1 . On a donc V = V1 Q1 – V2 .

On r6itdre llop6ration avec V1 et V2 pour obtenir :
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VI = V2 Q2–v2 '

On recommence avec V2 et V3 et on pursuit le promssus de division jusqu'a pawenir a un

rate Vr qui, si V et Vl nlont pas de racine commune, cas auquel il est toujours wssible de se

ramener, est une constante num6rique (lljndice r 6tant major6 par le degr6 de V). On obtient

ainsi le tableau :

v =vIQl–v2

vl = v2 Q2–v3

v2 = v3 Q3 – v4

Vb3 = Vr–2 QH – Vr–1

VR2 = Vbl Qkl – Vr '

La suite des fonctions polynomiales V , V1 , V2 , ... , Vr mt commun6ment appe16e

"suite de Sturm", ou 11chaine de Sturm" selon un usage introduit par Heinrich Weber dans Ie tome

Ide son I£hrbuch der Algebra, g 91-45.

Etant donn6 deux nombres r6els a , b , a < b , on 6cnt la suite Sa des signe8 que

prennent les fonctions V , V1 , V2 , ..., Vr , pour la valeur a ; et de m6me Ia suite analogue Sb .

On compte le nombre Na des variations de signe dans Sa , le nombre Nb da variations dans

Sb . On d6montre que Na – Nb est exactement le nombre de racines r6ellm de V = 0 comprises

entre a et b .

En son temps, ce th6or6me fit, a lui tout $eul, davantage pour la c616brit6 de Sturm que

toys ses travaux ult6rieurs sur les 6quations diff6rentielles du second ordre, dont lljnt6r6t ne fut

perGU que par la suite (th&)rie de Sturm–Liouville, a son tour mieux connue aujourdlhui de la

grande majorit6 des math6maticiens). La plupart des math6maticiens en furent trds imprwsionn6s

et certains llaccueillirent comme un I'6v6nement consid6rable'1. 11 figura aussit6t dans plusieurs

trait6s dlalgdbre et engendra dans les recherches de 1l6poque ce que Sylvuter appela un "cycle
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dlid6es sturmiennes11 clat–hIire un ensemble de travaux 8ign6s des plus grands noms (Sylvuter,

Cayley, Hermite, et, plus tard, Kronecker).

i. DESCRIPTION DU CONTEXTE MATHEMATrQUE DE LA D£COUV8RTE DE STURM.

1. Sturm a pr6ci$6 que son r6sultat d6rive de ses travaux $ur la 6quation8 dia6rentiell® [11,12]. Il

y a done chez lui une $olidarit6 organique de m6thode entre la r680lution des 6quations

diff6rentielles et celle da 6quations alg6briqua. Si la premi6re fut guid6e par une 11analogie

alg6brique " comme llont relev6 certains historiens [2, p. 489], la seconde ne sljnterdit, en principe,

aucun des concepts ou m6thodu de 1lanalyse. Sturm fait Ia synth he entre un aprit

g6om6trim–analytique et un sens aigu de 1labstraction, d6finissant ainsi une approche qualitative

dans 1ldude de 1lensemble des solutions dlune 6quation diff6rentielle [8, QQwvrw, 1,

p. XXI–XXII]. Clat petIt are la premidre fois dans llhistoire apr& Leibniz que ltintuition

g6om6trique $1allie, non pas au calcul comme on Ie fai8ait traditionnellment deptHs 1ljnstitution

par Descartes de la g6om6trie analytique, mds a une analyse formelle et a priori de $ituation8

gIobales.

2. Sturm a reconnu sa dette enTers Fourier [4], qui a trouv6, en partant de la r&gle da signu de

Descartes, une m6thode pour majorer le nombre du radnes r6elles dlune 6quation alg6brique.

Fourier apphque la r6gle des signes non pas a la suite des coefficients de 1l6quation, mds a la suite

de ses fonctions diff6rentielles. Il fait ainsi basculer 1lapplication de cette rdgle du cadre aJg6brique

qui 6tait naturellement le sien i un cadre analytique oil interviennent Im notions de fonction, de

fonction continue, de fonction diff6rentielle, de variation infiniment petite, etc.. Et il utilise,

oomme sliI slagi8sait dlune proposition 6vidente, le th6or6me de Belzano, selon lequel toute

fonction continue et changeant de signe sur un intervalle r6e1 slannule au moins une lois sur oet

intervalle. Fourier apporte d'ailleurs une dimension th6orique i sa m6thode, en pr68entant la

r6olution num6rique dm 6quations comme une application du calcul diff6rentiel. Tirant la
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cons6quence du r6sultat d1 Abel, connu en 1826, sur lljmpossibilit6 dlune r680lution aJg6bHque pour

les 6quations de degr6 Z 5 , il fait d6pendre le progr6s de la r680lution num6dque da techniques

du calcul diff6rentiel.

Sturm, ayant suivi Ies 11principeg" de Fourier et 11imit611 sa demonstration [9, p. 419],

pmticipe naturellement de son esprit concordataire qui pr6ne la collatx)ration (h principe8 de

I'algdbre avec ceux de 1lanalyse et de la g6om6trie. La d6monstration de son th&)rdme est inscrite

dans le cadre de oe qulon appelait, au XIX• si6cle, It"analyse alg6brique11, discipline qui indique

assez par son nom qulon nTy concevait pas de s6paration tranch6e entre m6thodes alg6bHqua et

m6thodu analytiques.

II. LA DEMONSTRATION DU TH£OR§;ME DE STURM.

11 y a, malgr6 une parent6 certaine de contenu, une grande diff6renm de style entre Fourier

[4] et Sturm [10]. Si le premier montre son obstination i mener 1lanalyse cas par cas et i la

poursuivre jusqu'a parvenir au but, qui serait de connaitre la valeur num6rique dw racines r6elle8

des 6quations, le second pratique une analyse structurale, avec une aisanm d'autant plus grande

qu'il a pu I'6tudier a loisir" le travail de Fourier avant sa publication.

1. Dans le th6or6me de Fourier, 1’application de la r6gle des signes de Dacartw ne conduit pas i

un r6sultat univoque. Car la diminution du nombre de variations de signe, entre deux nombra

rMs a < b , de la suite des fonctions diff6rentieUes dm)(x), Am–1)(x), _., f"(x), P (x), f(x) ne

correspond pas forc6ment a une racine r6elle de 1l6quation f(x) = 0 ; iI arrive, dans certaines

conditions, qulelle conesponde a un couple de racines imaginaira, et c'est pourquoi Fourier

obtient seulement un majorant du nombre de racines r6elles. En fait, Fourier doit accompagner

1lapplication de la r6gle des signes de nombreuses rdgle8 comp16mentaire3, car il y a un seul cas oil

la dimi„ution du nombre de „ariations de signe de la suite /m)(x), f(m–1)(x), _., f"(x), f (x), f(x)
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mrrwpond qnivQqqement X 1lexistence d'une racine r&Ile de f(x) = 0 , c'at le cw oil pour une

valeur a de x on a :

fCa) = f(i)(a) = 0 et ?–1(a) = –f(i+1) (a) .

Fourier constate la particularit6 de ce cas iso16 dans la multipHcit6 des cas p08sibles; Sturm y voit

1loccasion de 'lforcer Ie dunn". Il d6cide a priori que la conditions r6unia dans ce cm particulier

seront lw condition8 g6n6rales que devra satisfaire toute suite de fonction s dont on ob8uvera la

variations de 8ignes. n d6nnit ainsi par 18 oonjonction de quatre propri6t6s(1) un ensemble de

suRa (les 11suites de Sturm11) dont chacune r6alise la situation du cas p&rticulier de Fourier : toute

diminution de variations de signe dans la suite correspond ex&ctement X 1lexistence dlune facine

r&IIe de 1'6quation propos6e. Il slagit d'une d66nition axiomatique avant la lettre, et, dlune faeon

g6n6r&le, il nlest pas n6cessaire de sp6cifier le mode de construction d'une suite particuliere ni,

a fortiori, dlanalyser un a un les diff6rents cas 6ventuellement produits par cette construction.

C'at a priori, clest–Hire dds la d6finition, quton est assur6 qulune suite de Sturm permet de

d6nombrer exactement le nombre de racines r6ella d'une 6quation.

2. Sturm [10] procdde en deux temps : l• / un expos6 'lnaTf 1 avec construction ocplicite dlune suite

de Sturm ; 2• / un expos6 plus abstrait avec 6nonc6 dm quatre conditions n6casaires et 8uf6santes

(1) Ces propd6ta sont dorIC, Nur une suite V , V1 , V2 , ..., Vr et un intervalle [a,b] :

1. Si une fonction Vi slannule pour une valeur a de lljntervalle Ia,b]

Vi_1(a) = – Vi+1(a) ;

Au voisinage dlune valeur a de I'intewalle [a,b] telle que V(a) = 0 , V1(x) a le mane

signe que V1(x) ;

Deux fonctions cons6cutives ne slannulent pas pour une meme %leur de lljntewalle [a,b] ;

La fonction Vr(x) ne s'annule pour aucune valeur de l’intervalle [a,b] et conserve donc

un signe constant sur cet intervalIIe.

2.

3.

4.
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de 1lexistence, en g6n6ral, d’une suite de Sturm. Or, pour construire explicitement une suite de

Sturm, llauteur se gert, non plus de la diff6rentiation r6p6t6e de la fonction donna, mats de la

division euclidienne rnodifi6e comme vu plus haut. Clest Ii le proc6d6 alg6brique

traditionnellement employ6 dans la recherche des racines multipla. Conjugu6 a la rdgle dw signe8,

iI rouvre une perspective i laquene Fourier a volontairement tourn6 le dos et renoue avec une

tradition ancienne, notamment illustr& par Lagrange : chercher, autant que possible, deg

d6monstrations alg6briques pour les propositions relativm a la th6orie deg equations.

Sturm nla lui–m&ne aucune£nent souhgn6 cette cons6quence 6pist6mologique de son usage

de I'algorithme dIEuclide a la place des diff6rentiations successives. D'ailleurs, fiddle non

seulement a Fourier mds a toute 1l6cole d'analyse du d6but du XIX• si6cle, il pense naturellement

en termes de fonction, de fonction continue, de variation "par degr& insensibles", et utilise

constamment, sans en mettre 1l6vidence en question, le th6ordme de Bolzano. Mats d'autres

math6maticiens s'apercevront que ces notions fondamentales de 1lanalyse ne sont pas essentiella i

la d6monstration du th6ordme de Sturm et que cellbci peut aussi bien etre faite dans Ie cadre de

I'alg&bre des polyn6ma, oil 1lon dispose dlune version alg6brique du th6or6me de Bolzano(1)

3. Historiquement, cette interpr6tation alg6brique de la d6monstration du th6or6me de Sturm a

6t6 faite de trois faGons diff6rentes. En premier lieu, Ch. Hermite [5] et J. J. Sylvester [13] ont

g6n6ralis6 le th6ordme de Sturm au cas de plusieurs 6quations inconnues en en montrant le rapport

avec la th6orie de 1l6jimination alg6brique et la th6orie des formes quadratiqua. Ils ont 1lun et

l’autre insist6 sur le fait que leurs d6monstrations reposent 11enti6rement et uniquement" sur des

notions purement alg6briques. En deuxidme lieu, la construction par E. Artin et O. Schreier de

I'algdbre r6elle [1] fournit enfin un fondement alg6brique general a la th&)He des 6quation8 et des

(1) Connue sous Ie nom de I'th6ordme du changement de signe" ou de 11th&)r6me des valeurs

interm6diaires", elle 6nonce que si un polyn6me P change de signe entre deux valeurs r6elles

a < b , alors il existe une valeur c e [a,b] telle que PCc) = 0 .
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in6galit6s. Le th&)rdme de Sturm, aussi bien que d'autres propositions de llanaly8e

reIIe (th6or6me de RoDe, th6or6me des accroissement3 finis, etc.), 80nt formula et d6montr6s

dans Ie cadre de llaxiomatique alg6brique des corp8 r6els cIos. A. Tarski, enfin, d6finit la meth(xle

dl6Hmination des quantificateurg pour la th6orie 616mentaire du corps ordonn6 da nombres r6el3

et des corps r6els cjog, en g6n6ralisant le th6ordme de Sturm i da 8y8tdmes mixte9 comprenant i

la fois des 6quations et in6galit& [14,15]. Tout en insistant tnaucoup sur la pos8ibiht6 offerte par

llalgodthme dtEuclide de con3truire des fonctions de Sturm par da 11moyens purement

alg6briques11, Tarski ne songe gudre i rapprocher le th6ordme de Sturm des proc&lurw cla8siqua

de 1l6jimination alg6brique oomme, par exemple, le calcul du r6sultant de deux ou plusieur8

polyn6mes. Aujourdlhui, on oonnait mieux, grace i oertains travaux d' Abraham Robinson, le

paral161isme entre corps r6els cjog et corps alg6briquement clos et le fait que le th&)reme de Sturm

rempnt, dans le premier cas, I'office que le th6ordme sur le r6sultant (ou le th&xime deg z6r08 de

Hiltnrt) remplit dans Ie second.

Nous laisserons de c6t6 la transformation du th6or6me de Sturm par Hermite et Sylvester

et llalgdbre r6elle dIArtin et Schreier pour nous int6resser a la m6thode d'61imination des

quantificateurs de Tarski.

III. LA M£THODE D'ELIMINATION DES QUANTIFICATEURS DE TARSKI.

Elle est d6finie dans le fameux m6moire sur la comp16tude et la d6cidabilit6 de lla]gdbre et

de la g6om6tire 616mentaires dont il est int6ressant, du point de vue historique, dl6tudier les deux

versions sucessives [14 et 15].

1. Deux sourcm semblent sl6tre conjugu6es pour donner naissanoe a la g6n6rahsation par Tarski du

th6ordme de Sturm a des syst&mes mixtu dl6quations et dljn6gant68. Dlune part, les termes dans

le8quels Hilbert et Ackermann [6, p. 72-41] podrent le probldme de la d6cidabiHt6 et llatmosl>hdre
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g6n6rale du recherches logiquw dans leur 6cole accordaient une place particulidre i 1larithrn6tique

et aux m6thode8 num6riquu. Tarski [15] rappeUe, en introduction Ie Idle de Hiltnrt qui cherchait

a traiter la formules logiques dlune 1'fagon num6rique qui correspondrait a peu prds i la th6ode

des 6quation3 en algdbre'1. Llanalogie de la r6solution num6rique des 6quations alg6briqu® 6tait

donc bien claire. Dlautre part, Tarski $1est int6ras6 en particulier au r&ultat de Langford [7] sur

la d6cidabilit6 de la th6orie 616mentaire des ordres lin6aires dense8. Dans son s6minaire de

I'Universit6 de Varsovie on sloccupe notamment [17, 159–160] dl6tendre le r6sultat de Langford

aux ordres discrets. Or Langford consid6re un langage avec deux symboles de relations primitives,

le symbole de 1l6galit6 et celui de I'ordre, la formulu atomiques 6tant du type x = y ou ' x > y .

La th6orie 616mentaire de 1lensemble ordonn6 des nombru r&Is peut naturellement 6tre formu16e

dans ce langage. Et pour formuler la th6orie 616mentaire du corps ordonn6 des nombres r6el8, il

suffit de llenrichir en ajoutant des symtx)la pour les quatre op6rations rationnelles (en fait Tarski

se contente de I'addition, de la soustraction et de la multiplication).

2. II est clair, surtout dans [15] qui d6finit formellement les notions de polyn6me, de degr6, de

d6riv6e, de racine multiple, que Tarski voulait construire un 11systdme d'algdbre de r6els11 oil 1lon

pat formuler ou transposer 11dw parties importantes'1 de I'alg6bre des polyn6mes. La notion de

fonction continue est trop large pour ses besoins ; en particulier, avant d'adopter llaxiomatique

d'Artin et Schreier en 1951, Tarski choisit, dans la premi dre version de son m6moire [14], un

systdme d'axiomes parmi lesquels figure la version alg6brique du th6or6me de Bolzano,

c'est–Hire le th6or6me du valeurs interm6diaires (axiome XVII'). Clat pourquoi Tarski ge sert

du th6ordme de Sturm d'une fawn qui en 61imine tous Ies aspects non alg6briqua. Il donne un

relief particulier a la construction de la chaine de Sturm par division eucndienne et souligne que

son lemme dl6jimination des quantificateurs se I'r6duit'1, sur le plan math6matique, a la possiblit6

de fournir "un critdre (une condition n6casaire et suffisante) purement alg6brique permettant de

constater que toutes les 6quations et in6gaHt8 (consid6r6a) poss&lent au moins une solution

r6elle commune" [14, Traduction frangaise, p. 218]. Ainsi llexistence dlun cdtdre alg6bdque pour

1lexistence d'une solution r6elle commune aux 6quation8 et in6galit6s d'un syst6me mixte est
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lljndice math6matique de I'existence d’une proc6dure m6tamath6matique dl6jimination des

quantificateurs. Le th6ordme de Sturm at, en hit, une proc&lure dl6jimination des

quantificateurs, et sa validit6 dans la th6orie 616mentaire da corps r&Is cjog montre que oette

th6orie admet 1l6jimination da quantificateurs. Le paral161i8me entre 61imination des

quantificateurs et 61imination alg6brique est donc mis en 6videnoe sans consid6ration des

proo6dure8 dl6hmination alg6brique pour les corps alg6briquanent cjog. II reviendra i Robinson de

combler cette lacune.
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Corps pvalu6s difT6rentiels de caract6ristique O

C. Michaux

Apr:as que 1’existence d’une modile-comp16tion pour les corps difT6rentiels de

caract6ristique 0 ait 6t6 prouv6e d’abord par A. Robinson (voir IRobinson 1959])

puis axiomatis6e par L. Blum de fagon beaucoup plus simple (voir [Blum 1968]) ,

plusieurs r6sultats sur la th6orie des modiles des corps diff6rentiels parurrent:

citons entre autres ceux de C. Wood [Wood 1973, 1974, 1976] oil 1’existence d’une

modile-comp16tion pour les corps diff6rentiellement parfaits de caract6ristique

P / 0 est prouv6e et ceux de M. Singer [Singer 1978a, 1978bI qui prouvent

1’existence d’une mod ale- comp16tion pour les corps ordonn6s diff6rentiels.

Plus r6cemment Ies corps valu6s diff6rentiels ont 6t6 6tudi6s par M. Rosen-

licht [Rosenlicht 1979, 80, 81] en liaison avec 1’6tude des corps de Hardy.

Dans cette note, nous prouvons l’existence d’une modal&comp16tion pour les

corps ;>valu6s diff6rentiels de caract6ristique O et en donnons une axiomatisation

a la “maniire de Blum” .

Nous ne donnerons pas ici le d6tail de la preuve qui sera publi6e ult6rieurement.

Un corps valu6 diff6rentiel est un corps valu6 muni d’une d6rivation. Dans

un premier temps, nous introduisons la notion de corps hens61ien diff6rentiel,

c’est-i-dire un corps if valu6 diff6rentiel, hens61ien dans Ie seng ordinaire du

terme et satisfaisant le sch6ma S d’axiomes suivants (nous notons val(a) , la

valuation d’un 616ment a e K):

pour tout polyn6me diff6rentiel /(X, X1, . . . , XC”)) a coefficients dans l’anneau

oK de valuation de I(

((3ao, . . . , an C Ox) (val( ag{„ (ao, . . . , an)) = 0 et /(cio, . . . , an) = 0)) +

((V')(1,) (/(',...,,'„)) = 0„ 1\\K„i # 0A „,I(;'') = „-(-i)) „ („ = Q „'

val(rtl)) > val(e)))).
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Approximativement cet axiome dit que s’il existe une solution ao, . . . , a„

pour 1’6quation polynomiale /(Xo, , . . , Xn) = 0, alors il existe une solution

diff6rentielle proche de ao, . . . , an

On peut montrer que cette th6orie est consistante (voir Michaux 1989).

Un corps F%lu6 de caract6ristique 0 est constitu6 d’un corps F de ca-

ract6ristique 0, d’un Z-groupe G (c’est-a-dire un groupe ordonn6 ab61ien avec un

Plus petit 616ment not6 1, qui v6rifie l’axiome suivant (Vg)(IV)(Ir) (= = ny + z

et 0 $ 2 < n); - la th6orie des Z-groupes est une th6orie modile-complate), une

valuation val : F –+ G, un 616ment p e F, une “cross section” x : G –, F telle

que val(xg) = g et xl = p. En plus, 7, le corps r6siduel de F est Fp, Ie corps a

p616ments.

On peut montrer que la th6orie des corps pvalu6s hens61iens de caract6ristique O

est la modble-comp16tion des corps Fhvalu6s de caract6ristique 0 (voir {Robinson

1968] ou [Ax-Kochen 1966]) .

Un corps pvalu6 diff6rentiel de caract6ristique 0 est un corps pvalu6 de

caract6ristique O muni d’une d6rivation. Cette th6orie peut etre axiomatis6e de

fagon universelle.

On rnontre alors:

Th6orbme. La th6orie des corps pvalu6s diff6rentiels de caract6ristique O

qui sont hens61iens diff6rentiels est la modble-comp16tion de la th6orie des corps

pvalu6s diff6rentiels de caract6ristique 0.
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CAnACT£RISTIQUE DE G. w. LnIBNIZ HT TH£ORIH DHS MODBLRS

SELON A. ROBnisoN.

H. B. Sinamur

R6surn6.

Dans un article n6crologique sur Abraham Robinson, Simon Kochen [4] consignait une

impression de G6del que je voudrais mettre i 1'6preuve de I'histoire. G6del, qui sljnt6ressait

beaucoup aux travaux et a la philosophie de Leibniz, voyait dans les r6sultats d’ Abraham

Robinson la meilleure r6alisation de llid6al leibnizien d'une logique constitu6e en ars inveniendi

pour les math6matiqua. Ce jugement concorde avec la volont6 de Robinson, manifeste dans ses

premiers articles [10, 11, 12], de faire de la logique "un instrument efficace de recherche

math6matique". Le but de I'expos6 est d’6tablir un paral161e entre llid6e dlart d'inventer chez

Leibniz et la conception que Robinson a concr6tis6e dans la th6orie des moddla, en invoquant

lui–m&ne le patronage de Leibniz [10, 694].

I. QUIEST--CEq2UE L1 ART DIINVENTER ?

Leibniz distingue 1lart dljnventer de 1lart de d6montrer. Si celui–ci permet dl6tablir avec

certitude des v6rit6s "connues confus6ment et imparfaitement", celui–II permet de 'ld6voiler" des

v6rit68 inconnues. Leibniz d6crit 1lart dljnventer comme une sorte de fil d1 Ariane "qui dirige la

recherche" et permet non seulement de trouver un r6sultat mais surtout de le pr6voir [7, 161].
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Inventer c'at donc moins donner des solutions particuli dru qul6tablir des m6thodes g6n6rales.

