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StR LB CORPS aIAIM-oLDS

Fran(,oise Delon

Les corps chaine-clos ont 6t6 atDndaaxrnnt d6crits dUIS ce s&nin8ire, (h a

vu qu’ iIs peuvent 6tre d6finis calm des corps portant tale ctnine et sans

extension alg6brique propre sur laquelle cette chaine se prolonge fidalanent ,

ou bien cme des corps portant une valuation henselienne 8vec un corp8 de

testes r6els clos et al grouEe de valeurs G imp8iPdivisible et v6rifiant

(G:2G) = 2 . leur classe est 61&ent8ire. Nous allons pr6ciser ici quelques

Hints de t:h6orie des axxldles a propos de ces structures : 61imin8t;ion des

qunntificateurs dans une extension par d6finition et coincidence entIre

inclusion 61&rnnt8ire et c16ture existentielle relative . Nous reviendrons

aussi sur la caract6risation, dans certains corps ch&ine-clos, des fractions

rationnelles a une seule ind6telmin6e qui sont saIBlns de lnissances 2n (voir

[lbC] ) , et donnenons des exerrrples et contre-exarrples qui expjjquent les

hypothises restrictives et la form de la car8ct6risation. Ins trois parties

sont ind6pendantes .

1, £linirutiar dee <Frantifimtour8

Reprenons les diff6rentes th6ories consid6r6e8 par Dickmvurn [DI J :

T = th6orie des corps chaine-cl08 dans le langage L = { 0, 1, +,

TE = t:h6orie des corp8 t,h+ine$ chaine-clos dans le larr8age

W 1 B }
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LE = LU 4 P, ; in> }

IUV = th6orie des corps chain6s chaine–clos maris de leur valuation de

Jacob dans le langage LCV = LE U { D } , oil D est le pr6diaat de

divisibilit6: D(x,y) = v( x) $ v( y) ; rappelon3 que la valuation de Jacob

sur un corps chaine–clos K est Ie premier 61hent de 1’ensemble VtK) = { v

valuation sur K ; K/v r6el clos } ordonn6 par 18 relation v ) w ssi

l’anneau de valuation de w contient celui de v , et qu’elle est

d6finissable dans la seule structure de corps de K

Dicknunn a montr6 que 'IEV est mcxi61e-canpIBte I Di 2-3 1. Nous allons

nDntrer que cette th6orie ar]lnet 1’61imination des qrIa,ntificateurs. Nous

caurnnc,ons par d6crire les parties universelles des th6ories pr6c6dentes.

Signalons que Harman a empjoy6 l1 expression "extension de chaine" en un sens

qui contredit I ’usage en th6orie des moddles; nous n’utilisons qu’une fois

cette terminologie et pr6cisons alors “au sens de Harwn" .

Lenme 1-1 . Tv est la th6orie des anneaux intagres ordonnables +

D6annstration, Pour une th6orie S , 1 ’ensemble SY de ses cons6quences

universelles est la th6orie des sous–structures de ses rrxxiiles B Un corps

chaine-clos est ordonnnble , et r6ciproquanent un corps ordonnnble est

plongeable dans un corps r6el clos , disons R , lequel se plonge dans
I 1

R((X2T) ) := U R((X2nil) ) qui est chaine-cIos.a
naN

Lnrmn 1-2 , T\ est axianatis6e wr les propri6t6s suivantes:

1. anneau int6gre;

2. p et p. sont des ordres , c’est-a–dire :
a

Pi+Pi S Pi , Pi.Pi S Pi , x2 e Pi , x€ Pi V -x c Pi , pour i=0,1
i

3. 1„u, i22, Xd S Pi , Pi.Pi S Pi , [ Pi€xy) A Pitx) ] –+ Pi(yi , Pi+Pi S Pi

\
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F. Delon

21

P (x) A IP, (x) –+ W
j= 1

4' Pi+1 U -Pi+1 = (Po n Pi ) U -(Po n Pi ) .

Ik$rrnnstratlion. Soit TA la con,jonction des axiues donn6s dans 1’ 6nonc6 .

Clairunent To STv ' Soit r6ciproquawnt A b To . Ch v6rif ie sans difficult6

que l’wrique prolongaent des Pi sur le corN des quotientIS Q( A) de A
i

d6fini Wr Pi(ab-I ) Hb Pi(abZ -1 ) continue a satisfaire TO . Les axiams 3
impliquent que PI est sur Q( A) wi ordre de niveau j pour un entier

j£i . Cette situation a 6t6 6tudi6e par Harwnn ( IHI lune 1-7 ) .

• (II bien tous les P; coIncident sur Q( A) , Dans ce cas, si R est la

c16ture r6elle de Q( A) pour cet ordre, et (Qi )i l’urique chaine de K :=
I
T

R((X' )) , on a (A,(Pi )) S (K,(Q i )) .

- Ch bien iI ya un entier d tel que Po, P1 ' ' ' Pd colncidart sur Q( A)

et (Pd+i )i est une chaine de Q( A) . Si dil , prenons wr mint x de A

v6rifiant Pd(X) A IPd+] (X) et consid6rons Ie corps B = Q( A)[y] , y2 = X .
Il y a sur B exactennnt deux ordres prolongeant PH(Q( A) ) et aucur

prolon8eant Pd+1(Q( A) ) . D’apras IHI 3–7 , iI ya done sur B ure chaine

IQi lieu , unique a 6change de ses deux ordres vrais prbs , qui est extension de

degr6 2 au sens de HaIuun de (Pd+i(Q( A) )iad , c’est-a-dire v6rifie

QQ n QCA) = Ql n Q( A) = Pd(QCA))

Qi n QCA) = Pd_1,iCQ(A) i , pour iZ2 ,

ce qui nous permet de renamr Qi = Pd_1+i (B) 'al prolonge ainsi par
-d

induction les P{ sur C = Q( A) lxd ] , aa iIs formnt une ctnine. Bt C

muni de cette ch8ine adrnet ure c16tlure , ce qui aunt:re C bTw donc aussi

A b T.. . a

La!!1Ie 1-3. Solent les axiwns:

5 + =D€ Og 1 } 1 1 D( XI yI A DC yI Z ) ] + DC XI Z ) I DtXt y) V DtyIX) !
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1 D(x,y) A D(x, z ) J –+ D(x,y+z) , z # 0 –+ I D(xty) ++ D(zx,zy) J ,

6. 1 Djy,x) A -D€x,y) J –b P_ty2+xJ

7 ' [ Pa(xy) A D(x, y) A D( y,x) ] –+ Pt (xy) ,

Alors TUVv=TCv + 5 + 6 + 7

Mrnnstration. 11 a d6.ja 6t6 expjjqu6 dans IDrW J pourquoi il convient de

lnrler d’une valuation en terues de divisibilit6 lorsqu’on s’ int6resse a

1’61inination des qllantific&teurs . (h trouve la aussi 1’6quiv&lence entIre les

axiares 5 et la pr6sentation habituelle d’une valuation, De la rare f8f,on

l’axime 6 n’est autre que l’exl>resslon, dans un anneau, de la convexit6 de

Hur Pn , et l’axione 7 1’expression de 1’6g8lit6 des ordres r6siduels

d6finis Fur Pm et P1 . Pr6cisons. ChIme iI est usuel ARr d6signe l’anneau

de la valuation v , Mtr son id6 a1 maximal , K/v son corps r6siduel et x/v

le reste d’un 61drent xe A., , Soit T1 la conjonction des axiares

ci–dessus, Clairarent T1 s IEVY . Soit r6ciproquarent Ab T1 ; on salt d6.ja

6tendre Ies Pi sur Q( A) , oil ils s&tisfont tou.jours Hv , lb rAre v
s’6tend de fat,on unique sur Q( A) , oi iI continue asatisfaire 5 + 6 + 7

Nous &IIons done d6sorrruis supp)ser que A est tvr corpse nr d6f init;ion ure

valuation v est convexe pour un ordre de niveau 6venttnllunnt sup6rieur P

lorsque t + Mtr g Pi ; cela implique , Four v( x) et v(y) : 0 ,

[ x/v = y/v –} t P,(x> HP P, (y) > I
et wrmt de d6finir l’ordre quotient P1/v sur K/v + Hallrun [H 1-8] a

aDntr6 que, 6tant donn6e ure chaine (Pi )i sur tUI corN , la valuation v1

i

archiaBdienne pour Pm est convexe pour tous les Pi et telle que les Pl /v

salt 68 aux. Une valuation v convexe Nur PA v6rifie dorIC vS vl et est

69alarent convexe Hur tous les Pi . De Plus si Po/v et P1/v colncidart,

d’aprbs la relation Pi+1/v U -Pi+1/v = (Pi/v n Po/v) U -(Pi/v n Po/v) , on

voit par induction sur i que chnque P1 /v est 69al a Pn/v . En cons6quence

T1 imp)se que v est convexe Nur chacwr des Pi et que les Pi/v sont
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F. Delon

6gaux. D’apr6s le larrne 1-2 on salt d6ja 6tendre A en un mcKidle K de TC .

Ch avait distingu6 dew( cas,

le Les Ps coIncident sur A . (h prolonge v de A a K en prenant Nur

anneau de valuation 18 c16ture convexe de A dans K , (h se r&ppelle que
1

K = R( (X2’ ) ) , oa R est la ,latu,, neII, d, A . Sur K la val„ati,n d,

Jacob vk est la valuation &ssoci6e a X , et v } vv .

2 + Sinon K est alg6brique sur A , v adrrnt ui et un geul prolon8amnt

convexe de A aK , Si v(K) < vk , K/v est chaine-clos avec CPi (K)/v)

EX)ur chaine (voir IDeG I prowsitlon Il ) ; nats K/v est al96brjque sur A/v
i

et dorIC, d’apr6s IH theoran 4-12] , ( Pi+d(K)/v n A/v )in es! une chaine de

A/v pour un artier d ; cela contredit le fait que tous les P1 (d)/v sont

69aux ,

(h s’est ainsi ra8en6 a wi corps chaine-clos avec une valuation v 2 wk .

Si v(K) > vu , consid6rons Ie corN K(x) , o& x est transcendant stu K

et oa on prolonge v en plat,ant vCx) dans la coujxlre 0+ de vK . Ch a

done K(x)/v = K/v et vIC(x) : vX x Z (prc>dutt lexicogral+ligue) . (h prend la

c16ture henselienne de ce corps , wis une c16ture ordonn8ble par ruines

d’ordre impair, et enfin, Nur wi y fix6 c K – £KZ , on ajoute wi systam
n

canpatible de r8cines (xy)z , na; ; iI y & sur le corps L 8irwi obtenu lm

wrique prolongment de v . Alors (L,v) est un corps chaine-clos et sa ch8ine

2 211-1 2n
prolon8e celle de K ; en effet, on a PH(K) = K'- U -y'' K'' et les males

relations dans L , or K est relativarent alg6briqument clos dns L ( car

vK est wr dans vl ) . Parce que vCx ) est dans la prani are canposante

archim§dienne de vl et n’est pas divisible mr 2 , on a v(L) = v1 .a

WpAIIe 1-4. TEV 61inane les quantificateurs,

DaInnstratiar. ChI sait d6ja que cette th6orie est rrxxiBle-corHpldte, Il 8uffit
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de v6rifier que , Hur A b ILWv , les diff6rents plongments de A dans un

mo(Idle de 'ItV sont compatibles . Ch peut par exmple supp)ser A d6nombrable

et v6rifier que le mod61e que nous avons construit au-dessus de A dans le

lame 1-3 se PlotIge dans tout wHile ot -satur6 et contunnt A de TW .

Consid6rons d’aIx)rd le rrxxIdle de it .

Dans Ie cas oil tous les P; ( A) sont 6gaux, un wHile de It; contenart A
i

contient sa c16ture r6elle R Hur Pi car Tt b Pi n Po = Md WW tout

i21 , et un axx161e ot-satur6 M contient un infinit6sianl w rapp>rt a A
1

qui n’est m, un c,,,6, d,n, R( ( Xi’) ) ,, p1,ng, dan, B au ,,n, d, LC .

Lorsque la ctuine ne se r6duit pas sur A a un ordre wrique et que P ( A) =

... ; P,( A) avec dil , un mad61e de TC co„i.„, , ,.. „, ,o , ,, = „2

et les prolongurents de Pd a A[ yI sant con.juw6s au-dessus de A , done

8ussi Ies deux famiIIes (P , . . , ) .d+i- 1

Pour obtenir un zxx161e de IUV on doit ensuite 6vartuellarnnt ajouter le

x de la seconde partie de la pre IIve de 1-3 . Un groupe atglien ordorur6

2-r6wlier satisfait Nur tout entier ni

V€>0 Vg 3h [ h = g (211) A 0 < h < g ] .

En cons6quence , si M est un BKxidle o-s&tur6 de IUV conterunt K , vM

contient un h dans la coupure 0+ sur vK et tel que , pour tout entier

M2x eM vCx) h,avec xy 'xy eOU

nO AgO
MesMrement xy ou -xy e M2 . Si on choisit x pour avoir xy€M2

tH I h v( y) done

cet x est celui qu’on cherche. a

n pour

IUIS ur corps chaine-clos, chacun des pr6dicats D et P1 , i}2 , est

d6finissable. Ce n’est pas le cas des ordres vrais PA et P1 , qui 30nt

certes d6finissables avec ul p8ranBtre , mais que certains automorlhi8rms

6changent, Ch peut am61iorer 1’6nonc6 pr6c6dent et obturir 1’61imin&tial pour

- 6 -



F. De:Lon

une extension par d6finition de la th6orie des corN ctuine-clos . D6finissons

mv’ = { Ot 1) +1 -1 .tD } ul SIu { P„ ; nZ 2 }
IUV’ = th6orie des corps chaine-clos

+ (Pn)n>2 est une chaine priv6e de ses deux ordres vrais
+ D est la relation de divisibilit6 de Jacob

+ S(x) , , 3y (ya=x) .

TheQraln 1-5+ TW’ a£lrrnt 1’61imination des quantifiaateurs, En reprenant les

notations des larRms 1-2 et 1–3 , IEV’v est aximatis6e par:

1

2’ . Stx2> , IS(-1 ) , 1 S(x} /\ S(y) ] –+ [ Sfxy> /\ Stx+y)

1 S ( xy) A S ( xI ] + St yI 1 1 IS ( tx > A IS ( fy) ] + 1 S ( xy) V

21
3 ’ . 3 avec rerrrplacuent du dernier sch6rn par IS( tx) –+ W

j= 1

S(-xy) 1 ;

Pi(xJy) ;

4’ . P2 U –P2 = S U -S ,

Pi+lU –Pi+1 = ( Pi n S ) U -( Pi n S ) , Nur i >2 ;

89 [ D(y,x) A -D(x,y) ] –+ 1 S(xy) V S( -xy) I .

5

6’ . t 1)(y,x) A -D(x,y> ] –+ S<y2+x> ;

D6nnnstration. Pour T9 = 1 + 2 ’ + 3 ’ + 4 ’ + 5 + 6’ + 8 et AhT9 , la

II;V’ -structure de A s’6tend de fac,on unique a Q( A) de fat,on a en faire WI

luxIdle de To . Si A est rmintenant wr corN, on d6finit sur A sans

quantificateur dans IEV’ une LCV-structure, unique a 6change de Po et P1

prds , qui en fasse un axaile de IWw , conserve D et les Pi nur 122 ,
et v6rifie S = P n P, :0

si AS IS( A) , alors IIN , LCV’ , se r6duit au langage des anne8ux

ordonn6s +

• Sinon A contient un point a + tS( A) , S( A) U aS(A) et S( A) U -aS(A)

sont deux ordres de A (grace au dernier aximn de 2’ ) et ils constituent

7



chaine avec les (Pi ) i \9 (grace a 4’ ) . Toujalrs grace au dernier axiam de

21, 1lensmble de ces deux ordres ne d6pend pas de a et ils sont dorIC les

seuls ordres a constituer une chaine avec les ( P. )i ’ in
R6ciproquamnt une II;V-structure petIt 6tre munie d’une IEV’-structure,

qui est d6finie sans quantificateur en posant S = Po n P1 et en consewant

les Pi , 122 , et D ,a

La pr6sentation des corps ch&ine-clos dans le langage LGV est naturelle

et pratique . In th6orare d’ 611mination des quantificateurs mont;re aussi sa

richesse, lbnnons une illustration: on salt maintenant que IWw est une

t-th6orie avec mcx161e-comp16tion et que s’ appliquent tous les d6veloppernents

que van den Dries fait a ce su,jet dans sa th&se . Il faut par contre rewnrquer

que, contr&iranent a ce qui se p&sse pour les c16trrres &l96briques ou r6elles ,

le plongarnnt d’un corps chain6 dans sa c16ture-cha£ne n’a pas de tx)IIne

interpr6tation en th6orie des axxi61es . Cela vient de ce que la tih6orie des

corps chain6s n’ est pas universelle ; on petIt la rardre rariverse11e en 8joutaint

une constante c et l’axiome Vx ( c + tx2 ) (voir plus loin 2-3) , mats

1 ’ interpr6tation de cette constantIe dans un rix)dale est arbitraire . (h doit

sinon a.jouter au langage 1 a valuation de Jacob ; luis si K est un mod61e et

A une sous-structure, la trace sur A de la valuation de Jacob de K n’est

pas la valuation de Jacob de A , ce qui d6truit l’existence d’WI axaile

pren11 er o

2 . Irnlusiar 61Mrtaire et c16ture %i8taltielle relative

la valuation de Jacob d’un corps chaine-clos K ,

ProTDsitlion 2-1. Soient deux corps chaine–clos Ks L , Sont &lors

6quivalent s

– 8 -



F. Delorr

1, K existentiellarnnt clos dans L ( 11 K <1 L 11 ) ;

2. K < L ;

3. Vr FK = Vr et K relativarnnt alg6briquarnnt clos dans L ( " K rac dans

)L

D6rrx)nstration. Trivi&lwent K < L = K < 1 L = K rac dans L ; et K < L

=9 V, tK = Vu .

Montirons 3 = 1 . Si v, tK = Vr ala ure inclusion de corn valu6s

henseliens (K,vE ) s (L,vl) avce K/vH. < L/vl car ces deux corN sent r6els

clos. Si on nontre vEl( < vLL , Ie principe d’Ax-Kcx:hen-Ersov wrmttra de
conclure K < L . Ces groupes ordonn6s 6tant r6guliers , iI suff it de mntrer

que v+ est pur dans vLL , c’est-aqjire 2-w' Or Nur keK , on a les

@ival,n,,„ 2 1 v(k) d,„, v# uk e tcK2 pour WI cc K - tK2 A (Si

K est rac dans L ) 2 / v(k) dans v1 L .

Montrorw K <1 L = K < L . Supwsons dorIC X <1 L ; certairwnt; K
est rac dans L et iI suff it, d’apr6s ce qu’on avupr6c&lerrgrnnt, de nnntrer

Vr FK = vk , Du tait que K est rac dans L on a Vr tK e V(K) , donc

vl tK !vK . Supposons mr l’absurde vL}K > vK . Fixons ke K - tKZ et

choisissons sur L l’ordre qui rerxi k Hnitif . Cet onlre est d6finissable

de fat,on existentie11e dans K : XZO A x e KZ ukKZ ; et par 18 aM folmule

d£uls L . C'onsid6rorLS sur L la valuation dont 1 ’anneau est la c16ture

convwe de AVu dans L et continualIS a 1’ 8pBler VK ' Done VL > VK sur

L , et hl est un quotient de vIJL w un sous–grouw convexe propre H +

Prenons g e v1 L , g>0 , g€H ct 2{g dans v1 L ( cel a est wssible parce

que vLL est 2-r6mlier) , et l€1 , vl(1 ) = g et 1>0 + (ha gel , done

vK(1) = 0 ; 248 dans vLL , done je tkL2 . Par d6finition de vK sur L

et pane que vx (1) = 0 , il existe a et b dans K v6rifi ant vx.(a)

vv(b) = 0 et 0 < 8 < 1 < b . L’6nonc6 a wrm6tre3 k, a et b :

31 311 8 < 1 < bA 1 = tkuz
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est satisfait dans L ; iI ne 1’est pas dans K car tout x coinc6 entIre

et b a une vk–valuation nulle et est wsitif , clest dorIC ur carr6. a

PrQTn§jtiQn z-a . Soit un corps chaine-clos K .

I. Si V(K) a un seul 61&mnt, alors pour tout corps chaine-clos L

contenant K on a: K rac dans L = K < L .

2, Si V(K) a plusieurs 61dnents, iI existe un corps L chaine-clos

contenant K , avec K r&c dans L et K + L .

£Brnonstration, 1, est un corollaire de la proposition pr6c6dente.

Pour Knntrer 2. on reprend Ia construction faite dans la preuve du Imrre

1-3. Soit Kb T et v la valuation archin6dienne sur K . Si v > v,, on

adjoint a K un point x tel que vCx) soit dans la coupure 0+ de vK ,

et on consid6re Ie corps L construit comin dans le lure 1-3, (ha alors une

inclusion de corN chain6s chaine-clos avec Kl L wisque vl = v et vtR +
a

vK

a?rQllaire Z-3 (Laslandes IL])• Dans le langage LVc = { 0, 1, + , r, • , D, c }

la th6orie T U " D est la divisibilit6 de Jacob" U " c # tK2 " est

axxldle–comp16te .

D6monstration . Soient K et L des HXXlales de TVc , 8vec KS L au sells de

LVc . D’ apras ce qui pac&de iI nous suff it de anntrer que K est rac dans

L , c’est-a-dire LZ n K = Kd . Or, si xe K - tK2 , on a xe tcKZ dorIC xc

td,2 , dorIC xi tl,2 .a

Prr)posIt,ifin 2-4. 1. T nla pas de ux>ddle existentiellernent clos .

2 . Ins axx]61es existentiellamnt clos de TU sont Ies corps chain6s ch&ine-

clos K avce WI unjque 61Mnt dans V(K) . Puisque cette classe n’est pas

616mentaire, IE n’a Ins de nh:xlile–canwgnon.

- 10 -
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1

Mnnstration, 1, Pour K bT et ce K - H(2 , L = K[c2] est 68&lawnt

chaine-clos et K n’est p&s existentiellermnt clos drurs L .