Llid6e de 'lcaract6ristique", clest–jqjire de langage symbolique, joue un r61e primordial

dans 1'art dljnventer. Les I'caractdres" ou symtx)la du langage, qui repr6$entent les 616ments de

nos pens6es, fonctionnent simultan6ment comme des &iguinons pour llwprit ; iIs le poussent a

I'concevoir da notions universenes11 [5, V, 269]. Trouver une m6thode clest trouver "une rdgle de

passage dlune pens6e a une autre" et dorIC une r6gle de passage d'un caractdre a un autre. II y a la,

bien sar, ilid6e de calcul symbohque, qualifi6 par Inibniz de 11calcul univer3el", susceptible

dljnterpr6tations diverses, alg6brique, g6om6trique, logique, musicale, cryptographique, etc. [5, IV,

459460]. Mai il y a surtout llid6e que llactivit6 symtx)lique se d6veloppe selon la double polarit6

du formel et du concret, du g6n6ral et du sp6cial, de la m6thode et de ses 'l6chantillons'1, de la

th6orie et de ses mod61es [8]. C'mt pourquoi, si le 'lcalcul universel'1 repr6sente Ie but de 1lart

d'inventer ou, comme dit Leibniz, sa 'ldernidre perfection", il nlen 6puise cependant pas toutes les

ressources [6, VII, 169]. Certaines de celles–ci sont contenues dans une analyse de la

caract6ristique elle–m6me qui, de mode dlexprmsion privi16gi6, devient objet d’6tude.

Int6ressons–nous, par exemple, aux r6gles du calcul alg6brique plut6t qula ses 616ments, les

quantit6s fillies, et nous serons pr6ts dljnventer, comme 1la fait Leibniz, 1lanalyse infinie. Leibniz a

insist6 sur le fait que 1’invention du calcul infinit6simal 6tait une application de son id6e de

caract6ristique univer8elle. De meme sa conception des I'nombres fictifs" pour repr&enter les

coefficients des 6quations dlun systdme de plusieurs 6quations 1la conduit a pr6figurer notre

6criture actuelle des d6terminants [3]. De m6me encore llanalogie symbonque qu'il reldve entre le

d6veloppement dlune puissance dlun bin6me et le d6veloppement de la diff6rentielle dlun produit

de deux facteur s [5, V, 377–381], lui fait voir le paral161i sme da langages du caJcul alg6brique et

du calcul diff6rentiel. On a bien li, en germe, la d6marche propre a la th6orie da moddles :

constituer une m6tath6orie de th6ories math6matiques diff6rentes par 1lanalyse de leurs langages.

Comme dans la th6orie des modda a ses d6buts ITalg6bre tient une place particulidre dans

I'mt dljnventer de Leibniz. Clest qu'elle est 1'6chantillon par excellence de la caract6ristique. Elle

nous habitue dlentr6e de jeu a lljnd6termination des signes, et nous pousse a concevoir par la

g6n6ralisation dm signa ambigus repr6sentant simultan6ment diverges op6rations ou par analogie
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des signes repr6sentant autre chose que des nombres : points, relations, quantit6s ou qualit6s de

propositions logiques, etc.. Elle nous enseigne ainsi ltart de la g6n6ralit6 et de llanalogie, essentiel

pour former ce que Leibniz appelle la I'm6thode de jfuniversalit6'1. Bien qulelle ne soit ni Ie tout

des math6matiques ni meme la voie royale de 1ljnvention, llalgdbre joue un r61e inducteur

remarquable. Ce nTest pas qulil faille introduire llalg6bre partout ; par exemple, pour la g6om6tirie

iI vaut mieux raisonner directement sur la positions et les figures que par lljnterm6diaire des

nombres ; mds on doit 6tablir, autant que faire se IIeut, des 'lformules universelles" analogues a

cenes de la r6solution du 6quation8 ann de formaliser et g6n6rali ger les raisonnement8 [5,I1,229].

II. CARACT£RISTIQUE ET THEORIE DES MODiLES.

A premi6re vue, il y a un certain paradoxe a rapprocher la th6orie des moddla de la

caract6ristique leibnizienne dans la mesure ofr cellhci 6tait congue pour 6tre universelle. Or, on

sait bien que la th6orie des moddles a tir6 la leeon du paradoxe de Richard (1905) et des th6ordmes

dljncomp16tude de G6del (1931), qui montrent qulon ne peut concilier les exigencm dlune langue

exacte avec celles d'une langue universelle. Mais il y a chez Leibniz une ambition de principe et

une position de fait. L'institution d'une caract6ristique universelle 6tant une "perfection"

irr6alisable d'un seul coup, Leibniz ne se prive pas, ici et maintenant, d'analyser les notations

existantes, dlen introduire de nouvelles, de metRe en 6vidence des analogies formellu, car il faut

d'atx)rd 'lavancer nos connaissances".

La 6crits d1 A. Robinson ne laissent pas supposer une lecture de 1loeuvre de Leibniz en

dehors de quelques textes relatifs a la justification du calcul infinit6simal, cit6s dans [16] ou [17] et

de la lettre i Huyghens cit6e dans [10]. Cependant ils sont parcourus par une r6flexion explicite

sur I'art de l’analogie et de la g6n6ralit6, ancr6e, dans un premier temps, dans 1l6tude des

structures alg6briques. L'analyse logique de cellm–ci doit conduire a en sutnrdonner la mutiplicit6

a des principes g6n6raux qui r6v61eront llidentit6 formelle de structures analogues. Clest ainsi

qulon d6couvre Im 'lth&)rdmes m6tamath6matiques de l’algdbre" [9 ; 9], c'est–aqjire des
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th6ordmes alg6briques d6couverts par du m6thoda logiqua. Au premier rang de ceuxq:i

viennent les fameux principes de transfert comme celui de Tarski–Seidentnrg. Mais il y a aussi

1’invention de concepts nouveaux, comme celui de c16ture diff6rentielle [13], analogue pour un

corps diff6rentiel de la c16ture alg6brique dlun corps et de la c16ture rUle dlun corps ordonn6. Les

trois c16tures sont, en fait, des 6chantillons de la notion logique de mod61bcomp16tion dlune

th6orie [14 ; 5.5., 128–136]. Bref on voit comment la logique est bien devenue un art d'inventer

des math6matiques : en faisant de 1lanalyse du langage math6matique une m6thode 8yst6matique

de d6couverta d'une g6n6raHt6 inaccessible par un autre moyen.

Pour justifier lljnvention de calculs nouveaux Leibniz avait recours aux "fictions" ou

"notions id6alu" dont 1lusage at autoris6 pour abr6ger le discours et faciliter la d6couverte [5 ;

IV, 92–93, 98, 110]. Par exemple, les infiniment petits, dont il at difficile de d6cider $1ijs

correspondent a des entit6s existant actuellement ou potentiellement, ont le statut de fictions. Ce

statut sp6cial permet de laisser (provisoirement) de c6t6 Ies discussions philosophiques sur

1lexistence de lljnfini pour lib6rer I'imagination math6matique. On roconnaitra dans une telle

attitude une disposition g6n6rale du formalisme math6matique. Robinson y a consacr6 quelques

r6flexions, peut-6tre a partir de ce quliI avait Iu de Leibniz, mMs aussi et surtout i partir des

discussions soulev6m par le fameux article de Hilbert [2]. Pour lui, seul un point de vue formaliste

permet d'accepter les entit6s symboliqum ou les th6ories abstraites, clmt–aqjire celles dont

lljnterpr6tation, indirecte faute d'un mod61e nni, extrapole du nni a lljnfini. Cw entit6s ou th6ories

abstraites sont un 616ment usentiel de la production math6matique, qui se multiplie dans ce

va–et–vient entre nni et innni. Ellen cnt bien pour anc6tres les I'fictions'1 de Leibniz, mais

seulement d'une certaine faQon. Car, contrairement a Leibniz, Robinson ne distingue pas, parmi

les notions math6matiques, les r6elles des imaginaires. Du point de vue ontologique, ella ont

toutes le m6me mode dlexistence. Par exempIe, un infiniment petit dlun maddIe non standard

n'est "ni plus ni moins r6el", ni plus ni moins fictif qu'un irrationnel standard [16 ; 281–282].

Robinson se s6pare de Leibniz et de tous ceux qui associent , de quelque fagon que ce soit,

formalisme math6matique et r6alisme m6taphysique [18]. Le formahgme se soutient de lui–m6me,

par ses r8ultats, il nla tnsoin du r6alisme ni comme repoussoir ni comme appui. Nous
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nladmettons les procasus infinitaires ni m41gr4 leur absence de "r6alit6", comme le voulait

Leibniz, ni a cause de leur 'lr6alit6" comme le pr6tendent les adeptes de I'infini actuel. De fqit,

nous les admettons parce quliIs sont un prolongement f6cond de processus finis, et parce que M

refuser clest couper les ailes a 1ljnvention math6matique. La logique ne saurait pas davantage slen

pa8ser que les math6matiques abstraitm. CeIIa-ci nous ont suffisamment persuad& de leur

puissance g6n6rative. A son tour, la th&)rie du mod61es nous montre la pui8sance g6n6rative da

concepts ou m6thodes m6tamath6matiques. Llanalyse du langage dlexpression da moddles

math6matiques ut un produit "naturel" [12 ; 51] du formalisme des math6matiques modernes.
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INTRODUCTION.

We propose here axiomatizations written in the language of fields, the

models of which are Rolle fields (i.e. fields with the Rolle’s property for

every order) having exactly 211 orders ( nz O ). In fact, for n = O we

obtain an axiomatization of the theory of real-closed 'fields ; for n = 1 , we

get exatly the axiomatizations given for the theory of chain-closed fields by

the author in [Gl]

In fields having a finite number of orders, we characterize Rolle fields

as those which are pythagorean at level 4 and do not admit any algebraic

extension of odd degree. In the more general setting, we characterize Rolle

fields as real fields, pythagorean at level 4 , such that K does not admit

any algebraic extension of odd degree and K2 is a fan.

We also give the lattice of algebraic extensions of a Rolle field having

exactly 211 orders and prove that such a field K is the intersection of

n + 1 real closures of K

Finally we make a study of chainable Rolle fields, where chainable is

equivalent, as we have shown in a previous paper, to the existence in K of

an element a such that a2 is not a sum of fourth powers in K .



O-RESULTATS PRELIMINAIRES.

Dans tout cet article K d6signera un corps commutatif et on notera par
n

E Ka 1’ensemble de toutes les sommes d'un nombre nni de pulssances 2l’- imes.

L’axiomatisation, dans le langage des anneaux enrichi d'un symbole

de constante a , de la th6orie des corps chatne-clos a-chainables donn6e

dans [all me parait devoir trouver sa generaIIsation en ajoutant n k O

symboles de constante a1 au langage des anneaux sous la forme suivante :

1- axiomes de corps commutatif ordonnable ( not6 ensuite K ) ;

2- K est pythagoricien au niveau 4 ( Vx Vy 32 x4 + y4 = z4 ) ;

3- aucun des 211 - 1 produits de a1 distincts ( notes d6sormais B1 )

n'appartient & ! [ Ka ;

4- pour tOUt 71 = ! p 1 , I'axiome :

VX Vy 32 ( X2 + 71 y2 = Z2 V X2 + 71 ya = 71 22 ) ;

S- K est la r6union de 2r"I classes : K2, -K2. alK2. alK2. a2K2. -a2K2.

.., ala2K2, -ala2K2, ....., £1la1) K2 . -£1laI) K2 ;

6- tout polyn6me de degr6 impair a une racine dans K

Remarquons que ce syst6me d'axiomes peut etre 6crit dans le langage des

corps : il suff it de remplacer les axiomes 3, 4 et 5 par un axiome disant

qu'il existe des at satisfaisant les axiomes 3, 4, et 5.

Avant de montrer que les moddles de ces th6ories sont Ies corps de Rolle

ayant un nombre fini ( 2l’ avec nz O ) d'ordres et d’6tudier ceux-ci il

convient de rappeler un certain nombre de d6finitions et r6sultats connus,
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D6finitlon O.1. ( IDel]). Un corps ordorrn6 K est un corps de RoI le s’It a la

proprldtd de ReLIc (t.e. pour tout polyn6me P e KIXI et pour

tous a < b dans X vertftant P( 8) = PCb) = O , it existe

cc K , a < c < b tel que st P’ est la dertv6e formeILe

de P , on att P'(c) = O ).

Proposition O.2. ([B-C-P2]). St K a la propr tata de RoI le pour un ordre

alors tI a la propr tete de Rolle pour tolls ses ordres.

Cette proposition O-2 r6sulte en fait de la suivante :

Proposition O.3. ([B–C-P2]). Un corps K est de Rolla si et seulement st it

existe une valuation hensdlienne v sur K tel le que le

corps r6siduel kv soit r6el-clos et Ie groupe des valeurs

vX soit m-divisible pour tout ent ter m impair (nous

dirons d6sormais impair-divisible).

Notation. Dans la suite on notera V(K) 1’ensemble des valuations ayant

les propri6t6s de la proposition O-3.

Proposition O.4. ( IB-C-PI]). Si K est un corps de Rot le alor s :

(t ) X est hdr 6ditatrement pythagortcien ;

(ii) K est super pythagortcten .

Un corps ordonnable est dit h6r€dttatrement pythagortcien s’il est

pythagoricien, et si toute extension alg6brique ordonnable de ce corps est

aussi un corps pythagoricien
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Rappelons qu'un corps super pythagortcten est un corps oCr K' est un fan.

Un fan (voir [Be2] par exemple) est un pr6ordre T ( T +_ T ST , T . T ST ,

O et 1 sont dans T , - 1 d T, T' est un sous groupe de K' ) tel que pour

tout sous-poupe U de K' = K - {O} contenant T et tel que - 14 U , Ie

sous-groupe U soit additivement ferm6.

On dit aussi d’un corps K superpythagoricien qu’il est strtctement

pythagortcten ; cette dernidre notion se g6n6ralise au niveau 211 : un corps
rl

K est 2F\-strtctement pythagortcien si K2 est un fan (c.f . [Be2] ).

Enf in un corps K pythagortcien au ntveau 2l’ est tel que
n n n

K2 + K2 = K2 . Un corps 211-strictement pythagoricien est bien sar

pythagoricien au niveau 2l' .

Pr6cisons pour terminer que K superordorlnd sigiifie que E K2 est un

fan, mais K n’est pas n6cessairement pythagoricien.

Proposition O.5. (IB-C-P 2)). St K est un corps de Rot le alor s :

(i) X n'admet pas d’extension alg6brique de degr6 impair ;

(ii) Toute extension alg6brique ordonnable de K est un

corps de RoLle.

Proposition O.6. ( IB-C-P 11). St X est un corps ayant p ordres, aLors K

est un corps de RoILe st et seulement st X admet 2p-1

extensions minimaLes et X admet une seuLe pLace rdeLLe

(i. e. une seule IR-place).

Proposition O.7. (ILas2]). Soit K un corps de RoI le et v une valuation de

V(K) , aLors K a exactement 211 ordres si et seulement si

la dimension de uK / 2vK comme F q-espace vectortel est n.
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Notation. Dans la suite nous d6signerons par M(K) 1’ensemble des places

r6elles (i.e. R-places) du corps K.

Signalons que dans IDel] ou [De2] on trouvera pIusleurs r6sultats de

th6orie des mod ales des corps de Rolle, notamment le fait qu'etre un corps de

Rolle est une propri6t6 du premier ordre dans le langage des anneaux et que la

th6orie des corps de Rolle est d6cidable

Dans IJt on pourra 6galement trouver comme cas particulier des r6sultats

sur les corps de Rolle,

Exemples. Des exemples simples de corps de Rolle sont donn6s par les corps

r6els-clos et les corps chaine-clos. Un autre exemple da a F. Delon est donne

par les corps de s6ries formelles g6n6ralis6es K = R((C)) oa R est un

corps r6el-clos et G est un groupe ab61ien ordonn6 impair-divisible ; Ie

nombre des ordres de K est alors 6gal a 2d oa d d6signe Ia dimension de

G comme F_-espace vectoriel



l-THEORIE DB CORPS DE ROLLE AYANr UN NOMBRE FINI D’ORDRES.

Th6ordme 1.1, Un corps K est un corps de Rolle ayant exactement Zn ( avec

n z O ) ordres si et seulement st c’est un mc>date de la thdorie

sutvarrte (6crtte dans le langage des 8nneaux) et notde Tn

(t) axtomes de corps commutat tf ordonrtable ( note ensuIte K ) ;

(H) K est pythagortcten au niveau 4 ( Vr Vy lz x+ + y+ = 24 ) ;

(iII ) it extste dans X n dldments a1 tels que :

1) aucun des 2n - 1 produits de a 1 distincts n’appartLent a t E- Ez

2) K est la rdunion de 2l"1 classes : K2, -K2, alK2, -a\K2, a9X2, -a2K2,

_„.., ala2X2, -ala2X2, ..._, {!1,1) X2 , -{1la1) X2 ,

( tv) tout pol yn6me de degr 6 impair a une racine darts K.

Remarquons que pour n = O on retrouve bien une axiomatisation des corps

r6els-clos ( K corps commutatif ordonnable teI que K est la reunion

de Ka et de - K2 , K n’admet pas d’extension alg6brique de degr6 impair

et K pythagoricien au niveau 4 (qui 6quivaut ici a K pythagoricien au

niveau 2 car K = K2 u - K2 montre que si xc K2 alors xc K4 donc que

K2 = K4 ). Pour n = 1 on trouve une des axiomatisations des corps

chaine-clos que nous avons donn6e dans ICI] a la remarque suivant le th6ordme

3 , ce qui rejoint le r6sultat de tDil disant que les corps chaine-clos sont

les corps de Rolle avec exactement deux ordres,

Le th6ordme r6sulte imm6diatement des deux lemmes a et b d6montr6s ci-dessous

Lentme a. les corps de Rolle ayant exactement 2l’ ordres sont des moddles

de la th6orie T

6
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DemonstratIon du lernme 8.

Les corps de Rolle sont 6videmment des corps ordonnables par definition

meme. Ils sont pythagoriciens au niveau 4 (et done aussi au niveau 2

puisque ordonnables, c.f. IHI ) : iI suffit d’appliquer le lemme I de ID-GI

qui caract6rise les 616ments qui sont une puissance 211 dans un corps

admettant une valuation hens61ienne telle que le corps des restes soit

r6el-clos ; tddmonstratton : soit v une valuation hens61ienne a corps

des restes r6el-clos, consid6rons x4 + y4 , si vCx) = v(y) alors on a

x4 + y4 = x4 ( 1 + (y/x) 4 ) , les 616ments de la parenth dse sont des restes

dans un corps r6el-clos et leur somme est done une puissance quatrieme ; si

vCx) + v(y) , alors x4 + y4 ~ x4 par exemple et 4 1 v(x4+y4) ) .les axiomes
(i) et (ii) sont done satisfaits.

Un corps de Rolle ayant 2’1 ordres est tel que si vc V(K) la dimension

de vK/2vK , consid6r6 comme F2-espace vectoriel, est n (d’apres la

proposition O-7). Si ( g1 ,..., g_ ) est une base de vK/2vK , soient

gI c vK tels que gl/2vK = 21 , et soient kl c K' te is que v(kI) = gl

Les k1 obtenus satisfont les propri6t6s impos6es aux a1 des axiomes

6nonc6s ci-dessus. En effet Ies 2n ordres de K sont d6termin6s par une

condition de signe sur les n 616ments k1 donc aucun produit de k

distincts n'appartient a ! K2 . Enfin un corps de Rolle est

superpythagoricien, done Ka est un fan et K ayant 2n ordres I K' / K2' 1

vaut 2l"1 ; K satisfait done bien les axiomes de (iii) 1) et 2) .

Un corps de Rolle n'admettant aucune extension alg6brique de degr6 impair

le dernier axiome (iv) est lui aussi satisfait,

Lernme b. Tout moddle de Tn est un corps de Rolle ayant exactement 211

ordres

D6monstratton du lemme b.

7



Soit n'admettant pas d'extensionK un modele de T le corps K

alg6brique de degr6 impair, alors toute extension finie - non triviale contient

une extension quadratique (voir la preuve de la prop. 5 de ID-C]) ; les

extensions minimales de K sont dorIC les extensions quadratiques.

K 6tant ordonnable et pythagoricien au niveau 4 est aussi pythagoricien

a tout niveau 2“ ( IH] cor. 2-4 ) ; montrons que le pr6ordre K2 est un fan

dorIC que K est superpythagoricien : pour cela on utilise que le nombre de

classes modulo K2 6tant fini, K n'admet qu'un nombre fini d'ordres ; K

ayant un nombre fini d’ordres alors K admet un nomE>re fini de places r6elles

(c.f . la surjection de xb 1’ensemble des ordres de K sur M(K) , voir

par exemple [L2] page 73 ).

K 6tant pythagoricien au niveau 211 pour tout n et 1 M(K) 1 6tant f ini

on en d6duit par le r6sultat de Harman ( IHI car.2-9) que K est strictement

pythagoricien a tout niveau 211 (dorIC en particulier que K est

superpythagoricien ) et que K n’admet qu’une seule place r6elle,

Il suff it de compter Ies extensions minimales dont on sait qu’elles sent

ici les extensions quadratiques : il y en a clairement 21\'1 - 1 d’aprds les

axiomes (iii) ; on d6nombre ensuite les ordres de K : le nombre de classes

modulo les carr6s 6tant 211'1 et K2 6tant un fan , K admet exactement 21\

ordres ([L2] p. 129 par exemple).

On utilise alors Ia proposition O-6 caract6risant les corps Rolle pour

conclure : Ie moddle K de Tn ayant 2’1 ordres, ayant une seule place

r6elle et admettant exactement 2lt'1 - 1 extensions minimales est un corps de

Rolle

Rernarque . Si on supprime l’axiome (iii) 1) du th6ordme 1-1 on obtient une

axiomatisation des corps de Rolle ayant au plus 2l’ ordres.

8
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Le corollaire suivant donnera lui une axiomatisation des corps de Rolle

ayant exactement 2n ordres avec nz 1 , c’est a dire des corps de Rolle

qui sont des corps chainables ; car les corps de Rolle 6tant pythagoriciens a

tout niveau, das qu'il existe une constante a n’appartenant pas a t K2

alors on a automatiquement que a2 n'est pas une somme de puissances

quatriemes dans K done que le corps K est chainable, ct meme bien

chainable et a-chainable au sens de [b2].

Corollaire 1.2. Un corps K est un corps de RoZle ayant exacternent 211 ( oa

ici nz 7 ) ordres si et seulement st c'est un mc)date de la

th6or ie sutvante ( dans le tangage des anneaux) not6e Tl

(a) axtomes de corps comrnutatif ( note ensuite K ) ;

(b) X est pythagoricten au niveau 2 ( Vx Vy 32 x2 + y2 = z2 ) ;

(c) X est pythagoricten au niveau 4 ( Vx Vy 3z x4 + y4 = 24 ) ;

(d) it existe dans X n eLements a1 te is que :

1) auc:un des 2l' - I produits de a 1 dtstincts ( notes d6sormais B1 )

n'appartient a t E K2

2) pour tout 71 = t P 1 , l’ axiome :

Vx Vy 3z x2 + 71 ),2 = 22 v x2 + 71 y2 = 71 z2;

3) X eFt la reunion de 2"'1 ,lass,s , X2, -K2. alX2, -a IK2 , a2X2, -a2X2,
n

..., ,la2X2, -a \alf , .._„ (1la1) X2 , -(!1,1) X2 ,

(e) tout poLyn6me de degr e impair a une racine darts K.