2 + Inclusion 61&nntaire et c16ture exi3tentielle relative coIncident entIre

mKxi61es de T , dorIC a fortiori de 'It . Si K et L sont des axxi61es de TE

avec KEL au sells de l£ , K est rac dans L (al effet KE =

(P1 n P2>(K) = tP1 n P2)(L) n K ; L2 n K ) . Le r6sultat d6coure aI,r, d, 1 ,t
de la preuve de 2-2.2.a

3+ le XVII are problare de Hiltert au nivuu n

al peut 6noncer Ia solution donn6e par Art;in au XVII are problam de

Hilknrt sous la forrne suivante : si R est un corps r6el clos et f e R(i)

avec R=(x1, . .. ,Xm) , arors feZ R(i)2 ssi vi GRP , f(;) e 2 R2

Ihnielle (k>ndnrd et nni-marIe avons cherch6 a g6n6raliser ce r6sultat pour les

puissances d’ordre 211 , n 2 2 , dans un cadre oil les corps r6els clos avec

leur unique ordre serainIt, ranplac6s par les corps chaine-clos avec leur

unique ordre de niveau 2n . La encore il est apparu que les corps ch&ine-clos

K avec un seu1 616rmnt dans V(K) se canportaient plus simplannt que les

autres , £nonc,ons le r6sultnt que nous &vions protrv6 (voir [DeG] ) ,

f e K(X) a la propri6t6 ( +n) sur K lorsqu’elle v6rifie :

Vx e K , f(x) e : K2

Ttr6orirne, Soit un corps K chaine-clos avec un seul 61Mnt dans V(K) et
n

fc K(X) , Alors feZ K(X)4 ssi f & la propri6t6 ( +n) sur toute

extension finie r6elle de K ,

Nous avions sign816 les faits suivants.

11 -



- Pour n = 1 1’6quivalence est vraie quel que sett Ie corps K , Elle petIt

6tre reformu16e ainsi : f est une same de carr6s ssi elle est d6finie

lnsitive sur les extensions finies r6elles de K nur ch8cun de leurs deux

ordrres .

- Dds qu’on a nZ 2 , si K est chaine–clos avec au ruins deux 616rrnnts dans

V(K) , il y a des contre-exemples.

ConstruQtiQn dq Q9ntrv-exe!!Me. Soit K chaine-clos avec ve V(K) , K/v

non archinr6dien . Soit w la valuation archin6dienne sur K ; dorIC w > v ,

Prenons c6 K v6rifiant vCe) = 0 , wCc) > 0 et f = (XP + 1 ) (xf + c2) .

R3ur x dans K ,

. - Si VCX) < 0 , f (X) -lr X4 (Oil ’'a - Ir b’' , OU "a - b" qlnnd il n’y 8 Ins

d’arnbigult6, signifie v(a-b) > v(8) = v(b) ) ;

• si vCx) Z 0 , fIx)/v = ( (x/v)2 + 1 ) ( (x/v)2 + (c/v)2) > 0 done f(x) e K4

In maIn r8isonnwent lmntre f (L) S 1,4 pour toutie extension finie r6elle L

de K car alors L/v = K/v est r6el clos et ( L,v) est henselien, Si f

6tait dans : K(X)4 on aurait f (L) s : 1,4 pour toute extension .L de K .

Or consid6rons le corps L = K( t ) ordonn6 de fac,on a ce que , en continun,nt a

appeler v et w des prolongemnts convexes de v et w sur L , on ait

vd) = 0 , 0 < wd) < wCc) , ce qui cornesFXInd a la situation suivante :

M A
W W

+

Qt
8

et w( t) irrationnel sur wK . En tant que groupes, vl et wK 8 Z,wd)

sant ismnrthes, done wd) n’est pas divisible par 2 dans vl , En

cons6quence f ( t) , qui est w-6quivalent; a t2 , n’est pas dans 1,4 , ni MIS

: 1,4 dis que L/w = K/v est Mel .

V
0 M A

V
K
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Expjjquons maintenant pourquoi iI est in3uffisant de 3upp09er que f a

la propri6t6 ( +n) sur K , Cha montr6 dans IIM] que si f v6rifie (+n)

sur K , ses racines se regroupent par lnquets de cardinalit6 multiple de

211 , oil toutes ont la Mm valuation. (h petIt 6tre plus pr6cis et regrouper

les racines "indiscern&bles" sur K .

p6f,Lnitjon. 1 ) Soit (K c L , v) une extension de carB valu6s ; c et c’

dans L sont dits indi$c911nbleq'’ sur (K,v) lor3qu’ iIs v6rifient

v(c-k) = v(c’-k) pour tout kc K ,

2 ) Pour x el on d6f init

J ( xI = { vI x-k ) ; k e K}

1(x) = J(x) n vK

On v6rifie facilanent que l’ultrar6trjque imtx)se : ou bien J(x) = 1(x} , ou

bien J(x) est 69al a kx) plus un 61 arent Kn,xianl qui n’appartiart pns a

viC . Si J(x) a tm 61&nent maximal &k + vK , x est dtt sur

K ; on a alors J(x) = 1(x) U t gx } . Si J(x) a wi 61 arent rmxiHnl

By € vK , x est dit r6siduel sur K ; on a J(x) = 1(x) . Dans les demI cas,

soit kx € K , v6rifiant gx = vCx-kx) ; si gx = vCx) , on choisit kx=0 ;

sinon kv est d6f ini a --6quivalence pr6s.

LenIn 3-1, 1. Si x et y sont r6siduels ou valuationnels sur K , ils sont

indiscern8bles ssi g_ = C. et k_ - kar

2, S’ iI existe k€ K v6rifiant vCx-k) = v(y-k) +vK , alors x et y sont

(valuationnels et) indiscernables sur (K,v) .

D6rDnstration sans problare utilisant 1 ’ ultraa6trique +

LgElIB 3-2, a, Soit L la c16ture al96brique de K et v une valuation sur

L ; alors vl est la c16ture divisible de vX et L/v est la c16ture

&l96brique de Wv +

13 –



b. Soit (K,v) henselien, Alors :

1 ) des 616ments alg6briques conjugu6s sur K sont indiscernables ;

2) si x est al96brique sur K et K/v de caract6ristique n6siduelle nulle,

J(x) a un plus grand 616rnent ;

D6monstration, Nous renvoyons & IR] pour les 61Mnts de th6orie des

valuations. (a) est classique, ( b. 1 ) se d6duit de ce qu’une valuation

henselienne se prolonge de fat,on unique sur toute extension al96brique ; (b. 2)

de ce que, lorsque (K,v) est henselien et K/v de caract6ristique nulle , un

point alg6brique sur K n’est .jarruis ’'limite" , ce qui si8nifie exactemnt que

J(x) a un 61 arent anxirml. a

Proposition 3-3 , Soit K chaine-clos et f c K[X] unitaire. Alors Vx cK

vIC b 2nlv( f (x) ) ssi les racines xi de f se rewupent ww]uets Ci de
racines indiscernables sur K tels que:

- si xi eK ou est r6siduel, 2n divise ICi I
- si x 4 est valuationnel et m est Ie premier entier Nur lequel

m.gx e vK , 2 in.m divise ICi\ .
1

D6nx)nstration. I ) Preuve de 1’si'’ .

D6canposons f ; I f , oil f , = 1 (X-x) pour des C, ayant les propri6t6s
- - x€C. "

1

indiqu6es. D’apris Ie twIn 3-2.1, fl est a coefficients dans K .

- Si les x sont r6siduels, v(k-x) 6 vK pour tout ke K , donc 2n divise

v( f; (k) ) dans vK .

- Si les x sont v&luationnels, on d6finit g(X) = f (X+ 8) = kX-(x- a) ) Nur
IC

acK avec a - kv ; pour ke K et v(k) < vCx-a) , g(k) - k ' ; et
C

Nur v(k) > vCx-a), g(k) N (x-a) ' 11 , d’oa v(g(k)) = ICi I.gx
2) Soit fc K[X] unitaire et tel que Kb Vx 2nlv(f (x) ) , Consid6rons mle

racine valuationnelle x de f , (x1 ) i les racines de f indiscernables de

- 14 -
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x , (yi )i les autres r&cines, k=ky , IHfinissans g(X) = f (X+k) p D’aprds

le lame 3–1.2 , les xi - k sont les seules racines de g a avoir ure

valuation i vK , D’aprds Ie lame 20 de IDeG] , les (7l-k)1 peuvent 6tre

s61nr6s en groupes oil tous ont la rare valuation , et de cardirulit6 divisible

W, an . bh cons6ql„.,e ,n & 211Iv(a(yi-k) ) , et 211Iv(g(O) ) imprique

2nlv(a(xi-k) ) = gE . nomE)re de xi . Grace a 1 et a ce qui pMc&b, on Wut

auintenant supp>ser que toutes les racines de f sont r63iduelles +

D6cornNsons f = f 1 ' ' ' ' ' fr , oil les racines de fj sont indiscernables ,

ce11es de fi discernables de celles de fi ’Nur i/j , et, st xi est

-''i"' d' fj ' \j+1 ) g*j ' C'l’ i"W;' “(*j - k*r) < \r W"-
1 > j > r , dorIC, si on translate en posant g(X) = f (X+k_ ) , 1'es x_-k_

r r

sont les seules racines de g ayant gnr carxm valuation , et Ie lunn 20 de
r

[DeG] donne le r6sultat ( ce lemne est 6nonc6 avec l’hypothdse plus forte f (K)

S / , m,i, dan, la pr,„„, ,,„I, ,,t utili,6, la prop,i6t6 Kb VX 211

Iv(f(x)) ) .Q

n

Si nous nous rappelans 1’6quivalence xe Kd = [ 211 Iv(x) A x est

rnsitif Nur un ordre de K ] , nous voyons maintenant carxmnt construire un

pc)lyn&ne f e K[x] a)rant la propri6t6 ( +n) sur K et ne in conservant pas

sur une extension finie r6elle L de K, il suff it que les racines de f

solent indiscernables sur K luis cessent de 1’6tre sur L . Nous pr6cisons

dans 1 ’ exemple suivant .

DiaNe. Soit ce K - t Ka , y(c) > 0 , e4 = c et fe K[X] le polyn aIn

Hnnbrnl de e2 + e3 sur K . les quatre racines a = e2 1 e3 et - e2 t ie3

de f sont valuationne11es indiscernables sur K ( kn = 0 , ga = v(c)/2 ) ,

mds cessent de 1’6tre sur K[e2] . Pour x CK ,

– 15 -



v(x} < v(c)/2 , f(x) - x4

– si vCx) > v(c)/2 , f(x) - cZ

dorIC f & l& propri6t6 ( +1 ) sur K , alors que f(e2) - -4(e2)5

I (K[e2])2

Dams 1’ exanple pr6c6dent les racines sont v8luationne11es ; c’ est ,

d’aprds le lame suivant, le seu1 cns oil le ph6ncxrBne d6crit se produise .

bRIne 3-4, Salt fe K[X] unitaire, de degr6 Zn,S , avec toutes ses racines

c v6rifiant v( c ) = 0 et c/v + K/v . Alors f a la propri6t6 ( +n)

toute extension al96brique r6elle L de K .

D6monst;ration. Soit f = 1 (X - c 4 ) ; Nur xe K ,
21). S- si vCx) < 0 , f(x) - x- '-’

- si vCx) ? 0 alors v( f(x) ) = 0 ;

f/v est un polyn are unitaire et sans racine sur K/v r6el clos ; iI ne prend

dorIC que des valeurs strictarnnt positives , et f (K) s K'

Ccngne L/v = K/v , f satisfait les hypath&ses du lamn sur L , ce qui achdve

la preuve , a

Proposition 3-5. f satisfait ( +n) sur toute extension al96brique r6elle de

K ssi iI satisfait ( +n) sur toute extension finie r6e11e de dirnnsion

g d( f ) , oil d( f ) est le degr6 de f .

D6monstratian. D’&prds la proposition 5 de [DeG] , f a toutes ses racines

dans K1 [ i] oil K’ est n’importe quelle extension r6elle de dimension d( f )
n

de K . Suppc>sons f(K’ ) S K’z

- Les racines qui sent dans K’ sont &lors de multiplicit6 divisible par

2n

- 16 -
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- PaInt les autres , consid6rons un In]uet C de r&cines indiscernables sur

K’ et g = 11 (X - c) ; ces racines sant r6sidue11es sur K’ , et done il
ccC-

existe a et b dans K’ Eels que g( (X-a)b-1 ) satisfasse les hywttMes
n

du leHnn 3–4, donc g(L) s Lz quelle que soit l’actension finie r6elle L
n

de K’ , on a dorIC aussi f (L) : Lz

Ccxrnn K’ est une extension r6e11e de degr6 d( f ) r6elle arbitraire, on

obt tent f(L) S L2

oil P

nur toute extension L finie r6elle de K . a

COr911%iN 3-6 . " f a la propri6t6 { +n) sur toutes les extensions finies

r6elles de K '’ se dtt mr un 6nonc6 sans mramitres sur les coefficients de

Mnnstratlion. Les extensions r6elles L de K de diamlsion 2a sont toutes

f

de la forme K[c] avec c2 e K . a

Cela nous perEet de retrouver un cas particulier d’WI r6sult8t de Prestel

( [P] th6orhe 2 + corollaire du th6orale 1 ) .

(}QIQ11 aire 3-7 . D6finissons le degr6 de f c K( X ) I D ( f ) = dtp ) + d( q)

et qe K[X] et f = P/q est irr6ductible, et K(X)<d = { fe K(X) ;

Od,Dn,t,ati,.. Si„on anj2 3d am ar , K(X)<d n = K(X)Z S : [K(X)<m]2

Parce que la th6orie des corps chaine-clos est cornplate , tout aut:re corps

chaine–c,los le s&tisferait ; or on a vu qu’iI y 8 des contre-ocarrple8 das que

vf c K(X) de deBr6 Sd

Mais alors le th6orelan impliquerait que K satisfait 1’6nonc6 suivant :

[f b ( fn) sur les extensions ordonn6es de deM ( dJ –+ f e : [K(X),m]Z

DCf ) S d } . ALors Yn22 Yd Yn Yr K(X)<d n = K(X)Z + : [K(X)<n]Z

n r n

n r n

P n
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L 1:LIXUIA CIICK RAI) IGA TIE IIES IXEGALI CITB o

SI Introduction :

an renplace sotrveat lljn6galit6 = >0 par la proposition •x a une

racine carr6e - on par B 3 tea 9 12 n t = O L Clest jfexenple le
plus im=6aiat d'61imination dluae in6galit6 o Ce prob£16ne alest
cas toujatu•s aussi facile : trouver par exeaple un palyn6ae P(rBylg)

qui a une raclne r6elle si et seuleuent si 1+ O on /> O o++

C'est uae r6clsroque du prob16ne de 1l6jini3atioa des quantificatears ,

G6on6t:lquenent t il =’agit; de trouver un ensemble alg6b=ique se

pro jet;ant sur un ensemble seni.-alg4'orique doaa , Come le tait
rena=que:' B, ebon, c'est le probldne que devaieat Hsoudre les
habit;ants each££36s de la caverne de Flat;on ,

On a6aoa£rre le Hsult;at saivant :

Th6or6ne :

Soit S un en6eabl& seni-al€6bdque de RF , 11 existe w polW8ne

i=r6dactible PC11,,,JxpD) tel cpe :

(b,oo,xB)CS + 3 ten , P(x1, no,xI,t) - O

ee 1l6quatioa d'incannne tF : P(Xlt,,.tXnB!!!) = 0 est r6salable par
racine8 calrIc6 es a

I, ,a, d,, ,,h, ,bhS:[ICf I x1)O ou ..+ OR a.o3,
1) 1EILi s 1 e c a s I(jL e s c o Hi][]usI IIaL iCtISC a = { x C fIEID Oe tee Beth> O } et

earn le cas g6a6 ral des seai-alg6briques pas a6c6ssaireaeat terna6 a ,

Dans ce qui suit x = (xlt,,,la)Cnn est le •pa=anatEe- et g la-va=iahlef
ou nl'iacannueo o On a aassi la'va=iabler I = (h + ++ + in)

92 Le cas des cabs obtrus :

Prooositioa 1 : n existe une reaction Ya contInue $eai-a+6brique
sur lait t aaalytique SaIC peat-atire stu an en£eable de co<linension 2

(sa:icte ae=t) positive ssi 1lun des Ii est (strict;e:eat) positif ,

M n n



Four cinque valeur du ?araa6tre 1 9 Va(x) est la Plus paIIde des

racines -dL£an polw6ne Qa(x,T) qui a toutes ses racines reelles ,
D6non£tlration Par induction : pour n = 1 %(1) = x

%(xl112) M VT2+ IM . Val,„,xu) B 92C %1(x1,„,xB-1), h)
in £oactioa Yn edi anaIJUque saul gw an engenble oa dew all
nolan deB ={ BOnE nILS o les autreB racines da poIJnBne de deEre #1
que satisf Bit VH 8Pabtieaaeat ea reaplac,ant darts in eonstTUctioa

„...„,. c.na,= a_ v, .aF $ (,,,1,) - ,,+,,- a–+I
et: 60at done toutes =6elles +

Benz=one : an peat d6wntre= que QaCxre) eat irr6ductilae +

S3le cas des coina ain= :

TFl6orgae I :

EoIn abaque n = 1 p 2 p, ,. iI exislie in plWne r6el Pn(1911)

InitRiTe en a ,bonogdBe de degr6 P1 !tel que jf aqUAman PR(bU) = 0
mit z6aoluble par nciae6 canaea et. tel que toutes lea noaioaa£ea

deE Bank positive a gal 11 exian m HeI & tel que PnCx/) w a ,

n, pha il a',b,t, pa, d, al p,1y„6n, de d,a plaB P,t,ie i ?a(I,P)
ea& i==6dBctible et Fuel,EP) a toutes sea =acines Belles qnnnd toutes
les eoordondes de r &out p08j£jye8 +

D6n,nBtE ati,a, raF bda,ti,a , ncb, SP) - 2g - 11 +
POm p2 ; eonaid£ FOM le cercIB VL : (E-1)2 + A)2 - 1 = 0

Ie c6ae positU su fI est Ie cain aW % s on Tait done que

B2(x,y,P) = (=-T2)2 + (I-T2)2 - B+ a me racine Belle &a (x,y) e c2
Pour powoir faire la a6ae eonatr:uction potu n =3 iI 8u££it; de h=>ure=

an ensenble a86b=iqw PJ tel que le CaRe positU sar y; Bait c) +

1s1H=11 i 1B IIIIIn11 2 = { ( q1: 9 y ) 1E IEIEIr2lo ( x X 1 + o { yr 1 BXv / 1 jn OR pe ul tH) an ir

deux palw6aes de deng 2/B1(x8y) e& B2Cr8y) tels que :
(x,y) C 4 + 81 (1,y)} O et B2(xly)2 O o Lf ensenble QLg6brique

compact 93 dl6quation P2(qCx,y),B2(1,y)lz2) = 0 se pro JeBbe

vertic3lenelt stu• ZIa , Si 1lon fat une trnnsfor=at: Ian project:ive

quI ruize Ie paInE a 1. Inf+={ sur 1laxe des z a 1lorie, Ine Jet d2 en

+ 42n
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d3 = f(I9ytZ)CH) I 1)0 1 y? Q 1 Z)0 s =+y+z - lj o Llen8eBble

alg6brique vJ ge trnnsfarme en y; qui a la propd6t6 wulue
L'6quatioa de y: est ( Si Bl= x _ 12 , B2 =(1- X)y - 72 )
(l+y+z-1)4-2(I7+yZ+ZX) (IV+Z-1)2 +(V+n)2 +y2z2 = 0

Ce qui nous donne coarse pr6c6demneat

P4(xtylz,T2) '(x+y+z- IF)4 -2(=7+yz+zx)(x+y+z-22)2 +(V,ZZ)2 +JPz2
la n6thode peut done se faire par induction grace an leme :

name : n existe n polw6mes de clend 2, B1(1) , , . , Ba(x) tels que

lean ++ (B1 (x) / O et , _ . et Ba(1)> O)

La d6nonst;ration est facile ( C,f+] ) .

Fig11re : Surface VS se projetant vertic&leaent sar le

Plon::cas ac3teaant que 19 den6 du polyn6ne obt;eau est at nimH !

ce qui perie:== aussi de VI>ir son irr6ductibilit6

3-



Proposition 2 : Soit P(x,D) un po]Jn6ne unitaire en :1: qui a une

racine r6e11e aai X€Cn , IIon P & aa noin8 211 r8ciaes r6elle8 qUi

80nt dl8tiacte8 dana an ouvert de On ,
IBnon8t;ration : Par =6cmeace ! clair pow n = 1 +

Con8id6=on8 1e polw6ne P(Xlr,,9•1_1 + O +!!) + Ponte& aea raciae8

r6e11e8 aont double8 ai xl4?O et ,++ et \_1)JO (par 18 tb6or6ne
des fonction8 implicitiea ) et e11e8 co=re8po=Ident a deux =acine8 z6elle8

de P(x, T) = O distincte8 ai x e6t dans un ouvert de Cn , le nonbre
de racine8 r6elle8 de P 88l; done Ie double da aoabre de =acine8 F6elle8

de P(xlt.+t•1_1 B Ot:D ) a= ce dernie= r6alise la proJection am On_1

et , par =6caneDce, a aa aonB N £BciDe8 r6eUe6 diBtinctes dans

m oavert de Ca_1 eR
Gela peme& de coaclwe que le polyn6ne Pn eat irr6dactible : eu

,rI,t , ,,it ? m ra,t,w i=E6da,tibl, d, ?n(x,P) n,n b,-lvia1 ,

C,w, ?n(x,P) a t,ut,, ,,, r&,in,, ra,11,, ,u hi,n au,,m,r ? nT„d
et pow les nane8 v&lew8 du paranatre x , P r6ali£e done 1£ projection

un an et eat done an Rains de de@ aRt ? - ?uCE,P) , JR
Ce polyru3ne pemet de dormrr Ime d6non8tzntion tr68 aiarpl8 dlUL

tb6arane de Hacker (Cf: [4] ) t

Caro11ai== 1 Si h(x) +Mo+ Atex) soat dea polw6ne8 r6ela tal& w
c, - {=68? J A,Cr)>0 et ... et \n>Q3 , dora k)a .

Din,n, iT,ti,a , \Ct1(x),,,,h(=),22) ,M ,,t d, d,# 2k , Hanna
la projeeHna aw Cn ,on a done 2k>2n par 18 prop08ltioR 2 nH
Eu r&ffinaat aa pea la n6t;bode p=6c6deate oa peat n6ne noatz:er que

On U'''t Mani'a rbi' d' t' rna' {x€f I Ala)> 0 ,...'b Ak(x)> o3lw
at llun dea k eat an naia8 6grl & n + Cela aou8 ariane a la question :

!but fera6 8eai-alg6b=ique eat-il =6nnion fini e de feraga da type

{ =cnPl 11( x)}a ,t ,,, a rICE)>o ?avec k\(B ?