Demonstration.

Un corps de Rolle ayant 2l' ordres satisfait ces axiomes car le th6oreme

1-1 montre que (a), (c), (d) 1) et 3), et (e) sont v6rifi6s ; 11 suffit alors

9



d'utiliser le tait que K de RoDe est superpythagoricien et que danc K‘

est un fan pour d6montrer (d) 2) : dans [BrI on trouve’ en effet la

caract6risation suivante des fans " un pr6ordre T est un fan si est

seulement si pour tout a tel que - a dT on a : T + aT = Tv aT ” qui

donne imm6diatement le r6sultat.

R6ciproquement il suff it de montrer qu'un mod dIe de T: satisfait les

axiomes du th6ordme 1-1. Pour cela il suff it de verifier que Ie corps K est

ordonnable ; puisque ici nz 1 , il existe un 616ment a dans K tel que

a dt K2 ; si le corps K n’6tait pas ordonnable, - 1 serait une somme de

carr6s et dorIC un carr6 dans K ; alors on peut montrer que 1'616ment

• 1 + a n'appartient pas a K2 v a K2 ce qui est impossible d’aprds (d) 2) ;

en effet si - 1 + a = x2 , alors a = x2 + 1 serait un carr6 dans K ce

qu’il n'est pas ; si - 1 + a = a x2 alors - 1 = a ( x2 - 1 ) , si - 1 est

un carr6 alors x2 - 1 est aussi un carr6 (qui ne peut etre nuI en raison de

1'6galit6 ci-dessus) on obtiendrait alors a = - 1 ( x2 - 1 )-1 = - y2 ce qui

est aussi impossible.

Th6ordme 1.3. Soit K un corps ayant un nombre f tnt , sup6rieur ou egal a 1

d’ordres ; alors Les proprietes suivantes sent dqutvaLentes :

(i) X est un corps de Rolle ;

(it ) K est pythagortcten au ntveau 4 et n'admet pas d’extension atgdbrique

de de gre impair.

De plus on sait qu’alor s iI existe nz 0 constantes a1 d ! K2 teILes

q'' X = X= v - X2 y ( BJX= v - Pr2 ) 'd r'' Pj ''p'd'''t''t r'' 2- - 1
pr odutt s de at disttncts , et que Ie corps admet exactemerrt 2“ ordl

On retrouve bien sar, si K a un seul ordre, les corps r6els–cjog , et si

10
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K a deux ordres, les corps chaine''cjog

Demonstration.

(t) + (ii ) est bien clair car on a d6ja montr6 (c.f . d6monstration du

lemme a ) qu’un corps de Rolle 6tait pythagoricien au niveau 4 et on sait

par la proposition O-5 qu'un corps de Rolle n'admet pas d'extensions

alg6briques de degr6 impair.

(ii ) + (t ) soit K un corps admettant un nombre fini pal

d’ordres, pythagoricien au niveau 4 et n’admettant pas d'extension

alg6brique de degr6 impair. K ordonnable et pythagoricien au niveau 4

entraine que K est pythagoricien a tout niveau 211 ( IH] cor.2-4) ; K

ayant un nombre fini d'ordres alors IMCK) 1 est fini ; K pythagoricien a

taut niveau 2n et IM(K) 1 fini entraine ([H] Cor. 2-9) que IMCK) 1 = 1 et

que K est 211-strictement pythagoricien pour tout n ; K est done en

particulier superpythagoricien et admet une seule place r6elle,

K n’admettant pas d'extension alg6brique de degr6 impair alors toute

extension minimale est une extension quadratique (d6ja utilis6 au lemme b ) ;

K est dorIC un corps ayant p ordres, superpythagoricien dont les extensions

minimales sont les extensions quadratiques ; d’aprds (b) + (a) du theor6me 6-1

de [B.C.P.2] , K admet exactement 2p-1 extensions minimales.

Enf in par la proposition O-6 le corps K ayant p ordres , 2p-1

extensions minimales et une seule place r6elle est dorIC un corps de Rolle.

L'affirmation finale sur le nombre des ordres r6sulte du fait que K

ayant un nombre fini d'ordres il existe n tel que I K' / K2' 1 = 211' 1 , le

corps K 6tant superpythagoricien K2 est un fan d'oa on d6duit que le nombre

d’ordres de K est 2l' (voir [L2] p.129 par exemple). L’existence de nz O

constantes a1 et 1’allure du corps r6sulte alors imm6diatement du fait que
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le corps K etant de Rolle, 11 6atlsf8lt les axlomes du th6oreme 1-1.

In th6ortme sulvant cst une generaIIsatIon de eelul obtenu dans IIbGI Nur

les corps chalne-cjog.

Th6or arne 1.4. les extensions atg€brtques ordorrnabtes d’un corps de RoI le

ay8nt cxacternertt Zn ordres sortt des corps de RoLle ayant Zn

ordres et le tret tIts des extensIons 8tgdbrtques d'un corps de

Rolla avec Zn ardres est le sutv ant :

EXTENSIONS ORDONNABLES EXT. NON ORDONNABLES

CL6TLn£S R££LLES DC K CL6TUR£ ALC. DE K

DtcR£I

4

1 211-1 £rr£NSIONS

\\ /
K(i)K(vaT) +K ... . .. . RK

\ /
211+1-2 tXT£NSIONS

RmI I 2

I

I

I

I

K

Ddmor\stratton.
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Une extension alg6brique d’un corps de Rolle ayant 2l’ ordres est un

corps de Rolle ayant au plus 211 ordres. Cela r6sulte du fait qu'une

extension alg6brique d'un corps de Rolle est un corps de Rolle (proposition

O-5) ; de celui qu’un corps de Rolle avec 2D ordres admet 2t"1 - 1

extensions minimales qui sont toutes quadratiques et sont explicitables par

les axiomes du theordme I ; et enfin du fait qu'une extension quadratique d’un

corps de Rolle ayant exactement 2t1 ordres est un corps ayant au plus 2l'

ordres : en effet un ordre de K s’Mend a KCq1) si et seulement si B

appartient a I'ordre, or 81 appartient a 211-1 ordres de K mais pour

chacun de ces ordres il y a exactement deux extensions possibles.

Il reste a montrer qu’une extension quadratique de K a exactement 211

ordres ; on reprend pour cela la preuve faite dans ID-GI pour montrer qu'il

existe sur K une valuation hens61ienne avec corps des restes r6el-clos, vK

impair-divisible et I vK / 2vK 1 = 2n ; en utilisant Ia proposition O-7 on

concluera que le nombre d’ordres est bien exactement 211

Soit v c V(K) ; si M est une extension alg6brique de K , v se

prolonge de fat,on unique a M et reste hens61ienne, 1’extension kv S mv est

alg6brique et vK S vM rationnelle (c'est a dire que vM se plonge dans la

c16ture divisible de vK ). Le th6ordme d’Ostrowski ( IRl] p. 237 ) nous

dh, pour [ M : K ] f ini que IM : K ] = [ m : k ] ( vM ; vK ) . Si

[ M : K ] = 2 , ou bien 1 m„ : k„ ] = 2 et m„ est alg6briquement clos,

dorIC M non ordonnable (et dorIC 6gal a K(i) en utilisant le th6ordme 1-1),

et vM = vK ; ou bien m = k et ( vM ; TK ) = 2 ; dans ce cas la, M

reste un corps de Rolle ayant exactement 211 ordres car v est hens61ienne

sur M , m = k. est r6el-clos, vM reste impair divisible car M n'a pas

d’extension alg6brique de degr6 impair et satisfait I vM / 2vM 1 = 2n a

cause de la relation ( vM ; vK ) = 2 . Compte tenu du th6oreme 1-1 iI y a

13



2lt'1 - 2 telles extensions

Th6oreIme 1.5. Sott X un corps commutattf , sont equIvalents :

(V K est un corps de Rolle ayant Zn ordres ;

( tt) X admet n+ I ordres PO, Pl, ..., Pn , tels que POA PIn ...n Pn = K2

et pour tout J de O & n , .r) .P . est dtsttncte de K2
' W ’ I+J I

K est Pythagortcten au ntveau 4 ;

X n’admet pas d’extensIon atgdbrtque de deEre impair.

Demonstration.

(i) + (ii) est clair :

en appliquant le th6ordme 1-1 : on def init P1 , pour i de O a n-1 , coalme

6tant l’ordre qui rend une des n constantes , a1 , n6gative et toutes les

autres positives, et Pn comme I'ordre teI que les n constantes a1 , pOUr

i de O a n-1 , soient positives.

(ii) + (i) :

Montrons que les conditions (ii) entrainent que K a un nombre f ini

d’ordres. Puisque Pf, ...n Pn n’est pas 6gal a K2 il existe ao non

dans K2 mais appartenant a Pr ...n Pn ; done ao d Po et ao e - Po et
aussi a c P n ...n P . On peut ainsi trouver n constantes a. , i de OO – - l- - ’ ' -' - - ri - – -- f - I

a n-1 , qui sont distinctes, appartiennent a Pn et telles que pour tout

a1 c - P1 et pour tout j diff6rent de i a1 c PJ ' Alors tous les

produits de a1 distincts sont dans des classes modulo K2 qUi sont

distinctes car iIs n’ont, deux a deux, jamais Ie meme signe pour tous les

ordres de K .

Consid6rons alors oil les B. repr6sentent tous les
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produits msibles de a1 ( i de 0 A n-1 ) distincts. Suppsons que F
ne soit pas 6gal & K ; il existerait alors dans K un 616ment Td F : si

Te Pn , alors on regarde pour chaque i de O a n-1 si 7 appartient a
P. ou a - P. ; on note e. 1’616ment I si 7 e P. et 1’616ment aI – – – - I ’ --- ----- –I - ---–----- - –- ' – - I -- - –-–-––-–- - I

7 c - P 1; alors il est clair que eo e1 ... en_1 7 est un 616ment de

Pon ...n Pn_1 ; d’aprds I'hypothese c'est aussi un 616ment de Pn , c'est
donc un 616ment de K2 ce qui entraine, le produit des e 6tant un produit

de a , que 1'616ment T appartient & F ce qui est impossible. Si 7 c - P1

on d6f init de meme des D1 par D1 = 1 si re - P1 et D1 = a1 si 7 c P1

alors 1'616ment Po 7l1 ... Dn_1 7 est dans - Pla ...n - Pn_1 ; c'est aussi

un 616ment de - P , c’est done un 616ment de - K2 ce qui entraine aussi

7 eF et qui est dorIC impossible. DorIC F = K et K n’a qu'un nombre fini

d’ordres ; enf in puisque I K' / K2' 1 = 211'1 , K a au plus 211 ordres.

Le corps K n'ayant qu’un nomE>re f ini d'ordres, alors en utilisant la

caract6risation donn6e par le th6or dIne 1-3, on obtient bien que K est un

corps de Rolle. Compte tenu de la d6composition de K en r6union de

classes modulo les carr6s obtenue ci-dessus et du th6or6me 1-1 K

exactement 2'1 ordres

Remar que. Ce th6ordme contient en corollaire la caract6risation 4-3 des corps

chaine-clos dann6e dans [H] : "soit R un corps ayant une chaine (P1)1€N

alors R est chaine-clos si et seulement si Pn n Pq = R2 et R n'admet pas

d’extension alg6brique de degr6 impair",

En effet si R est chaine-clos R est un corps de Rolle ayant exactement

2 ordres qui satisfont donc d’apres le th6ordme 1-5 PA n P! = R2 et Ie meme

th6ordme montre que R n'admet pas d'extension alg6brique de degr6 impair.

R6ciproquement, si un corps R chainable par une chaine (P1)1€N n'admet
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pas d’extension alg6brique de degr6 impair et est tel que PA n PI = R'' ,

alors le raisonnement fait au debut de la preuve de (ii) + (i) du th6oreme

1-5 montre que R admet au plus deux ordres, et puisqu’iI est chainable

exactement deux ordres. La condition PA n P1 = R2 montre que R est

pythagoricien, et iI suffit alors d'utiliser la derniere partie du r6sultat de

IBel] (cor.2 p.43) qui donne la chaine d’un corps n’ayant que deux ordres pour

d6duire que R est pythagoricien au niveau 4 ; Ie th6oreme 1-5 donne alors

que R est un corps de Rolle ayant exactement deux ordres et R est dorIC un

corps chaine-clos.

Notons aussi que bien sar pour n = O le th6ordme 1-5 redonne une

caract6risation connue d’un corps r6el-clos,

Corollaire 1.6. Soit K un corps de Rolle ayant 211 ordres, alors tl extste

sur X n + 1 ordres P1 tets que K = Ro n ''' A Rn , oO R1 d6stgne ta

cL6ture rdeLLe de K pour L’ordre P1

Remarque . Ce corollaire g6n6ralise le r6sultat de [BeI] qui montre que les

corps r6el–clos g6n6ralis6s (i.e. corps de Rolle ayant exactement deux ordres)

sont I'intersection des deux c16tures r6elles.

D6montration.

Par le th6or6me 1-5 on sait qu'il existe sur K n + 1 ordres P

ayant les propri6t6s : Pon Pr\ ...n Pn = K2 et pour tout j de 0 a n

9 JPl est distincte de Ka

Soit L = Ro n ... n Rn 2 K , notons Pl l’ordre induit sur L par

celui de Rl qui prolonge donc l’ordre Pl de K . On a l8oP; 2 Lz d'oa

aussi leaP; n K 2 L2n K et donc d’aprds l’hypothdse K2 2 L2 nK . L ne
contient donc aucune extension quadratique de K ce qui prouve, K 6tant un

corps de Rolle, que L = K .
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II-THEORIE CENERALE DES CORPS DE ROLLE.

Th6or&me 2.1. Sott K un corps commutattf , les pr oprt€t6s suIvantes sont

6qutvalentes :

(t) X est un corps de Rolle ;

(ii) K est ordonnable, pythagortcten au ntveau 4 , tel que K2

sott un fan et que X n’admette pas d’extension atg€brtque de

degr6 impair.

Rentar que. Nous avions initialement d6montr6 que (ii) + (i) a 1’aide de divers

r6sultats dont en particulier une partie de la preuve de (b) + (c) du th6or6me

6-1 de [B-C-P2] qui n’utilise pas r6ellement que le nombre d’ordres du corps

est fini.

F. Delon nous a fait remarquer que les corps de Rolle avaient d6ja 6t6

6tudi6s dans le cadre plus g6n6ral des corps h6r6ditairement S-pythagoriciens

dans [ J I. L'hypoth6se faite dans IJ] lorsque I'on considdre Ie cas particulier

de S = { 2 } est ceDe d’un corps K ordonnable, oa K4 est un fan et oa K

n’admet pas d'extension alg6brique de degr6 impair. II est clair que cette

hypothdse entraine (ii) de I1-1 car si K4 est un fan alors K2 en est aussi

un (voir [BeI] p. 64) ; par contre K2 est un fan n’entraine pas en g6n6ral

que K4 en soit un

A la suite de cette remarque, nous avons pr6f6r6 changer la preuve et

utiliser le r6sultat de 1 JJ pour montrer que (ii) + (i) .

Demonstration.

(i) + (ii) est clair :

on sait par definition que K est ordonnable ; par les propositions O-4 et
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O-5 on sait aussi que K est superpythagoricien ct n’admet pas d’extension

alg6brique de degr6 impair ; enfin la d6monstration du fait que Ie corps K

est pythagoricien au niveau 4 faite dans ID-GI et d6ja utilis6e au lemme a

reste valable ici.

(ii) + (i) :

K corps ordonnable pythagoricien au niveau 4 est pythagoricien a tout

niveau 2'1 pour nz 1 (d'apr ds [H] cor. 2-4).

K2 6tant un fan par hypothdse Ie corps K est superpythagoricien.

Le corps K 6tant superpythagoricien, on en d6duit que, si on note

r(K) = { nc N 1 K2 ,,t „„ r,„ d, KF , ,1,,, 1, r(K) q„i .’,,t d,.c pas

vide. On peut alors utiliser le r6sultat 3-17 de [Be2] et en d6duire que

I'on a 1 M(K) 1 s 2 .

On utilise A nouveau un r6sultat de Harman (cor.2-9 de [H]) pour

montrer que puisque K est pythagoricien au niveau n pour tout nz 1 et

que 1 M(K) 1 est fini, alors K est 2Fl-strictement pythagoricien pour tout

n , donc qu’en particulier K4 est un fan

Le corps K est donc ordonnable teI que K4 est un fan et que K

n'admet pas d’extension alg6brique de degr6 impair ; iI est donc

h6r6ditairement {2F-pythagoricien au sens de Jacob. Dans [ J] il est montr6

que les corps h6r6ditairement S–pythagoriciens admettent une valuation

hens61ienne a corps des restes r6els-clos, et les corps h6r6ditairement

{2}-pythagoriciens n’admettant pas d'extension de dep6 impair ces derniers

satisfont done la caract6risation des corps de Rolle donn6e a la proposition

O-3, ce qui termine la preuve.
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Corollaire 2.2. Une &xtomattsat torI des corps de Rolle dans le langage des

anneaux est donn6e par la th6or te T sutvante :

1- Axtomes de corps commutatt f ;

2- Pour chaque nz 1 l’axtome : Vx ....Vx a (’ - I = x? + ... + x2 ) ;' 1 n 1 n
3- Vx Vy lz x4 + y+ = z4

4- Vx Vy Vz it ( x = - t2 v y2 + x zz = t2 v y2 + x z2 = x t2 )

5- Pour cInque pal l’8xtc>me :

Vxo ...VxaP+1 3y ( x2p+1 = 0 v xo + xl y + ... + x2p+1 y2P'l = 0 ).

Preuve .

Cette axiomatisation se d6duit imm6diatement du th6ordme I1-1

Rentar que . On peut aussi y remplacer le sch6ma d’axiome 2 par I'axiome 2' :

2’- Vx Vy lz ( A (-1 = x2) A x2 + y2 = z2 )

19



111-CORPS DE ROLLE Er CHAINABILITE.

[BI] et IHI sont les r6ferences de base sur les ordres de nlveau sup6rieur

et sur les chaines d’ordres de niveau sup6rieur, cependant sur le sujet des

corps chainables on pourra aussi consulter l’expos6 en franc,ais [G4].

Un corps qui n’admet qu'un seul ordre n'est jamais chainable, les corps de

Rolle ayant exactement un ordre qui sont Ies corps r6els-clos sont dorIC non

chainables. Dis qu'un corps de Rolle admet au moins deux ordres alors il est

chainable car il existe au moins un element a de K qui n'est ni un carr6

ni un oppos6 de carr6 : Ie corps 6tant pythagoricien au niveau 4 , si, pour

tout a dans K , a2 6tait une somme de puissances quatriemes alors il

serait une puissance quatridme et a serait un carr6 ou un oppose de carr6 ce

qui est faux comme on I'a vu. Un corps de Rolle ayant au moins deux ordres est

dorIC toujours chainable et m6me bien chainable au sens de [62].

Th6or6me 3.1. Si K est un corps de RoILe ayant au moins deux ordres ,

aLors pour toute extension atgdbrique L de K tl extste

une chatne d'ordres de niveau sup6rieur de K qui ne s’6tend

pas f idalement a L

Demonstration.

D’aprds ce qui pr6cdde on sait que toute extension alg6brique ordonnable

d’un te1 corps contient une extension quadratic;ue K(a) avec a d t K2 . Le

corps K 6tant pythagoricien au niveau 4 , az d K4 entraine que az eE K+

et le corps K est dorIC a-chainable Cvoir [621) ; il admet danc au mains une

20



D. Gondard-Cozette

a-chaine (1.e. une chaine (P1)1€N telle que a2 e P2 ) qui ne saurait

s'&endre ridtl,me„t a K(n) ,,, az , E (K( a))+ S P;- WU, tout ordre r;

de niveau exact 2 de K(n) , ce qui tcrmine la preuve.

Th6ordme 3.2. Un corps de RotZe chat nable (t.e. ayant au motns deux

ordres) est totalernent chatrbable (t.e. tout ordre petIt etre

tnclus dans une chatne d’ordres de ntveau superteur , votr [ D-G]

et [62]) et de plus toute patre d'ordres est le debut d’une

chatrte d'ordres de ntveau super teur .

Demonstration.

Cela r6sulte du fait que si K est un corps de Rolle il existe une

valuation hens61ienne a corps des restes r6el-cjog k ( c.f . prop.O-3 ). Une

telle valuation est compatible avec tous les ordres du corps K et tous les

ordres r6siduels coincident avce 1’unique ordre de k

Il suff it alors d’appliquer le corollaire 1-5 de IHI (deux ordres PA et

P1 sont le d6but d’une chaine d'ordres de niveau sup6rieur si et seulement si

iI existe une valuation compatible avec ces ordres telle que les ordres

induits sur le corps r6siduel coincident) pour obtenir que non seulement tous

les ordres sont chainables mais que toutes les paires d’ordres sont Ie debut

d’une chaine d'ordres de niveau sup6rieur,

Une question naturelle est de chercher si un corps de Rolle est

simplement chainable (i.e. par chaque ordre de niveau sup6rieur il ne passe

qu’une chaine voir [62 1). On peut r6pondre par le th6ordme suivant.
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Th6or arne 3.3. Seuts les corps de RoI le ayant exactement deux ordres, c'est

a dtre les corps chatne-clos, sont stmplement ch8tnables.

Demonstration.

Cela r6sulte de la caract6risation des corps simplement chainables donn6e

dans 162] : un corps chainable K est simplement chainable si et seulement si

pour toute valuation r6elle de groupe des valeurs vK on a 1 vK / 2vK I s 2,

et du fait que si un corps de Rolle K a 2l' ordres pour vc V(K) on sait

(voir [Las2]) que vK / 2vK a pour dimension n comme F9-espace vectoriel.

Remerctentents . Je tiens a remercier ici F. Delon qui a bien voulu me consacrer

du temps pour de trds utiles discussions notamment i propos du corollaire 1-6.

e
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THE REAL RIEMANN SURFACE OF A RING

by M. J. de la Puente

Let X be a real commutative ring with unit. The aim of this note is to present the
definition and main properties of the real Riemann surface of A, as a topological space

S. Two concepts, those of real spectrum of A and of Riemann surface of a field (in the
algebraic sense of [Z–SI) are combined together to give rise to S. Essentially, the points of
S are pairs ( S, B), where $ is a total order in the quotient field nCp) of the domain A/p,
and Bis a valuation ring of MCp), convex with respect to S, as p runs through SpecI . In
practice, the points of S are defined in a slightly different way9 but soon we will see the
advantages of such a choice. For example, we get an easy proof of the compactness of S.