Pim ce genre de question& van [4] [8 ] +
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§4 Ie ca8 F6n6r a1 :

D6fbi8 BOM me bneHoB Q Fm R2 -{( x,,)CB2 Jr - O e& x< oj I

PCa,o) - o

On a t P (x,J)}0 81 et 8euleneak gi =>O ou 7 ,> O

6 •eonJugage de \y- donn6e par :

+ Soit la foaetioa

Rx , ,) - -J 1 -=f - C =2 +-,= )G - fBiB)’
ann

ai PCO et x <0 on nla paa ${x fT) > O Jh voit dane que V(xgy)

Satisf ait m palyn6ne I(xly9 y ) = O du deMdne deEN en 7 et qui
Ul•l•

a une radne Wait;ive nai X)O ou r> O , lk Plu8 tP es& n6£ona:The

BIn 12 +o3 +

DPautire parti , voyon8 que taut 8eui-&l€6brique S pent ae nettre 30aa

la lorne S = n (SI) BTec 8

Sk -{x'&n 1 gCE)>o 'a ,. 'u Bk(x)>0 'u ..j '& r'' p'rW8n'B
IF at g Boat pFenier8 entre em onE ellet on peat 6atFire ( or [3] )

::)' -=.r;'3'P=(::1: :; ;}:;=''==;:} ' 1
et al B = W {B> aj = {E)0 et F/ o3 u{4/o et -7>o] +
On petIt done ruppose= que d&rs 1l6criture (1) ton& lea po17rr6ne8

80at in6dactible8 o EII atilis ant la diaiaabut;ivit6 oa obtieat la

repr69entation nnnnnc6e du 8eai–&186brique S +

D6f:ni8aons une n>action FE &s80ci6e a Sb :

si au,uae d,8 hain,, Ii , g a',,t v£de :

rk(x) . 9 Ft(ga) ,noeL;), J M(x) , no gb) )]
s'u a'7 , 1, a, d, q , rk(1) - %(4(x),Be q(x)) ,
Bt B'U HIT a paB de Ii : \(1) = 1/%(41(x)+ +0 BE(E)) + Fk eat
le quotient de deux foactions analytique93 aauf sur an fern6 de
eodlmen8ioa au noin8 de= +
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PPOD08ition ? I n eH8te un polWBne irHductible Rk(X9£P) tel que :
pour to$ = Fk(x) eat une dea =Bcine8 du polW6me Rk(=IT) qui a
toutiea aes rueine3 =6elle8 , oa a lt6qaiv&lenee :

res)r + h(x)> O ++ It>O 9 Bk( xIt) = O

D6noa8t;ration s

Soit A -ud(x),..,a(x)) , B -%(B{CX)...,<.(x)) ,et Bait
E1(X,F) le polW8ae obtenn en 61imin ant A et B du 8y8tane (1) :

Q& Cg(x) ,-o,{(x) ,A) n o

Q&(<(x),.+,QCX) ,B) w o
K(ATBtF) = 0

On voit cne a1 (x+Ft(x) ) = O pour tout x + Both Run f&cteu=
irE6dactible de &1 tel que RCx,Ft(x))a Bar m ouve=$ de Bn,alors

par prolnnBeneat air&IJtique on awa R(x3FkCx))=0 sur le domaine d9
d6fiaition de Ft , @ est an Olmert dense de Rn contenant q. ,
Si au point reBa 9 B(x,F) a une racine positive 9 le 8y8t6ne (1)

a une solution qtptf , Conne Qa et Qe.t alant que des =acines r6elles

at et 13 80nt r6els et conne K(d pp9F)K> a nnp maine pogjtive af}O on P>O

ae qui noatre que xeSk ,

B6dproqaeneat, ai =eSl Ft(x) eat uae racine poHitive de R(I,F)=0 ,a
eb6or6ne :

(1)

Si S est w 8eni-&lq6brique de Rn, 11 east;e m DO17n6ne in6ductible
R(XtT) tel que :

reS ++ 3t£R , R(bt) = a
Si S eat fern6 on oeut 8uDp08er que R e8t nnitnire ea B +
D6noa8t;ration : ToaJow8 avec lea names not;at;iona o Soit X une

r,,in, d, ?K(r1, ,,, ,h, P) - O dann une extension d, a( I1,,,,h,) ,
Si %1(IsP)est le palw&ne obtenu en 61 im+nant lea Ui du 8y8tzane (I1)

RICKaI) - o t
R2(X,U2) - 0(11)

h(a1 , ,,, ,% ,r2) n o
+ 6 +



D ,Pecker

On voit que Q1(X,1)=0 + Soit R(XrF) un fact;eur irr6ductihle de
Q1(EsF) tel que R(XJ) n O +Moat;rom que ce polW8ne coavient B
_ ai B(=+F)K3 a uae racine =6elle$ 18 8z8tane (ID a uno 80lution 8

qf , , suE pY ,Coarse lea RIC=+B)a> dont que dea =aches =6elle8
les at SORt r6els et PR(aIP .O &/)d & aBe =BeiRa F6ene: les
\ aoa& done tau positi£a Jlabu lea BE(I?tJ)dI out uae raci@
positive CB qui Donne We x cO 81 B 8 +

•'-a6ciproqueaent ai reS noali==ona que B(rtF)K) a me =aciae =6e11e +

re, d,ux p,rW,,s a(x,r) ,t hgq, ,+ ,ra,P) ant une racine

conuune X &it P lear divi8eur canaan dan8 R(Flp ++ pPB) [FJ +

P(F1 (x) I , , ,FN(x) ,r) a toutes ses =&cines r6elle8 si xe S pui8qulil

din,, ?X(q(1) , ,, ,%(x) ,r2) qui a toute, s,, THeiR,s r6erres res
Fl (x) 6tant tons posit:ifs , R(xtF) qui est multiple de

P(F1(1)s .+ 9%(x)tr) a dane une racine =6eUe + H
Rena=quon8 eo=e darts [a que cela ®licNe :
C,r,llair, , Si S ,,t an ,,ui-&186b=iqu, d, #1 d'int6rieu= non-

via, ; S ,,t pr, j,,ti,a d'un ,n,,nbl, &lg6briqa, im6ductible de ID+,4

!Poas les easenble8 &lg6b=ique8 &inst con8truit8 adnettieat

$dea paran6trisation8

eat donn6e par Z

ave, B1 M x - g ,

la au£ace
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ANNEAUX SEMI-CHAiNABLES

EBERH ARD BECKER (Universitat Dortmund)

DAN IE LLE GOND ARD (Universita Paris V I )

Orderings of higher level on a field have been introduced by Becker (1978)

and chains of such orderings by Harman who also defined chain-closed fields

(1982). Fields admitting orderings of higher level also admit chains of such

orderings. Con(lard ( C.R. A.S., 304, 1987 ) gave axiomatizations, in the

Artin–Schreier manner, for chainable fields : K is chainable iff K is real

and there exists a c K such that az d E K4 , and for chain-closed fields

K is chain-closed iff K is real and does not admit any algebraic extension

of odd degree, K4 + K4 = K4 , and there exists acK such that a2 d K4 and

K = K2 u – K2 u a K2 u - a K2 . Using these axioms we develop the theory

of chain algebra : a ring A is formally a-chainable if A is real and
n m

( E al4 - az E b +4= O ) + ( Vi a1 = O and Vj b 1= O ) ; an ideal I is an

a-chain ideal if it is real and ( E al4 – az E bl4€ 1 ) + ( Vi ale I and Vj

b 1€ 1 ) ; with these definitions we obtain that for a prime ideal I of A

I is an a-chain ideal iff the quotient field of A/I is formally a-chainable

For a ring A we define notions of a-spectra of higher Zevet and of

u-preorder (of level 4), and show that the spectra are non empty iff E A4 is

an a-preorder. We introduce the a-chain radical of an ideal I of A as

{\ = n P whe,e P = IP , P 2 1 , P p,ime and ,-ch,i. id,,1 } a„d

give a description of it. Finally, for some chain-closed fields, we obtain a

Nullstellensatz and study its validity,





E. Becker et D. Gondard

Le but de cet expos6 est de construlre ce que nous appelons I'Algdbre de

chalne a partlr de 1a th6orle des corps chalnables de manIdre analogue a 1a

construction de I'alg6bre r6e11e a partir de 1a th6orie des corps ordonnables.

Rappelons d'abord que 1 es ordres de niveau sup6rieur ont 6t6 introduits par

Becker tBl] et qu' un corps chalnable est un corps qui admet une chalne dlordres

de nlveau sup6rleur te11e que d6flnie par Harman [ H ] ; une suite (Pj)i€1y est

une chalne d'ordres de nlveau sup6rieur du corps commutatif K sl :

(i ) Po et Pl sont deux ordres vrais distincts (par ordre vrai on entend

ordre tota1 compatible avec 1a structure de corps) ;

(ii ) pour tout i > 2 , PI est un ordre de niveau exact 21 te1 que

deflni par Becker dans [Bl] (PIcK tel que P1 + Plc Pi , ${ = Pi - {0} est un

sous groupe de K = 'K. - {0} te1 que K/PI est un groupe cyc11que et

K/P{ 1 = 21) ;

(iii ) pour tout i > 1 :

Piu - PI = (pI_lnp.) u- (pI_lnp,)

Rappelons 6galement le th6oreme que nous avons obtenu dans [ Gl] et [ Gal

caract6r{sant les corps chafnables :

-1-



Proposition 1 -

Un corps K est cha{nabte si et; 8euZen@nt si on petIt g froboer an dZ4#lent a

tel que (K,a) satisfasse ;

(a) les a=iames de corps cornmLtatif ;

(b) p„,„ ,haq„, m> 1 Z’,ni,„„ AXl . . . AXml (-1 ; x{ + . . . + xS) ;
(c) pour ch(UWe n> 1 t 'adome AXI ... AXn I(a2 = X I + . .. + xI) .

Cecl conduit a poser 1a d6flnitlon I :

D6flnition I :

Un corps ctta£nabt e K tel que ae K et 'aZ ne soit pas sorr7ne cb pu£ssances

quatr£ame8 dans K sera ciit a-cha€nabte .

La terminologie est just IfIde par 1e fa it qu' 11 ex Iste alors dans K une

a-chaine (Pi ){ eIN , c'est-a-dire une chaTne d'ordres de niveau sup6rieur

(Pl)1,m telle que a2 # P2 . D'aprds IHl on salt qu, si K ,d„,t ,„ „d„

P2 de njveau exact 4 tel que a2 q Pa alors K est a-chaTnable.

Par exemple Qd) est un corps t-chalnable ; en effet nous verrons (lemme 2 )

que Qd) t-chalnable est 6quivalent a Q [t ] forme11ement t-chafnable

(definition 2) . Solt alors E( PI (t) )4 - t2 E(qI(t) )4 = 0 dans Q [t 1 ; sI

E(Pl(t))4 / 0 a un degr6 4n (les termes de Plus hautsdegres, donc de degres

multiples de 4, ne pouvant s'annuler car leurs coeffIcients sont des pu{ssances

quatriemes dans Q ordonnable) et E(qI(t) )4 / 0 a un degre 4p on aura it
alors un polyn6me de degr6 effectif 4n 6ga1 a un polyn6me de degr6 effectjf

4P+2 ce qui est imposslb1 e ; done E(pI (t) )4 = 0 et E( q1 (t) )4 = 0 et cecj

entrafne dans Q [t I forme11ement r6e1 que Vi P1 = 0 et Vj q j = 0 .

Remarquons aussi qu' 11 est clajr qu' un corps a-chafnable est auss{ aB2-.(.,halnable

et (- aB2)-chaTnable pour tout Be K (et r6ciproquement) .
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Algabre de chalne les premiers pas

On salt qu' un anneau A est formellement r6e1 sl et seulement si

Ea{ = 0 + Vi a{ = 0 , et que A integre est fonne11ement r6e1 sl et seulement

sl son corps des quotients est ordonnable (done bien sar un corps est forme11e-

ment ree1 si et seulement si 11 est ordonnable) .

Rappelons 6galement qu1 un id6a1 1 d' un anneau A est r6e1 si et seulement 51

A/I est forme11ement r6e1, sI et seulement si EaSel + vi a+ e I .

Dans 1a suite A d6signera toujours un anneau commutatif avec unit:6 et a un

616ment de A .

Nous a11ons malntenant d6finir I'analogue des notIons d'anneau forme11ement

r6e1 et d'ld6a1 r6e1.

D6finltion 2 :

A est un anneau formettement a-cha€nabte si

A est forrnetternent r4eZ (i.e. E a{ = 0 + Vi a+ = 0)

( I i ) i : 1 a ? H a 2 j : 1 b } = 0 + V ] a j = 0 e t V j b j = 0 a

n

1I

Rernarque I

Si A est un corps on salt d6ja que A ordonnable 6quivaut a A forme11ement

r6e1 et nous avons auss1 IcI que si A est an corp8p A u-cha£nabte aguit>art

a A forrnellement a-cha£nabte ; en effet :

+ Si A est forme11ement a-chafnable et que a2 = Ec?

et dorIC Vi c, = 0 , A est dorIC bien a-chainable.

+ R6ciproquement, supposons A a-chaTnable et SDlt une relat lon

E a: - az E b'! = 0 avec un b, au molns non nu1 ; alors
n m

1 1

-3-



n =
A dtIant a-chainable chacun des 616ments de cette somme de puissances quatrid-

mes doIt etre nu1 . 0r nous avons

2 (; al)(; (b:) + ...)

(; b3)4

1 : 1 a t b } =

(; b 3)
oO j, d6signe I'indice du bI suPPos6 non nu1 pr6c6demment. On obtient

donG VI ai b? = 0 ce quI entralne bIen, pu{sque bj # 0 , que Vi al = 0 .I J o '1 0 1
m

A 6tant ordonnable on d6dult ais6ment ensuIte de -az E b'! = 0 que Vj b, = 0 .
A est dorIC blen forme11ement a-chainable.

1

D6finition 3

Soil; I &172 id6at de A . I est un id6at de a-cha£7re si
n

(i ) I est an £dgaZrdel (i.e. .E afc I + V1 ai CI)+ 1 1 1

( I i ) i : 1 a I = a 2 ) : 1 b 3 c I + V ] a 1 e I e t V j b j • e I e

Par exemple, consid6rons R[X, Y ] ; salt (Y) l'id6a1 engendr6 par Y .

Alors IR[X,Y ]/ (Y) = IR[X]=IRIX] , or nous savons que IRjX] est X-chaTnable

(cf . : Qd) ) . Le theoreme I montrera alors que I'id6a1 (V) est un id6a1 de

X-chalne de R[X, Y ] .

Remarquons qu' 11 peut exlster des id6aux r6els dans un anneau int6gre dont 1e

corps des quotientIS est chalnable quI ne solent id6a1 de a-'chalne pour aucun a
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par exemple soit R[X] et I'id6a1 r6e1 (X-a) , alors IRIX ]/(X-a) - IR dont

on salt qu' 1 1 est non chalnable, done (X-a) nlest jamais idea1 de a-chalne.

NotIons aussi que dans un anneau A intdgre, si I est un Id6a1 premier de

a-chalne alors I est un Ideal de B-chalne pour. tout B=!aa2 avec aeA\I

En effet soit I un id6a1 de a-chalne. Supposons E af - a2 a4 : bIG I

c I e s t a u s s i : a t a 2 : ( b ; a ) 4 c I e t d o n c n o u : = : voIs VIa + !! it
{=1 ' i=1 J '

Vj bIa CI . Puisque I est premier et afI alors bIc I et I est bIen

un id6a1 de aa2-chaine.

La r6ciproque est vrale pour a inverslble dans A .

Th6ordme I

So it I an {d£at premier de A , Ze8 propr£6t6s 8u£uantes s07rt equivaLent;es :

( 1) 1 est an id6at de a-chanie .

(2) Ze corps des quotientis de A/I est forrnetternent i-cha£rrabte .

Ce th6ordme est un coro11alre imm6diat des deux lemmes suivants :

Lemme I : So it I un £d6at premier de A at or s I est an £d6at cb a-cha£7te

si et seuterrent; si -N/\ est forrnettement u-cha£nabte.

Lemme 2 : Soit B an annea bc comrmtatif intagre atiec un£t4 et ae B ; ators B

est formettement a-cha£nabte oi et seuLement si Le corp6 des quot£ents de B

e8t formettevtent a-cha£nabte .

D6monst:ratIon du lemme I

+ So it I un Id6a1 de a-chalne. Montrons que A/I est forme11ement

a-chaTnable :

(i ) I est un idea1 r6e1 donc A/I est formellement r6e1 ;

5



(11 ) an suppose - a' E b': = 0 dans A/I alors
j:1 J

J af - a2 :
i=1 1 j=1

et Vj bj€ 1 , d'oO V1 ij = 0 et Vj bj

et I dt:ant un {d6a1 de a-chalne alors Vl a+ e I

0.

Supposons A/I formellement a-chaTnable.

Alors (1) A/I est forme11ement r6el dOIIC I est ree1

et (ii ) Soit [ aT - a' E b:cI alors
mn

4

j=11;1

dans A/I et done

Vi a1 CI et Vj

0 et Vj b{ = 0 d'aprds I'hypothese, d'o0

est bIen un id6a1 de a-chaTne. o

D6monstratlon du lemme 2

est cla Ir

Supposons B forme11ement a-chalnable.

Soit dans q.f . (B) , corps des quotients de B , une relation

j:1 ( i) - a2 j;1 ( i)4 = 0

alors nous obtenons dans B 1a relatlon :

n m n 4 9m n m 4
j:1 (al(j:1 dj k]: I bk)) - a j:1 (cj(1:1 bj kjj dk))

k= 1 k=1

B 6tant forme11ement a-chaTnable on en d6duit

m n

V1 al(j=1 dj k];i k)
k=1

n m

Vj cj( 1:1 bj kt:j k)
k= 1

avec Vl b1 # 0 et Vj dj # 0

0

0

0
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Les b et d etant non nuls et B {ntegre on obtjent :

Vi al = 0 et Vj cj = 0

Donc q.f . (B) est formellement a-chafnable. a

Remarque 2

Si B est un anrleau integra auec unita et q.f . (B.) formeltement ancha£nabte

aZors q. f . (B) est forrnetlement a1 -cha£nabte pow un a' E B .

En effet :
a

avec a2 # 0 , et q .f . (B) forme11ement £-chafnable.

S o { t : ( i ) = ( ; ) 2 ; ( e ) 4 = 0 a 1 o r s V i a j = 0 V j c j = 0

P o s o n s a 1 = a 1 a : a 1 o r s $ 1 o n a u n e r e 1 a t I o n ; ( i ) wai 2 :

c'est aussi 4 ; (;) - a'2 a3 ? q) = 0 donc

et on obtient Vl a{ = 0 et Vj c 1 = 0 ,

pulsque B est int6gre et a2 + q ,



II - Le spectre de nlveau sup6rleur d' un anneau

Les anneaux sont toujours suppos6s commutat Ifs et avec unIt:6 . Pour un anneau A

on connalt 1a notIon de spectre r6el d6fin{ par :

Sper. A = { (1 ,p)II Id6a1 premier r6e1 de A et p ordre de q.f. (A/I)}

Un des th6ordmes de I'alg6bre r6e11e donne alors que Sper A fp si et

seulement si I'anneau A est semi-ree1 (1.e. -1 gE A2) si et seulement sl E A2

est un pr6ordre.

Nous a11ons ici poser les d6flnitions permettant d'obtenir un th6ordme

analogue dans 1e cadre de I'algdbre de chaine.

D6finition 4

Soit A un armeau et aeA ,

Nous appeteron3 a-cha£ne-spectre r4e Z de A

a - Sper A = { (1 , (Pl ) jcR )II id hZ premier de aqcha£ne de A ,

cpI) leN cha£rte de q.f .(A/1) telte (We a2$ P2} .

D6finitlon 5

Soit A un a7meau et a CA .

Nous appeterons a-spectre r4eZ de A

Spera A ; { ( I, P2) 11 icHaZ premier de uqha£ne de A , P2 ordre de

niDean enact 4 de q.f . (A/I) feZ que a2 $ P2}

pour 1a commodlt6 des notations dans les d6monstrations nous poserons alnsl

D6fi nition 6

So£t A url a71neau et a CA .

D6f£n£$son6 te u-6pectre de N par :

Speccx A = { 1 II icHaZ premier de a-cha£ne de A} .

Les lemmes 3 et 4 suivants r6sultent Imrr6diatement du th6oreme I, du fa it

que par tout ordre Pa de niveau 4 11 passe une chalne dlordres (Pl )1 cm

NoIr [ H 1) et que EK4 = np2nEK2 (volr [ Bl] et [ H]).
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E . Becker et D. Gondard

Lemme 3

So it A un a71neau et a CA .

Speca A = { 1 Iq.f . ( A/I ) adrnet un ordre P2 de ni wah e£act 4 tel

(? I!]I e & q P 2 } p

Lemme 4

Les prQpr£6t6s su£vantes sont; 6qu£vatenties :

(i ) a - Sper A # P

(ii ) Spera APg
(iii ) Speccx AfP

Pour 1'6tude d' une topolog Ie du spectre de nlveau sup6rleur c'est sans doute

1a notIon de a-chalne-spectre r6e1 qu' 11 convient de prendre car c'est 1a

plus riche puisqul11 ex iste une surjection de a-spe# A sur Sperc1 A (qui

confond toutes 1 es chalnes passant par un P2 ordre de niveau 4 te1 que

a 2g p2) et une autre surject Ion de Spera A sur SpeccIA (quI confond

t„, 1„ PP ,rdres de niveau 4 tels que a2$ P2).

Par contre pour 1'6tude quI suIt 1a notIon de Speca A est sufflsante.

11 nous faut encore {ntrodu ire deux aut;res notIons correspondant aux notions

d'anneau semi-r6e1 et de preordre dans 1e cas de I'algebre reelle.

D6flni tIon 7a

Soit A url an7teau et a CA .

Une pcwt ie T de A est un a-prdordre (de nil>eau 4) si et seuLement si

T + T CT , T.T CT , A4 CT

a4k+2 (1+t) $ T - aZ TVk CR vt CT

D6flni tIon 8

Un an7reau X sera d it ameab& a-semi-cha€nabZe

T = = A4 e8t an a-pr6ordre .

-9-



Enongons alors 1 e th6ordme principa1 de cette partle :

Th6or6me 2

Les propr£6t::68 su£Dantes sont; 6qu{vatente8 :

(i ) A est a-semi-cha£nabte ;

(ii ) A admet an a-pr6ordre ;

(III ) Specc1 A1 g . (ce qM 6quivaut pw Ze LevIne 4 d

Sperc1 AIg ou a u - SpeF A # 9)

(i ) + (iI ) est clair.

(Iii ) + (i ) Supposons que E A4 ne solt pas un a-pr6ordre. Cela slgnlfie

qu' ll existe ken , t, t' , t" CE A4 te1 s que Jk+2(1+t) = t1 - a2 t11 .

Solt Iac Specc1 A : dans q.f . (A/Ia) on obtlent 1a relation

a 2 =4k (1+t) = i' - a 2l"

Salt P2 un ordre de nlveau exact 4 de q.f .(A/la) te1 que a2 q P2 . Alors

automatlquement - j2e P2 et donc T' - a2 T"ep2 .
Le facteur a4k (1+T) appartient i E (q.f . (A/in) )4 et est non nuI.