The chief results are construction 12 and theorem 14. Proposition 13 is interesting
too, and also serves us as an useful piece of language. In 12 and 14 we show how the
topology of S accurately expresses some algebraic facts about convex valuation rings, such
as composite valuations. More precisely, a point ($1, C) in S lies in the closure of another
one ( S, B) if and only if

(i) $1 is a generalization of $, (roughly speaking, inequalities involving g are also true
for $1) and

(ii) there exists a decomposition 81 and B of 6 , (in the sense of proposition 11) such
that either (a) C = 61 or (b) C is the restriction of 8 to an adecuate residue field of 4.

Not only the topology of S is well suited to the study of questions about convex valuation
rings of residue fields of A, but also the very defInition of the points of S helps in this
task. For example, the property (ii) (b) above is expressed by an extraordinary simple
intersection formula, (see claim, construction 12).

To come to an end, we show in theorem 15 that S has some of the topological
properties of the real spectrum of A, the space over which S is constructed.

We start with an easy

Example 1. ,4 = R [2], r is transcendental over R . For each p e Spec IiA, let p be its
support, supp(p) = p n –p, and consider all the valuation rings B over R , of the quotient
field nCp) of A/p, which are convex with respect to gp i.e.,

if a e nCp), b C 6, 0 Sp a gp b + a e B.

It is well known that SpeeR A = {a, a+, a–: a e R } U {ao+, oo–}.
Now, let a C R . The ordering represented by a has residue field R and this is the

only valuation ring over R , convex with respect to $,.
The residue field of a+ is R (a) and the only valuation rings over R , convex with

respect to $,+ are A(,_a) and R (z). Similarly, for a–, we have convex valuation rings
A(,_,) and R (3).

Finally, the valuation rings of the residue field R (a) of aa+ convex with respect to
this ordering are R [1/z](1/,) and R (z). The same holds true for ao–.
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If we gather this information in a space S, whose points are pairs (p, B), with p in
SpecI? A and B a valuation ring as above, we get the set–theoretical real Riemann surface
of a

S = {(' IR )) (“+, A(z–a))) (.+) R (')), (.–, .4(.–.))) ('– IR (')): . C R }U

{(w+iR [1/z](1/z))I (CD+IR (z))i (m–IR [1/a](1/,))1 (CD–IR (z))}.

Below we have a picture of S, containing 5 copies of R and 4 points “at infinity” . An
arrow from a point (p, B) to a point (1, a) means that the latter belongs to the closure of
the former. This will be clear after we study the closure of a point in theorem 14.

('+) R(,)) :w+) R(,))

(“+) A(.–.))
I

(w+1 R[1/21(1/B))

QpR)

(m–tR[1/a](1/,)) ('- ) A(,–.))

J--
('- IR('))

1
(m- ) R(,))

One of the two main ingredients of the real Riemann surface is:

Definition 2. The Riemann sqtface of 4 is the collection T of valuation rings B of the
fields x(p) as p runs through Spec4 . In this situation, p is called the 8uppott of B .

We establish a bijection between points of :r and subsets of X x 4:

T 1 24*4 ; „(?) 2 B b, B = {(,ly) e 4 x X:ye?Ie/g C B}I

where a denotes the class of a modulo p.

We identify T with its image dCT). The advantage of the Bls over the B ’s is that the
former avoid the difficulty of working with subsets of different sets MCp), p running through

T is endowed with a topology, called the W topology, which has the following family
as a sub–basis:

{W(alg); (ai y) e 4 X X},

where W(z, y) = {B e T: (2, y) e B}. This topology in :F is a natural generalization of
the Zariski topology, considered in [Z–S], in the following sense: if p C 4 is a prime ideal
and TI, is the Riemann surface of RCp) then, in the embedding T? S T, the restriction of
the W topology to Tp coincides with the Zadski topology on Pp.

The W topology is weaker than the TychonofF topology, induced on T as a subset of

Speca

2Jx A

2
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DefInition 3. The real Riemann surface of A is the collection S of pairs (p, B), where
O is in SpecR4 and B = d–1(B) is a valuation ring of RCp), convex with respect to gp,
where p is the support of p. In this situation we say that p and B are compatible.

We give to S the initial topology for the projections:

S B--}

Trl

SpecR,4

Tra-) (PI B)

1
P

This is the weakest topology in S making both 7r1 and T2 continuous, and the following
family is a sub–basis for it:

{m(t; z, y): fe A, (z, y) e X x 4},

where Wd; z, y) = {(p, B) e S: t gp, (z, y) e B}. We call it the W topology.

Theorem 4. IT and S are compact.

Sketch of the proof, it is enough to show that T and S are TychonofT closed in 2Ax X and
in 2 X x 24x4 respectively, because the topologies of T and S are weaker than the Tychonoff
topologies in those spaces. A proof similar to the one done for the real spectrum in [L, p.
783] shows that T is Tychonoff closed. Indeed, we axiom&tize the properties of the sets B
of type B = +(B), and observe that those properties are expressed in terms of C and q
conditions. A similar argument works also for S, (see [P] for more details). •

We turn to the study of the properties of S. Let p be an ordering of A with support p.
As the collection of valuation rings of IC(p) which are convex with respect to gp is totally
ordered by inclusion, we view S as a union of totally ordered fibers over Spe% A . Thus,
we have studied the map rl: S –} SpecR,4 and have pointed out several sections of 71
whose images are homeomorphic to SpecIt A . We proceed with their description.

The trivial valuation ring of a field is the field itself. Accordingly, the trivial points of
the real Riemann surface of ,4 are (p, n(supp/3)), where p runs through SpecR4 .

Proposition 5. The map

P: SpecxX A S ; P -' (PIN(supp/3))

is a continuous section of Tr and it is a homeomorphism onto the image.

Proof. To check that p is continuous, it is enough to show that the composites TIP and
lt2p are continuous, since S has the initial topology for rr and x2. Clearly, IIP is the
identity. So, all we need to check is that, for any z, y e 4, the set (T2p)–1 mCa, y) is open.
But this is so since, if 2 denotes the class of a modulo supp(p), then

(„2p)–lw(,I y) = {P e SpecxA: y e supp(P)I e/g e „(suPPP)} =

= {P e SpecxA: u # suPP(P)} = {P e SpecxA: y <n O} U {P e SpecRA: y >p O}

is an open set in SpecIiI . •
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Fixing a subring A1 of 4, we obtain some other sections of Tl. In the applications, we
are interested in the cases 41 = Z , 41 = 4 and, if b is a field and A is a finitely generated
k–algebra, Al = k.

Let p be an ordering of ,4 with support p and let pl = pn Al. Consider the conuez
hull OpAl of 41 /pl in nCp), with respect to the order 9. The ring OpAl is the smallest
convex valuation ring of &(p) containing 41/111:

OpAl = {e/g e 6(p): Ie/gl <p a, for 80me a e 4l}.

Proposition 6, The map

0: Spec:xA d S ; P -' (P1 OpAl)

is a continuous section of Tl and it is a homeomorphism onto the image.

Proof. As in the proof of proposition 5, it is sufficient to show that, for any z, y e 4, the
set (120)-lW(a, y) is open. But this is clear from the expression

(mg)–lW(z,y) = {P e SpecR A: y e supp(p), Ie/gJ <p a, for some a e 4l} =

U {P e SpecRA: y e supp(p)IN <n @ <# a}. •
aCA

DefInition 7, A point (p, B) in the real Riemann surface of A is Bnite (relatioe to A) if
OpA g B.

It is rutinely checked that this condition is equivalent to 4 x {1} g B.

Now we devote ourselves to the study of the relation between 41(p) and 41(7) , for
orderings p, I of 4 with p g 7. This is done in theorems 12 and 13. These results are
achieved by “weaving” some well–known facts, (here numbered 8, 9 and 11) about the real
spectrum and about convex valuation rings. With the help of 12 and 13, we “discover” in
14 what it means for a point (1, a) to be in the closure of another one (p, B), in terms
of the “classical” valuation rings B and C rather than in terms of the “form aP’ valuation
rings B and a.

In addition, 12 and 14 show how simple it is to express, in S, certain concepts about
valuation rings.

Finally, 13 and 14 are a first sample of why it is useful to have constructed S.

As to notation, mB denotes the maximal ideal of a valuation ring B of a field if and
AB denotes the residue field BjmB. An order $ in K making B convex induces an order
in AB, and throughout these notes, AB will be tacitly endowed with this order.

Proposition 8 [Br p.149] . Given an ordered field (K, S), a subring AS K and a convex
prime ideal Q C JL then, the convex hull A in K of the localization ,AQ is a valuation ring
of K with

Q = mx n J.

4
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Moreover, AH is an archimedcan extension of the quotient field of aQ.

Proposition 9 [B–C–R p,82]. Let p be an ordering of A with support p. There is
a bijection + between the orderings 'y of A containing p and the prime ideals g C A
containing p which are convex with respect to gp. More precisely, $(1) = suPP(1) and
+–1(g) = g U P.

DefInition 10, (a) Given a field K, a subring Xg if and a valuation ring Z> g if
containing a , the ideal

ta = nIl> rIX

is called the center of D at A

(b) Let (p, B) be a finite point of S, p = supp(p) and let

qI? = „'B n Ajt

be the center of B at AIp. Then, the preimage g of g/p under the canonical homomorphism
A –} A/p is called the center of B (at AJ.

Proposition 11, Given an ordered field (K, S), a convex valuation ring B C K and
a convex valuation ring B of AB, then 61 = {3 e B: r + mB E B} is a convex valuation
ring of K contained in B. Moreover, if TrI is the maximal ideal of 61, then Bh, = B and
B1 jmB =B.

In other words, given (K, S) and Bbs above, there is a bijection between the family
of convex valuation rings of AB and that of convex valuation rings of K contained in B.

This fact follows from realizing that convexity is preserved throughout the proof of the
analogous result in [N p.35].

Construction 12, Let p g I be orderings of 4 with p = supp(p) , g = supp(jf ). In 8,
take K = it(p), X = 4/p, Q = g/p and let ?{be the convex hull of (4/P)q/? in ec(p). It
follows that MCq) S AH is an archimedean extension of fields.

For each valuation ring B of A compatible with p, we define a valuation ring C of R(g),
convex with respect to $1. The ring C depends on (p, B) and I. Afterwards, we Claim
that the valuation ring a = dCC) is expressed by an easy intersection formula.

Given B compatible with p, consider B = d–1(B). If B g A, then Bjmit is a convex
valuation ring of AH, by proposition 11. Therefore, BI mH n R(g) is a valuation ring of
!c(g), convex with respect to the order $1, induced on n(g) by Sp. Let

C = { :(g:” n "(g)’
if B g A,
otherwise.

Clearly, if a = +(C) then, (7, a) belongs to S.

Claim. O = B nA x (A \ g).

Proof of the claim, The center of ft in 4/p is g/p, by proposition 8, i.e.,

qIp= v-Xr\ Aj?.
5



This equality means that, if y e 4 and y ( p then,

ye q ++ peTItHi

where g denotes the class of y modulo p. Then, in the inclusion &(g) G AH, the element 8/i
is identified with (e/g) + mH, where & denotes the cIa88 of y modulo g. As a consequence,
the definition of C means that, for every y e g (hence u q p, g q mH and a/g e MCg)), it
holds:

tIle C ', ) IIB CBIm){ q > RISe B.
Thus,

(z,y) ea 'i I' y ( g,a/ieC ': :' u qq,818 eB 'i :' (z,y) eDnA X (4 \ g)I

as was to be shown. •

Theorem 13. Let p g I be orderings of A. The map

„i1(P) d „i1(1) ; (Pl 8) b’ (li a)i

given by construction 12, is surjective. Moreover, this map preserves the trivial section

and the section determined by any subring A1 of A.

Proof. Let p, g, C and 7{ be as in 12. Consider the convex hull R of ein AH and let
It1 C }{ be as in proposition 11. Then, X1 nA x ( A\ g) is the valuation ring of A associated
to

Hf Im+t n „(g) = R n „(g) = C-

Thus, a = X1 n 4 x ( A \ g), and this concludes the proof of the surjectivity.
Now, the trivial point of rjl(a) is mapped to the trivial point of 41(7) since

Xx (I \P) n X x (a \ g) = Ix (4 \ g).

Finally, let Al be an arbitrary subring of A. Then, (p, Op 41) is mapped to (1, OvAl ) since

OpAl n X x (A \ g) = OvAl .

Indeed, let (r, y) e Ol 41. Then y e g and there eHsts a e 41 such that l£/iI <7 d and
so lay – ay2 Q 1. As p g 7, then lay – ay2 g p. Thus, (z, y) e OpAl n 4 X (a \ q).
Conversely, if y e g and there is a C 41 such that Fe/gl <p a, then lay + ay2 e P g 1.
Hence la/il <1 a- f1 and (z, y) e OvAl, concluding the proof. •

Now we turn to the study of the closure of a point (p, B) in S. From the definition of
the W topology, it consists of those points (7, a) with p g 7 and a g B.

Theorem 14. Let (p, B) be a point of the real Riemann surface of A. The points (1, a)
in the closure of (p, B) are of two types.

(a) p = 1 and C C 6 or

6
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(b) p C 1 and there exists a valuation ring D of 6(supp/3), convex with respect to gp,
such that Z> g B and C = DI mB n ?c(suppl).

Proof. Let p = supp(p) and q = supp(7). Fir8t, if (7, a) is of type (a), then a g B.
Conversely, if (1, a) is in the closure of (p, B) and p = 1, then necessarily C g B.

Suppose now that $ + 1. 1f (I, a) is of type (b)1 then a = DnA X ( A \ g) g B, hence
(7, a) is in the closure of (p, B). Conversely, we will be done if we find a valuation ring D
of A, compatible with p, contained in B and such that a = D n 4 X (A \ g). But in the
proof of 13, we have seen that

a = X’ nA x (A \ g),

for a certain valuation ring X1 of A, compatible with p. As the valuation rings of A
compatible with p form a set totally ordered by inclusion, we have either H1 g B or
B C #1. If the former holds, we are finished9 taking D = H1 . Otherwise,

aS DnA X (A \ g) gX1 nA X (A \ q) = a,

and letting D = B, we are done too. •
To close this note, we present a list of properties common to the real spectrum and

the real Riemann surface.

Theorem 15. (a) The closure of a point (p, B) contains a unique closed point.
(b) The set of closed points of S is homeomorphic to the set of closed points of SpecRA ;

in particular it is compact and Hausdorff.
(c) The retraction of S to the set of closed points is a continuous closed map.

Proof. (a) Let I c SpecfiA be the maximal ordering of A containing P. Then (7, OvAl)
is the only closed point in the closure of (p, B).

(b) Take 41 = Z and consider the continuous map A that sends each ordering P of
A to the maximal ordering containing p. Then, the restriction of rl to the set of closed
points of S coincides with the composite continuous map TIOXrr and has 0 as an inverse.

(c) This retraction is the continuous map 0XT1, and it is closed since the domain is
compact and the target is Hausdorff. •
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RINGS OF CONTINUOUS SEMIALGEBRAIC FUNCTIONS
J.M. Gamboa

Let R be a real closed field and let M c Rn be a semi algebraic subset. We have studied

some elementary properties of the ring SCM) of continuous functions from M to R with
semialgebraic graph. First of all

Theorem 1. dimS(M) = dimM.

Of course dim SCM) is the Krull dimension, and dimM jg the 8emiaJgebraic topological
dimension. The equality wag proven by Canal and C08te, [C–C] in case M is locally closed.
The inequality dim M S dim SCM) is clear: if if is the con8tructible subset of the real
spectrum of R[al, . . . , Zn] associated to M , there eH8t8 an embedding of spectral spaces

M c+ SpecS(M): a b} {/ e SCM): /(8) = 0}

because given distinct points z, y e if and a polynomial P with P(z) ? 0, P(y) < 0,
the semialgebraic function I = P – IPI verifies /(z) = 0, f(y) + 0. Hence dimM =
dim M $ dim SCM), the first equality by [B–C–R], Ch. VII. The argument for the converse
inequality was inspired by M. Coste. Let a) g . . - g pd be a chain of primes in SCM). We
can choose A e pi \ n_1, 1 S i $ d. Let X C R-+d be the graph of the semi algebraic map
j = (/1 , . . . , h): M –I IN, and let g1, . . . , gd be the restriction8 to the closure X of X of the
canonical projections RT'+d –} R onto the last d coordinates. We get ring homomorphisms

S(X) Lt S(X) => SCM), where j is the restriction map and u is the isomorphism which
sends F e SCM) to G e SCM) defined by G(z) = F(2, /(a)). Thus if G = (u a j)–1(pi),
then gi e % \ gi_1 and so go g . . . g gd. Whence dimS(M) S dimS(X). Also, since X is
locally closed, dim SCF) = dim T = dim X = dimM, and the proof is finished.

This result indicates some finiteness character of SCM). On the other hand we get

Theorem 2. (1) A prime ideal in SCM) is finitely generated if and only if it is the maximal
ideal of an isolated point in M .

(2) SCM ) is noetherian if and only if M is finite.

Evidently the second part is the immediate consequence of the first one. Al801 if
a e M is an isolated point, its maximal ideal m, is generated by the function i e SCM)
that vanishes at a and takes the con8t ant value 1 outside. So we are concerned with the

“only if’ part in (1). Let p = (fl, . . . , h) be a finitely generated prime ideal in SCM). It
is rather obvious that f = ( A + . ••ff)i generates p since the functions

gJ,M A R, ,A { f (') (EL, #(')) –1 :=f=,. #(z) # 0

are in SCM), because 0 S #(z) $ ELI #(z) if a e M.
1



In particular, the zere8et Z of f is nonumpty, and we claim that it contains exactly
one point. For, if f v&nisheg at two distinct points a = (411. . . , an), b = (b1, . . . 1 bmt we
'.-;id.- g = EL,('i –.i)’I h = E::'=,(,i – bi)2, r = Ig – hI – (g – h)la = Ig – hI + (g – h)-
Clearly, FG = 0 e p but F, a gp because FCa) = 26(a) + 01 GCb) = 29(b) + 0.

From now on, a denotes the unique zero of g. It is an isolated point in M. Otherwise, by
the curve selection lemma [D–K] , there exists a continuous semi algebraic map 1: [0, 1] –} M
verifying 1(1) = a, 1([0, 1)) C M \ {a}. Moreover, since p = /S(M) is a prime ideal,
there exists a continuous semialgebraic function & e SCM) such that /(1 – /X2) is
identically zero on M, and in particular, 1 = /(Kt))JE2(7(t)) for each I e [0, 1). But,
by [B–C–R] Ch. II, &2 o 1([011]) is contained in some interval (–r,r) C R and since
/(7(1)) = 01 f o ([f, 1]) C (–r–2,r-2) for some 0 < 8 < 1. Heace1 if c = (1 + 8)/2,
1 = 1/(1(€))X2(1(c))I < r-2r2 = 1, a contradiction.

Finally, all reduces to check that j generates rna. But, a being isolated, if a function
I C SCM) vanishes at a, then I = fu where %; M –} R, maps a onto zero and coincides
with 1// on M \ {a}.

In a forthcoming joint paper with J.M. Ruiz, we shall extend these results to a more
general setting: abstract semialgebr&ic functions on con8tructible 8ub8ets of the real spec-
trum of excellent rings.
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Machines sur les r6els et problbmes
NP-complets

(d’apr& L. Blum, M. Shut), S. Smale et al.)

par C. Michaux

Le but de ces deux exp086s est de donner un survol de 1’article [BSS] de L.

Blum, M. Shub et S. Smale intitu16 'On a Theory of Computation and Com-

plc:itV over the Real Nqmbets: NP-Completeness, Recsr3ive Fbactions and

UtriDet3al MachinesD, en privi16giant certaines parties de 1’article, qui ont d6ji

des prolongements chez d’autres auteurs,



Avant -Prop08

Clugiquement la th6orie de la r6cursion concerne les entier8 pogjtif8 ou des

structures esgentiellement d6nombrable$ (par exemple le8 8tructure8 r6cursive$

au seng de Rabin). C’est toujour8 via une $oub8tructure d6nombrable de R que,

par exemple, M.B. Pour-EI et I. Richards ou H. FYiedman et K. Ko traitlent de

“fonctions calculable8 sur R”

L’6mergence depuis la 6n de8 ann6es sept;ante de8 arbre8 de d6ci8ion alg6brique8,

des R. A.M. ( “random access machine-) en tant que modble de calculabilit6 sur

les r&Is, pr6c6d6s par les U.R.M. (“unlimited register machine” ) sur leg r6el8 de

Herman et bard, n’a pas 6t6 suivi du d6veloppement d’une th6orie analogue i

la th6orie cla8sique des fonction8 r6cursives sur N, quoique de nombreux article8

sur la complexit6 dans ces modales de calculabiHt6 aient 616 6crits (par exemple,

Dot)kin-Lipton, Steele-Yao, Ben-Or, Preparata-Sham08, ...)

Le but des auteur s de [Bssl (et petit-atre particuEirement de s. Smale) est

ju8tement de d6velopper une th6orie de la calculabilit6 sur les r6el8 en vue

d’analyser des algorithmes caurants en analyse num6rique 8ans s’embarra8ser

de la repr6sentation d6cimale deg r6els (ni de leur approximation par de8 rn

tionnels), dans le sans ob les U.R.M. sonb un modile de calculabibt6 8ur N qui

ne 8’embarras8e pas de la repr68entation d’un entier sous forrne de suites de 0,1

(voir Cutland). On peut trouver certaines de ces con8id6ration s dans S. Smale

(1985)

Toug Ies Hsulbats pr68ent6s ici sont extraits de IBSS] 8auf mention contraire.
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C. Michaux

1. Exempleg de machines sur R

Avant de donner une d66nition relativement pr6ci8e de8 machine8 sur les r6el8,

nous allons d6crire quelque8 exempleg informel8.

Exemple I

Sob g : z –' g(z) dc C –. C, une application polynomiale de degr4 Z 2

Lemme 3.1. - Il exi8te cg e R tel que lzl Z cg imphque

,ljl: Ig't')I = m (g' d6'igne .g' --'' q)
£foi8

La preuve est classique Igb(z)1 se camporte pre9que comme jzdb I (oil d est le

degr6 de g) quand lzl eat 8ufh8amment Brand.

Dang ce qui 8uit C est identi66 i R2. Con8id6ron8 la machine M d6crite par

le diagramme 8uivant:



M [Z]

Z A g(Z)

test

1 dI& 1 2 dEB•B•• C :

entr6e e C

On calcule g(Z)

si lzl2 a cg

sortir z

Remarquons que [2l2 est une fonction polynomiale de R2 –+ R2 (si on identi6e

C aVec R2)

L’ensemble aM des points all M s’arr6te (c’est-bdire ob le calcul se termine)

est exactement l’ensemble des z tels que Igb(z); –> aa quand k –+ oo

On dira que aM est r6cursivement 6num6rable sur R.

Remar:que : aM est 6videmment dans le cas pr6sent non d6nombrable.

Dans [BSS] section 1, on trouvera une preuve du fail que nb (le comp16mentaire

de nM) n’est pas r6cursivement 6num6rable sur R lorsque g(z) = P+c avec IcI >

4. Cet exemple est li6 aux ensembles de Julia des endomorphismes rationnel8

de c –' C. Dans le cas g(z) = z2 + c, nh est justement l’ensemble de Julia de

z2 + c, ICI > 4



Michaux

llxemple 2

M [E] entr6e C R

g

II est clair ici que le domaine QM de M e8t; Z,

Z est dorIC r6cur8ivement enum6rable 8ur R; nou8 lai880n8 au lecteur le 80in de

montrer que R \ Z est 6galement r6cur8ivement 6num6rable sur R.

On dha que Z est d6cidable sur R ou pour rejoindre la terminologie u8uelle en

calculabilit6, que Z e8t r6cur8if 8ur R,

Terminon8 cetite introduction par un exemple qui 8era repri8 pIug lard
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nxemple $

ent;r& e R-+2ao an I a

aO)an, ann„ + an+lzn+1 +IC1b r+ I IIF ) 1+ ( 1C11 () 1

a+‘
z = 0r # 0

Clairement nM = {(ao , . . . an , z)janz” + an_13”–1 + . . . + aa = 0}; 1’ensemble

de 80rtie de M = {(ao , . . . , an)IIz e R : anzr1 + an_lz”–1 + . . . + ao = O}

2. Machines sur un anneau ordonn6 IZ

Dang cetlte section, nou8 allon8 d6crire bri&vement le8 machine8 8ur un anneau

ordonn6; Ie lecteur trouvera une d66nition campllte dans IBSS] section 2, cen

taine8 pr6cisions 8eront apport6es au cour8 de l’exp086.

Dan8 le re8te de l’exp086 R d68igne un anneau ordonn6 commutatif intbgre avec

unit;6; le8 principaux exemple8 80nt Z, Q, R.

A?proximativemenb, on peut dire qu’une machine sur R est 8emblable a une

“unlimited register machine” (d6not6e U.R.M., vair Cutland, ch. 1) except6

6
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que le contenu de chaque regi8tre est un 61aneat de R (au lieu d’un entier

p08itif)

Une machine M 8ur R p088ade un nombre 6ni ou in£ni de regi8tre8 (formant

1’apace des 66 M8, dont la dimen8ion e8t 6gale au nombre de regi8tre8; l’egpace

des 6tat8 est identiEd avec Rn ou RH = ©nEu Rn 8uivant leg cas); chaque regi8tre

contient i tout instant un 616ment de Ii. Les instructions - appe16e8 noeud8 dang

la terminologie de [BSSl - eFectu6e8 par M 80nt outre l’entr6e de la donnie (un

uple d’616ment8 de B, l’e8pace deg entr6e8 p088ible8 8era not;6 7 et 8era du type

I = En, n S ao) et la sortie du r68ultat (6galement un uple d’616ment8 de E,

l’espace de 80rtie sera noR a et sera du type a = Rn , n S ao), leg instructions de

calcul8 (modi£cation du contenu de8 regbtre8 par une application polynomiale 1

a coefficients dang B), les instructions de branchement (compuaison du contenu

du premier regi8tre avec 0) et les instructions de tran8fert entre regi8tres (noeuds

de Ucinquiime type- dan8 [BSSD, ces derniires 6tants r6gieg par le contenu de

deux regi8tre8 8p6ciaux de M qui lor8 de 1’instruction d’entr6e 80nt mis 1 1 et

lor8 des in8truction8 de calculs sont; soit; mjg i 1, 80it incr6ment6 de 1

Par appbcation8 polynomiale8, on ent;end ici une application polynomiale de Jim

dang R-, m, n e N (g = (gl, . . . , gn)) belle que le contenu zi du regi8tre n 'i est

remplac6 par gi(z1, . . . , gm), Ce type de noeud sera gouvent repr68ent6 par

gIn), - . . , gn(Z gm)Bm +– gl (aa

ldan8 Ie cag oil R ut un corps, lee fonction8 8880ci6e8 aux noeud8 de calcul 80nt lu apI>li.

cations rationnelle8 i coefllcient8 dang R
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On appelera dimension d’un tel noeud de calcul8, Ie nombre de variables qui

interviennent ou sont modi66e$ efFectivement dang g, c’est.bdire max(n, rn)

Le nombre de noeud8 de M est 6ni, par con86quent le nombre d’applications

polynomiale8 28soci6e8 1 M (et done le nombre de kun coefficients, appe168

coefficient g de M) est 6ni.

Une relation succes8eur p sur les noeuds de M d6termine l’ordre de leur

ex6cut;ion, chaque noeud de M a un unique 8ucce8seur except;6 le noeud de

sortie qui n’a pas de 8uccegseur et leg noeudg de branchement qui ont deux 8uc-

ce8seurs, 1’un ex6cut6 quan(1 le contenu du premier registre est inf6rieur i z6ro,

1’aut;re quad ce contenu est sup6rieur ou 6gal i z6ro.

Remarquons que, i tout instant :r d’une ex6cution, le contenu de8 regi8tres

(appe16 6tat I l’instant T) est un uple ou une suite pre8que nulle c’e8t-bdire

seul un nombre 6ni de registres ont un contenu non nuI,

La structrure de la machine M est 80uvent repr6sent6e par un graphe dirig6 et

6tiquett6 par des naturel8 dont les 80mmet8 sont; leg noeud8 ou in8truction8, le

noeud d’entr6e 6tant 6tiquett6 par 1 et ainsi de suite, et oil les ar6tes repr6sentent

la relation succe8seur (yoU [BSSl)

Une machine 6ni-dimen8ionnelle sera une machine dont les e8pace8 d’entr6e, de

sortie et des 6tats sont 6ni.dimensionnels. C’6tait un problime ouvert dans une

premiire version de [BSS] a’6tabhr si toute machine M sur R dont leg e8paces

dlentr6e et de sortie gonE £ni-dimensionnel8 (c’est-bdire T = Em et a = En

avec n, m < ao) est 6quivalente i une machine M’ 6ni-dimensionnelle sur E

8
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(c’egt+bdire M et Mt calculent la mame fonction). L. Harrington et leg auteur8

de [BSS] donnera une r6pon8e p08itive i ce problIme (voir page 28 de [BSSl),

on trouvera une autre preuve dang [Mill.

La d66nition de machine pr6&ent6e ici e8t en fail ce qui %t appeld la fonne

normale dang IBSSl, section 3.

De la m&ne fa£on que le comportement d’un automate e8t d6crit par 8a

fonct;ion de tran8it;ion, le comportement d’une machine 8ur IZ peut 6tre d6crit

par une fonction de tran8ition appe16e dans [BSSl, l’enaomorphi8me de calcul.

L’endomorphi8me de calcul xM d’une machine M e8t une application de

a x X dan8 N x T o& T = {1, . . . , /V} est l’en&emble des noellds de M et g est

l’e8pace d’6tat8 de M, c’est-bdire Rn ou Rm suivant que le nombre de regi8tre8

est n ou in6ni.

Le lecteur trouvera la con8truction explicite de xM dans IBSS], section 3.

Par cons6quent, la suite des instructions ex6cut6e8 par une machine M sur R

avec l’entr6e Z (3 est un n-uple ou une suite presque nurse, a d6notera la £lbme

compagante de I). est repr68ent6e par une suite zo , n, . . . , zh, . . . , oil a C Nx g

v6ri6ant

(1} 2 rD = ( II1)

(2) HMI,k-1) = %
!:Dans le cas oil 1'%pace d’&ats est inflni.dimen8ionnel, iI y 8 lieu d'entrer Z dans in

regi8tru de lacon a se m&lager un eapace de travail (vair IBssI)

9



Ces conditions (1) et (2) n6ce8$aire8 et 8ufEsante8 pour qu’une guiLe

Zo,...,Zh, . . . , oil zk e N x X soil une ex6cution 8ur la machine M (pour une

entr6e ?), gonE appe16e8 les 6quation8 des regi8tre8 de la machine M.

Leg conditions peuvent 6tre transform6e8 de faGon i 8’exprimer

pre8qu’uniquement par deg 6quations polynomiale8 i coefEcient8 darn R (en

fait les coefRcients de la machine M) et dans le caa oil R = Z, Q ou R (1) et (2)

8era 6qui%lent i un sy8t ame d’6quationg polynomialeg (6ventueBement in6ni)

Plu8 expbcitement, on gtiend a’abord JIM iR x 3 par interpolation poly-

nomiale de faqon que IIM soil une comp08ition d’apf>ncation8 polynomiale8

et de la fonctian caract6ri8tique de l’ordre (x(?) = 1 si r1 > 0,x( E) = 0 si

zI = 0, X(E) = 1 si z1 < 0), ceci est po$sible gang difficult6 dan8 le cag d’une

machine n’utili8ant pa8 d’instructions de tran8fert.

Dan8 le ca8 oit M utili8e ces derniares instructions, le r68ultat pr6c6dent n’e8t

vrai que gi on restreint JIM i R x sk oil & e8t Pespace 468 6tats pour le8quel8

leB contenu8 des deux regi8tre8 sp6ciaux (pour leg in8truction8 de tran8fert)

n’exc ident pas k,

Ce r68ultlat permet dans Ie cas OIl tout 616ment posit;if de R est une somme

born6e de carr& (par exemple dans R, z, Q) de tran8former (1) et (2) en deg con-

dition8 polynomiale8 6quivalente8 (moyennant l’introduction de nouvene8 vari-

abIes)

On trouvera des d6mon$tration8 de ces r68ultat8 dan8 Ia section 3 de [BSS].
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3. Me8ure de la complexit6 dang le modble de calculabiHt6

BSS

Pumi le8 ex6cution8 eEectu6es par une machine M (toujour8 8ur un ann mu

R), on % 8’int6re89er i cene8 qui apri8 un nombre Sai d’6tape8 atteignent le

noeud de &ortie de M. Plus pr6ci86ment on con8idire leg gujtm 6nie8 (nh,A)

d’616ment8 de N x S qui outre le8 condition8 (1) et (2) v&i£ent nr = N pour

T < no oII IV est 1’6tiquette du noeud de 80rtie. Si on note PM( 3) la fonction

calcu16e par M, Ie temps n6ce88aire I M pour calculer PM( D &era not6 TM(3)

et sera 6gal i l’inaice =F tel que nr = IV pour une ex6cution efectu6e par M

avec Ia donna I. On dh encore que la machine M 8’arr6te au temp8 T pour la

donn6e I. L’ensemble de8 entr6eg Z pour le8quelle8 la machine 8’arr6te au temp

T est not;6 77

Par d6£nition les 6quat;ions de regi8tres ju8qu’i 1’instant T 8eront leg

6quations (1) et (2) limit6es au temps T avec la condition 8upp16mentaire

nT = N, c’est-a-dire

(1) '0 = (IIZ)

(2) Hu(ah_1\ = 4 k = 1, . . . , T

(3) Zr = (NI%)

Remarquons que les A, t = 1, . . . , T appartiennent I & d66ni comme dang la

section pr6c6dente (p. 10).
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Dans Ie cas oil M est 6ni-dimen8ionnelle, ces conditions 80nt 6qui%lente8

i un 8y8t IIne (d’un nombre) 6ni d’6quation polynomiale8 ai (+) tout 616ment

pogjtif de it est une somme born6e de carr6s (exemple dang Q, tout 616ment

p08itif e8t somme de quatre carr68).

Dan8 le cas oil M est in6ni-dimensionnelle, ce 8y8tbme n’est pas ani (notamment

T e8t une 8uite in6nie), iI y a alor s lieu de 8cinder en deux parties le 8y8tbme

(1) (2) et (3), une partie (qui est £nie-dimen8ionnene) r6enement modi66e lor8

des instructions eflectu6es par M end6ans le temps 7, 1’aut;re partie inchang6e

par ces m6me8 instruction8 (les applicabion8 polynomiale8 ne modi6ent qu’un

nombre 6xe de coordonn6e8 de I, le8 noeud8 de cinquiime type ju8qu’au temps

T ne modi6ent que leg T premiires composanbe8 de z1, . . . , nT)

La premiire partie du 8y8time sous l’hypothi8e (+) est 6qui%lente i un

systime 6ni d’6quationg polynomia1% (voir section 4 de [BSS]).

Etudion8 pendant quelque8 instants le cag particulier de R.

Bien entendu dang ce cas (+) est v6ri66e. De plus tout 8y8t ime d’6quation8

polynomiale8 est 6quivalent I un systime quadratique (la faGon la plu8 brutale

de le voir est de remplacer chaque mon6me za du sy8t ime initial par une nouvelle

variable ta , d’introduire en plus une nouvelle variable ta pour chaque variable Zi

• mime 8i zi n’apparait pas comme mon6me dang le 8y8t ime initial - et d’6crire

out;re le8 6quation8 du 8yst arne initial dans ce8 nouvelle8 variables, le8 6quation8

quadratique8 t atp = to+p oil tp repr68ente un a, qui minent i la constitution

de chaque mon6me du 8yst;ime initial i partir des zi, exemple: pour le mon6me

12
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X3Y2 on ajoutera leg 6quation8 tolt01 = t02, ta2tlo = t12 , t lat to = t22, t22tlo =

t32 avec tro = X, tor = Y),

Pui8que tout 8y8t ime quadratique est 6quivalent; i une 6quation de degr6 au

Plus 4 (f = 0 et g = 0 H /2 + 92 = 0 dans un anneau ardonn6), le 8y8bime (1),

(2) et (3) e8t 6quivalent i une 8eule 6quation de degr6 au pjug 4.

On obtient alor8 le

Th6orbme 8.1 IBSS] - Soit M une machine sur R, pour tout T e N, il exi8te

un polyn6me /7 : RxT x R- –+ R de deBra ? 4 tel que la machine M 8’arr6te

au temps T pour la donnie V si et seulement s’iI existe un uple ? C R- tel

que fT(gl, . . . , yI(T, 1) = 0, oh KT est le maximum de T et de8 dimensions

des noeud8 de calcul8 ae M (voir 8ection 2) et s peut aIre choi8i born6 par un

polyn6me en T (et done le nombre de monames de IT est au88i born6 par un

polyn6me en T).

De la preuve, nous dirons 8eulement qu’iI 8’agit; d’un comptage attentif du

nombre de mon6me8 et de variables n6ce88aire8 dan8 leg transformations qui

mbnen6 i IT i putir des 6quation8 de ngistres (1) et (2)

•

Nous pouvons maintenant introduire les notions n6ce88aire8 pour me8urer la

complexit6 dans le modile BSS

La longueur d’un 616ment I e R" jn g aa) e8t d66nie comme Ie plus grand

entier k tel que rk + 0 oil = = (z1,£2, . . . , ak, 0, 0, . . .. Nous ne d66niron8 la

hauteur (not6e hlt(r)) de r e R que dans leg cas R = Z, R = Q ou R = R. Si

13



r e R, R = z, hz(a) = jlog(z + 1)1, ai R = Q et z = f ayn p et q premiers

entre eux C Z, hQ(a) = max(hz(p), hz (q)), si g c R,hR(g) = 1; la hauteur de

T e IP sera Ie maximum deg hIt(q) oil = = (q)

La taBle de = C R" e8t maintenant d66nie comme le produit; de la longueur de

I par la hauteur de I.

La proposition 8uivante e8t 6vidente

Prop08ition 3.1 [BSSl - Soit M une machine sur B, 80it = c i, goh a( D

le nomE>re d’op6ration8 arithm6tique8 616mentaire8 (+, ., –, si R est un corp8

6galement +) et de 5iIIne noeud8 utibs6 pour calculeT PIr(3) don a(D $

hTM(3), oil k est une con8tante d6pendant de M

On d66nit la fonction de coat 8tandard aM( B) d’une machine M pour la

donna = comme le produit de PM (D et du maximum parmi le8 hauteur8 deg

a868 de M pendant le calcul de PM(B), expEcitement:

cM (1) = FM (3) * o,,TacT) h(4)

oil llb(1, z) = (nb, a), nk c N, A c 3, 4 identique i gb sur le8 Kb (1)

premiire8 coordonn6e8, 0 sur les autre8.

On ait qu’une machine M 8 tlr R est dans la classe P (temp8 polynomial) sur R

ou que PM la fonction calcu16e par M est dang la classe P sur R 8’iI exi8te deg

constantles c, ge N telle8 que

VEe 7 : CM (?) $ c(taiHe(D)q
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Dang le cas R = Z, on retrolive la notion cla88ique de calculable en temp

polynomial

On appene problime de d€ci8ion 8ur R, une pah (Y,X) o& X cY C T =

IP (n S ao). Un algorithme (ou machine) qui r680ud le problime (Y, X) nrr R

eat une paire (M, Y) oh M est une machine dont l’e8pace deg entr6e8 admi88ible8

est Y belle que VI e Y PM(1) = 1 au 0 et PM(f) = 1 gi et 8eulernent d y e X.

(Y, X), oa 7 C RH , est dans Ia cla88e P 8i et seulement gi il exi8te un algorithme

dans la clu8e P qui le r680ud, (Y, X) , oil Y c RH , e8t d4ns la cla88e NP (temps

polynomial non d6termini8te 8’il exist;e c, g e N et une machine M sur R dont

1’apace de8 entr6e8 admi88ible8 e8t; V x Rm , telle que

(i) PM (B y’) c {0, 1};

(ii) PM(j, y1) = 1 si et geulelnent gi y e X et

(iii) pour tout y e X, il existe ? c 7 tel que PM(87) = 1 et aM(BP) S

ct&aiIIe(f))q

De nouveau 8i R = Z, NP est la notion cla88ique 8ur Z.

On notera PR(NPa la classe de problime de d6ci8ion de classe P (de cIaage

N P) 8ur l’4nneau R.

On trouvera dam [BSS], un exemple de problime de classe NP, autre que celui

pr68ent6 dans la section 8uivante de cet expos6

Remarque : Dans le mod ile de calculabibt6 BSS pr68ent6 ici, on peut mont;ret

que tout problime de d6ci8ion 8ur Jt e8t dan8 la cla88e aLinear Space” , c’at un
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coronaire de la preuve du r68ultat pr68ent6 dans [Mil].

4. Un problame JVP-complet sur R

AdoptIons la repr68entation gujvante dans R'” pour leg polyn f)mes de dep6 4

de R- dana R: I sera repr68ent6 par (4, n) gujvi par une 8uite ae (a, aa) oh

a = (al, a2,as,a+), ai e {0, . . . , n},ai $ q+1 et aa e R, la paire (al aa) code

le monane aaza, aa, =a, Za,, on pose ao = 1 pour permettre le8 mon6me8 de

deFi < 4. Leg (a, aa) 80nt rang68 8elon l’ordre lexicographique 8ur les a.

Con8id6ron8 le problime (F+,F4 g&o) oil Pd est 1’ensemble des polyn6me8 de

degr6 $ 4 ae Rn dang R repr6sent68 comme ci-de88u8 et I C 74 s6ro gi et

seulement s’il exi8te I e R- tel que /(3) = 0,

Prop08ition 4,1 [BSS] - (F4, F4 z6ro) est de classe NP sur R.

Preuve - Soil S C &, la machine M (qui prouve que (F4, F4 z6ro) est de

classe NP) prend comme entr& admissible (A?) et beale 8i /(y') = 0, ce te8t

nae&site 1’6valuation de f . Cette 6valu&tion est r6ab86e en temps polynomial

(par rapport i la repr6sentatian d6crite ci-de88u$ de /).

Probl&meg :

• Le8 classes lh et tVlh 80nt.elle8 distincte8 ?

• Quel est le rapport entre la question fk + NFI et lh + lvlh ?
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On dha que le problime de d6ci8ion (Y,X) sur l’anneau R e8t NP-compbt

sur R &’il est de classe NP et gi pour tout pnoblime de a6ci8ion (Y1,X1) de

classe NP 8ur R, iI exi8te une application + : Y’ –+ Y 8abi8fai8ant 188 propri6b68

8uivanties.

(i) +(V) e X si et seulement ai g e X’

(ii) + = PM/Y’ pour une machine M de classe P, c’e8t-bdire + e8t calculable

en temps polynomial.

Pour Ie cas I? = Z, on retrouve la d66nition clas8ique du problime NP-complet

:Eh6orbme 4.1 [BSS] - (F4,F4 gao) est NP-complet gut R.

Preuve - II nous reste i prouver que (n , F+ z6ro) est NP-complet.

soa; M, la machine non d6termini8te de la d66nition NP pour un problime

(Y, X) de classe NP sur R. Soil is le polyn6me de degr6 $ 4 obtenu par le

proces8u8 8urvant; :

Con$id6rons le8 6quation s de registres (1), (2) et (3) jusqu’i 1’instant PM(B y1)

pour ye Y, P e Rm plus 1’6quation srM (f,7) = 1; ce 8y8 time par une 16gare

modi6catlion du th6orime de la section 3 est 6quivalent i un polyn6me JF de

degr6 $ 4.

L’application p requi8e par la d66nition de problime NP-complet eat ici: + :

Y –' Fd : f –. h, Ie fail que + est calculable au temps polynomial est une

cons6quence du fait que la taille de h est polynomiale en temps TM(f,y1) et

que TM(R V) est lui-mame born6 par un polyn6me d6pendant de la taille de g
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(cela d6coule de la d66nibion de la cla8se N P)

II est facile (en utiUsant les d66nitions) de montrer que y e X sai & e Ft sho.

•

Corollain 491 [BSS] - S’il existe un algoribhme d%limination des quanti6ca-

teur8 de classe P sur R pour n/(3) = 0, 1 de degr6 $ 4, alor8 P = NP sur

R

•

Contrairement au cas R = Z (voir [Garey. Johnson] pour le cas R = Z), on

connait trjg perl de problime NP-complet sur R.

Soit d ? 4, clabement (Fd,Fdz6ro) d66ni de faGan analogue i ( a, 4 z6ro) est

NP-complet pui8que F4 c rd

Coroliaire 482 [BSS] - Soit F l’ensemble des repr68entabion8 (d66nie8 de faGon

8emblable au caa A) des sygt ames polynomiaux con8titu6 d’6quation8 du type

X,Xj = xh et d’une 6quation Er X, = c, Soil Fa6ro, les 8ygtbmes de ce type
CJ

qui out un g6ro dans R, abu (F, Fz6ro) est NP-complet

Preuve . C’est une cons6quence du th6orime ci-de8su8 et des techniques de

r6duction utili86es pour obtenir fI

Trjg r6cemment, Eberhard Ttie8ch a montH que les problime8 (F2,F2 dre)

et (F3,F3$6ro) sant de classe P sur R,

En fat, on peut facilement montrer que tout polyn6me i coefRcient8 r6el8 de
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dep6 impair en n variables, a toujour8 un z6ro dang R, doric il rest;e i montrer

que (F2,F2z6ro) est de classe P.

La preuve utilise e88entiellement une r6duction i un problime lin6aire.

Klaus Mmr a montr6 que le problime (F4,F486ro+) oil /486ro+ e8t l’en8emble

deg polyn6me8 de degr6 $ 4 qui onI un 86ro p08itif dans R, e8t NP40mpkt sur

R

C’est une conjecture que (F2,F2 $6ro+) est NP-complet ou du moin8 que

(F2,F2 dm+) est dang /Vlh \ lh sous l’hypothb8e lh + NIh

5. Un perl plus loin sur les ensembles r6cur8ivement 6nu-

m6rable8 sur un anneau ordonn6

Soil M une muhine sur R, rappelons que le domaine nM de M e8t le sou&

ensemble de I (l’e8pace d’entr6e de M) sur lequel M 8’atrate (c’e8t-bdire T e

fIM s’iI exjgte une ex6cution avec la donn6e ? qui atteint le noeud de sortie de

M apri s un laps de temps 6ni).