On en d6dult a2 cPP ce qu1 est imposslble.

(ii ) + (Iii ) resu1 te Imm6dlatement du lenrne 5 ci-dessous qui est 1lanalogue

de 1a proposItion (4.1) de [ B2 ] .

Lemme 5

So£t A un a7meau et; a CA .

So it TC A tel we T+T CT , T . T CT et A4 CT . Ze8 prop?£6t ds 8u£t>ante8

son 1; 6qu£vatente s ;

( i ) T e3t un u-pr6ordre

(ii ) £Z eMs% la e Speca A et P2 ordre de n£veau enact 4 de

q.f. (A/Ia) t,Z q„, a2$ P2 ,t Tcp2 ,a

teT , xt€ q.f. (A/Ia)}
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E . Becker et D, Gondard

(Ii ) + (i ) la d6monstration est la meme que celle de (iII ) + (i) du

Th6or6me 2.

(i ) + (Ii ) Nous allons, comme dans le cas de I'algebre r6e11e, d6flnlr

une partie multipl{catlve S te11 e que les et 0 # S , et 1lidea1 IH

cherch6 apparaltra comme un Id6a1 maxlma1 pour 1a propri6t6 d'atre disjoInt

de S

Posons :

S2k+1 = T - a2 T - Jk+2 (1+T) , k>0

et S2k = T - a2 T + /k (1+T) , k>0

D'apres I'hypothese "T est un a-pr6ordre" , 0 $ S2k+1 ; si 0€S2k alors

DC (-aZ) S2k , or nous avons (-a2) S2kcS2k+1 , c'est donc imposslble.

Solt B = - a2 et soit Sg = T + BT + BE(1+T) pour 1 > 0 . Alors en utill-
sant B2€T on montre que St . SmcS£+m .

Soit alors S = u S, , S est une part ie mult{pllcative te11e que 0 gS
t > O ”

et les .

Salt Ia maxImal parmi les Id6aux I tels que in S = g , Ia est un Ideal

prern1 er .

C„,id6„„, ,1,„ T={£t ,i Itc T , ,t€q.f.(A/la)} ,t „,„t„„, d',b„d
que i2€ T - a2T est impossible.

Supposons dorIC a2e T - a2 T . En supprlmant les d6nominateurs et en reve-

nant a I'anneau A on obt lent 1 ' existence de rCA \ IN , t, t' CT tels que

(1) r4 a2 : t - a2 t1 mod la

Comme rg in alors Ia + (r) , dlaprds 1a maxima1 ltd de la , doit rencontrer

S . DorIC l1 exIst;e uC IN et ve A tels que u + vr = sCS . On en d6dult

-11-



que v4 r4 = s4 mod in ce qui nDntre compte tenu de 1a relatIon (1) qu' 11

existe scS et tl, t2€ T tels que

(2) s4 a2 : tl - a2 t2 mod la

Cec1 s{gnjf je que tl - a2t2 - s4 a2e Ia

Soit k te1 que s4eSk pujsque

Sk = T + BT + Bk (1+T) oO B= - a2 on abt lent

tl + Bt2 + 54 Be T + BT + BCT + BT + Bk( 1+T))

soit encore pulsque B2 CT

tl + Bt2 + 54 B c T + BT + Bk+1 (l+T)CSk+1 CS

d'oO tl - a2t2 - s4 a2 = tl + Bt2 + s4 Be Ia nS ce quI est {mpossjble.

DorIC a 2 gT - a2 T . 11 reste a montrer que iN satisfalt les condItions

de (ii ) .

- 1 q T , sinon on aurait - a2 €a2T et done a2 e-a2T cT - a2T ce

qui est impossible.

En partjcu11er - 19 X(q.f.(A/Ia))4 ce quI montre que 1e corps q.f.(A/la)
est ordonnable (voir [ Bl I) .

De p1 us -1 gT - i2T , puisque sinon ori en d6duirait i2€ T - a2T qui

est faux ; cecl montre que T - aZT est un pr6ordre propre de nlveau exact 4

et donG 11 exlste P2 un ordre de nlveau exact 4 te1 que p2DT -a2T .

Enfin cet ordre P2 est bien te1 que a2 q P2 : d'abord a2 # 0 pujsque

a2$T-a2T ,„„it, p,i,qu, -i2€ P2 , a2 „ P„t ,PP„t„i, a P2 q,I
est un ordre.

L'idea1 IQ est dorIC bien un id6a1 premier reel tel que q.f . (A/IN) admette

un ordre P2 de niveau exact 4 te1 que a2$ P2 (ce quI montre que

lac Speca A) et te1 que Tcp2 . O

-12-.
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NotIons que 1a d6f{nition 7a est remplagable par 1a defInitIon 7b donn6e

ci-dessous .

D6f{nition 7b :

So it A un an7reau et aeA .

Une part£e T de A est un al>rdordre (de n£ueatl 4 ) 8£ et 8euZe#lent si

T + T CT , T . T CT , A4 CT ,

a4k + 29 T _ a2 Tvk c )I

Les d6flnjtjons 7a et 7b sant 6qujvalentes car sI /k+2 (1+t) = tl -q2 t2

(t, tl, t2 dans T) alors Jk+2 = tl - a2(t2 + /kt) = tl - a2t3 oO

13 = (t2 + a4kt) est clalrement dans T .

De meme si Jk+2 = t1 - aZt" (avec t1 et t11 dans T) , salt teT alors

a4k+2 (1+t) = (t1 - a2 t") (1+t) = tl - a2 t2

avec tl = t' (1+t) et t2 = t11(1+t) qui appart{ennent bien aT .

Une conversation avec R. Berr (Septembre 88) nous a conduIt a ajouter une

d6flni tion dans 1 e cas oil a est Inverslble, car 1a d6finlt lon 7b de

I'Q-pr6ordre peut alors prendre une autre forme :

D6fini tion 7c

So'tt A un anwau et d CA &in 6t6rnent inversibte de A . t/ne pm#{e T cie A
est kn u-prdordre (de n£uea bl 4 ) si at seuLement si ;

T + T CT , T . T CT , A4 CT , -1 gT - a2 T

C'est clair car /k+2 f T - a2 T est equlva1 ent dans ce cas a a2 q T - a2 T
et dorIC a -1 gT - aZ T .

-13-



Rernarque 3

La condition -1 $ T - aZ T de la definition 7c ne sauralt convenir dans

tous 1 es cas . En effet 51 a est n11pot:ent, a4 = 0 par exemple, T c A te1

que TfT CT , A4 c T ne satlsfait pas wk /k+2 gT - a2 T mais satis-

fait -1 fT - a2 T dds que -1 PT .
En effet sl -1 = t : a2t' alors I + t = a2 t1 et dorIC (1+t)2 =
d'o0 -1 = 2t + t:z eT .

-14-
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L'a-chaine radlca1 d' un Idea1

11 paralt alors nature1 d'introduire 1a d6finltlon su{vante :

D6finition 9

Salt A un a7zneau cormnrtatif alec an£t4 et a CA .

Soil; I am id6at de A .

On appet te a-cha£7re radical de I , Z 1 intersection des {d6aun prewder8 de

a-cha£7te Ze conte7ra7rt; ;

VT = n I
a ICI a

IN e Speca

D1 une manlere analogue a la propositIon 4.3 de [ B2 ] nous ut{llsons le lemme 5

pour obtenir une descrIption de I'a-chalne rad{ca1 d' un {dea1 .

a

Th6ordme 3

Soit A un arrneau cownbrtatif avec unita at a CA . So£t 1 an id£al de A

a = { feA [ 3k eR , it, t1, t" C EA4 tet8 que

I a4k( Pk + t) + t1 - a2 tl'€ 1}

D6slgnons par J = {fcA llk€N , at, t' , t" c EA4 tels que

a4k (f4k + t) + t1 - a2 t" eI}

On d6nnntre successlvement les deux inclusions.

J cfl

Soit Ia e Speca A te1 que Ia 3 1 , nous a11ons montrer que fc Ia

pllant par a2 on obtient que a2 . a4k (f4k + t) + a2 t1 - a4 t" c I .

Supposons que f # la , alors puisque = # 0 dans A/la et que I CIa on

obt:lent

i2€ : Cq.f.(A/1,)>4 - a2 t(q.f.(A/1,))4

ce quI contredit le fait que q.f . (A/IN) est i-chaTnable.

fl

En utilisant I'hypothdse sur f,a4k (f4k + t) + t1 - a2 t"eI et en multj-

= 1 5 M



aT c J .
a

En passant a A/I on peut supposer 1 = 0 .

Solt fca . Si f est n11potent alors f4k = 0 pour un certaln k et
a

don(; f appartlent bien a J .

Supposons maintenant que f ne SDlt pas n11 potent et consid6rons I'anneau Ar .

Supposons que Af est a-semi-chaTnable, alors par 1e th6ordme 2, nous pouvons

trouver un Id6a1 IN e Speca Af . La trace I_ nA appart lent a Speca A et

pourtant fg la , c’est dorIC impossib1 e.

a

Llanneau Af nlest donc pas a-semi-chalnable ce quI sign if Ie que EA; nlest
pas un a-pr6ordre et dorIC qu' 11 existe une relatjon

t1p I w a 2 t 1 1
–VF–

oO k, I , meE et t, t:' , t" CE A4

a4 k+2

Revenant a I'anneau A , en multlpllant par a2 et st n6cessalre par les

puissances convenables de a4 et f4 , on obt lent une expression du type

a4k (f4k + t) + t1 - avec

keR et t, t:' , t" .CE A4 , ce quI sIgn if Ie que f€J' . a

Remarque 4

Dans Ze cas on aCA est inversible , 11 expressIon du radIcal donnie au

th6ordme 3 devient :

X= {feA I rk€m , at , t' CZ A4 tels que f4k+ t -,2 t' e I}
a
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II est connu qu' un id6a1 est reel si et seulement si 11 est egal a son radica1

r6e1. Nous pouvons ici obtenir un r6sultat analogue avec les definItions que

nous avons donn6es :

Th6ordme q :

Salt I bin id£al dlun amrbeau cullrllutat£f A ; aZo?8 60nt aqv£vatente8 Zes

proprt6tes :

( 1) 1 est an £d4aZ de a-cha£7re ;

(2) 1 = n .
a

La d6monstration ut11 ise 1e lemme suivant :

Lerwne 6 : Soil; p un C&aZ de A .

A tors p est un id£at de a-cha€ne si et seuLement si

sonI; des {d6aua prem£ers de a-cha£ne .

+ La propri6t6 de p d'etre un Id6a1 de a-chaTne entraine que p est un

Id6a1 r6e1 et dorIC que P = O P{ avec pj jd6aux premIers r6els .

Montrons que ces id6aux premiers Pi v6rifient aussl la propri6t6 (ii) des

ideaux de a-chalne (Nous supposons 1a representation P = F) P1 miniKnle) .

Supposons que :

( i al - Q2 } b2) c FI

am

Soit h€j;j h et hf Bl on fQr"” h’(?

comme a parent dse et auss1 ans i21 Pi

a : = a 2 ? b : )

comme h .

ceci est dans p

-17-.



D o n c ? ( h a k ) 4 = a 2 } ( h b £ ) 4 E : q P I R R f # P u 1 s q u eRe stun ideal de

a-chalne alors chaque h ak et h bt est dans P .
Ma is

Tk h akc P = ? Pi avec hf PI + akc P{

VI h bIc P = T- Fi " " + bIc pl

pI est dorIC bien un Id6a1 de a-'chaT ne.

La r6clproque est 6vidente. D

Le th6oreme 4 r6sulte alors de la definition 9 et du lerrrne 6.

-18-
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Un Nu11ste11ensatz pour certains corps chaTne-c1

Nous savons que si K est un corps r6e1 clos 11 exlste un Nu11ste11ensatz r6e1

qui affirme que 1e radlca1 ree1 d' un Ideal 1 est egal a J(v( 1) ) oo nous

utilisons les notations classiques : v(1 ) , {Tc Kn I vf€ 1 f(7) , 0} est 1a

variet6 de Kn defjnje par 1 ' ideal I et J(W) , {feK[i] I VjeW f(i) = 0}

est I'id6a1 des poIYn6mes s'annulant sur 1e sous-.ensemble W de Kn

Afin de pouvoir obtenlr sur les corps chalne-clos un analogue du

Nu11stellensatz sur 1 es corps r6el-clos, on peut aussi retrouver la notion

de a-chalne radlca1 d' un Id6a1 en suivant 1a m6thode g6n6rale Ind{qu6e par

Cher1 in dans [ C ] .

D6finltlon 10 :

Soit K un corps a–cha£nabte et 80£t

radIcal de \ est d6fin{ par

f\= n p oa
a pep

I an ideal de K[ X] . Za u-cha€ne

P = {p, p £dZaZ premier cb Ktit , 113 1 at KIX 1/p est plongeabte dans un

corps a-cha£nabte} .

Th6or6me 5 :

Mit I un {cHaZ de Ktit oa K est un corp8 a-cha£rbabte alor8

va = n p oa
a PC Q

Q = {p , p {d6at premier de K[XI , P3 1 at P e8t un id4at de a–cha£ne} .

Ce th6ordme nDntre bIen qu' {1 s'agjt de 1a mame notion d'a-chalne radlca1

d' un {d6a1 que ce11e d6flnle en II1-9 .
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D6monstratlon :

KC K [i]/Pc q.f. (K[X ]/P)

on salt que q.f. (K[X ]/p) est (forme11ement) a-chafnable ssI KaI/p est

formeIIement a-chainable (lemme 2) , dorIC sl et seulement sj I'ld6a1 p (quI

est premier par hypothase) est un {d6al de a-chalne (theorame I) . n

Rappelons 6galement qu ' un corps chaTne-clos K est un corps admetl.,ant une seule

chalne dlordres de njveau sup6r{eur (Pl )1 em et te1 que (KI (Pl ) ICM) nladmette

pas d' extension algebrique fid61e (on djt que (L, (R )i eR) est une extension

fid61e de (KB (Pi )jem) sl (B ) jcR est une chaTne d'ordres de rl{veau

superieur de L et si pour tout icR jinK ' pl ) .

Dans [ Gl ] et 1 G2 ] nous avons montr6 qu' uri corps K chaTne-clos 6tait

caract6rls6 par : K ordonnable et pythagorlclen, te1 que tout polyn6me de

degr6 impair a une racine dans K et 11 existe ae K sat{sfaisant

a2 gE K4 et K = Ka u - K2uaK2 u - a K2

Enfin dans [D-GI ecrit en co11aboratlon avec F. Delon, nous avons d6montr6 1 e

r6sultat sulvant que nous a11ons ut111ser pour obten Ir 1e th6or6me 6 :

ProposItion 2

So'tt K et L dell= corps cha€ne-cLog .a-cha£7rabtes . $upposon8 que K n 1 admette

qu Fune 8euZe vaLuation hensdZ£enne a corp8 des reste8 rdeZ ctos , aZors K <L .

F. Delon ayant remarqu6 que 1e Nu11ste11ensatz g6n6ra1 donn6 par Cher1 in

pouvalt s'appliquer des que 1lon avait une lnclusion 616mentaire, vol r [D]

(propositIon 3 cl-dessous) , les d6finitions et resultats pr6c6dents permettent

alors d'obtenl r :
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Theoreme 6 (Nu11ste11ensatz )

son; K an corps cha£ne-ct06 a-cha£rLabte ayant une 8eute vaLuation hen86tierLne

a corps des restes reel -cLog . Sett I un icHat de KIX ] ators

J(V(1)) = a
a

on nous notions tou,j ours ;

V( 1) ; {je Kn , Vfe I f(i) = 0}
J(W) = {feK[X 1 , View f(7) = 0}

Le th6oreme r6sulte du Nu11ste11ensatz gen6ra1 de CheN in (propositIon 3

ci-dessous) et des d6finltions et r6sultats precedents .

Proposltion 3 (d'apr6s [DI)

So tt K un corps quetconque , T sa t;hao?ie dans Ze tangage des anneatin pLus

everrtuetternent un nombre fini cie constant;es.

Pour un icMaZ I de K [X ] on d6finit =

1 -Radical (1) ftp
g

on

P= {p £d3aZ prer,der de KIX] , 1131 et Kt71/p se ptonge d@13 un

maddIe L de T avec K< L} .

Ators J( V( 1 ) ) = 1-Badicat (1) .

D6monstrat jon du th6ordme 6 :

En effet KRt/l , avec 1 ldea1 premier de a-chaTne, peut se plonger dans

un corps L chaTne-clos a-chalnable te1 que K< L car nous avons :

KCKli]/1 'qt (K[XI/I)
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qf.(K[X ]/1) 6tant (formellement} a-chafnable, il existe une chaTne d'ordres de

njveau superieur (Pl)len telle que a2 # Pa . Salt alors L la c16ture de

chalne de ce corps pour 1a chalne fix6e, L est un corps chafne-clos

a-chainable. Si nous supposons de p1 us que K n'admet qu' une seule valuatlon

hens611enne a corps des restes r6e1 clos nous obtenons K<L (grace a 1a

proposition 2) . D

Remarque 5

L'hypoth6se faite sur 1e corps K chafne-clos que ce1 ul-cI n'admet qu' une

seu1 e valuation hens611enne a corps des restes r6el-clos 6quivaut au falt

que K n'admet qu' une seule valuatlon hens611enne a corps des restes r6el-clos

avec groupe des valeurs impair-div{slble et 1 vK/2vKl = 2 .

Cette condition peut dorIC aussl etre vue comme A(P2) = 0(P2) oO A(P2)

d6signe I'anneau de Becker et 0(P2) l'anneau de Jacob,1e premIer correspon-

dant a 1 a p1 us fIne des valuatiomayant 1 es propr16t6s 6nonc6es cl-dessus et

1 e second a 1a plus grossi6re de ces valuations (votr [ B3 1) .

En combInant 1e th6ordme 3 et 1e th6ordme 6 modif Id par 1a remarque 4, nous

pouvons obten Ir un Nu11ste11ensatz p1 us descr{pt if sous la. forme du th6or6me 7

donn6 ci-dessous

Th6or6me 7

So it K an corps chatne-ales a-cha£nabte tel we A(P2) = 0(P2) . 4Zor8 pour

tout id hZ I de K[X1 , . . . , Xn ] n > 1

a(v(i)) = {feK[Xl ,..., Xn] j3k€N , 3t, t'E E (K [ Xl ,.. ., Xn])4

t,I, q„, Pk + t - a2 t'£ IJ .

Remarque 6

Pour un autre Nutt8tetten8atz (sur Ze8 corp8 rZeZ8 ct08 g6n4rati848 ) on paurra

c07tsutter [B-,1 ] .

.-22-



E . Becker et D, Gondard

La validit6 du Nullste11ensatz

Nous montirons ici que les 6nonc6s du Nu11ste11ensatz donn6s dans 1a partle

pr6c6dente aux th6ordmes 6 et 7 peuvent 6tre g6n6ralls6s a un corps chalne-clos

quelconque dans 1e cas d' une seule varIable et ne peuvent etre am61ior6s pour

p1 us de variab1 es .

Th6ordme 8

Soit K un corps cha£7re-ct os a-cha€7rabte ;

Soit I un id€at de KI X1 ] ; ators

a(v(i)) = VT
a

De VI = n I_ et de a(v(i ) ) = n at
a I c la a ' ' “ K [ Xl)/#= K

la e Speccx Kl Xl ]

an d6duit puisque de tels X sent dans Speca K [ Xl ] que

a(v(1)) ' JT

du corps K .

K etant chalne-clos on a K [ Xl 1 / Ia = K pour tout Ia e Speca K [X1 ] .

a

Mais dans 1e cas de n = 1 , K [ Xl] /la est une extensIon flnle a-chaTnable

Th6ordme 9

Salt K an corps cha£ne-ct08 tel we A(P2) + 0(P2) , aa A(P2) d£8ign£

Z lam@aa de Becker et 0 (Pa) celui de Jacob (Var [ B3 ]) ;

A tors Ze Nuttstetlen3atz a(v(1) ) = n nlest pa8 udr£f£Z dana
a

K[X1 , . . . , Xn ] pour n > 2 .

La condlt lon A(P2) + 0(P2) est 6quivalente au falt que 1e groupe des

valeurs F de 1a valuation v correspondant a A(P2) admet un sous groupe

convexe divis{ble non trlvla1. Not:ons A 1e sous groupe convdxe dlvislble

maxima1 de r .
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D'apres I'hypoth6se on peut trouver t tel que vd) > 0 et vd) CA .

Consid6rons 1e polyn6me f(X) = (1+X2)(t2+X2) . Montrons que pour tout xc K ,

f(x)€f4 . 11 est clair que f(x) / 0 .
Si vCx) < 0 alors f('x) = x4.e avec v(c) = 0 ; e est alors une puissance

quatr16me puisque 1a valuation v est hens611enne avec corps des restes

r6el-clos ; dorIC si vCx) < 0 alors f(x) c K+4
2

Si 0 < vd) < vCx) , alors f(x) = tc.c1 . (1 + (xt-1) ) . Le dernler facteur est

une unit:6 et une sonvne de carr6s, c'est dorIC une pu{ssance quatrleme.

Pulsque vd)e2F , alors t = e2 x2 oO c2 est une unite, donc

t2 = ,i x4€Kt4 et do„c dans ce cas encore f(x)e f4

11 reste 1e cas 0 < vCx) 4 vd) . Alors f(x) = x2 .c avec c une unlt6 .

Puisque A est convexe nous avons vCx) eAC 2 F et donc, comme pour t

ci-dessus x2€Kt4 , d'oO encore f(x)e k+4

Comme cons6quence du fait que pour tout xe K , f (x)e K+4 nous obtenons que

1 e polyn6me g(X, Y) = (1+X2)(t2+X2) - a2 Y4 nladmet pas de z6ro dans K2

(pu{sque a2 q K4 1 e corps K 6tant chaine-clos a-chainable) .

Supposons que I'on ait a(v(1 )) = M
a

a4k (1+tl) + t2 - a2 13 = h.g oO les

tI c E(K [ X,Y])4 , he K [X,Y] et kER .
Supposons maintenant que g admette un z6ro (a,b)€L2 , avec L extension

ordonnable de K . Alors, pulsque bCa,b) # 0 on obtient que a2eEL4
11 nous suffit alors de construire un corps L 3 K te1 que a2$EL4 et que g

admette un z6ro sur L , pour anntrer que 1e Nu11ste11ensatz n'est pas valable.

alors on pourralt trouver une Ident ltd

Pour cela etendons la valuatlon v a K(X) en posant

u( Eaj XJ) = mi.n {(v(aj), j)} e r xZ

avec Z 1e p1 us petIt fact:eur.
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Puisque v(a) + 2r engendre r/2r on trouve

rx Z / 4(F x Z) = < u(X a-1) > x < u(a) >

Alors il existe un caractere n : rx Z/4(F x Z) -+ u(4) te1 que

nu(X a-1) ; 1 et nu(a) = i .