Comme dans le cas classique, un en8emble X c Rn (n g ao) est diE

r6cur8ivemen& 6num6rable sur R (r.e. 8ur R) gi et 8eulement 8i X est le an

maine d’une machine M sur R, c’est-haile X = nM. X c Rn(n S ao) sera diE

d6cidable (ou r4cur8if) sur R si X et son comp16mentaire X' &onI r.e. 8ur R,

II est clair, au vu deg d66nition8 pr6c6dente8, que aM est la r6union de8 TT

(Ir = ensemble deg d6mentg de nM pour lesquel8 M 8’arrate au temps T,

c’e8t-iFdbe at&eint le noeud de 80rtie i la Dime 6tape)
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Soit I C Tr, soit Ia suite de calcujg a8soci6e X 1 : go = (1,B), 81 =

(nl,K), . . . ,zr = (IV,B), la suite des noeud8 1,n1, . . . nr_1, N e8t appe16e

le chemin de calcul de ? dans M, iI sera not6 1(3).

Notons Vl l’en&emble des 616ments V de 77 bel8 que kg) = 7( E). On a dOIIC

IT = Ul YI oh I est un chemin quelconque de longueur T dans M (il y en a au

Pl„, INI’).

Th6or bme 5,1 [BSS] - Soil I un chemin de longueur SF

(i) Vl e6t un ensemble Berni-alg6brique de base

(ii) 77 est un ensemble 8elni-alg6brique

(iii) aM est une r6union d6nombrable d’ensembles semi-alg6brique$

Preuve - (ii) et (iii) gonE 6vident8 dis que (i) est prouv6. Clairement en sui%nt

le chemin I i travers la machine M et not;ant le8 branches choi8ie8 i chaque

noeud de branchement de I, on voit que Vl est d66ni par des in6gabt68 du type.

pbc(' - • (gba (gk, ( 3))11 < 0

et

gb,. (- - . (gb, (gb, (3))]r $ 0

oh ]1 d68igne Ia projection 8ur la premibre composante eb ob leg gi stint les

applications polynomiale8 de M (ou rationnelle8 si R est un corps, dang ce cas

on obtient ce r68ultat en remarquant que 5 < 0 d et seulement si (P < 0 A q >

a) V (p > 0 Ag < a))
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Remarquons que dans le cas oil M est in6ni-dimen8ionnelle, Ie nombre de coor-

donn6es intervenant dans les 6quations est KT,

•

Remarquon6 que PM re8treinte i Vl (et aux Xr premibres Qoordonn6e8) est

une application polynomiale (rationnene si E est un corps)

Coronaire 5+1 [BSS] - Tout sous-ensemble r6cur3ivement 6num6rable gur les

r6els a un nombre d6nombrable de composantes connexe8.

Preu ve - C’est une cons6quence triviale du th6or ime et du r68ultat bien connu

qui (lit que tout semi-alg6brique a un nombre 6ni de comp08antes connexe8

[Manor]

•

Le corollaire fournit un crib bre facile pour donner des exemples d’ensembles

r.e. non d6cidables, par exemple le comp16mentaire de 1’ensemble tryadique de

Cantor est un ensemble r.e. sur R mak non d6cidable, voir [BSSI.

On petIt remarquer dans le th6orame 5.1 que 1’ensemble S des coefficients

des polyn6mes (ou fonction8 rationnelles) qui apparaissent dang la description

de oM comme une union d6nombrable d’ensembles semi-alg6briques de R, est

6niment engendr6, clest-bdire Z[S] est un anneau 6niment engendr6 sur Z (gi

R est un corps, Q(S) est 6niment engendr6 sur Q). Cela d6coule trivialement

du hit que le nombre d’applications polynomiales associ6es i une machine M

sur R est 6ni, on a donc
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Corollaire 5.2 - Tout ensemble r.e. sur R est une union d6nombrable full-

ment cngcndrde d’ensembles semi-alg6brique g de R (oil 6niment engendr6e est

empkv6 dans le sen8 d6crit ci-de88us),

Corollaire 5.3 - Soil X C R" un en8emble r.e. 8ur un anneau ordonn6 R,

Supposon s que tl, . . . , tn sonb alg6briquement ind6pendant8 sur Q(c1, . . . , ce)

oh cl, . . . , ce 80nt; leg coefficients a’une machine dont le domaine aM est X. Si

(to, . . . , tn) e X, alor8 il exi8te un ouvert O (pour la topologie induite par l’ordre

de R) contenant 11, . . . , tn tel que O c X,

La preuve est triviale et d6coule du coroUaire 5.2.

Ce r68ult;at donne un nouveau crit ire pour con8truire de8 en8emble8 r.e. non

d6cidable8.

Int6re980n8-nous momentan6ment au cas deg en8emble8 r.e. sur R.

Il at facile de montrer que N, Z 80nt d6cidable8 sur R, en utili8ant un compt;eur,

nous en lai8sant le 80in au lecteur (voir l’exemple 2, section 1 et au88i [BSS])

En fat, tout 80u&en8emble S c N est d6cidable sur R. Soit r le r6el dont

1’6criture binaire est

0. rr .r2
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oil

1 1 si neS
1 0 autrement

soa; a C R, tout d’abord on d6cide 8i z C N ou non1 8i z C N1 on utili8e la

machine gujvante

M [a] entr6e e N

(,1, '2) b (L2„8l2L7'-'8J)

Zr – 32 + 1a2 = 1Z

[0] sortie e {0, 1}

lu J denote la partie enti bre de u.

a e S 8i et seulement si la sortie est 1; 8 e8t le 3eul coefficient 6ventuellement

irrationnel de la machine M

Proposition 5,1 - ([Mi2]) Toute union d6nombrable 6niment engendr6e

d’en8emble8 semi-alg6brique8 de R est un ensemble r6cur8ivement 6num6rable

8ur R,

De la preuve, nous dirons $implement qu’elle est a83e$ facile (c’est un argu-

ment de codage) dis qu’on remarque que le fait que tout 80uhengemble S C N

est d6cidable sur R, imphque que tout sous-ensemble de Z[X1, . . . , Xn, . . .] e8t
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d6cidable sur R (en utili8ant une repr68entation 8emblable i celle de la $ection

4 pour leg polyn6me8 et le fail bien connu que Z[XI, . . . , Xn, . . .1 est un anneau

r6curgjf au 8en8 de Rabin ( IRa])).

LoIS de ces exp0868 M. Ziegler a remarqu6 que tout ouvert de R est r.e. sur R. Il

8ufEt de remarquer que tout ouvert de R est une union d6nombrable d’inter%lle8

ouverts et que tout r6el est limit;e d’une suite de rationnel8.

Les en8emble8 r.e. 8ur un anneau IZ ont 6t6 d66ni comme leg domaine8 deg

fonction8 PM calcu16e8 par les machines M sur R. Les ensembles de sortie 80nt

les ensembles images de ces mame8 fonctions. Dans le c,aa cla88ique (8ur N ou

sur Z), la cla8se deg ensembles r.e. est 6gale i la clas8e deg en8emble8 de 80rtie.

Ce n’est pas le cas pour un anneau ordonn6 quelconque (voir [Mi21), mats on a

cependant le r68ultlat guj%nt

Prop08ition b,2 [BSSl - Pour un corps r6el cl08, la cla88e des ensembles de

sortie e8t 6gale i la classe des ensembles r.e.

Preuve - Pour tout anneau ordonn6, on a clairement que la classe des en8em-

ble8 r.e. e8t inclu8e T la classe des ensembles de sortie. La preuve de 1’inclusion

r6ciproque dans le ca8 r6el cjog est ba86e sur le fait que le8 corps r6el8 cl08

admet;tent une proc6dure eaective d’61imination de8 quanti6cateur8 dan8 le lan.

gage < +, „ –, <,o, 1 >. Plus explicitement, 80it E c R”(n g ao), l’enBemble

de 80rtie d’une machine M. Une machine M' dont le domaine est E, ex6cutera

la proc6dure 8uivante: 80it Z l’entr6e, M' di8p08e d’un compteur qui au d6part

est 6gal 1 1, pour chaque %leur T du compteur M- ex6cute la routine 8uivante
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(except6 si M- 8lest arr6t6e 1 1’6tape T – 1): con8truire leg 6quation8 de re

gi8tre8 de la machine M limit& au temps t (mbe sou8 la forme d’un sy8t IIne S

d’6quations polynomialeg - voir section 3), ces 6quation8 expriment l’existence

d’une ex6cution de longueur T par la machine M. Via une machine (qui r6ali8e

l’algorithme de Tar8ki+Seidenberg par exemple voir [vdD]), M- 6hmine leg quan-

ti£cateur8 et te8te 8’iI exi8te une ex6cution de M (c’e8t-bdire une solution au

8y8time S) qui 80rt =, si la r6ponse est afErmative M- s’arr6te, 8inon Af

incr6mente le compteur d’une unit;6. II est clair que ON+ = E. Pour plu8 de

d4taik, on lira [BSS].

•

Dans Particle [BSSl, apparait la question de cuact6ri8er les anneaux or-

donna commutabifs qui 8atisfont la propri6t6 de la prop08ition 5.2 (cebte pro

pri6t6 sera d680rmai8 not6e E = S). On remarque ai86ment (par le th6orbme

3.1) que R sati$fait la propri6t6 E = S gi et seulement si R 8ati8fait la propri6t6

“la projection d’un en8emble r.e. est encore un ensemble r.e.’. Ceci 6claire le

fait que celt;e propri6t6 E = S est li6e i 1’61imination deg quanti6cat;eun,

En hit, on a le lemme 8uivant:

Lemme 6.1 [Mi21 - Si R 8ati8fait E = S, don 1’ensemble An

{(ao, . . . , an_1, an) e /Zj3z e R : anzn + . . . + ao = 0} e&t un ensemble r.e

sur R. De mime, l’en8emble Bn = {(ca, . . . , Cn_1, Cn) C R(i)IIz e R(i) :

Cnnn + ' ' ' + co = 0} e8t un ensemble r.e. gur R (oa 12 = –1 et R(i) est identi66

avec B2, dorIC Bn c R2-+2).
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Preu ve - An e8t l’en8emble de sortie de la machine d&rite par l’exemple 3 de

la section 1. nest au88i facile de montrer que Bn est l’en8emble de sortie a’une

machine sur R

Au vu du th6or ime 5.1, cela montre que la formule 3X(anP + - - '+ aa = 0)

est 6qui%lente dans R & une di8jonction d6nombrable de formule8 gain quanti$-

cateut8 du langage < +, –, ., <, 0, 1, c,(,cn) > mds oil 8eulement; un nombre 6ni

de constantleg a]ditionnelle8 c, apparai88ent dans la di8jonction d6nombrable;

don(: si R 8ati8fait; E = S, Ra une 61imination “faible” d'e8 quanti6cateur8 pour

les formtrIes exi8tentielle8.

Dans le th6orime qui suit, nous r6sumons les r6sultats de [Mi2].

Th6orbme 6.2 - Soit; I? un anneau ordonn6 commutatif intigre,

(i) si R est 6nhnent engendr6 sur Z, alar s R 8ati8fait E = S;

(ii) si R est un corps 6niment engendr6 sur Q, alor8 I? gati8fait E = S (on

permet; d’utili8er les fonctions rationneUe8 dang la d66nitlion des muhine8

sur R c’est-i-dire –1 dans le langage, sinon ce r68ult;at n’est plu8 %lable,

'„i' (i));

(iii) si R e8t mchim6dien eb tH R (le degr6 de tran8cendana de R sur Q) est

in6ni et gi leg ensembles Bn n a 1 (d66ni dang le lemrne I) sont r.e.

R, alor8 R est un corp8 r6el cjog:

26



C. Michaux

(iv) si x est dense dans sa c16ture HeHe et tre E est in6ni, alors R 8atisfait

E = S ssi I? est un corps r6el cjog,

De la preuve, nous dirons shnplement que (i) et (ii) sont obtenus en adaptant

la preuve au cas classique R = Z, (iii) est obtenu par une preuve i la 'McKenna,

Macintyre, %n den Dries” (voir [MMV]), (iv) est obtenu par une g6n6raljgation

de (iii)

•

On peut montrer (voir [Mi2]) que si {a , i c w} est un ensemble d6nombrable

de r6els alg6briquement ind6pendants, alors ZIri , ie w] ne satisfait pas E = s,

quoiqu’il soit r6cursif au sens de Rabin

Jusqu’i pr6sent, iI n’y a pas a notre connaissance de classification g6n6rale deg

anneaux ordonn6s int agre d6nombrable par rapport a la propri6t6 E = S.

Macintyre a remarqu6 que si le pr6dicat de divisibilit6 dans un anneau it r6el

cjog (voir [CDI) est r6cursif sur R, alors R salisfait E = S,

Dans un article [BS] bras r kent (non pubh6), L. Blum et S. Smale tentent

de classer les anneaux ordonn6s dont tous les ensembles d66nissables (dans le

langage < +, ., –, <, 0, 1 >) sant d6cidables; cette hypoth ise sur R est a priori

plus forte que l’hypothise Bn, n ? 1 est un ensemble r.e. sur R.

Signalons en6n que dans la section 9 de [BSS], on trouvera une tentative de

caract6risation des ensembles r.e. sur R en terme a’ensembles diophantiens, et

dans la section 10, une d6monstration du fait que les ensembles de Julia sur R

sont presque tous ind6cidables sur R.
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6• Terminons ce 8urvol de [BSS] en mentionnant P6quivalence entre folic&iona

c4lculable8 8ur R et fonctiong r6cursives sur R (voir 8ection 7 de IBSS]) et

1’existence a’une machine universene sur it (section 8 de IBssD
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NOYAUX DE CHAINES ET CORPS CHAINABLES.

DANIELLE GONDARD-cozrrrE

Universita Paris yI

IMrRODucTION

Les corps ordonnables sont de deux sortes : les corps non chainables oil

toute somme de carr6s est une somme de puissances quatridmes (par exemple IR ,

CD et ses extensions alg6briques ordonnables), et les corps chainables otr il

existe un 616ment a tel que a2 ne soit pas somme de puissances quatridmes ;

dans ce cas nous dirons que K est un corps a-cha£nable (par exemple O(X) et

IR((X)) sont des corps X-chainables)

La n6cessit6 de faire intervenir une constante a a 6t6 mise en 6vidence

par les axiomatisations des th6ories des corps chainables et des corps

chaine–clos que nous avons donn6es dans ICI] . Ce point de vue a ensuite

permis d’obtenir des r6sultats du type 17 am, prob16me de Hilbert dans ID-G] et

de cr6er un analogue a 1’alg&bre r6elle dans IB-G] ou tB-62], et nous le

conservons ici pour poursuivre 1’6tude des corps chainables.

Le plan de cette 6tude est le suivant :

I-Noyaux de chaines ;

II-Corps uniquement a-chainables ;

III-Une autre extension du 17 am, prob16me de Hilbert au niveau n ;

IV-Corps bien chainables ;

V-Corps simplement chainables ;

VI-Corps totalement chainables ;

VII-Extensions de chaines
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I-NOYAUX DES CHAINES D’W CORPS CHAINABLE ( Kernels of chains).

Definition 1-2 : Un corps K sera dit a–chainable s’iI existe dans K un

616ment a tel que a2 ne soit pas somme de puissi

quatridmes d’616ments de K

Definition 1-2 : Un pr6ordre T de niveau 211 (i.e. T + T ST , T . T ST ,
n n-1

Kz S T ) sera dit un a-p6ordre si az d T (iI est alors
1

de niveau exact 211 car E Ka n’est pas contenu dans T ).

De meme un ordre P de niveau exact 211 sera dit un a-ordre
n-I

si az d P .

Definition 1-3 : Nous appelerons a-chaine une chaine d’ordres de niveau

sup6rieur (Pl)leN telle que a2 d P2.

Proposition 1-4 : Un corps K est a-chainable si et seulement s’iI existe

au moins une a-chaine.

Ceci r6sulte des d6finitions 1-1 et 1-3 et du r6sultat de Becker–Harman

qui donne 1’expression suivantes des sommes de puissances

E K4 = ( T F12 ) . E K2 ,a P12 d6,ig., „. ,,d,, d, „i„,,„ ,X,,t 4
quelconque de K . Donc si a2 n’est pas une somme de puissances quatridmes

dans K , iI existe au mains un j tel que az e Pm . D’aprds le corollaire

1-4 de tHt iI existe au moins une chaine d’ordres de niveau sup6rieur passant

par ce P 2

Proposition 1-5 : Dans un corps K a-chainable tout ordre P de niveau

exact 211 d'une a-chaine (P1)1€N est un a-ordre.

2



D. Gondard-Cozette

n-1 _ n-I
En effet si az d P . alors P est bien un a-ordre. Si az c P

n- n n

P 6tant de a-chaine a2 d Pa , on en d6duit qu’iI ekiste i z 2 tel que
1-1

az d PI et az e P, . , puisque d’apr6s la relation de chaine dds que
AP _P+q

a' est dans un PI on a a' qui est dans Pl+q Nur tout q z 1 ;
reprenons le d6but de la preuve du th6ordme 2 p.5 de [Bel] pour montrer que si

a

a c K alors ao appartient a un ordre P de niveau exact 2" entraine que

a cPu -P : en effet si adP alors P + Pa est un pr6ordre propre

contenant strictement P et dorIC P + Pa = K , d’oa - 1 = u + va avec u et v

dans P et enfin ae - P . On d6duit de ce r6sultat que a2 e P. . entraine
1-1

que az c PI+1 u - Pl+1 , puis par la relation de chaine
1-1

PI+1 u - PI+1 = ( Po n Pl ) v - ( Po n PI ) que a2 c Pl ce qui est
contraire a l’hypothdse

Lemme 1-6 : Soit K un corps a-chainable.

Pour tout ne N+ , T = E K2n- in- E K2n est un a-pr6ordre

propre (i.e. -1 d T_ ) de niveau exact 211.

C’est tout a fait clair pour n = 1 et n = 2 ; pour nz 3 K 6tant

a-chainable a2 d E K4 et par la proposition 1-4 il existe une a-chaine
n-1

(Pl)leN ; par 1-5 tOUt Pn de a-chaine est un a-ordre donc a2 d Pn et

la relation de chaine jointe au fait que Pn 1 contient toutes les puissances

211-1-dmes montre que - a11-1 c Pn ; Pn contenant toutes les puissances

211-dmes d’616ments de K contient dorIC T . T est clairement un pr6ordre
1

de niveau 2l’ , et le niveau est exactement 211 car a2 n’appartenant pas

a Pn ne peut donc pas appartenir a Tn ; de meme - 1 ne peut appartenir a

T qui est dorIC propre.

3



corollatre 1-7 : Dans un corps a-chainable pour toute a-chaine (P1)1€N
k _k-1 k

Tk = E Kz - az E Kz = P k , P,., t,"t. k = 2

on a

ce

rnolns une

4

C’est clair d’aprds la preuve du lemme 1-6.

Proposition 1 -8 : Dans un corps K a-chainable , tout P , ordre de niveau

exact 2- qui ,,nti,nt Tn = E Ka - az E K 2 est un Pt
de a-chaine.

n

n-1  n-1
En effet seulement 1’un des deux 616ments az ou - az appartient a

P . Donc a2 d P et on en d6duit que toute chaine passant par P estn n - ' ' n

a2 C P3 U – P3 d’Oa a4 C P3 ; on d6duirait en it6rant que a2 C Pn_1

qui est impossible.

Toute chaine (P1)1€N passant par Pn est done une a-chaine

rI w 1

une a-chaine puisque si a2 e Pa , en utilisant Ia condition de chaine (qui

s’exprime au niveau 3 par : P3 u –PI = (P?n Po) v -(P2n Po)) on obtiendrait
n

Proposition 1-9 : Dans un corps a-chainable Tn est 6gal a 1’intersection de

tous les a-ordres de niveau exact 211 (qui appartiennent a au

a-chaine)

D’apr6s le th6or6me I de Becker [BeI], un pr6ordre propre de niveau 211

est 6gal a I'intersection de tous les ordres de meme niveau , exact ou non,

qui le contiennent ; un ordre qui contient T est un a-ordre car

1

- a2 c T S P ce qui entraine que a2 d P ; enfin P est bien de
1

niveau exact 2r1 puisque E K2 n’est pas contenu dans P1
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CoroILaire l- IO : Dans un corps K a-chainable , T_ est 6gal a 1’intersection

des P , ordres de niveau exact 2n des a-chaines.

Cela r6sulte imm6diatement de 1-7, 1-8 et 1-9.

11

Rernarque 1-11 : Dans un corps K a-chainable T= = E Ka

toujours un pr6ordre propre de niveau 2l’ mais iI n’est pas forc6ment de

niveau exact 211 .

Definition 1-12 : Appelons , pour

a–chaines.

2 , T noVau W niveau B des



II-CORPS UNIQUEMEIVF a-CHAINABLES (uniquely a-chainabLe fields ) .

Definition I1-1 : Un corps a-chainable qui n’admet qu’une seule a-chaine

(P1)1€N , a 6change de Po et Pl prds, sera dit
a-chainable.

Proposition I1-2 : si un corps K a-chainable n'admet qu’une seule a-chaine

(P1)1€N , a 6change de Po et P1 prds, alors l’ordre de
niveau exact 2l’ de celle-ci est pour tout nz 2 ,

Pn = Tn = [ Ka - az E K2

En eff et par le corollaire I–7 toute a-chaine (Q1)IEN est telle que

Qn 2 Tn pour tout nz 2 , d’apr6s l’hypothdse faite que K n’admet qu’une

seule a-chaine le corollaire l-lO donne alors p = T
n n

Definition I1-3 : nous appelerons coeur a niveau B de a-chaines (heart of

Level n of a-chains) relativement au fan trivial P_ n P
n- 1 n- 1 n- 1

Cn = E ( Pa n P1 )z - az E ( Po n P1 )2 aa n = 2 .