Ceci entraTne I'exIstence d' un ordre p’ CK(X) tel que X a-1€p' , - a2€p'

et 1e niveau exact de p' est 4 .

Consld6rons malntenant une c16ture r6elle (L, F) de (K(X) , p1 ) .

Puisque 0 < u(X) < ud) nous obtenons

f(X) = X2 . c = X2 . u4 avec ucl .

De (X a-1)2€ Tn L2 = L4 on deduit que f(X) = a2 . v4 avec vel .

Le polyn6me g(X, Y) admet alors le z6ro (X,v) sur L .

De p1 us puisque - a2€'F , alors a2 #EL4

Cec j termlne 1 a demonstration et wnntre que le Nullste11ensatz n1 est pas

valable dds que A(P2) + o(Pa) . o
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COUPLES D'ORDRES CHAiNABLES

M. A. DICKMANN
CNRS – Universit6 Paris VII

RESUME. Dans cet expos6 nous abordons les questions suivantes:

(1) Premiarement, nous nous demandons quelles sont les paires dlordres Po, P1 sur Ie corps

k(X) des fonctions rationnelles i une variable et coefficients dans un corps ordonn6 <k, S> qui

constituent le d6but d'une chaiTte d'ordres de niveau sup6rieur sur k(X) (dans le sens de

Harman [3]); on suppose, sans perte de g6n6ralit6, que Po, P1 prolongent llordre $ sur k-

L'6tude de cette situation a pour objectif de maitriser un certain nombre d'exemples

simples. Pour certains corps k iI est possible de determiner toutes les paires de tels ordres en

exploitant la connaissance de toutes les valuations sur k(X); clest, notarnment, le cas lorsque k

nladmet pas de valuation r6elle non–triviale, p. ex., lorsque k est archim6dien.

Notons qu'une paire d'ordres totaux Pn, P1 sur K est chainable –i.e., le d6but d'une

chaine sur K– ssi il existe une valuation v sur K avec les propri6t6s suivantes:

(i) v est compatible avec Po et Pl, i.e., 1 + Mv g Po n P1

(ii) ;PVi = AnTi et ceci est un ordre total sur le corps r6siduel Ai.

En utilisant ce crit6re nous avons:

Example et Proposition 1. (k E R). Une paire d’ordres Pa, PI stir k(X) est chaiTtable ssi its oM

I’true des formes suivantes:

–Po = P +, P I = P _, avec a El (= ci6ture r6eUe de <k, S>), ca P + (resp. P J d6signe- a' - a a - a

la restriction a k(X) de l’ordre sur la (X) qui read X in$nit6simalement proche a droite (resp. a
gauche) de a, c’est–X–dire, l’ordre teI que a < X < b (resp. b < X < a) pour tout b eR, a < b
(resp. b < a).;

–Po = PIn, P 1 = P q, o& PIn (resp. Pf d6signe t’ordre stir k(X) qui ren(1 X Plus grand

(resp. pIlls petit) que tozs les 616ments de k. a



Remarquez la ''sym6trie" des paires dlordres chainables dans ce cas. La m6thode utilis6e

permet 6galement de traiter certains cas oil k n'est pas forc6ment archim6dien. La situation se
complique rapidement dds que 1lon considdre dlautres corps de coefficients k, a cause de

1lexcessive complexit6 de 1lensemble des ordres, voire llensemble des valuations, de k(X). Pour

information, le lecteur peut consulter Ia discussion informelle du cas RCX, Y) contenue dans
Brumfiel [2; 58.12].

(2) Deuxidme question abord6e dans cet expos6. Existe–t–iI une description explicite et
relativement simple –ne serait–ce que dans certains cas– des ordres de niveau sup6rieur qui

forment la (ou Ies) chaine(s) dlun corps K commengant par deux ordres donn6s Po, Pl?. Plus

pr6cis6ment, nous cherchons une construction en termes de Pn, P1, et de I'une des valuations

v v6rifiant le criEdre de chainabilit6 cidiessus

Dans le contexte des ordres de niveau sup6rieur, Becker [1; pp. 23–25] donne une
construction de ce type pour Ie cas plus g6n6ral; mds, justement a cause de sa g6n6ralit6, cette
construction parait peu maniable dans des cas concretsi

Remarquons, en passant, que I'ensemble Y (K) = y (K, Po, P1) des valuations ayant

les propri6t6s (i) et (ii) cjqjessus est totalement ordonn6 par la relation d'inclusion de leurs

anneaux de valuation; si Y (K) + +, il a un premier et un dernier 616ment

#

Dans Ie cas oil I'ensemble Y (K) possdde une valuation v telle que IPv/21. 1 = 2, oil Pv
V

d6signe Ie groupe de valeurs de v, on obtient une caract6risation assez "parlante". [Notez que

la condition IFv/2]. 1 = 2 est v6rifi& par un v e Y (K) ssi elle est v6rifi6e par la valuation
V

i

d'anneau maximal dans Y (K).]

Pr,mhion 2. Soient ra, P1 d„ ordr„ tot,„, ,„r „„ ,orp, Ir ,i „ e 7*(K). D6,ig„,„, P„ U{

I’ensemble des UTtit6S (r6siduellemeTlt) positives de % Ul = {ze if I v(1) = 0 et i p 0}, a& P

d6signe !’ordre r6siduel FP; (= ltjhT1). Sod a e Pon –Pl hn demerIt quelconque. Polar

nZ 2, posons:

Pn= (Pon pl/L– U+v U – Jn– (Pan P len– uT.
AZors, on a;

(V Pn est an pr6ordre propte de niveaa e=act n (cf. Becker [1; PP. 1 et 5]); Pn me d6pend pas

ChI choi: de 1’6t6ment a dans P„ r\ P ,

2
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(ii) {Pn} new est line chaine de K ssi IF/br 1 = 2; la meme ctraine est obteque en nugmentant

la uatuation u dans y* (K).

(iii) la valuation u est compatible avec tout Pm, et r6siduellement on a 177; = ;T; pOUT

n > I

(iv) R6ciproquemeTbt, si { PO, PP en} a> 2 est &ne chQine de K covLmenCaM paT PO, Pl tel le

q„’iI mi,I, „„, „I„,ti,„ we 7* (K) „mp,tibl, „„ I„, I„ %, „„ Ir/2r I = g, ,t t,it,

que %n = P;fI:ai pour tout n 1 2, alors Qa = Pn post a 22. a

Pour les corps de Pasch (ou corps SAP) les pr&)rdres Pn d6finis ci<iessus constituent
i

une chaine quels que soient les ordres chainables Pn, P1 et la valuation v cY (K), et toute

chaine est de cette forme; cf. Becker [1; Thm. 17, p. 41].
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A remark on the classification problem for
ordered structures

Salma Kuhlmann

1 Introduction

In [H], Hausdorff introduces the notion of an Ta-set: let n = Na be an infinite
cardinal and A a linear ordering; A is an na-set (or: is n-dense) if given Al
and 42 subsets of A g.t. Al < 42 and card(4) < Ra for f = 1, 2, then there
exists a e 4 s.t. Al < a < 42. For example A is a DLOWEP (dense linear
ordering without endpoints) iff A is an No-set. Hausdorff also proves that:
two na-sets of power Na are isomorphic,

The Hausdorff qa-sets were later on examined in the context of ordered
algebraic structures: E;rdas, (;inman and Henriksen prove in 1955 that for
a > 0, any two RCF (real closed fields) that are Ta-sets of power Na are
isomorphic (c.f. [nG-H]), and in 1960, AIling proves the corresponding
result for DOAG (divisible ordered Abelian groups): for a > 0, any two
DOAG that are Ta-sets of power Ra are isomorphic (c.f. [ALL 1]). In their
article, Erd6s, Gilman and Henriksen ask the following question: what are
the possible invariantis characterizing a real closed field? Does the order
type determine the ReF up to isomorphism?

In the next section, we will answer this question negatively, indeed for
every infinite x we shall construct 2' RCF which are isomorphic as ordered
sets, but not as ordered fields; in fact we 8h all examine that question in the
following more general context: Let I be a count;able first order language
and T a theory in Z extending the theory of linear order8, T is vminimal
iff for every model M of T and every formula + with one free variable and
parameters in M, d is equivalent to a finite union of intervals (cf. [P-S]). The
most important examples are DLOWEP, DO AG , RCF, and many theorems
now follow easily via this model theoretic property that they share, for
example the following theorem holds for any ominimal model M :

Theorem 1,1 For ?c > No, M is n-saturated iI M is 6-8aturatec! as
ordered set.
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From general model theory and from this theorem, the above mentioned re-
gujts of Hausdorff, Er(Ias, Gillman and Henriksen, and that of AIling follow
immediately. The question now translates as follows: does the order char-
acterize the aminimal model? An aminimal theory being unstable, look-
ing for invariants (a classification problem) is rather risky, but is in 80me
sense motivated by the good model theory that has been done for these
theories: some theorems that are true for a-stable theories, like “existence
and uniqueness of prime models” , “Vaught’s conjecture” were proved for
bminimal theories (cf. [P-SI and [MAI). To the above question we will give
however a negative answer by giving counterexamples in DO AG and RCF
The following strengthening of the hypothesis was proposed by D. La8car:
Does the order characterize the R-saturated uminimal models, at least for
large enough R? The last part of this talk will be devoted to give a nega-
t;ive answer to that question as well, some theorems will be stated and used
without proofs, those are to be read elsewhere.

2 Construction of 2- DOAG of cardinality ic, isomorphic
as ordered sets, but not ag ordered groups

We first need some definitions. Let G be a DOAG and g e G, put 191 =
max(g, –g). For gr C C, 92 C G, gl is &rchimede4n equivalent to 92 (we
denote it by: 91 N 92) iff there exists n e w s.t. njgll > Ig21 and njg21 > 1911,

gr is infinitely smaller than g2 ifF for all n e w,njgr I < Ig21 (we denote it by:
91 ( 92). G is &rchimedean iff any two nonzero elements are archimedean
equivalent; an archimedean group is a subgroup of R. Given g e G, g + 0,
let Cg be the smallest convex subgroup containing g, and Dg the largest
convex subgroup not containing g, then CgI Dg is archimedean, it is called
the archimede an component corresponding to g. We order the set of equi-
valence classes of nonzero elements as follows: [91] < [g2] iF 92 « gI; the
rank of G, denoted by IG , is the order type of this ordered set. For f C I(, ,
we let Bi be the archimedean component corresponding to any element of
the equivalence class i. This is well defined because gl N' 92 iff Cg\ = C ga
iff Dg, = Dg,. The skeleton of G is [/c ; Bi , ie a]; it is an invariant: if
G = G1, there exi9ts an order isomorphism + of it, onto Iv , and for every
f c I(. , an isomorphi8m di of archimede8n ordered groups from Bf onto
B;(i). Given an ordered get I and a choice & , f C I of uchimede8n groups,
we form the group FierBi; it consists of all functions i from 1 into Ui€r Bi
s.t. /(f) e B{ and i has well ordered support in J. Addition is pointwi8e,

2
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and the order is lexicographic: f > 0 iff /(f) > 0 where I = min(support(/)) .
The subgroup consisting of the functions with finite support is denoted by
©ier Bi. Clearly, both tier Bi and @ ic/ Bl have skeleton [f; Bi , i e 11.
Finally, we note that if given [/ ; 4 , i e /] and [J ; Bj , J e JI s.t. there is
an isomorphism + from I onto J, and for every f e /, an isomorphism A
from Ai onto B+H), then FierA = TjeyBj and Oicr 4+ = ©j€J Bj

Now let an infinite cardinal rc be given. Let Al and 42 be two count-
able archimedean DOAG which are isomorphic as ordered sets, but not as
ordered groups (e.g. Q and q(VS) = {p + qa; p, g e Q} as ordered sets
are countable DLOWEP and so are isomorphic, but dim[Q : QI = 1 and
dim[Q(va) : Q} = 2). For every function I e 2', put G/ = ©ae4 AJ(a)
It is not difficult to verify that since the archimedean components are all
isomorphic as ordered sets, then also for all f , /1 e 2', Gl and Gr are
isomorphic as ordered sets, However if 1 + /1, then GI and Gr are not
isomorphic as ordered groups, for if they were, then by a previous remark,
we should have that for every a e N, A/(a) and A/I(a) are isomorphic as
ordered groups (the only &utomorphism of it being the identity), but since
1 74 /1, there exists a e & s.t. /(CI) 7' /1(a) and thus A/(a) ;a 4/1(a)

We now proceed to answer the question of Erd6s, Gillman and Hen-
riksen about RCF. We need some definitions; Let (K, +, . ,0, 1, <) be an
ordered field and consider the set G of equivalence classes of the equivalence
relation “archimedean equivalence” defined on the ordered abelian group
(K, +, 0, <). On a we define the following addition: [r] + [yI = [£y]; in this
way, G becomes an ordered abelian group, and the map o : K \ {0} –} a
defined by u(z) = [=] is a valuation on K, i.e. it satisfies the following proF
erties: u(ab) = u(a) + uCb) and u(a + b) ? min(u(a), o(b)). The valuation
ring, denoted by R, , is the set {r e X \ {0} ; vCr) ? 0}; the valuation ideal.
denoted by M. , is the set {= e K \ {0} ; u( z) ,> 0}; the residue field, denoted
by T, is the field RoI M„-, finally the valuation group io G. K and G are in-
variants for i80morphi8m9 of ordered 6elds. Given an ordered abelian group
G, the field of formal power series with coefficients in a and exponents in
a, denoted by IR((G)), is the set of all functions from G into IE with well
ordered support in G; addition is point;wise and the order lexicographic;
multiplication jg given by: (/• /1)(g) = E,Feb /(d)/1(g – 91). It is clear that
the residue field of IR((G)) is ZR and its valuation group is a. Now let n an
infinite cardinal be given, and let {Ga ; a e 2-} be a set of DOAG which are
order isomorphic but not isomorphic, and put; Ra = m((Ga)). Since Ga is
divisible, Ra is real closed (for a proof see {PR]). For every a , p e 2-, Ra
and Rf are isomorphic as ordered set8 (even (Ra, +, 0, <) and (Rp, +,0, <)
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are isomorphic), but if a+ p then R. and Rp are not isomorphic as ordered
fields since they have nonisomorphic value groups,

3 The case of the Ic-saturated structures

For every in6nite IC we shall construct two x-saturated DOAG (RCP) isu
morphic as ordered sets but not as ordered groups (fields). We need some
definitions and some theorems. Let X be a limit cardinal and (%)1,ex a se
quence of elements of & DOAG (or a RCF), (ap)rex is pseudo cauchy iff
for all u < p < p < A we have ap – ap « a„ – ap. a is a pseudolimit of
(ar)p€x iff for all r e X, a – a„+1 « a – a,. For re > No, the following two
theorems characterizing the re-saturated DO AG and RCF can be deduced
from Alling’s theorem about DOAG which are qa-sets (c,f. [ALL 2]), a proof
treating also the case x = No is given in [KU]

Theorem 3.1 Let G be a DOAG and it art infInite cardinal, then G is &-ga-
£ura£ed iI.
it8 rank is le-den8e
all its atchimedean components are IR
every pse qdo.caqchy sequence inde£ed ay A < re ha8 a p8eudo.limit in G

Theorem 3.2 Let F be a RCF and n an infInite cardinal, then P & It-86-
tumtecl ill
it8 uaZue gtoqp is a n-8aturated DOAG
its residue fIeld jg IR
every p8cqdo-cauchy 8equence in a 8ubAeLd of ab80lute trancendcncc degree
< n ha8 a p8esdo.limit in F

The following theorem computes the rank of the group of positive element3
of an ordered ReId, the proof is given in [KU]

Theorem 3.3 Let (K, t, . ,0, 1, <) be an ordered fIeld, and a leg ualuation
group . Then rank(X>o, . , 1, <) = rank(C) + 1 + G>o , tIlia la8£ 8&m being a
aura of ordered 8et8, and 1 being the ordered get con8i8ting of one element.

A corollary to this theorem is

Corollary 3.4 if (X, +, . ,0, 1, <) admit8 an ezponcnHal function, then

rank(G) = G<a

a8 ordered 8et8

4



Kuhlmann

The following three propositions are easily verified

Prop08ition 3.5 Let (R, +, . , 0, 1, <) be a real cl08ed fIeld, then

(R, <) - (R”, <)

88 ordered set8

Proof: In fact d : E –> R>a defined by

+(r) = { A
if z < 0
if zZ 0

is an order preserving bijection. 0

Proposition 3,6 Let IT be a re+ -8atutatcd DLOWEP of catdinalitv 2- and
let q1 be the sum of 2' copies of n, then rt1 is again 6+ -saturated,

Proposition 3+7 Let 1 he an infInite chain of cardinaLitg X, and suppose
that I contains a well ordered 8ub8et of cardinalitv A, then card(Pier IR) = 21

We now have all the material needed to construct the counterexample:
Let N be an infinite cardinal and q1 like in 3.6. Let G = Ti€nl IR. It is
known (c.f. [KR]) that such groups are maximal, i.e. every pseudbcauchy
sequence has a pseudo-limit in G, and so by 3.1 G is A-saturated. Clearly,
q1 contains a well ordered subset of cardinality 2~, so by 3.7, card(G) =
2caldCq’) = 22'. Now let F = (B((C)), +, . ,0, 1, <). Then F is a RCF,
Put Or = (B((C)), +, 0, <) and C2 = (IR((G))>o, . , 1, <). then Gl and a2
are DOAG. By 3.2, P is R-saturated, hence also Or and C2, and by 3.5
Gr and G2 are isomorphic as ordered sets. Now if they were isomorphic as
ordered groups, we should have rank(61) = rank(Ga) as ordered sets, and
it would then follow by 3.3 that G = rank(C) + 1 + G>o , or equivalently
rank(G) = G<o as ordered ochs, but rank(G) = 01 go card(rank(G)) = 2‘
whereas card(G<a) = card(G) = 22', so a1 = a2 is impossible

Finally to produce two x-saturated RCF isomorphic as ordered sets but
not as ordered fields, let Gr and C2 be the two DOAG of the counterexample
above and set Fl = IR((C1)) and F2 = IR((C2)). Then F1 and F2 are re-sa-
tur8t;ed, isomorphic as ordered sets but have nonisomorphic value groups.
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ORDERED CONES AND APPROXIMATION

Klaus Keimel and Walter Roth

Introduction.

Using order theoretical concepts instead of topological suuctures has proved

to be useful in quite a num hr of situations in analysis. In our investigations on

Korovkin type theorems in approximation theory we were led to introduce a new

concept of locally convex (partially) ordered cones which might be of independent
interest.

Looking for a unified presentation of Korovkin type theorems for positive

linear operators (see e.g. [2], [3], [4], [23]) and for linear connactions (see e.g. [1],

[17]), as well as for order preserving linear operators on spaces of set-valued

funcdons (see [22], [9]), we were indeed forced to leave the setting of vector spaces

and to turn to more general structures which we call locally convex ordered cones.

Our prime example is the set Con\kE) of all non-empty convex subsets of a locally

convex topological vector space E which has a natural addition and a scalar

muldplication by non-negative reals; it is ordered by inclusion and it carries a topology

which is induced in a canonical way by a subsdt Y C Corry(E), namely an arbinary

base of convex neighborhoods of 0 in E.

In this vein, a locally convex ordered cone will tx a set ? with an addition, a

scalar multiplication by non-negative reals, a partial order S and a distinguished

subset V of positive elements v eP which act as abstract neighborhoods of 0. The

axioms that we impose look very natural. They allow to derive a canonical topology

on P, the properties of which justify the term "locally convex'

For our purposes, it was essential to include cones with untnunded elements

as P = Corry(E), which are not embeddable in vector spaces. At the other hand, we
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cannot use a very general notion of a cone as e.g. Fuchssteiner and Lusky in their

monograph [6], As we need to apply functional analydc methods, we need an

appropriate duality theory and, in particular Hahn-Banach type extension and
separation theorems. We believe that the concept introduced here has the desired

generality but is close enough to the classical theory of locally convex vector spaces in

order to work with the analogues of the classical functional analytical methods.

In this paper, we present the basic theory of locally convex ordered cones as

ordered algebraic structures. A more detailed study of its duality theory and the

applications to approximation theory will tx dealt with at a different place.

1. Cones and preordered cones.

1.1 Cones. We define a cone to be a set P endowed with an addition (a,h) –> a+b

and a scalar multiplication (a,a) –> ua for real numtxrs a>0. The addition is only

supposed to be associative and commutative and a neutral element ap (shortly 0) is

required to exist, i.e,

(a+b)+c = a+(b+c) for all a.b ,c eP,

a+b = b+a for all a,b eP,

0+a = a for all a eP.

For the scalar multiplication we require as usual:

a(Pa) = (ap)a for all a,BX3 and a eP,

(a+B)a = aa+Ba for all a,DH) and acP,
a(a+b) = ua+ab for all aX) and a,b eP,

I'a = a for all a eP.

In this definidon of a cone P, the scalar multiplication is only required to be defined

for real numbers a>0. We may - and we shall do this in the sequel - extend the scalar

multiplication to a = 0 by defining 0'a = 0 for all ac P, and all of the aU)ve rules
remain valid. At the other hand, a'0 = 0 for all aX) is a consequence of these rules.

Indeed, for all ae P we have

a = aCa-la+0) = a+aD,

whence a'0 = 0 by the unicity of the neutral element.

1.2 Subcones. A subset e of a cone P is called a subcone if

a+b eQ and naea for all a,b cO and a20.

Note that every subcone of P contains 0.

Of course, cones in real vector spaces are cones in the above sense. They have

the cancellation property

m a+c = b+c implies a = b
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for arbitrary elements a,b,c. Conversely, cones which satisfy the cancellation property

are emteddable in real vector spaces. It is important to note that cones in our sense are

in general far from being embeddable in vector spaces, as the addition is not supposed

to tx cancellative. This is essential, as we want to include examples like the following:

1.3 Example. With its straightforward addition and multiplication with ©O, the set

R= R u {w} is a cone.

1.4 Example: Cones of convex sets. Let P be a cone. A subset A of P is called
convex, if aa+(1-a)b cA, whenever a,b eA and 0 SaSI

We denote by Com(P) the set of all non-empty convex subsets of P. With the

addition and scalar multiplication defined as usual by

A+B = {a+b IaeA and baB I for AB e Corry(P),
aA = {aa IaeA) for A e COII br(P) and a20,

it is easily verified that Corry(P) is again a cone. Convexitiy is required to show that

(a+B)A equals aA+BA : Clearly (a+B)A is a subset of aA+pA. To show the
converse, consider an arbinary element c caA+IM; it can tx written c = aa+pb with

a, b eA; as

c= (a+P)(aTp a +a'];(the case a=Hq) is uivial.)

and as

la J& e A by the convexity ofA,a+P a+B

we conclude that cc (a+p)A.

Note that every subcone Q of P is convex and satisfies Q+Q = e. In

pardcular, the non-empty convex subsets of a real vector space form a cone in our

sense which is far from being cance11ative.

1.5 Example: Cones of cone-valued functions. Let P tx a cone, X any a set.
For P-valued functions on X the addition and scalar multiplication may be defined

pointwise. The set F(XP) of all such functions then is a cone in our sense. But again

the addition is in general not cancellative, as it is not in P.

1.6 Preordered cones. A preordered cone is a cone P with a reflexive transitive
relation S such that

a gb implies a+c g b+c and naSa:b for all a,b ,c cP and all ceo.

If g is in addition antisynunetrjc, i.e. g is a partial ordering, then ? is called an
ordered cone

Examples of preordered cones are Fwi th its usual order (Ex.1.3), the set

ct)ny(P) of non-empty convex subsets of a cone P ordered by inclusion (Ex 1.4) and
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if P is a preordered cone, the set of P-valued functions on a given set X endowed

with the pointwise ordering (Ex. 1.5). Every cone P is preordered by its natural

preorder defined by a qb if a+c = b for some ceP

Convex sets in cones may look rather peculiar. For example in R all the two

element sets (a,+''} are convex. This phenomenon is somehow remedied by

considering only increasing or decreasing sets, or more generally convex sets that are
also order convex:

1.7 Example: Cones of decreasing convex sets. A subset a of a preordered

cone is called decreasing, if a eA and b g a for some & eP imply be A. For a subset

B ofF we denote by:
IB = (a eP \ aSb for some & eB),

the decreasing subset generated by B. In a dual way one defines the notion of an

increasing subset and TB, the increasing subset generated by B. It is easily verified,

that IB and TB both are convex, whenever B is convex. We denote by DConv(P]

the set of all non-empty decreasing convex subsets of P.

For a decreasing convex set A and aH), the set aA is also decreasing and

convex. But A+B need not be decreasing, if A and B are. We therefore modify the

addidon on DConv(P) and define
A©B = 1(A+B) = {c cP 1 cS a+b for some a cA, b eB}.

With this addition and the usual scalar multiplicadon DConv(F) becomes a cone

ordered by inclusion; the set (0} acts as the additive zero element. There is a natural

map

a q &{a) ofF into DConv(P).

which is order preserving. It is an embedding, i.e. injective, if and only if the preorder

on P is in fact an order. If not, the image

IP = ( 1(a}1 acP )
is called the ordered cone associated with P,

2. Locally convex cones.

We wmt to endow our cones with a locally convex structure. Our definition

will tx guided by the example of the cone Corn(E) of all non-empty convex subsets

of a locdly convex topological vector space E. In this case we can choose a base Y of

convex neighborhoods V of 0 in E. We may suppose that t/+Y e V and aYe Y
whenever U, Y cV and a>0. Note that Y is a ’'cone without zero" down directed

townds O. A neighborhcxxi base for a convex set A is given by the sets
A + V. Ye Y
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This induces three hyperspace topologies on Corry(E) given by the respective
neighborhood bases for A e Corry( E)

in the upper topology V(A) = {B c Con\kE) I B C A+Y }, Ye Y,

in the lower topology (A)Y = {B c Corry(E) 1 A C B+V ), Ye Y,

in the syrnmetric topology Y(A) n 4(V), Y e V.

On a subcone Q of Co nv( E), we shall consider the induced topologies, also in the

case where e does not contain Y. On e = E all the three topologies coincide with the

given locally convex topology.

We now present an abstract formuladon:

2.1 Abstract 0-neighborhood systems. Let P be a preordered cone. A subset V

of P is called an (abstract) 0-neighborhood system, if the following properties hold:
0 < v for all y e Y;

for all u,vc Y there is we Y with w g a and w S v;

u+y e V and av c V whenever a,y e Y and a>o

One could say that Y is a "sutx;one without zero directed towards a". The elements

a+v, vc Y,
may be called abstract neightx)rho(xls of a c P.

2.2 Locally convex topologies. Let P be a cone with a 0-neighborhood system

V. For every ae P we define

v(a) = {b cP \ bS a+v)

to tx a neightx)rho(xi of a in the upper topology , and

(a)v = (b cPI aS h+y)

to be a neighborhood of a in the /ower topology . One easily verifies that these

neighborhood systems define indeed topologies on P. The common refinement of

these two topologies is called the syrnrnetric topology on P.

Note that the v(a) are decreasing convex sets and the (a)v are increasing

convex sets. The neighborho(xls in the symmetric topology are tx)th convex and order

convex. Thus, all of these three toplologies merit to be called locally convex. Of
course the upper and the lower topology are far from being Hausdorff. Since all of the

three topologies are defined in terms of the preorder on P, we will not need to work

with them expicitely. Continuity properties etc. will be expressible by means of the

ordering and the 0-neighborhoods alone.

We also consider subcones Q ofF not necessarily containing Y. They will be

endowed with the topologies induced from P. Thus, for a eQ, the neighborhood

bases for the upper and lower topologies on Q will be given by

ve (a) = v(a)n e = (8 ce 1 bg a+v), y e V

(a)2 v = (a)yn Q = {bee IaSb+v), ye Y,
respectively.
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2.3 Bounded elements. Let P be a preordered cone with a 0-neighborhood system

Y. For vc Y, an element a eP is called

upper v-bounded, if a $ av for some cl>o,

lower v-bounded. if a $ a+By for some p>0

v-bounded, if it is both lower and upper v-bounded.

An element a is called upper (lower ) bounded, if it is upper (lower) bounded for

every vc V. The following is straightforward:

2.4 Proposition. The set B(v) of all upper v-bounded and likewise the set B of

all upper bounded elements is a decreasing sat>cone in P.

Now we are ready for our main defInition which proceeds in two steps:

2.5 Locally convex cones. Let P be a preordered cone and V c P an abstract

0-neighborhood system. The pair (P, Y) is called a full locally contlei cone , if every

element of P is lower bounded. In a full locally convex cone the bounded elements

therefore coincide with the upper tx)unded ones.

Finally, a locally conveI cone is a pair (e,Y), where Q is a subcone and Y

the 0-neighborhood system of some full locally convex cone (P, Y). Of course, a

inherits the preorder and the topological structure of P. We have neglected to indicate

P in the notation, as only those elements of P play a role for a which are of the form

a+y with ae e and ve Yu(0}, and these elements form a subcone of P already

containing Y. But one has to keep in mind that a in general does not contain the

0-neighborhood system,

Clearly every locally convex topological vector space E with a-neighborhcxxi

base Y is a locally convex cone (E, Y) in this sense, as it is a subcone of the full

locally convex cone Corry( E) ordered by inclusion, which contains Y and in which

every element is tnunded txlow. The preorder induced on E is just the equality.

If, on the other hand, the locally convex cone e is a vector space, i.e. contains

all negatives of its elements, then b g a+v, if and only if b-a $ v. All elements of a
are tx)unded, as they and their negatives are bounded txlow, and the neighborh(xxls

of 0 with respect to the symmetric topology

vo= (0)yn v(0) = (b cal hgv and 0 g h+y}

= { heel bS v and -bg v}

form the basis for a locally convex vector space topology on a (not necessarily

Hausdorff). But it is obvious that distinct abstract neighborhood systems Y in our

sense may lead to the same symmetrIc topology. So even in the case of vector spaces

there is a substantially larger variety of locally convex cone topologies than vector

space topologies.
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The following are our standard examples for locally convex cones to which we

will frequently refer in the sequel:

2.6 Example. The cone F= Ru{#) will always be endowed with the absuact

neighborhood system V = { ccR I e>0). For a c R the intervals (-aa,a+e) are the

upper and the intervals (a-e, w) the lower neighborhoods, while for a = +aa the

entire cone iT is the only upper neighborhood, and {+w} is open in the lower

topology. The symmetric topology on Ris the usual topology on R with ( w} as an

isolated point.

2.7 Example. Let (E, S) be an locally convex ordered topological vector space with

0-neighborhood base Y. For A B e Corry(E). the cone of non-empty convex subsets

of E, we define
A gB if for every a eA there is some b eB such that a g b.

Since Corry (E) contains Y, and all its elements are bounded below in this sense,

(Corry(E),V) is a full locally convex cone. E may be considered as a sutx;one of

Corry(E), hence (E, Y) is a locally convex cone. Note that the upper neighborhoods of

acE contain all elements smaller then a, the lower neighborhcxxis aII larger ones. The

symmetric toplology on E coincides with the original one if the neightx)rhoods y e V

are order convex.

2.8 Example. Let (P, Y) be a full locally convex cone. If we identify the elements

of Y with singleton sets, then Y is a subset of Corry(P), which can tx preordered
using the preorder of P. For AB c Carry(P) we define

A gB if for all aeA there is some b cB such that a gb

Since its elements clearly are bounded below as are the elements of P, (Conv(F),V)

&comes a full locally convex cone.

If (e, Y) is a locally convex cone, i.e, a subcone of some full locally convex

cone (P,Y), Corry(Q) is a subcone of Con\1(P), hence for any cone D of non-empty

convex subsets of a, the pair (D, Y) is a locally convex cone.
We shall also consider the families DConv(Q) and ECon\l(Q) of decreasing

convex subsets, respectively closed decreasing convex subsets of e, where closure is

meant with respect to the lower topology on a. If we slightly mcxbfy the addition (c.f.

Example 1.7), both sets will become cones as well:
AaB = 1(A+B) for A,B eDCo nv(Q),

AaB = + for A,B c Img) ,
where m+ denotes the closure with respect to the lower topology. (We shall

see in the following section that the closure in this topology is decreasing for any

subset of Q.) With the preorder and the abstract neighborhood system induced by
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Corry(Q) (For decreasing sets this preorder coincides with inclusion), both
(DConvCQ) , Y) and (mQ ) , Y) then are locally convex cones.

2.9 Example. Let F (XP) tn the cone ofF-valued functions on the set X, where

(P, Y) is a full locally convex cone. If we consider its pointwise preorder and identify

the elements ve Y with the constant functions x –> v for all leX, then Y is a subset

of F(X,P) and defines an abstract neighborhood system there. Of course7 not all

functions in F(X P) will be tx)unded below. So we have to restrict ourselves to the

subcone B,(X,P) of elements with this property, and (B,(X,P),V) then is a full
locally convex cone.

Again, if (e,Y) is a locally convex cone, every sutxone of B 1(x,e) is seen to

be a locally convex cone as well. If in particular X is a topological space, we may

consider the following subcones of F(X,p):

The cone C ,(X,a) of functions continuous with respect to the

upper topology on Q,

thecone C 1(X ,e) of functions continuous with respect to the

lower topology on a,

the cone C ,(X ,P ) of functions continuous with respect to the

symmetric, topology on a.

Their respective subcones of elements bounded below then are locally convex cones.

If X is compact, then obviously all functions in CI(X,Q) and in C,(X ,Q ) are
bounded below.

3. Local and global preorder. Closure.

Throughout this section we assume that e is a locally convex cone, i.e. a

subcone of the full locally convex cone (P, Y). By means of the abstract

neighborhood system Y we shall define a new preorder on P, hence on a, which in

general will not coincide with the original one. It will however turn out to be more

appropriate to describe the topological properties of a locally convex cone. We shall

proceed in two steps:

3.1 The local preorder ly. For a fixed element y e Y we define a relation Iv on

P by
a fy 8 if and only if a g h+pv for all pX).

It is easily seen that Iv is a preorder on P called the v-local pr eor der and that P

endowed with this preorder and the abstract a-neighborhocxi system V is again a fun

locally convex cone. And again, as a subcone of P, e is a locally convex cone,

Clearly a g b in the original pnorder implies a S, b.
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3.2 The global preorder S. The global preorder is defined as the intersection of

all local preorders, i.e.
a lb iff aga+v for all v cV,

iff a S„b for all ye Y.

Endowed with this preorder and the abstract neighborh(xxI system V, P is again a full

locally convex cone, e a locally convex cone, and a $ b in the original preorder

implies a ! b.

3.3 Closure. In Example 1.7 we studied decreasing convex subsets of a preordered

cone and in particular the sets Ka) generated by a single element a eP. We shall do

the same now with respect to the global preorder:

For every a c P, the closure of a is defined to tx the set

a = (bcP lb la}
= {bcP lbS a+v for aIIve Y).

= n,e v v(a)-

By definition, a is the intersection of all the upper neighborhoods of a. Clearly, F is

convex and decreasing with respect to tx)th of the preorders S and S. The collection
F = {a 1 aeP}

of all one point closures is again a full locally convex cone, if we endow p–with the

operatIons
F +F = cTiF Id = II for X>0,

with the inclusion order and the absnact 0-neighborhood system F= (v–I ve V} .

There is a canonical map a –> a : P –> P– which preserves the whole structure

of P

For a subcone e of P we may resnict the closure to a and consider F nQ instead of

a, and we obtain again a locally convex ordered cone e.

3.4 Lemma. If cca, then there is a lower neighborhood of c and an upper

neighborhood of a which are disjoint.

Proof. If c / a, then there is a v e Y such that c £a+2v. We claim that (c)v and

y(a) are disjoint. Indeed, if I were an element in the intersection, then we had c $ x+v

and I g a+v, which would imply c g a+21'.

3.5 Corollary. The closure a is the closure of (a) with respect to the lower

topology

Proof. Indeed, the complement of a is open for the lower topology by the preceding

L£rnma. Conversely, if c I a, then every lower neighborhocx! of c contains a; thus

every lower closed set containing a must contain c as well.
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3.6 Remark. This shows in particular that the original preorder g and the
global preorder ! on a locally convex cone coincide if and only if the sets
1{a) = {b 1 bSa} are all closed in the lower topology, i.e. a= 1{a}.

In a similar way, one shows that the set {b 1 a g h), which is the intersection

of all lower neighborhoods of a, is nothing but the closure of (a} with respect to the

upper topology. Finally, the set {& I & la and a I &}, which is the intersection of all

symmenic neighborhoods of a, is nothing but the closure of {a) with respect to the

symmetric topology.

3.7 Proposition. For a subset A C a its closure A with respect to the lower

topology is given by
A= {8 ce \ for all v eY there is aeA such that bSa+v)

In particular, X is decreasing with respecl to the global preorder of Q, and coweI

if A is

Proof. Clearly beF if and only if (b)vr\A + a for all ye Y; i.e. there is some
acA such that bg a+v. Now let beE and c I b. Then for vc Y, we have

cS b+v 12 and bg a+v/2 for some acA, whence cg a+v, and ccA as well.

Again, a similar statement can be made for the closure of A in the upper

topology. The following observation will be crucial for our further investigations in

locally convex cones. It demonsaates the importance of the global preorder:

3.8 Proposition. Let a and a’ be locally convex cones. Then every mapping
f: e –> Q’ , which is continuous with respect to the upper (or lower) topologies on

tx)th cones, is monotone with respect to their global preorddrs.

Proof. Since a continuous mapping txtween topological spaces maps the closure of a

subset into the closure of its image, this nndus/F) C j( a) for all a ce, whenever

f is continuous with respect to the lower topologies on a and eP. So clearly b I a,

i.e. b ea implies f(b) eFa), hence /b) : J( a) . If/is continuous for the upper

topologies the same argument holds for the sets (hl a I &} .

3.9 Definition. A locally convex cone is called separaled if F = F implies a = b,

i.e. if different elements have different closures,

This property corresponds to the Hausdorff axiom in locally convex vector

spaces. The following is clear from the atx)ve:
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3.10 Proposition. For a locally convex cone (e, Y) the following properties are
equivalent :

(i) (e, Y) is separated.

(ii) The upper topology on Q is To.

(m) The lower topology on Q is To.

(iv) The symmetric topology on Q is To.
(v) The symmetric topology on Q is Hausdorff.

Moreover, on a separated cone the global preorder ! is in fact an order and the
canonical map ad a from Q with this order into ais an isomorphism

3.11 Corollary. For every locally convex cone (e, Y), the cone (eIY) of one

point closures is separated.

We shall call (a Y) the separated reflection of (e, Y). This terminology is

justified by the fact that continuous linear mappings from Q into separated locally
convex cones all factor through a This will & dealt with in detail in section 6.

3.12 Examples. Reviewing our standard Examples 2.6 through 2.9 for locally
convex cones reveals the following:

The cone ITclearly is separated (Example 2.6).

In Example 2.7 the locally convex ordered vector space (E, S) is separated as a

locally convex cone (E, Y) as well, if only its positive cone E+ is proper, i.e.
E+n(-E+) = (0}: For elements a,b c E al b translates into b-a c E++Y, for all

O-neighborhoods Y e Y. Since £' is closed, this means a $ b in the given order of E,

which therefore coincides with the global preorder. F = F then implies a = b tncause

of the condition on E+. Note that in the light of Proposition 3.8 this implies that

mappings between locally convex ordered vector spaces, considered as locally

convex cones, which are continuous with respect to their upper (or lower) topologies,

need to tx monotone with respect to the original orderings.

For any locally convex cone (Q, Y) and A.B c (Corry(Q) ,F) one has A IB
if A is contained in the closure /fof A with respect to the lower topology (c.f.

Proposition 3.7). So in fact (DConv(Q ) , Y) is the separated reflection of

(Corry(Q),Y) and likewise, of (DConvfQ),V) (Example 2.8).
Finally in (81(x,e), Y) (Example 2.9) for two e-valued functions

f,g a BAX,e) we have fIg if f(x) ! g(1) for all leX. So B rcX,e) is a separated

locally convex cone, whenever a is.
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4. Cancellation.

txt a,b c tn elements of an arbitrary preordered cone Q. In section 1 we

insisted on the fact that we do not require the cancellation law

m a+c = b+c implies a = b,
as we wanted to include examples like the cone Corry(E) of all non-empty convex

subsets of a real vector space E. In this section we want to show that certain restricted

cancellation laws hold in a locally convex cone (Q, Y). For the proofs, it is no
restriction to assume this cone to be full. The first property holds in any preordered
cone

4.1 Lemma. a+c g b+c implies a+pc g b+pc for all pac).

Proof. Suppose a+c g b+c. Adding a and b, respectively, we obtain 2d+c g a+b+c

and a+b+c g 2b+c, whence 2a+c $ 2b+c or else a+c/2 S b+c/2. Repeating the
same argument, we obtain

a+ $ $ b++
for all natural numbers . If p is an arbinary positive real number, choose an n such

that 1/2/1 S p; adding (p-1/2/1)c to the last inequality, we obtain a+pc g b+pc as
desired.

Ifc > 0, then aS a+pc, and we may conclude:

4.2 Lemma. If c ? 0, then a+c g b+c implies aS b+pc for all p>0.

From now on we place ourselves in a locally convex pnordered cone (e, Y):

4.3 Lemma. Let c be v-bounded for some v e Y. Then

a+c $ b+c implies aS b+pv for a
i.e. a+c $ b+c implies as,, b.

Proof. As c is v-bounded, there is a X>0 such that c+Xv 20 and cg Iv

Suppose a+c $ b+c. Then a+(c+Xv) $ b+(c+Iv). By Lemma 4.2 we conclude

aS b+p(c+Xv) g b+2p;Ly for all p>0.

4.4 Proposition. For every bounded element c one has
a+c $ b+c implies a+v $ b+v for all v eV,

i.e. a+c g b+c implies aS b, where ! is the global preorder.
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This is an immediate consequence of 4.3. We may apply this to the global
preorder on a, and we obtain the

4.5 Order cancellation for bounded elements:

a+c ! b+c implies as b, whenever c is bounded.

For the closure of the elements we obtain (cf. secdon 3):

4.6 Corollary. Whenever c is bounded, one has:
a–+ ic F+i implies dc F,
a+ f- F+ F implies a= E

As in separated cones the global preorder is an order, i.e. antisymmetHc, we conclude:

4.7 Coronary. For bounded elements c in a separated locally convex cone one

has: a+b = b+c implies a = b. (cancellationfor bounded elements c).

Now we are in a position to embed a separated locally convex cone (e, Y)

with its global preorder into a locally convex pwordered cone (QP,V), in which the

bounded elements form a vector space which is locally convex with respect to the

symmetric topology :

4.8 Embedding. Let us consider fIrst a full locally convex cone (P, Y). By I we
denote the global preorder on P and by B the subcone of all bounded elements. In

order to em&d B into a cone, in which the tx)unded elements &come invertible, we

perform the usual construction:

On the cone pXB of all pairs (a,b) with a eP, beB, we define

(a,b) ! (a' ,b') iff a+ h' ! a' +b.

This relation on pxB clearly is reflexive. Let us verify that it is transitive as well: l£t

(a,b) ! (a' ,b') and (a’ ,b') ! (a" ,b"). Then a+b' ! a' +b and a'+b" ! a"+b' .
Adding &" and b to these inequalities, respecdvely, we obtain

a+b' +b" ! a' +b+b" and d +b" +b ! a" +b' +b ,

whence a+b' +b" I a"+b' +b by transitivity. As h' is tx>unded, we may cancel b'

by 4.5 and we obtain a+ h" i a"+b, i.e. (a,b) i (a" ,b").

Thus, I is a preorder on PxB which clearly is compatible with the addition and

=alar multiplication. We have an obvious emtxdding
a –> (a,0) : P –> pxB

which allows to consider P as a subcone of pXB. Moreover, the set Vx (0} of all

pairs (v,0), ye Y, is an absaact neighborhood system on the preordered cone pxB.

Using the cancellation property for bounded elements again, one proves that
(pxB, Vx {0}) is indeed a locally convex cone. We now pass to its separated
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reflection Pm of one point closures W) as in section 3. For every bounded

element b, the relations (b , b) : (0,0) ! (b , b) imply (M) = (m). Thus
M) + (W) = (M) = (W). We see that (m) has an additive inverse, namely
(m). We may UTite shortly a for M) and -Ffor M, and FF for M).
Finally, we write F.a for Fx B . If P is separated, the canonical map

add : PdF is an isomorphism with respect to the global preorder on P, and

considering this, we may omit the bars: We have embedded (P, Y), preserving ist

global preorder, into the locally convex cone (P-B, Y) in which the bounded

elements form a vector space E = B-B . As we mentioned before (Section 2.5), the

topology on E induced from the symmetric topology on the locally convex cone

(P-B,V) is given by neighborhoods of 0 in E
Va= (0)v n v(0) = {beEF b Iv and al h+v)

= [bcE \ b IV and -bg v).
For v c V, these sets are convex and order convex and form the 0-neightx)rhood basis

for a Hausdorff locally convex vector space topology on E. For an arbiuary element c

eE , the respective neighborho(xls obviously are

Vr = (Ov n v(c) = C+Vo

Thus, the symmeuic topology on E = B.B is the Hausdorff locally convex vector

space topology with the vo , vc Y, as 0-neighborhood base. Note that the negative

(hence also the positive) cone is closed in E by Lemma 3.5.