Proposition I1-4 : Soit K a-chainable et PA , PI des ordres qui soient le

d6but d'une a-chaine (P1)1€N ;

pour n z 2 , C est 6gal a 1’intersection de tous les

a-ordres P le contenant : de tels P sont alors de

niveau exact 2'' et sont de a-chaine

n

La d6monstration est analogue a celle de 1-10 dds que 1’on a montr6 que

Cn est un pr6ordre propre de niveau exact 211 . Si (P1)1€N est une

6
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n-1

a-chaine commen(,ant par PO n PI alors (PO A Pl)2 S Pn : c’est vrai pour

n = 2 d’aprds Ia relation P2 u - P2 = (Po n P1) u - (Po n P1) , et par
n-1

recurrence si (Pn n P1)2 S P alors par la relation de chaine, au niveau

n + 1 , Pn+1 U - Pn+1 = (PO n Pn) U - (PO n Pn) on d6duit que (PO A Pl)2
n-1 n-1

est contenu dans P . p &ant de a-chaine az d p et - az e P
n

dorIC on a C gP . On en d6duit que C , qui est clairement un pr6ordre de
n n - n' n '

niveau au plus 211 , est un pr6ordre propre de niveau exact 211 . II est done

6gal a 1’intersection de tous les ordres P qui le contiennent, ceux-ci sont
n

de niveau au plus 2r1 car si le niveau 6tait sup6rieur on aurait E K2 non
n-1

contenu dans P ce qui est impossible puisque E (PA n Pt)2 2 F Kz . Le
n- 1

niveau est 6videmment au mains 2FI puisque E K2 n’est pas contenu dans P

qui contenant C ne petIt contenir a2 . Etant de niveau exact 211 et

tels que - a2 c P , ces ordres P contenant C sont des ordres de

niveau exact 2l' de a-chaines,

rl

Proposition 11-5 : Si K a une seule a-chaine (P1)1€N , a 6change de Po

et PI prds, alors pour tout nz 2 P = C = T

Preuve analogue a celle de II–1 .

rl

Rernarque 11-6 : Dans K a-chainable si E K2 est un fan

alors Tn = E K2 v az E Ka ; de meme si E ( Pa n Pl )2n-1 n-1 n-i
est un fan , Cn = E ( Po n P1 )Z v az E ( Po n P1 )Z

CoroLLaire 11-7 : Pour qu’un corps a-chainable admette une seule a-chaine , a

6change des deux premiers ordres prds, il faut qu’iI existe

deux ordres PA et P1 tels que pour tout nz 2 C = T .

7



Le corollaire 11-7 r6sulte de I1-5.

Corollaire 11-8 : Dans K a–chainable sont 6quivalentes :

(i) K est uniquement a-chainable .

(ii) K admet deux ordres vrais p et P . et deux
0

seulement, tels que pour tout nz 2

Cn = E ( Pa n Pl )2n-1 - uT-\ E ( Po n Pl \?- soit un
ordre de niveau exact 211

n- 1 n- 1 n- 1

(iii) P,„, t,.t . = 2 Tn= E K2 - a2 E K2 e,t
ordre de niveau exact 2l'

Preuve irnm6diate en utilisant ce qui pr6c6de

On peut remarquer qu’on obtient une partie du r6sultat du corollaire 2 p. 43

de [Bell si K est chainable et a exactement deux ordres car alors

E K2 = (Pn n P1) est un fan.

Dans certains cas, dont 6videmment K simplement chainable ( c.f . la partie

V ) , les conditions de I1-8 pour n = 2 suffisent.
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III-UNE AUIRE GENERALISATION W 17&me PROBLEME W HILBERT @ NIVEAU L

Th6oreme II1-1 : Soit K un corps chaine-clos a-chainable n’admettant qu’une

seule valuation hens61ienne a corps des restes r6el-clos, et

soit f c K(X , ... ,X ) = K(X) ; alors les propri6t6s1' - P
suivantes sont 6quivalentes pour nz 2

(i) f , E K(R)2- - uP ' E K(R)2"

(ii) vI c K11 od f est d6finie f (i) € P , oil P d6signen

1’unique ordre de niveau exact 211 de K .

La preuve utilise le corollaire I-lO du pr6sent article et le lemme obtenu

avec Delon dans [D-G] suivant :

Lemrne II1-2 [ D-G] : Soient K et L deux corps chaine-clos tels que Kg L

et K n’admet qu’une seule valuation hens61ienne a corps

des restes r6el-clos ; alors sont 6quivalents :

(i) Kn L2 = K2

(ii) K est relativement alg6briquement clos dans L

(iii) K { L ( oa "{ " est une inclusion 616mentaire ).

De 1’expression d’un corps chaine clos a-chainable sous la forme

K = K2 u - K2 u a K2 u - a K2 et du lemme pr6c6dent il r6sulte si K n’a

qu’une seule valuation hens61ienne a corps des restes r6el-clos et est contenu

dans un autre corps chaine-clos a-chainable L , alors on a K ] L

Preuve de II1-1.

II suffit de montrer le th6ordme pour f c KIXt car si f = g / h alors

f = gh/-1/ h/ et 1’on sait que d’une part E K2 g Pn et que d'autre part

9



Tn(K(X)) = E K(R)2 - ,2 E K(R)z ,,t „„ p,6,,d,, („,i, & r) .
Pour prouver (i) + (ii) iI suffit de v6rifier que si f ,- appartenant a

n n-1 n

E K(X)2 - az E K(X)2 , est d6finie en x , alors f(x) appartient a
n n-1 n

E Kz - az E K2 . En effet dans un corps chaine-clos a-chainable K

1’unique ordre de niveau exact 211 est donn6 par les expressions suivantes :
n n-1 n n n-1 n

Pn = E Ka - az E Ka = K2 v - az K2 ; la premidre forme r6sulte du
f ait qu’un corps chaine-clos a-chainable est uniquement a-chainable et du

th6or ame I1-2 , et la seconde vient de 1’expression des ordres de niveau

sup6rieur d'un corps n’admettant que deux ordres usuels donn6e par Becker dans

[BI].
n n-1 n

La preuve du fait que si f , appartenant & E K(X)z - az E K(X)z , est

d6finie en x , alors f (x) appartient a E Kz - az E Ka est due a

Becker et nous le remercions de nous autoriser a la reproduire ici

Notons [ e E K(X)2" - uP }- K(X)2" so,, 1, f,,m, f = E ,12- - ,2"- E ,:"

oa les r. , s. c K(X) ; soient x = (x., ..., x ) c KP , O le localis6
P

en x KtXt( x_x ... xxx ) et soient X : K(X) –> K la place d6finie par
DP

X 1–> x1 et Vl l’anneau correspondant ; alors si f est d6finie en x ,

f C Ox S VA ' Il suffit de montrer que r1 , sJ c VI d’oa 1’on d6duit

X(f) = f(xI, ...,xp) = E X(rI)2 - az - E X(sJ)2 e Pn

Soit par exemple rl tel que v(r1) = min { v(rl) , v(sJ) } , si r1 e VI ,

alors on a f = rf [ 1 + E (rI/rl)/ - Jn- E (sJ/rl)2n ] ; on san que

f c VI et le crochet , not6 z dans la suite , dans 1’expression ci-dessus

est une unit6 ce qui donne une contradiction ; en effet si z n’6tait pas

une unit6 alors dans Ie corps r6siduel Vl / m) = K on aurait, puisque les

r ./ r. et s ./r. appartiennent a VI' - r '’- -' J' ' I '-“--:"--'-'-'“'- -- ' ;\n n-1 n
A(z) = 1 + E yl2 - az E y:2 = O ce qui est impossible puisque - 1 e P1

L’autre cas oa 1’on a par exemple sl d6fini par

10
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v(s1) = min ] v(r1) , v(51) [ se traite bien sar de maniere analowe.

(ii) + (i) . On considdre la th6orie des corps chaine-cjog a-chainables et on

utilise le langage des anneaux augment6 d’un symbole de constante a . Dans le

corps K chaine-clos a-chainable l’hypoth6se (ii) se traduit, en notant f

par P / Q avec P , Q c KIXt , par la formule suivante :

„ Vi ly 32 ( Q(i) = 0 V f(i) = y2n V f(i) = - aZn- Z2n ) „ ; dans K(X)

qui est a-chainable on fixe une a-chaine (P1)1€N et on considdre L la

c16ture chaine de K(R) pour cette chaine . D’aprds Ie lemme II1-2 et

l’hypothdse faite sur K on a K { L , dorIC dans L la meme formule
l

" Vi ly Bz ( Q(i) = O v f (i) = y2 v f (i) = - a2 z2 ) " est

satisfaite ; on choisit alors x = X dans L et on obtient que f

appartient a 1’unique ordre de niveau exact 2l’ de L ; cet ordre prolongeant

l’ordre P de niveau 211 de 1’ a-chaine choisie sur K(R) , nous avons
n

aussi que f appartient a P . Ce raisonnement est faisable pour toutes les

a-chaine de K(R) , par cons6quent f appartient a 1’intersection de tous les

ordres de niveau exact 2F' des a-cha£nes de K(R) dont on sait par le
n  n-1  n

coroUaire l-lO qu’elle est 6gale a E K(R)z - aZ E K(X)z

11



IV-CORPS BIEN CHAINABLES ( faIr chatnabLe fields) .

Revenant maintenant a 1'6tude des corps chainables et plus pr6cis6ment a

celle des corps a-chainables, iI nous apparait indispensable de distinguer

deux cas et de poser quelques d6finitions.

II est clair, Ie carr6 d’une somme de carr6s 6tant une somme de

puissances quatridmes d'aprds [Bel], que si a2 n’est pas une somme de

puissances quatridmes alors a n’appartient pas a t E Kz . Par contre la

r6ciproque n’est pas vraie dans tout corps chainable.

Daf initlion IV-1 : Un corps tel que pour tout a dans K le fait que a

n’appartient pas a t E Ka entraine que az n’est pa:

somme de puissances quatridmes sera dit bien chatnabLe

Harman dans [H] a 6tudi6 le prob16me de la r6ciproque de la propri6t6

" a c t E K2 + a2 e E K4 ". Si on d6signe par (#) cette propri6t6

r6ciproque, Harman a montr6 que (+) 6tait 6quivalent a la connexit6 de

l’espace M(K) des IR-places de K (muni de la topologie d6finie comme 6tant

la Plus grossi6re rendant continues les applications de M(K) dans R v In} ,

le compactifi6 de IR , qui pour chaque acK sont d6finies par A >–> Ka)).

II a 6galement montr6 que pour un corps ordonnable K , K pythagoricien et

a la propri6t6 (+) 6tait 6quivalent a K pythagoricien au niveau 4

ou encore a K pythagoricien a tout niveau 211 . Becker a lui d6montr6 que

(E Ka)2 = E K4 entrainait M(K) connexe et que la r6ciproque 6tait vraie

dans Ie cas oCr K 6tait pythagoricien

Dans un tel corps Harman a pu montrer dans [H] le lemme suivant :

12
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Lernrne IF-Z fHI : Soit K un corps bien chainable ; si une puissance 2m d’un

616ment a est une somme de puissances 211-dmes dans Ie corps

( avec n > m ) alors a est 6gal ou oppos6 a une somme de

puissances 211-1’1-dmes,

Cela entraine le corollaire suivant :

corotEaire IV-3 : Dans un corps bien chainable si ad t E Ka alors pour tout
n-I n

n > 1 on a az dE Ka .

Du travail de Harman on peut d6duire des exemples de corps bien

chainables : Q(X) , O(X, Y) , Q((t)) , Q((t.))((ta)) , iR(Xs,...,X ) , IR((t)) ,

, et bien sar les corps chaine-clos ou plus g6n6ralement d’apr6s [63] les

corps de Rolle admettant au moins deux ordres usuels ; Harman a en fait montr6

que K bien chainable entraine K(X) et K((t)) bien chainables .

Une partie de l’int6r6t de la notion de bien chainable apparaitra dans

certains des paragraphes qui suivent.

13



V-CORPS SIMPLEMEVF CHAINABLES (cLearLy chainabte fields;.

Definition Y- 1 : un corps K tel que par tout ordre de niveau exact sup6rieur

ou 6gal a 4 il ne passe qu’une seule chaine (P1)1€N , a

6change de Pn et P1 prds , sera dit simplement

Un corps chainable qui n’admet qu’une seule chaine, comme Ies corps

chaine clos ou IR((X)) par exemple, est 6videmment simplement chainable,

Proposition Y-2 : Un corps chainable K est simplement chainable si et

seulement si pour toute valuation r6elle sur K de groupe des

valeurs B , P satisfait I p / 82 1 s 2 .

La d6monstration est un corollaire imm6diat des deux lemmes suivants

Lemme Y-3 : ( tBl] ou ILI page 135)

Pour tout ordre de niveau sup6rieur P , (K,P) a une seule

c16ture r6elle g6neralis6e, a K-isomorphisme prds, si et

seulement si pour toute valuation r6elle de groupe des valeurs

lr/r2 is 2

r

Lemme Y-4 : ( IH] corollary 4-9 )

Soit K un corps et P un ordre de niveau sup6rieur de K . Deux

c16tures r6elles g6n6ralis6es de (K,P) sont K-isomorphes si et

seulement si elles d6terminent la m6me chaine (P1)1€N , a 6change

de PA et Pt prds , de K .

14
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Preuve de V-2

+ clairement par V-3 un ordre P a une seule c16ture r6elle g6n6ralis6e

et dorIC, en utilisant V-4 , P n'appartient qu'a une seule chaine.

+ si on suppose qu’iI existe une valuation r6elle de groupe des valeurs p

qui ne satisfasse pas la condition 1 p / 82 1 s 2 , alors par V-3 il existe

un ordre de niveau sup6rieur P de K tel que ( K , P ) n’a pas une

c16ture r6elle g6n6ralis6e unique ; par V-4 on conclut que par ce P iI passe

au moins deux chaines distinctes

Corottatre F-5 : Les corps de Pasch sont des corps simplement

chainables.

On rappelle qu’un corps ordonnable est de Pasch si et seulement si on a :

(1) pour toute valuation r6elle de groupe des valeurs B , p satisfait

IB / 62l32 ;

(2) si pour une valuation r6elle de groupe des valeurs p on a

B / 62 1 = 2 , alors Ie corps r6siduel correspondant n’admet qu’un seul

ordre

Un exemple est donn6 par IR(X) qui est un corps de Pasch, Q(x) lui n’est

pas de Pasch, mais ces deux corps sont simplement chainables

Le corollaire V-5 r6sulte alors imm6diatement de V-2.

Dans [63] on trouvera un exemple de corps non simplement chainable : tout

corps de Rolle admettant au moins quatre ordres n’est pas simplement chainable

On en d6duit que bien chainable n’entraine pas simplement chainable,

15



Remar que Y-6 : D’aprds tBell ou ILI , si ( K , P ) a plus d’une c16ture

r6elle g6n6ralis6e alors il en a une infinit6. On en d6duit que si dans

simplement chainable, en tout ordre de niveau sup6rieur P oa il y a

croisement de chaines il se croise en fait une infinit6 de chaines,

K non

ConJecture V-l : Un corps simplement chainable est bien chainable.
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VI-CORPS TOTALEMEIVr CHAINABLES (totally chainabLe fieLds ) ,

Dans [D-C], 6crit avec F. Delon, nous avons donn6 un corollaire du

th6ordme principal valable dans certains des corps dont tous les ordres vrais

sont chainables, c’est a dire sont le d6but d’une chaine ; iI conviendrait

dorIC d’essayer de caract6riser ces corps.

D6finitian yI-1 : nous appelerons corps totalement chainables un corps tel

que tout ordre est le d6but d’une chaine, et corps compldtement totalement

chainable un corps tel que toute paire d’ordres est Ie debut d’une chaine.

Des exemples de corps comp16tement totalement chainables sont donn6s par

IR((X)) et les corps chaine-clos ; de [Di2] on d6duit que IR(X) est totalement

chainable, alors que Q(X) ne 1’est pas

Dans [63] nous avons d6montr6 que les corps de Rolle chainables,

c’est a dire ayant au moins deux ordres, 6taient des corps compldtement

totalement chainables

Th6ordme VI-2 : Un corps K comp16tement totalement chainable est bien

chainable.

Preuve de VI-2.

Supposons que K ne soit pas bien chainable ; alors il existe pdt E K2

tel que Bz c E K4 ; iI existe donc deux ordres Pn et P1 tels que 1’on ait

Pc PA n - P+ et K n’admet pas de B-chaine. S’iI existait une a-chaine de

d6but (Po,P1) on aurait a€ Po n - P1 d’oCr on d6duirait aBe Po n P1 ;

17



on obtiendrait alors ( tHI 3–11) que 1’ a-chaine consid6r6e s’6tend a

l’,*t,.,i,. ,Ig6b,iq„, „on triviale de K suivante : L , K(G) ; dans L

,. ,.,,it ,1,,, a2 = (G)4 / p2 , E L4 ,t do., a2 appartiendrait a

1’extension de l’ordre de niveau exact 4 de )' a-chaine, ce qui est

impossible.

Remarque J . Q(X) est bien chainable

et pourtant d’aprds [Di2] ce corps n'est pas totalement chainable.
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VII-EXTENSIONS U CHAINES ( extensions of chains).

Nous avons montr6 dans [63] que les corps de Rolle 6taient tels que pour

toute extension alg6brique L de K iI existait une chaine de K qui ne

s’6tendait pas fiddlement a L . En fait la preuve n’utilise pas toutes les

conditions pour qu’un corps soit de Rolle et on a dorIC le r6sultat suivant :

Th6oreme VI1-1 : Un corps chainable K tel que K est pythagoricien au

niveau 4 et K n’admet pas d’extension alg6brique de degr6 impair v6rifie

que pour toute extension alg6brique L de K il existe une chaine de K qui

ne s’6tend pas fid61ement a L

Preuve de VII–1,

K n’admet pas d’extension alg6brique de degr6 impair entraine que toute

extension alg6brique ordonnable de K contient une extension quadratique

K(/a ) ,„,, ad tE K2

K pythagoricien au niveau 4 entraine K bien chainable donc a2 d K4

K est donc a-chainable

Si une a-chaine s’6tendait a K(/ a ) fiddlement on aurait

,2 , E ( K(# ) )4 S F2 d’,a ,2 , Pa ,e qui est impossible.

On peut alors se poser le probldme de la r6ciproque et essayer d’obtenir pour

les chaines un r6sultat analogue a la caract6risation des corps r6els K

tels que pour toute extension alg6brique L de K iI existe un ordre de K

qui ne s’6tend pas a L : " K est pythagoricien et K n'admet pas

d’extension alg6brique de degr6 impair " (c.f . [R]).
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Th6orame VI1-2 : Soit K un corps totalement chainable. Alors K

pythagoricien et K n’admet pas d’extension alg6brique de degr6 impair

entraine que pour toute extension alg6brique L de K iI existe une chaine

de K qui ne s’6tend pas a L

C’est clair en utilisant le r6sultat de [R] cit6 ci-dessus, car dds qu’iI

existe un ordre qui ne s’6tend pas il existe une chaine qui ne s’6tend pas

fiddlement.

ConJecture VI1-3 : un corps chainable K est tel que pour toute exten:

alg6brique L de K iI existe une chaine de K qui ne s’6tend pas

fiddlement a K si et seulement si K est pythagoricien au niveau 4 et

n’admet pas d’extension alg6brique de degr6 impair.

Lemrne VI-4 : [Bell Pour toute extension L de K contenue dans la c16ture

pythagoricienne de K un ordre de niveau sup6rieur s’6tend fiddlement a L .

Lernme VI-5 : [BeI] Pour toute extension alg6brique de degr6 impair L de K

un ordre de niveau sup6rieur s’6tend fiddlement a L

Un sens r6sulte de VI-1

Pour l’autre, Ie lemme VI-4 de Becker entraine que Ie corps est pythagoricien

(au niveau 2) ; d’apris le lemme Vl-5 un ordre admet toujours une extension

fiddle a une extension alg6brique de degr6 impair, dorIC K n'a pas

d’extension alg6brique de degr6 impair,

Pour montrer que K est pythagoricien au niveau 4 iI suffirait de montrer

que K doit etre bien chainable et d’utiliser le r6sultat de Harman suivant :
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K pythagoricien et bien chainable 6quivaut a K pythagoricien au niveau 4 .

Pour que la conjecture soit vraie il faut qu'un corps totalement chainable

qui est pythagoricien et n’admet pas d’extension de degr6 impair soit un corps

bien chainable. Becker a pu donner un exemple de corps pythagoricien

totalement chainable qui ne soit pas pythagoricien au niveau 4 , en prenant

la c16ture pythagoricienne de R( Ct)) , mais ce corps peut avoir des

extensions de degr6 impair.
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ANALYTIC ELIMINATION THEORY

(dlaprd8 Denaf et van den Dda)

M. A. DICKMANN
CNRS – Universit6 Paris VII

SI. INTRODUCTION. In the first three sections of their paper [2], J. Denef and L.
van den Dries present a p–adic analogue of the real variable theory of semi–analytic

and subanalytic sets. In the fourth section the ideas arising in the p–adic context

are fed back into the real case to give new, shorter, more explicit and unified proofs

of many of the foundational results of the theory.
The praentation proceeds along a path parallel to one by now well

established in the study of semi–algebraic sets, both in the real and the p–adic
casw. In the first of these two lectures we gave a summary of the geometric theory

of real semi–algebraic sets, aimed at illustrating the line of argument. We omit this
part of the expo#, as the theory just mentioned is presented with wealth of detail in

Chapter IV of [3]. The fragment of the (cousin) theory of semi–algebraic subsets of

Q: dealing with Milnor's curve selection lemma and dimension theory is develowd

at length in [9].
The gist of the method consists in finding a language L in which the basic

mathematical objects under study –guI)analytic sets and functions in Denef–van

den Dries1 paper – coincide with those (parametrically) definable in the first–order

calculus associated to L. Usually, the identity tntween these classes of objects is

established by means of a quantifier elimination theorem in the language L for the

first-order theory of the structures under study.
For the case of real semi–algebraic sets the language L is the language for

unitary ordered rings consisting of the symtx)is +, –, ., 0, 1, <, and the elimination
theorem is Tarskils celebrated result

For semi–algebraic subsets of q:, the appropriate language L has been

introduced by Macintyre and consists of the symtx)is +, –, ., 0, 1 plus countably



many unary predicates P2, P3,...; Pn is interpreted as the multiplicative group of

non–zero n–th powers. The elimination theorem requirai in this case was proved by

Macintyre in 1976; see [7] and [8].
In the case of real and p–adic subanalytic sets, Denef and van den Dria

succeeded in isolating suitable languages L = Lyn (same name in tx)th cases,

although they are not identical), and proving elimination theorems which make
possible carrying out the program summarized above.

Owing to the audiencels (and the lecturerls) preferencu, we have inverted
the priorities of Denef–van den Dries' paper giving, in the second lecture, a
summary of their analytic elimination theory iD bhQ real CNe. In the next two
sections we present this summary, and in the last we describe the modifications to

tn made in order to obtain a similar theory for the p–adic case; we also state an
important result with no meaningful real analog.

B2. THE REAL ANALYTIC ELIMINATION THEOREM; SUBANALYTIC SETS.

We shall tn concerned with the interval I = [–1, 1] construed as a structure in the

language Lyn consisting of:

-A binary relation symbol (interpreted as the order of I).

A binary function symbol D (interpreted in I by the function

Drx v) = 1 x/y if Ix1 S tyl andy + O

-An m–ary operation symtx)1 for each wwer series in R[[X1,...,Xml] converging at

every point of some neighborha)d of Im and sending Im into 1.