Until now, we have considered a full cone (P, Y). For a subcone Q of P we

may consider its set Be of bounded elements. Inside P-B we form Q-Be and we

have embedded Q in a cone where the bounded elements form a vector space

EQ = Be 'Be . Thus we have proved:

4.9 Embedding Theorem. Every separated locally convex cone (Q,V)can he
embedded in a separated locally convex cone (Q',VO in which the bounded elements

form a vector subspace EQ, . With respect to the symmetric topology Ec is a locally

convex ordered topological vector space. The embedding is an isomorphism for the

global preorders on Q and Q'.

4.10 Remark. If we start with a Hausdorff locally convex topological vector space

E and if we consider the cone P = Corry(E) of all non-empty convex subsets of E,

the cancellation laws 4.3 through 4.7 are well-known (c.f. H6rmander [7], Pinsker

[12], Radstr6m [15], Rabinovich [13], [14], K. D. Schmidt [19]. Also the embedding

of the cone B-of non-empty closed bounded convex subsets into a locally convex

topological vector space has been investigated by the same authors. It has been done

in particular detail in [19].
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We want to invesdgate now separated locally convex cones (a Y) which may

tx represented as a cones of closed decreasing convex subsets of a locally convex

ordered vector space. This representation should tx injecdve and faithful with respect

to the global pnorder. It will represent the scalar multiplication as well, but

unfortunately, without additional requirements on Q, the addition of unbounded

elements as well as the abstract 0-neightx)rho(xls do not seem to tx reflected in a nice

way

By 4.9 we may suppose that the tnunded elements of a form a vector space

E, which we endow with the absuact 0-neighborhoods inherited by Q-Ba With the
symmetdc topology, E is a locally convex ordered vector space as shown in 4.8. This

is the vector space that we use. For every a ce, let

CCa) = {beE Ibf a }

The set CCa) clearly is convex and decreasing. It is closed with respect to the lower

topology (hence also for the symmenic topology), by 3.5. Thus, we have a mapping

a –> CCa) of e into the cone £miEJ of closed and decreasing (with respect to the

global preorder and the lower topology) subsets of E . Recall that DConv(E) is a

locally convex cone with its addition 6, the canonical preorder g and the abstract

neighborhoods via those in E, as described in Example 2.8. Moreover, as the
separated reflection of Carry( E) (Examples 3.12), DCorrv(E) is separated itself, its

given and its global preorders coincide and are nothing but the inclusion.

Our mapping a –> CCa) clearly is monotone with respect to this preorder on
DeonvIE) and the global preorder on Q. But this embedding will not necessarily tx

injecdve and an order isomorphism without addidonal nquinments: Q should contain

sufficiently many bounded elements, which already describe its abstract
0-neightx)rho(xi system.

4.11 Tight coverage by bounded elements. A locally convex cone (e, Y) is
said to be tightly covered by in bounded elements if for all a ,a’ ce and ve V such

that a e v(a) there is some hounded element b eg such that b la and b ev(a).

Obviously, now, this property will guarantee that a g a'+v for some v e Y,

implies the existence of some bounded element be CCa), but by a’+v, i.e.

CCa) e v(CCa)); our embedding is indeed an order isomorphism.

Considering the algebraic operations, we clearly have C(ha) = MCa) for M.
For the addition, in general, we only can prove CV)OC(al C C(a+a), but not

equality. Furthermore, our representation is not yet faithful for the abstract

a-neighborhoods of a and £miv(E). In order to obtain this we shall require the

4.12 Continuous decomposition property. If in addition a has the

condnuous decomposition property for bounded elements
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(CDB) if d is bounded and dI a+a'+v for a,a' ce, ve Y then there are

bounded elements b,b' e Q such that & I a, h’ ! a’ and dI b+b’+v

then for every element deC(a+a), i.e. d ! a+a' and yaY we choose b ,b' as in

(CDB). So, b +b’ e CCa)+C(a), dc CCa)QC(a) by the definition of the operation

O, and indeed C(a+a) = CCa)+C(a).

Now suppose that a ! a’+v for a,a' e Q. Then for deCCa) we have dI a’+v.

Applying (CDB) with a = 0 , this renders bounded elements b’ S a’, bg 0, whence
b+b' e CCa), and dg b+b’+v, whence CCa) cv(CCa)) as well. The converse was

shown to be a consequence of property 4.11

Summarizing this, yields:

4.13 Representation Theorem. Every separated locall) convex cone Q which is

tightly covered by its bounded elements may be represented as a cone of closed

decreasing subsets of a locally convex ordered vector space E . This representation is

an isomorphism with respect to the global preorders on Q and DmE). It
represents the scalar muttiplicadon and, if Q has property (CDB), the addition and the

abstract neighborhood system as well.

4.14 Examples. Reviewing our standard examples for the properties 4.11 and
4.12, this renders:

/Tclearly is tightly covered by its bounded elements and has property (CDB)

(Example 2.6).

The same obviously holds for the locally convex ordered vector space (ES) as

a locally convex cone (Example 2.7).

As in Example 2.8, let (e, Y) be a locally convex cone with its global
preorder, B the subcone of its tx>unded elements. If D is any a subcone of Con\KB),

which contains all singleton sets {b}, b cB, then properties 4.11 holds for D:

Suppose AKA’+v for sets A,A’ cD, and ye Y, i.e. there is some a cA, such
that a g a'+v for all a’ cA’. Since a is bounded in a, so is {a) in D, and we have

{a} gA, but {a} gA’+v.
No general statement seems possible for (CDB) in this case.

The same holds for cones of cone-valued functions (Example 2.9) But in

many applications of this we will restrict ourselves to bounded functions anyway, for

which !x)th 4. 11 and 4.12 are trivial.
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5. Locally convex cones via convex semiuniform structures.

We want to show that the notion of a locally convex cone can tx defined in a

natural way via semiuniform suuctures in the sense of Nachbin [10]. For this, we use

the notation R'S = {(a,c) 1 there is b such that (a,b) cR and (b,c) eS ) for the

relational product for two binary relations R and S on a set Q, and R-1 for the
converse relation { (h,a) I (a,b) cR}; the diagonal is denoted by A. We recall the

following:

5.1 Semiuniform structures. A collection U of subsets of QxQ is called a

semiuniform structure on a, if the following hold:

(Ul) ACt/ for every UcU ;
(U2) for all U,V c U there is a Wc 1/ such that WC t/ny ;

(U3) for all UcU there is a Vet/ such that V.Y C U.
Nachbin has called this a basis of a semiuniform structure, as we require U to be a

filter basis only and not a filter.
To every uniform suucture U on a we associate

(a) a preorder defined by a la iff (a, h) eU for all Uc U-, the graph of

this preorder is the set y = F\utu U

(b) two topologies: The neighborhood bases for an element a for the upper

and lower topology are given by the sets

C/(a) = LbeQ 1 (b,a) 'Q }, U= U,

(a)C' = Ibeg 1 (a, h) eQ }, U eU,

respectively.

(c) a uniform structure Us = {UnC/-1 1 U eU }; the topology associated

with this uniform structure is the cornmon refinement of the lower and upper

topology; it is Hausdorff iff the preorder ! is in fact an order.

5.2 The semiuniform structure of a locally convex cone. Let Q be a
preordered cone and Y an abstract neighborhood system (contained in some
preordered cone P 3 C ). For every absaact neighborhood ve Y, we put

y = {(a,b) c QxQ lag b+v)

The collecdon Y of all V, ve Y, is a semiuniform structure:

As OS v, we have aS a+v for all a, whence (Ul). As Y is directed downward, we

also have (U2). Furthermore, we have the property

(U'3) (Iv)-. (pv)- c ((X+H)v)- for all I,F > 0;
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indeed, a $ h+Xv and bK c +By imply aS c+(X+p)v. Choosing w = y/2 in (U’3)
we obtain %' W c T, whence (U3)
In addition, it is easy to see that all the T are convex subsets of exe , and

(U4) for Ue U, 1>0, we have XU eU as well.

Finally, if (e, Y) is a locally convex cone, the condition that every element

has to be bounded txlow, translates into:

(U5) For all a eQ and U eU there is some p>0 such that

(aIa) e PU

So we have a convex semiuniform structure in the following sense:

5.3 Convex semiuniform structures. Let a be a cone. A collection U of
convex subsets U CQxe is called a convex semiuniform structure, if U satisfies the

properties (UI), (U2), (U'3) and (U4).

If we start with an abstract neighborhood system V on a preordered cone as

above, the lower and upper topologies on p are precisely the lower and upper

topologies associated with the semiuniform structure Y. The preorder associated with

this semiuniform suucrure coincides with the global preorder on e; indeed, (a,b) cV

for every vc Y means a g b+v for every vc Y. Thus, the global preorder and the

various topologies on a locally convex preordered cone are all described by the
semiuniforrn structure y

5.4 The abstract neighborhood system for a convex semiuniform
structure. Let U be a convex serriuniform structure on a cone e. We shall emtxd

Q in a preordered cone P containig an abstract neightx)rho(xi system V in such a way

that the canonical semiuniform structure Y associated with Y is equivalent to the

original semiuniform structure U on Q.

For this, let B be any 'subbasis' of U, which means that for every U eU
one can find U\,...,U „ cB and II,,..h, > 0 such that hlUln...r\h„U. CU
Let V & the set of all families

r = (ru)u,B where ru is a strictly positive real number for finitely many
UcB and ru = @ else.

Adjoining a zero (0) to Y, we obtain an ordered cone Ya with componentwise

defined operations and order.

Let P be the direct sum P = Q©Yo with the usual addition and scalar

multiplication. Define a preorder on P in the following way:
x©r gy©s if r < s and (x,y) ctU for all \> su-ru whenever su < w.

This relation clearly is reflexive. Let us show aansitivity: Let I©r g y©s g z©t .
Then firstly rCs S r; secondly, consider any U with ru< +'', and let X > trru.
Then there are II,b2 such that i = Xr+h2, Il > Srru, X2 > trsu. We conclude
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that (I,y) eXIU and V,z) eXIU , whence (I,z) e\\U.IIU C (Xl+X2)C/ = IU

by (U'3). Thus x©r S z©r.

L£t us show the compatibility of this preorder with the algebraic operations:

Let I©r gJ/Os. Clearly, X(x©r)g IOOs). Let us show that (I©r)+(z©r ) S
(y©s)+(z©r ): Firstly, rSs implies r+t g s+r. Secondly, take any U such that

su+lu < w. Then ru.su,lu are all finite and for every I > (s r+tu)-(r u+tu) = Srru

we have (I,y) eXU . As (7,z) e eU for all e>0 we conclude that
(x+z,y+z) c (h+e)U, whence the assertion.

Now we have proved that P = gO% is a preordered cone. It is easy to see

that Y (identified with (0)OY ) is an absaact neighborhood system on P.

When is xgy©r for I,y e e and reV ? Let U\,...Un tx the members

of B such that ra is finite. Then

xg y©r iff (I,y) S hit;i for all & > rm and all i,

i.e. IS yer iff (I,y) c\(rulU \n...n,ru,Un) for all X>1.
As B was chosen to be a 'subbasis' of the semiuniform structure U, we see that U is

equivalent to the semiuniform suucture Y consisting of all V = { (x,y) 1 1 S yar}
We sumrnarize:

5.5 Proposition. The notions cf aa abstract neighborhood system Y and a convex

semiuniform structure U for a cone Q are equivalent in the following sense:

For every abstract neighborhood system V for a preordered cone Q there is a

convex serniuniform structure V on Q which induces the global preorder on Q and

the same upper, lower and symmetric topologies .

If Q is a cone with a convex semiunijorm structure U , then one can fInd a

preorder and an abstract neighborhood system V for Q such that the semiuniform

structure V is equivalent to U.

As we mentioned above, the condition of lower tx)undedness for elements of a

locally convex cone nanslates into condidon (U5) in terms of the convex serniuniforrn

structure. Thus, the two approaches to locally convex cones firstly via a preorder and

an abstract neighborho(xi system and secondly via convex semiuniform structures

turned out to tx equivalent. In fact, in applications the second approach will often

arise more naturally, as it avoids the explicit construction of a full cone containing the

abstract neighborho<xi system.
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6. Uniformly continuous operators.

6.1 Linear operators. For cones Q and P , a map T : e –> P
operator, if

T(a+b) = T(a)+F(b)

T(aa) = aT(a)

Note that this implies T(Od = oF.

is called a linear

for all a,b eQ and
for all ae e and MC).

6.2 Uniformly continuous linear operators. In the following let (e, Y) and
(P, W) be two preordered locally convex cones. A linear operator T '. Q –+ P is

called uniformly continuous or u-conlinbrous for short, if for every wcW one can

find a vc Y such that

aS b+v implies 7(a) g TCb)+w.

Uniform continuity is not just continuity. It is immediate from the definidon

that it combines continuity with respect to the upper, lower and symmeaic topologies

on Q and P.

6.3 Remarks. (a) Let us consider on Q and P the semiuniform structures

Y and tV as in section 5, i.e. t is the collecdon of all
jT = ((a,b) e exe 1 a $ b+v), ve Y

and likewise for W. Then a linear operator T : Q –> P is u-continuous if and only if

it is uniformly continuous with respect to these semiuniform structures in the sense

that for every Qe W there is a Ve t such that (a,b) eV implies (T(a),TCb)) e W.

(b) if Q is a full cone, then a monotone linear operator T : e –> P is
u-continuous, if for every we tY there is a vc Y such that T(v) g w. Indeed, if

T(v) g w, then a $ b+v implies 7(a) S T(h+v) = TCb)+F(v) $ 7(b)+w.

As an immediate consequence from Proposition 3.8 we have:

6.4 Monotonicity Lemma. leI T :e –> P &e a u-continuous linear operator

Then a sb implies T(a) ! TCb), where S denotes the global preorder on Q and P ,
respectively .

Since for the original preorder $ on Q aSb implies a lh we conclude that aS a

implies T(a) ! TCb) as well. Using the notadons of sections 3 and 4 we obtain:

6.5 Proposition. Let T : Q –> P be u-conrfn&icas. There is a unique

corresponding u-condrvbOb&S operator
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T : Q.a12 –+ P-Rr

such that TCO =m for all a eQ. where Be and Bp denote the subcones of

bounded elements in Q and P. respectively, and a and ma the closures of a and

T(a)

Proof. Firstly, we observe that under 7 the image of each bounded element of a

is bounded in P: Indeed, let ae BQ and we W. Then there is ve Y such that

aS b+v implies T(a) K TCb)+w. As a g pv for some p>0, this shows

T(a) g pw. Secondly, if a= F for a,b ee then T(a) ! TCb) as well as
TCb) ! T(a). Thus, m = M , and Fis well defined; u-continuity is easily

checked. Thirdly, any linear operator on Q-BQ obviously is already determined by

its values on a

6.6 Examples. (a) Addition (a,b) –> a+b is a u-continuous operator from exe
into a. Indeed, given we Y, we choose v = w/2 and we obtain that aS c+v and

bS d+v imply a+b g c+d+w
(b) For fixed 120, the operator a –> ha : e –> Q is u-continuous.

(c) For every tnunded element hZ 0, the map X –> Ib : R, –> Q is
u-continuous. Indeed, given we Y, choose an e>0 such that bg ew. Then

}IS X+e and hZ 0 imply F& g (X+e)b = lb+eb S Lb+w.

(d) As an immediate consequence of (a) and (b) we obtain: For finiteIy many

bounded posidve elements bI„..,b„ in a the map

(11,...,X.) –> }#Xibi : R: –> e

is u-continuous.

(e) Ext E and F be locally convex topological vector spaces and T: E –> F a

continuous linear operator. We extend 7 to non-empty convex subsets by

defining T(4) = { 7(a) I acA }. In this way we obtain a linear operator

T : Con\KE) –> Con\1(F) which is readily verified to be u-continuous.

The same procedure can be applied more generally to extend any u-continuous

operator T :e –> P tntween arbinary locally convex cones to a u-continuous linear

operator 7 : Co nv(Q )–+ Conv(P ). Extension to the cones DConv(Q) and
bConv(Q) (for their locally conves snuctures, see Example 2.8), however turns out

to be less saaightforward: it will require properties similar to 4. 12.

6.7 The cone of u-continuous linear operators. For two linear operators S
and 7 from Q into P and for hZO, the sum S+T and IT are also linear. If tnth S

and F are u-continuous, so are S+T and IT by 6.5(a,b). Thus, the u-continuous

linear operators from e into P form a cone I(e/). We do not intend to discuss

locally convex structures for this cone in this paper.
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7. Linear functionals and the dual cone.

Throughout this section, let (Q, Y) be a locally convex cone with its preorder

S and the global preorder f . A linear functional on e is a linear operator A :
Q –> R

7-1 The dual cone. According to 6.1, a linear functional F on e is called
uniformly continuous or simply u-continbrobks, if there is a vc V such that

(O) a g h+y impIies FCa) gF(b)+1.

Every u-continuous linear functional is monotone by 6.41 even with respect to Me

global preorder on e. The u-continuous linear functionals on Q form again a cone

(c.f. 6.7), denoted by a' and called the dna I cone of e. We shall endow a' with

the topology w(a',Q) of pointwise convergence of the elements of e, considered as

functions on Q with values in JTwith its usual topology. (Studying duality theoryt

later on we shall consider F with its symmetric topology, which isolates +H, and the

resulting finer topology sca',e) on a' as well.)
If a is a full cone and F a monotone linear functional on a , then the definition

of u-continuity becomes particularly simple: F will be u-continuous if and only if

there is a v cV such that HCv) $ 1. Proposition 6.5 renders for linear funcdonaIs:

7.2 Proposition. For every F eQ' there is a unique Fe (e-Bay such lhat
F(& £> = FCa) -F (b).

If Q is separated then Q' and (e-Bay may be identifml.

7.3 Polars. For every ye Y, the polar of v is defined to tn the set 78 of all linear
functionals F on a satisfying (O), i.e.

va = {Fee+ 1 ag b+v implies FCa) g A(h)+1 )

We simply write v' instead of va, if no confusion is possible. If a is a fun cone,

the definition of the polar becomes pardcululy simple: ya is the set of all monotone
linear funcdonals on Q such that FCv) $ 1.

7.4 Proposition. The polar v' o/ any vc Y is a compact convex subset of Q+

in the topology w(Q' ,Q )

Proof. Clearly, v'’ is convex and closed for pointwise convergence in the set of all
functions fr Q –+ R. Remember that every a eQ is tx>unded tulow, i.e. there

is a real number X'>0 such that as a+X,v. For every F in v' we then have
0 = F(0) g FCa)+l', whence FCa) : -X'. Thus, v' is in fact a closed subset of the

compact space II,,e [-X,,+.. I and hence compact.
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It is an important feature of our notion of locally convex cones that with only

slight additional requirements, such as 4.11, we are able to prove an of the desired

Hahn-Banach type theorems on the existence of sufficiently many u-condnuous linear

funcdonals. Our prime model Corry( E) for locally convex cones has plenty of them,

indeed: Every continuous linear functional F on a locally convex topological vector

space E may be extended by defIning

FCA) = sup( FCa) 1 a cA } for every non-empty convex subset A of E.

Thus, we obtain a functional F : Conv(E) –> R which is easily verified to be linear

and u-continuous. For deriving our Hahn-Banach type theorems in general we cannot

apply directly the corresponding results that one fInds e.g. in the tx)ok of Fuchssteiner

and Lusky [6]; the reason is that in the literature mostly linear and sublinear
funcaonals with values in Ru {-ao) are considered, whilst we have to deal with
funcdonals which have values in R =R u (@}. The difference between those two

points of view is essential and not just a question of reversing the order on R. We

have to txgin with a few remarks on sublinear functionals:

7.5 Sublinear functionals. A map p : Q –> F is sublinear if

p(a+b) gp(a)+p(b) and p(ha) = ip(a) for all a,b eQ and 1>0.

A a sublinear functional p is called u-continuous , if there is a neighborho(xI v cV

such that

(O) a $ b+v implies pCa) g pCb)+1 whenever a,b eQ.

Every u-continuous sublinear functional is monotone by Proposition 3.8, even

monotone with respect to the global pnorder on e.

If a is a full cone and pa monotone sublinear functional on e, then the

definition of u-continuity becomes particularly simple: p will tx u-continuous if and

only if there is a v eY such that p(v) $ 1.

7.6 Lemma. Let Q be a suE>cone of the preordered locally con\leI cone (P,V).

Every u-continuous sublinear functional on Q can be extended to a u-continuous

sublinear functional on P ; more precisely : 121 p be a sub linear functional on Q and
v cV such that

( C)) a g b+v implies pCa) gp(b)+1, whenever a,b ce,

then there is a sublinearfuncbonal p on P extending p such that

(O’) I Sy+v implies ?(1) $ PO)+1, whenever I,y eP.

Proof. For every ICP we define
F(1) = inf{ pV)+X 1 xg a+Iv for some ace and X>0 ).

We verify:
(O p is an extension of p: Let le Q. Clearly, PCI) S pCI). For the

converse inequality consider any a such that PCI) < a. Then there is an ace and a
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M) such that I S a+Xv and pCa)+X < a Condition (O) implies p(x) S pCa)+X < a.

As this holds for every a >F(1), we infer pCI) <F(1).

(A) ? satisfies (O'): Let I,y eP with 1 Sy+v. We want to show

PCI) g F(y)+1. This is clear if p(y) = +H. So suppose F(y) < w. For every
a > p-(y) we may find a eQ and XX) such that yS a+Iv and pCa)+h S a. We

conclude ISy+V $ a+(X+1)v, Whence p(x) gp(a)+X+1 < a+1. As this holds

for every a > F(y), we obtain ?(1) $ FO)+1

(iiI) ? is sublinear: The proofs are similar to the above, and we leave them to

the reader.

7.7 Superlinear functionals. A map q : Q dR u(+.',-''} is superlinear if

q(ha) = Ag(a) for all 1>0, a eQ and

q(a+b) ? qCa)+q(b) for all a,b eQ such that tx)th qCa) and gCb) are finite.

7.8 Sandwich Theorem. Let (Q, Y) be a preordered locally convex cone . Let

q : e –> R U{@faa} he superlinear and p : e –> iTu{+..) sublinear wfM

qCa) S pCa) for all a eQ. If p is a-cominuous, !hen rhere is a u-conHnbnbrs linear

functional LI : Q –iF such that g(a) $ FCa) gp(a) iCT all a eQ;

more precisely : if,for some v ev,thefwrcnona L p satisfIes

( C)) a $ b+v implies pCa) gp(b)+1 whenever a,b eQ,

then there is a linear functional w in IEe polar vi of v such that

qCa) S K(a) gp(a) f.r a// a' e.