Not, that p„duct appears in LEn, corresWnding to the seriu x1.x2. Sum and
D r , I t ,  12 . , _ 7 T? _ _ _ 7 D

difference M occur in L=n for + and – do not map I' into I. However, Ljn

does have a "poor manls" substitute for these operations, namely ;(X1 + X2) and

;(X1 – X2). A similar device makes wssible, for instance, to reprment a statement

of form 11f(X1,...,Xn) > 0", where f is any power series converging in a neightnrhood

of Im (but not necessarily sending Im into I), as an L?n–formula, by replacing the

function f by the term c.f, where 0 < c < 1/sup{f(B Ii C Im}.
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The paper's key result is:

Thu)rem 1. ( Analytic elimination theorem; real case).

The Mst–order theory of the interual I construed as an Len –structure (as above)

admits quanti fer elimination. a

The (rather technical) proof uses the Weier8tra88 preparation theorem to reduce an

occurence of a fixed (quantified) variable, say Z, in an L?n–term (e.g., a power

series) of a given formula, to a polynomial occurrence. This can be achieved, while

simultaneously keeping at bay unwanted appearanca of the term D. After this

reduction is performed, Tarskils quantifier elimination theorem is used to get rid of

the quantifier binding the variable Z. Quantifiers are eliminated, one by one, in this

way. The argument uses compact;ness of I.

The language L:n has been taylored to make qua„tiner–free definable sets

coincide with subanalytic sets (in Im). Before dwelling on this point we define the
concepts involved.

Ihnnition 2. (Semi– and subanalytic sets).
(a) A set S g Rn is called semi–analytic at a point i c Rn iff there is an open
neighborhood U of i in Rn such that U n S is a finite union of sets of form

{i CU 1 f(D = o A gI(D > o A ... A gk(D > o}

where f, gl,...,gk are real analytic functions defined on U.

(b) A subset of Rn is semi–analytic if it is semi–analytic at each point of Rn.

(c) A set S C Rn is sqbonalytic a1 i ( Rn iff there is an open neighborhood U of i in

Rn, an integer m : 0 and a tx)unded semi–analytic set S1 g Rn+m such that

U n S = U n r[Sl], where r : Rn+m –> Rn is the projection which forgets the last
m coordinates

(d) A subset of Rn is subanalytic if it is subanalytic at each point of Rn. a

Thus, a semi–analytic set is a set which IQcally admits a description similar

to that of a semi–algebraic set, with polynomials replaced by analytic functions. Of
course, semi–algebraic sets are semi–analytic, but many other sets are
semi–analytic as well. For example, so are certain sets with countably many
connected components, e.g., {x C R 1 x.sin(x) ? 0}, where ? is any one of the signs

>, <, or =. The projection condition defining subanalytic sets enlarga the class of
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semi–analytic sets; however, the first exampln of subanalytic sets which are not

semi–analytic, occur in dimension 3:

3. Exampla. (a) The set {<x, x.y, x.exp(y)> 1 x, y e R} is subanalytic but not
semi–analytic at the origin.
(b) Another way to get 8ubanalytic sets which are not semi–analytic is by means of

the following remark: let S g Rn be a subanalytic set; let CCS) E Rn+1 denote the

cone with vertex at the origin over base S:

CCS) = {<tx1,...,txn,t> 1 t e R and <x1,...,xn> e S}.

Then CCS) is subanalytic (this follows easily from Thmrem 4 below), but by looking

at the behaviour at the origin it is easily seen that CCS) is semi–analytic if and only

if S is semi–algebraic. See Hironaka [5; Remark 3.7]. a

The supporting pillar of semi–algebraic geometry is the fact that
semi– algebraic sets possess a BnUe gM description by polynomial equalities and

inequalities. Since the definition of subanalytic sets is of a local nature, it is not at

all clear that they admit a similar finite global description in terms of analytic or
related functions. The analytic elimination theorem shows that such a dacription
does exist indeed (at least within the class of bounded subanalytic sets).

Tha)reIn 4. ([2; Cor. 4.15]). The yollotoing are equivalent for a set S g [–1 , 1/ n;

(1) S is deBned in 1 by an LL: n–formula (quantijers and parameters aUouled).

(2) S is a Fnite &Mon of D–basic subsets (see dejnition below).

(3) S is subanalytic fn Rn. n

D–basic sets are sets of the form

{i e I I f(n = o A g1(B > o A...A gk(B > o}

where the functions f, g1,...,gk : in –> 1 –called D–functions– are (arbitrary)

finite compositions of the functions defining the language Ll)n; in other words,

D–functions are th„e corrmpondi„g t, t„m, ,f th, 1,.g„age L?n („.d„ the

interpretation given at the tnginning of this section).

53. GEOMETRIC THEORY OF SUBANALYTIC SETS.
All the basic results concerning the geometric structure of subanalytic sets now

4
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follow in cascade from the two theorems of the preceding section. Here are the main
headlinm.

Thmnm 5. (Basic properties of bounded real subanalytic sets).

The family of subsets of P (some n} 1) subanalytic ta Rn is:

(1) A boolean algebra. (The crucial result that the complement of a subanalytic set

is subanalytic is due to Gabrielov [4].)
(2) Closed trader Mst–order defIIable operations such as closure, interior,

projections,
(3) Closed trader images and inuerse images by s%banalyt£c functions. u

Note. A function f : S > in, where S g Im, is called subanalytic if its graph

Gr(f) = {<i, f(n> 1 i e S} is subanalytic in Rm+n.

Theorem 6. (Existence of uniform bounds; [2; 3.2]).

For every subanalytic set S g p+n there is an iateger N so that for every I E P, if

the IbeT % = {i C 1'z 1 <i, D> C S} i, j„it,, then card(% $ N. Furthermore, the

set {i elm 1 Si is fn de} is subanalytic. n

Theorem 7. (Selection theorem; [2; 3.6]).

Let S g p+n be a sabanalytic set and I ; RIn+n > Rm the projection which forgets

the last n coordinates. There is a subanalytic map y : yr[Sf –> IF whose graph is

contained in S a

Theorem 8. (Partition theorem; [2; 3.14]).
Each subanalyhc subset of P is a disjoint anion of Bnitely many subanalytic

manifolds . a

Note. By a manifold we mean a real analytic manifold which is Hausdorff and of the

same dimension at each of its points. A sqbanolytic manifold is a subanalytic set
which is a manifold in this sense.

A well–behaved dimension theory stems from Theorem 8 upon defining

dim(S) as the maximum of the dimensions of subanalytic manifolds contained in S.
This theory produces results similar in many rwpect8 to those known for
semi–algebraic sets.
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Theorem 9. (Dimension formula; [2; 3.lq).

Let S p...,Sn be subanalytic subsets of in; thes dim( UFi ) = mai{ dim (SP 1

i = 1,...,&}; the same holds for countably many sets Si , prouided UFi is

strbanalyhc. a

Theorem 10. (Product formula; [2; p. 111]).

IfSlq f , 529 P are suba7za/yt£c sets, ther& dim(S 1x Sd = dim(S D + dim(SO. a

Thmrem ll. (Invmiance of dimension; [2; 3.21}).

The image of a subanalytic set under a subanatytic map does not increase dimension

If the map is injectiue, dimension is pre$erued. a

Thoorem 12. (Characterization of dimension; [2; 3.23])
Let S E Im be a non-empty subanalytic set. Dim(S) is the largest integer d,
O SdS m, so that the image of S under some projection P –> P has non–empty
interior in fl. a

Thmrem 13. (Dimension of closure; [2; 3.26]).

Let S g lm be subanalytic and cI(s) denote the closure of S in /m. Thes
dim(ct(S) – S) < Ibm(S),

In particular, dim(cl(S)) = dim(S). a

This result is crucial in obtaining subanalytic stratifications (cf. Hironaka [5; Prop.
III, p. 179]). The following theorem establishes a connection between subanalytic

and analytic, functions:

Thairem 14. ([2; 3.29]). Given S Elm and a sqbanalytic map f : S –> la, there is a

partition of S into $nitely many sqbanalytic manifolds Mr...,Mk so that each

restriction /1 M. is aa analytic function. a

The analytic elimination theorem may be combined with the embedded

resolution of singularities in order to yield a new proof of Hironaka's

rectilinearization theorem. This result establishes a gIQbal relationship, by means of

well–behaved analytic maps, between (arbitrary) mqjimensional subanalytic sets of
Rn and semi–analytic subsets of Rm of a particularly simple form; for details, see [2;

pp. 132–134]. Among the consequences of this theorem we have the following
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results, originally proved by Lojasiewicz [6; ThIng. 1 and 2, p.- 127]:

Thu)reIn 15. (a) One–dimensional suba&alvtic sqbsets of in (any in 2 IJ are

semi–analytic.

(b) Every SBbanalytic s&bset o! ? is semi–analytic. a

A. THE P–ADIC CASE.

The theory summarized in 53 can tn reproduced, with suitable modifications, for the

field of p–adic numbers (p a fixed prime numtnr). All rault8 obtained in [2; §§ 2, 3]
for this case are new.

The ring Zn of p–adic integers plays the role of the interval I (recall that ZD

is compact in the p–adic topology). p–adic analytic functions are, of course,
functions which admit a development in power series convergent in the p–adic

topology. The elimination language Lyn should be modified as follows:

–The binary relation symtx)1 < is replaced by countably many unary relation

symbols Pn, as in Macintyrels language for p–adic semialgebraic sets (cf.

Introduction) .
–The function symbol D is interpreted as follows:

_ [ x/v if v(y) Sv(x) and y + 0

wt,e,e „ de„otes In’s „aluation.

The analytic elimination theorem takes, in the p–adic context, a form very
similar to that of Theorem 1:

Thmrem 16. ( Analytic elimination theorem; p–adic case).

The $rst–order theory of the ring in of p–athc integers construed as an

LI:n–structure (as indicated) admits qqanti jer ebminatioa. a

Exact analogs of Theorem 4, and of all the results mentioned in 53, hold in
the present case as well. In addition, Denef and van den Dries prove versions of the

following results –well–known in the real case , for arbitrary subanalytic subsets
of Zn

[]

(17) Milnor's curve selection theorem ([2; 3.34]).
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(18) The Lojasiewicz inequalities ([2; 3.37] ).

(19) The rationality of the Lojasiewicz exponents ([2; 3.37]).

Proofs of thue results for real semi–algebraic sets can be found in Dickmann [3;

Chs. IV and VIII; a proof of (17) for p–adic semi–algebraic sets is given in
Scowcroft–van den Dries [9].

Most important among results for the p–adic case without a meaningful real

analog is an extension of Denef's theorem on the rationality of the Poincar6 series

from semi–algebraic sets to subanalytic sets.

Ik6niHon 20. Let S be a subset of IT. For each integer n ? 1 we denote by Sn

(g (Z/pnz)m the image of S under the (m–fold product of the) residue map

Ip –> Z/pnz. Let Nn(S) denote the cardinality of Sn. The series Ps(T)

E N_(S)Tn is called the PoiTlcar6 series associated to the set S. a
0n

Thmrem 21. (Rationality theorem; [2; 2.8]).

If S gIl 8 a subanaQhc set, then the Pohcar6 series Ps(T) is a rational function

of T. a

For semi–algebraic S this was proved by Denef [1], solving a long–standing

conjecture. For subanalytic S this givu a a)mplete answer to a question raised by
Serre and Oester16.
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In this paper we shall be concerned with real meromorphic functions.

Thus, we fix from now on a oompact oonnnted real analytic manifold M of

dimension m. By the identity principle, the ring KM) of (global) analytic

functions on M is a domain, and its field of quotients #(M) is the field of

meromorphic functions on M. In other words, a merornorphic function on M is a

quotient h=fIg where Eg are analytic functions, g#0. The set of poles Z
of A is the zero-set of all 8’s appearing as denominators of h. Since M is

compact, ZXM) is noetherian, and so Z is the zero-set of finitely many gjs.

Then if h=f !8\, The usual s.o.s. trick gives h=Mg\FI & Hence, any

meromorphic function can be written h=fIg with set of poles Z=zero-set of

g. We are interested in the sums of 2n-tb powers of meromorphic functions on

M, i.e. sums of 2n-th powers of the field #(M). The key result to analyze

these sums is, always, Becker’s valuative criterion:

Theorem 1 [B].- Let F be a formally real field, and ACF a sum of squares.

Then h is a sum of 2n-th powers if and only if v(h) is a multiple of 2n for
every real valuation u of F.

A natural simplification of this criterion is to substitute the very

large family of all real valuations by a smaller one. This has been done

when F is the field of rational functions of a real algebraic variety:

[Br-Sc],[K-P]. Here we shall do it when F is the field of real meromorphic

functions gB(M). Also, we shall obtain some topological properties of sums of

211-th powers of gl(M). Of course, the first result is
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Theorem 2 [J],[Rzl].- A function hca(M) is a sum of squares if and only if

it is positive semidefinite.

Consequently, we concentrate our attention on the valuativo criterion.

We have:

Theorem 3.- Let F be a finitely generated ordered abelian group and dao such

that the rational rank of F is smg. Then a positive semidefinite

meromorphic function he#(M) is a sum of 2a-th powers if and only if u(h) is

a multiple of 2n for every (real) valuation u of iW) whose value group is F

and whose residue field is a pure transcendental extension of R of degree d.

The proof of this theorem is based on the same approach that led to the

geometric criterion of [Rz2] (cf. [K] for a different proof if dim(M)=2). In
the end, that criterion becomes an easy corollary of Tb.3:

Proposition 1.- A meromorphic function h€gKM) is a sum of 2n-th powers if and

only if for every analytic curve a:(-6,c)–>M, we have h.a=atl> + ..., with a>0
and o a multiple of 2n.

Proof,- The only if part. Every a:(+,e)–>M gives a homomorphism

gM)–+R{t}: f–>Taylor expansion of f,a at 0,

whose kernel we denote by P. Then KM)n is a regular local ring, and the

real valuation 6 induced by the embedding gM)/p–>R{t} lifts to another one

u of gM) =qf(gM)u). Now, if h is a sum of 2n-th pwers, o(h) is a multiple

of 2n, which using the construction implies Kh) is a multiple of 2n too.

But if hoa=otu + ..., then u=T(h) and 2n divides u. On the other hand, hoa is

positive semidefiaite by Th.2, and so a> 0.

The if part. Suppose h€gW) is not a sum of 2n-th powers. If A(x) <0 for

some xeM, the conclusion is inmediate. Otherwise, by Th.2, h is a sum of
squares and by Th.3 with F=Z, d=0, we find a homomorphism Q: qM)+R[[t]] with
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p(h) =atv + .. ., and 2n not dividing u. Let u be the inverse image of the

maximal ideal (t) of R[[t]] and ICM the point corresponding to a (which

exists because M is compact). Then g can be extended to a local momomorpbism

g: ex–>R 1 It]], where Pr is the local ring of germs of analytic functions at

x. As is well known q=R(11,...,in), so that P can be approximated by local

homomorphisms d: e–>R{t}. If the approximation is ga)d enough, +(h) = p(h)

mod to+1, and so +(h)=ato+... Finally, d gives an analytic curve a:(-e,e)+M

with a(0)=x, and hoa=+(h)=otu+... We are done.

Now we shall use the precedent criteria to analyze some topological

properties of the A’s which are sums of 2n-th powers for all n. These h’s

are called positive &nits.

Proposition 2.- Let Aeg(M) be a positive unit and denote by Z its set of
poles. Then:

(1) A is positive definite off Z.

(2) cod(Z) 22.

Proof.- (1) By Th.2, h is positive semidefinite on M\Z. Then suppose A(x) =0

for some x£Z, and pick an analytic curve a:(+,c)+M\Z with a(0)=x. We get

hoa =otu + . .., with OZ 1, since hDa(0)=h(x)=0. By Prop. 1, h is not a sum of

211-th powers, which is a contradiction.

(2) Suppose Z has an irreducible component Y of codimension I. Then the

ideal p of Y is a heigth I real prime ideal of d(M). Since d(M)n is a
regular local ring, we conclude it is a real discrete valuation ring, whose

valuation we denote by u. By Th.1, 2n divides u(h) for all n, and this

implies u(h)=0. Hence, h belongs to dIM)n, i.e. A=P& with g£p. This means

{g=O}DZDY, but also g£p=ideal of Y, a contradiction.

Finally we shall show with two eramples the limits of the topological

conditions (1) and (2) above.
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Example 1.- For any (global) analytic subset Z of M, there is a sum of
squares he g(M), whose set of poles is Z, and is positive definite off Z, but
which is not a positive unit.

Indeed, take any equation 8 of Z and set A=1/82. Clearly Z is the

critical locus of h and hI M\Z>0. Furthermore, pick any x€Z and a:(-e,6)+M

such that a(0)=x, a(V £Z for t+0 (this is the curve selection lemma). Then

hoa =at-u + .. ., with a>0 oz 1, because A,ad)+h,a(0)=h(1)=1/8(x)2= + n.

Consequently, A is not a sum of 2D-th powers.

Anyhow, we can construct many positive units.

Example 2,- For any (global) analytic subset Z of M of a>dimension 22, there

is a positive unit he jI(M) with set of poles Z.

The construction requires some previous work with Z. Firstly, consider

the irreducible oomponents Z\,...,Zr of Z, and pick in each Z1 a regular

point xi which does not lie in any other Zi. Here regular means there are

global analytic equations of maximum rank, which vanish on Z and describe Z

locally at xi. Taking the first one of them, say £, we have

rank(J (X))=1, a=0} DZ.

Now choose a global analytic function 81 which vanish at Ii for j+i but

not at xi, and consider f=gf \+ ...+BfI. Clearly Jl(/)=g1(11).JI (4) and

rank(J (D)=1, a=0}DZ.

Finally, denote by U the open set of regular points x of Z such that

rank(Jxa))=1. Clearly, x1,...,Xr€U, so that each intersection unzi is a

non-empty open set of regular points of Z1. This implies that any analytic

function vanishing on U, vanishes on the whole Z.

On the other hand, let 8 be any equation of Z and put
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24? + h:I a

h=HA ’ whue R\=f+ if
We claim A is the function we sougth. Clearly, o(h)=0 for any real valuation

of ijM) and so, by Th.1, h is a bolomorphy unit. Furthermore, the set of
poles Y of A is contained in

{=====::,, :„” (:=
which are equations of Z. Conversely, we have ZCY. For this, it is enough to

show UCY. Hence fix xeu. Then

Jx(h)=JI(D, as x€Z={g=0},

and so I is a regular pint of dimension m-1 of Hl= {hl=0}. Moreover, I is

adherent to H,\H,, because otherwise H1 nIL=z would have dimension m-1 at x.

Thus, there is an analytic curve q:(-6,6)–>M, ai(0)=x, qd)€H1\H. for t+0,
and:

h o a 1 ( t ) = = i

when t+0, i.e. when qd)+x. Whence, h cannot be extended to x.

Finally, we shall sketch the

Proof of Theorem 3.- Consider a sum of squares he#(M) which is not a sum of

211-th powers. We look for a valuation u of m) with value group F and

residue field R(z1,...,zd), such that u(h) is not a multiple of 2n. If h=fIg

we replace A by 82-h=82--1/ and can assume from now on that he 4M).

First, Th.1 gives a real valuation Ua of RM) such that uA(h) is not a

multiple of 2n. Fix an ordering a of gi(M) compatible with Un, and let V be

the convex hull of R in gW) with respect to a. One easily sees that the

value of A for V is not a multiple of 2n, and can so suppose V is the ring

of oo. Also, V dominates a local ring gM)a where ai is the maximal ideal
I
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of a point leM (here we use M in compact). Then by Hironaka’s resolution of

singularities, V dominates a regular local ring of dimension m,

B= dIM)Ig1,...,8k]8cglW), with residue field R. Fwthermon, there are

reWlar parameters y1,...,yn€g a,d a unit # of B with A=#y11...y:'-,

Then, since oo(h)=P1%(y1)+...+Pmuo(yn) is not a multiple of 2n, some

Pi, say P1, cannot be either. Once we have this, the valuation oo will be
substituted by another one. First, making 2n quadratic transforms of B,
always dividing by y1, we obtain:

h=#y11yJ...y=" (with new y2,...,yn)

and ql=pl+2n. i Pj is not a multiple of 2n. Let A be the 2n-tb quadratic

transform. Then

(i) A=qM)[h1,...,ha]uCgBOl) is rewlar of dimension m, with residue

field R.

(ii) There are regular parameters y1,...,y_Ca and a unit # of A such

that h=d: ...I = , where q1 is not a multiple of 2n.

(iii) The localizations hq \+...+I) dominate gM)a and have residue

field R(q+1,...,Zn), the residue classes q of yi algebraically indepndent
over R.

Some further work with the extension dW)a dq HR{11,...,in) shows that
1

(iv) There is a local embedding AdR{y1,...,yn).

After this preparation, which follows closely [Rz2], we can construct a

new valuation u with the required value group and residue field.

First case: rank F= 1 +

Since F is finitely generated, we may find l={1,...,{r€R rationally

indewndent with F={lZ+...+{rZCR. Thus the bypthesis on the rational rank

of F is rsm-d=j, and we have a diagram
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R{yI (y ,) =R ( lzI)ljy’j]4-R({z}>lltPn
T T T
A(y,) –, R(z)ljy’]] I, R(z)l[t£]],

wh,r, y=(y1,...,yn), y’=(y1,...,yj), z=q+1,...,,m), I ItF]] means formal

power series with exponents in f (cf. [FD, and + is defined by the

substitutions

lr,, \_,C

+(yp =t2-(1 + a,QCa){
for i=1 , . ..,r,

for i=r+1,...,j,

with t,Or+1,...,aj CRI It]] series analytically indeHndent of order 21. This

latter condition guarantees that the resulting local homomorphism

Ah.\–IR(z)[[tF]] is hyective. Consequently, it induces a valuation u in

qf(Arv,\)= iI(M): this is the needed valuation.

For, its residue field is in between the one of A. „ and the one of

R(z)[[/]], but these are both R(z)=R(B+1,..., h). Hence o is a real

valuation and its residue field is a pure transcendental extension of R of
degree m-j =d. On the other hand, the value group of u is obviously contained

in F, but in turn contains u(yi)={1 ,lsisr, which generate F. Finally,

+(h) =+(#yll...y=")=unit.+(yll...yjj), and we and

u(h)=qlCl+...+qr{r+2nqr +1+'..+2nqj=(ql+2nq)(1 +q2(2 + ... +qI(

(remember (1=1). Now since Ct ,...,Cr are rationally independent, and 2n does

not divide q1, it cannot divide u(h) .

Thus, the proof in the case rank F= 1 is finished.

Second case : rank F > 1 +

Let F1 be a maximal prowl isolated subgoup of F, so that F’=rIFt has

rank 1. Denote by r the rational rank of F’. Then, the prwedure of the case

already solved dyes a real valuation u’ of W)=qf(A(y , )), y’=(y1,...,yr)
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with residue field R(Zr+1,...,Zn) and such that o’(h) is not a maltiplo of
2n. Now we have:

rational rank of F1 =rational rank of F -IS (mql)+=(m-r)4

and this condition allows us to find a v8luatioa i of R(Zr+1,...,Zn) with

value group r1 and residue field a pure tran&wndental extension of R of
degree d. We end by taking the valuation u of gM) composite of o' and T.
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