Proof. We may suppose that a is a full cone. In fact, by Lemma 7.6 we can extend

p to a full cone contairrig Q without disturbing hypothesis (O), and q may tn extended

by defining its value to be -aa on the new elements. Now we consider the subset of a

e,={a'elp(a) < wI.
As p is sublinear and monotone, Q1 is a decreasing su&:one of e. Let us show that Q/

is a face of Q: Let a,b be elements of e such that a+b c e/ , i.e. p(a+b) < w.

Recall that in a locally convex cone every element is bounded txlow. Hence there is a
X>0 such that Og a+Xv, whence hg a+b+Iv. Asp satisfies (O), we infer that

pCb) gp(a+b)+ X, whence pCb) < +, i.e. b ee/

On Qr the sublinen functional p does not take the value w, and we may apply

the Theorem 1.2.5 in [6] which assures the existence of a monotone linear functional

F on QI with values in R u(-'') such that qCa) g FCa) gp(a) for all a eQI . By (O)
we have p(v) $ 13 whence B(v) $ 1. This shows that in fact B does not attain the
value -o, : As every a eQ is bounded txlow, there is X,>0 such that 0 S a+X,v;

i.e. 0 = F(0) g HCa)+ha urd FCa) 2 -X,. We extend F to a by FCa) = +'' for

all ac Q1. As Qr is a decreasing face, A is still monotone and linear, and obviously

qCa) s FCa) sp(a) holds for all ac g. Finally, FCv) Sl implies B€v8
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7.9 Extension Theorem. La a be a subcone of the locally cortver cone (P, Y).

Then every u-continuous linear fnrrctional on Q can be extended to a u-continuous

linearfuncdonal on P-, more precisely: For every Bayt: there is a $ cvP such

that F = ale

Proof. By Lemma 6.5 we may extend F to a sublinear functional p on P which

satisfies (O) for all a.b eP. We define a superlinew funcdonal q on P by

qCa)={ FCa) if a ' a

By the Sandwich Theorem 6.6 we find a linear functional ac v; such that
qCa) g FCa) gp(a) for all a eP. As qCa) =F(a) =p(a) for all acQ, the functional a
extends F.

7.10 Weak separation. Let a.b eQ with bIC) and let v e V such that agb+v.
Then there is a linear jwtcdona\ R on Q such that

FCa) ? 1 and F(1) $ 1 whenever I g &+y;

more generally: B(1) g F(y)+1 whenever lg y+b+v.

Proof. Let w = b+v. We may suppose that we Y, as bao. Let Q, = {aa 1 aZ0}.
and define po: Qa + R by

po(aa) = a inf{X>0 1 a $ Xv}
Then }lois a linear functional on Qa contained in the polar of w in Q:. By the

extension Theorem 7.9, po has a linear extension F to e which is contained in the

polar of win a+. The extension F has the desired properties.

In order to obtain strict separation, we have to reinforce the hypothesis:

7.11 Lemma. Let ve Y, let a be a v-bounded and h an arbitrar) element of Q

such that a $ b+pv for some p> 1, then there is a linear functional pc vB
such that K(a) > F(h)+1.

Proof. We may suppose that e is a full cone. First we choose an a such that
0g b+av. We then have

a+av g b+av+w whenever 1< a < v.

Indeed, the inequality a+av { b+av+av would imply a $ b+pv for all p > a by

the cancellation Lemma 4.2. Replacing a by a+av and b by b+CIV in 4.10, we may

find a linear functional vc a' such that

(i) v(a+av) : 1 and

From these inequalities we conclude that

v(a)+w(v) 2 v(b)+w(v)+av(v), whence

v(a) 2 v(b)+av(v).

(ii) v(b+av+av ) $ 1

(iii)
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From (ii) we also get that v(v) + w. Indeed, if v(v) = 0, then we choose M) such

that ag iv (which is possible, as a is supposed to be v-bounded) and we get

v(a+av) Kv(Xv+av) = 0 which connadicts (i). So (iii) implies
(iv) v(a) > v(b)+v(v).

Now we put A = v/v(y). Then (iv) becomes FCa) > pCb)+1 and F is contained in

the polar of v as HCv) =1.

7.12 Strict separation. The separation property as formulated in the preceding

lemma will in general not hold for unbounded elements a in an arbitrary locally

convex cone (e, Y). This property, however, turns out to be crucial in the

investigation of Korovkin type approximation.

We shall say that (aK) has the strict separation properly , if

(SP) for all a,b cQ and vc Y such that a /, b+v, i.e a g b+pv for some

p>1, there is a linear functional He y; such that FCa) > F(b)+1

(Note that F(x) gB(y)+1, whenever xg y+v, as Fe vJ .) in view of the

preceding lemma, we will obtain strict separation if we have sufficiently many
tDunded elements in Q. This will tx guaranteed by property 4.11

7.13 Separation Theorem. Every locally convex cone (e, Y) which is rightly
covered by its bounded elements (cf. 4. In has the strict separa tion property (SP).

Proo£ By (4.11) choose a bounded element a’S a such that a’ g b+p'y for some

p'>1. Lemma 7.11 yields a linear functional pe va such that FCa) 2 F(b)+1. As

FCa) 2 FCa), we have the desired result.

The Sandwich Theorem and its coro]laries will provide the main tools for

further studies of the duality theory of locally convex cones. Korovkin type

approximation theorems may be derived using the preceding separation results. We

shall deal with those subjects at a different place
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A Positivstellensatz for Chain-closed Fields

Rafael Farr6 #
Facultat de Matematiques, Universitat de Barcelona

Gran Via 585, 08007 Barcelona, SPAIN

A Chain-closed field admits two different orders. We shall fix one of these orders and
determine all the functions definite positive. in addition to sums of squares, other definite
positive functions will turn out generated by operators in the style of the Kochen operator
[6] for p-adic fields.

1. Algebraic preliminaries

We shall start with a general theorem which characterizes equationally the existence
of valuations and orders compatible with certain prescribed conditions. In order to do it
we need two lemmas.

In the following if B is any subset of k, S(B) will denote the semi-ring (closed under
addition and multiplication) generated by B.

LEMMA 1.1. Let A be any field of characteristic 0, A a subring of A, M an ideal of A
and B any subset of k. If –1 g S( P , B , I + M) then there exists M a prime ideal of A
extending M and satisfying –1 g S(12, B, 1 + M)

Proof. For the sake of simplicity we shall suppose B closed under multiplication and
1 e B. We take by Zorn’s Lemma M a maximal ideal of A with the property –1 q
S(k2 , B, 1 + A). We will have finished if we prove V prime. If not, there exist r, ye A
with ry e R r e R y # M By the maximality ofR we have –1 C S(k2, B, 1 +M+(a))
and –1 e S(12, B, 1 + N + (y)):

–1 = E a?bi(1 + mi + Air) (1)

# Work partially supported by grant PB86-0269 Direcci6n General de in vutig&ci6n Cientific& y T6cnica
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1 = E, '}dj(1 + „j + #jy) (2)

with al, cj e k, hi, dj ( B, mi, nJ c V and Ai, PJ e ,4, it is sufficient to obtain
–1 e S(kI , B ,1 + M) from (1) and (2). Multiplying (2) by r we obtain:

– Z(1 + E 44) = EJ adi(=ni + pirY) = EJ c]diul

with n C M Making a = E c}dj, b = E c3djuj we have

–r(1 + a) = b (3)

Now multiplying (1) by 1 + a

–1 = a + E afb,(1 + a)(1/2 + mi) + E a?bi(1 + a)(1/2 + Air)

were a and the first :/ clearly belong to S(12, B, 1 + V):

1/2 + ml = (1/2)22(1 + 2mi)

To see that the third term also belongs to it, we put

(1 + a)(1/2 + Air) = 1/2(1 + a + 2(1 + a)Air) =

by (3)

= 1/2(1 + a – 2bAi) = 1/2(1 + E c:dj(1 – 29\in))

and consequently –1 C SCP , B, 1 + a). •
LEMMA 1.2. Let A be any field of characteristic 0, A a subring of k, if an ideal of A

and B any subset of k. If –1 q S(k2, B, 1 + M), then for every a e k one of the following
assertions holds:

–1 # S(k’ IB, 1+ M[„ I)

–1 ( S(k2 . B ,1 + M[.–1])

Proof. If not we take n and m minimal such that

1 e S(A2, B, 1 + Mja jn)

–1 e SCP , B ,I + M[a–1]m)

were M[a]n is the set of polynomials over M in a of degree less or equal to n. Without
loss of generality we can suppose n 2 m. Then

–1 = E ' fbI(1 + h(„))

2

(1’)
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–1 = E. cjd,-(1 + gj(a–1 )) (2')

were al, cj C k, bi, dj e B and fi,91 e M[#]„. Multiplying (2’) by an we obtain

–„"(1 + E. ddj(1 + gj(o))) = E.'fdj ij(„)

with gj(0) C M, hCa) e M[a]n_1. Making a = = c}dj(1 + gj(0)) and b = }yc;jdjgj(a)
we obtain

–an(1 + a) = b (31)

Now multiplying (1’) by 1 + a we have that

–1 = a + E a fbi(1 + a)(1/2 + ka)) + E a fbi(1 + a)(1/2 + mia'1)

were mian is the term of degree n of ACa) and /I(a) e M[a]„_1 is the rest. It is clear
that a and the first E belong to S(b2 , B, 1 + M[a]n_1). But

\

(1 + a)(1/2 + mia")'= 1/2(1 + E c}dj(1 + gi(O) – 2„'iii(a)))

also belongs to S(b2, B, 1 + M[a]l1 ) which implies –1 e S(AZ, B, 1 + M[a]n_1), contra-
diction. •

If (k, u) is a valued field and = e k with u(r) : 0, 1 will denote the class of x modulo
M„. Also we will use the same symbol to denote the class of an element of an ordered
abelian group modulo a convex subgroup. If in addition $ is an order of k and P its
positive cone, we shall say that u and $ are compatible or o is convex with respect to
g if 1 + M C P. This condition is equivalent to jrF < jyl for every a, y e k such that
u(a) > u(y). In this case the order of k induces an order $/, in k/v by putting T =/, 0 if
and only if = = 0 (it is easily seen that this condition does not depend on the represent ant
of F chosen).

THEOREM 1.3. Let k be any field of characteristic 0, ,4 a subring of lc, M an ideal of
A and B any subset of k. Then the following are equivalent:

(i) – 1 q S(b2 1 Bl 1 + M)
(ii) There exist an order S and a valuation u compatible such that B : 0, A g A"

and M C M„.

Proof. To see i+ii we consider C = {( X, M)/ M an ideal of the ring A, A g k, such
that –1 ( SCP , B , 1 + M)}, C ordered by the relation ( Ai, Mi) $ ( 4, Mj) if and only if
Ai g AJ and Mi g Mj. By Zorn’s Lemma we take (I V) maximal. As a consequence of
Lemma 1.1 we obtain that M is a prime ideal of A and by Lemma 1.2 we have that A is
a valuation ring. But the localisation ,aT is also a valuation ring with maximal idea:1 M,
thus (IV, M) is an extension of (i, M) belonging to C. Therefore A = AT and M is the
maximal ideal of I. Finally the condition –1 ( S(b2, B, 1 + M) implies the existence of
an order S over k compatible with the valuation associated to A and such that B ? 0. •

We are now going to develop some consequences of Theorem 1.3.
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,4,
COROLLARY 1.4. Let (k, g) be an ordered field, A a subring of k and M any ideal of

Then the following are equivalent :
(01 + M ? o
(ii) There exIsts a valuation u compatible with $ such that A g A„ and M g M"

Proof. Trivial applying Theorem 1.3 with B = P (the positive cone of the order) and
observing that –1 ( S(12, P, 1 + M) if and only if 1 + M g P. •

LEMMA 1.5. Let k be any field, B a subset of k and f an element of k , f + 0.
–1 e S(A2, B) then the following are equivalent.'

(i) j e Stk2. B)
(ii) –1 e S(k' , B . –/)

If

Proof. W.I.o.g. we may suppose B closed under multiplication and 1 e B. To see
i+ii it suffices to observe –1 = (–/)/(1//)2. In the other side if –1 = = a f bi – iTy c{d,
with ai, ci C k and bi, di e B, isolating f ( EI c? d, + 0, otherwise –1 e S(b2, B) )

f = 1+ e S(k2,B) beca„,, S(k2, B) i, ,1,„d „md„ in„„„. n

THEOREM 1.6. Let k be any field of characteristic 0, A a subring of k, M an ideal of
A and B any subset of k. Then S(b2, B, 1 + M) = np were P = { P, P is the positive
cone of an order in k containing B and such that there exists a compatible valuation o
with A g 4, and M g M,}.

Proof. Trivially S(k2, B, 1 + M) g n P. To see the other inclusion we may suppose
–1 ( S(k:z, B, 1 + M), if not A = S(A2, B, 1 + M) because a = (V)2 – (V)2. If
f d StP , B, 1 + M) then –1 # S(b2, B, 1 + M, –/) and by Theorem 1.3 there exists
P e P such that –f e P, i.e. f { P. •

COROLLARY 1.7. Let k be any field of characteristic o, A a subring of k, B a subset of
k and Ma multipJic&tively closed subset of k such that AM C M. Then S(12, B, 1+M) =
nP were P = { P, P is the positive cone of an order in k containing B and such that
there exists a compatible valuation u with A C 4, and M g M,}

Proof. We apply theorem 1.6 with ,4’ = 4[M] = A + E M were E M means sums of
elements of M and M1 the ideal generated by M in ,41, M' = M,4’ = F M. It is enough
to prove S(k2, B, 1 + M) = S(k2, B, 1 + L M). But 1 + E: mi = (1/n);in E:'(1 + nnIi),
and therefore 1 + E M g S(12, 1 + M). •

COROLLARY 1.8. Let k be any field of characteristic 0, B a subset of k and M &
multiplicatively closed subset of A such that ZM g M. Then S(b2, B, 1 + M) = n P were
P = { P, P is the positive cone of an order in k containing B and such that there exIsts
a compatible valuatIon u with M g M„}

Proof. Corollary 1.8 is a particular case of Corollary 1.7 for A = Z. •

We are now going to give a general theorem on extensions of valuations and compatible
orderings.

Notation. (b, u, g) will always be a valued and ordered field with compatibility be-
tween o and <

4



R. Farr6

LEMMA 1.9. Let (k, u, So) be a valued and ordered field, (I, to) an extension of
(k, u) with u(k) = mCE) and $1 an order over LIu such that LLju, $1) is an extension of
(k/o, So /o). Then there exists an order $2 over L compatible with w, extending go and
inducing $1 on LIu

Proof. We define P2 = {r e L/ there exists an #1 C k such that m(n) = u(r1), 11 >o 0
and z/#1 >1 0}. L = P2 U – P2 U {0} and P2 is closed under multiplication. To see that
& U {0} is the positive cone of an order it suffices to prove that P2 is closed under addition.
Let r,yeP2 and w.1.o.g. suppose o(a) S u(y). We distinguish two cases.

I. If u(r + y) = u( 3) then

V =n +m =n +m .m > in
and thus a + y e P2.

II. If u(r + y) > u(3) then u(a) = o(y). Assume –(r + y) e P2, then we have that
–y = –(a + y) + reP2 by case I and we arrive to a contradiction. •

If IT is an ordered abelian group (o.a.g.) I? win denote its divisible hull X ®z Q.

PROPOSITION 1.10. Let (k, u, S) be an ordered and valued field and X an o.a.g. such

that u(k) g if C o(b). Then there exists (L, u, S) an algebraic extension of (I, o, g) with
(I, u) henselian, (E/u, S/„) real-closed and uCE) = X

Proof. First we take (L, o) a henselian extension of (k,o) with residue field (k/o, S)
the real closure of (k/o, , $/„) and uCb) = v(L) (this is alwais posible: [7] prop 3 pag
146). Applying Lemma 1.9 we take an order in E extending the order of k compatible

with (E, u) and inducing the order of k/o. Extending u to (E, S) the real closure of (Z, S)
we have a henselian valuation and therefore compatible [5]. Then uCI) is divisible and
(Z/o, S) = (k/o, S) real-closed. We finally take an extension to of L into L maximal
with the property u(Lo) C A. We will have finished if we prove o(Io) = X. Otherwise
let h be an element of X – u(Lo) and n its order into if/u(E,). Taking b e Lo, b > 0
with uCb) = nh and c = @ we have oCc) = h . We then note that the following natural
inequalities

„ g („(Lo) + (h), .(Lo)) $ (.(Lo(c)) : u(Lo)) $ [1o(') ; Lo] = ”

are equalities and therefore o(E,(c)) = uCE,) + (b) g X, contradicting the maxim&hty of
I,. •

2. A Positivstellensatz for Chain-closed fIelds

A chain-closed field [3] may be characterized as a field carrying a henselian valuation
u with real-closed residue field, odd-divisible value group and (u(k) ; 2u(A)) = 2. We shall
call mr ordered abelian group I1 2-regular if 2 X is dense into X. The theory of the o.a.g.
A odd-divisible, 2-regular and such that (X : 211) = 2 is model-complete in the language
(+> $7 0, D) were 1) is a monadic predicate with the following interpretation: DCa) if and
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only if (IV)(= = 2y) [8]. Equivalently the model-completeness may be formulated in the
language (+, S, 0, a) were a is a constant satisfying the condition a g 2 X

if following [1] Y(b) = {u, u henselian valuation with real-closed residue field, odd-
divisible value group and (uCb) : 211(b)) = 2}, Y(k) is totally ordered by the reverse
inclusion of its valuation rings i.e. u = w if and only if A, g Aw. Furthermore Y(k) has
maximum and minimum. The minimlrm corresponds to the greatest valuation ring , the
Jacob ring O(k) of k [4], [2], for which u(k) is 2-regular. This ring is defined as follows:

Ol(k) = { a e k/ a { lk2 and 1 + = e Az }

O2(k) = { r e hI # e £k2 and rC>1(b) C Of(A) }

O(k) = 01(k) U 02(A)

Let us take a e k – (£k2) (which is equivalent to u(a) { 2l?(k) for every u C V(k))
There exist in k only two orders fixed by the conditions a > 0 and a < 0. The positive
cones of these orders are A2 U aX:2 and A2 U –ak:2 respectively.

If Ii is an o.a.g. If j2H is a vector space over the two-element field; we shall call a
basis of X/211 over this field a 2-basis.

LEMMA 2.1. Let! if be an o.a.g. and a eH – :IH . Then there exists Gan o.a.g.
extension of H into H , odd-divisible with a as 2-basis of G/2G

Proof. We may suppose if odd-divisible, otherwise we take its odd-divisible hull which
preserves the property a d 2 X. Taking a maximal with the condition a { 26 we will prove
G = 2G+(a). Otherwise we take p e G – (2G+(a)) and put Go = G+Z/3/2 = { g+ kp/2
with k = 0, 1 }. We should have finished if we prove a C 2(;o. Suppose a C 2(;o:

a = 2(g + AP/2) = 29 + AP

with g e G and A = 0 or A =, 1. Neither 1 = 0 is posible because then a e 2G, nor k = 1
because then p e 2G + (a). •

THEOREM 2.2. Let (k, u, g) be an ordered an valued field and a e k such that a > 0,
u(a) e 217(k). Then there exists (Itu 7 S) an extension of (k, u, S) with u henseJian, L/u
real-closed, uCE) odd-divisible and u(a) a 2-basis of uCL)/212(E)

Proof. This theorem follows from Proposition 1.10 and Lemma 2.1. •

LEMMA 2.3. Let (k, u) be a valued field, a e b' and 6 the operator defined by
6( 3) = +. Then the following are equivalent.

(i) „(') ( 2„(k)
(ii) 8(k) g M"

Proof. u(a) d 217(b) if and only if u(/z/a) + 0 for every = C k. But i may be expressed

6(,) = (=4($_, ,nd w, n,,d „,ly t, P,,„, th,t „(t) # 0 if and ,„ly if „ ( B) > 0. Thi,
is easily seen by distinguishing the cases ud) > 0, = 0 or < 0. •

6
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The following Lemma is in fact a particular case of a result of algebraic geometry
which says that a regular local ring is dominated by a place with the same residue field.

LEMMA 2.4. Let A be any 6eld, k(T) = A(X1, . . . , Xn). Let T = (#1, . . . , an) be an

element of k". Then there exists a place P : k(1) –} kU {oo} with Pll =ld and XiP = ri
1or 2 n

Proof. We have to find a valuation on k(X) with residue field b, u(b*) = {0} and
u(Xi – ri) > 0. We take as value group e):1=1 Zi, the lexicographic product of n copies of
Z and we define u on b[X];

„(E bitXl – '1)'= . . . . .(Xn – 'n)'„ ) = ==$„{E. £jlj}
i ]

were bi e k and 1 ) is the .unit of Z j. Then u extends uniquely to a valuation over A(X)
satisfying the required conditions. •

LEMMA 2.5. Let P : I –> kU {oo} be a place and $ an order over k. Let ai, bi c L
such that oo + biP > 0. Then (E a? bi)P + oo implies a jP + aa and (Ea?bi)P
E-f(aiP)2 b,P Z 0

Proof- if u is the valuation defined by P it suBices to prove that o(E a fbi)
mini{o(a?)}. For the sake of simplicity we may suppose u(ai) = mini{u(ai)}. Then

u ( fi b i ) > 0 11a1[1d ( E f # b f ) JP = b 1 JIF) + E : ( ta 2 hP > 0 s hoM ng that u ( V ) = 0
and uCE a fbi) = u(a?). •

Notation. If B is any subset of k, [I(B) will denote the multiplicative semigroup
generated by B.

THEonEM 2.6. Let I be a chain-closed field, a e k–(lk2) and $ the order for which
a > 0. Let S, 91, . . . , g, C k(X). Then the following are equivalent.'

(i) /(1) ? 0 for every FC k" such that /(F), gl (F), . . . , g,(F) are defined and gi(7) >
1, If

(ii) There exist A C N, &, 6iij e {0, 1} for i = 1, . . . , k, j = 1, . . . , r, hl, . . . , hl C k(T),
0 2

ul, . . . , uk e O(k) [l6(k(X)) such that j = EF=1 h?a6ig ii'1 . . . gf''’(1 + ui)

Proof. Suppose I has this form and let T e k" such that /(7), gl(F), . . . , g,(F) are
defined and gi(7) > 0, i = 1, . . . , r. Taking a place P like in Lemma 2.4 we have fP = /@ ,
giP = gi(7), i = 1, . . . , r. Distinguishing the cases hP = oo, hP + aa, for every h c k(X)
and by Lemma 2.3 we see that 6(h)P C M„, were u is the Jacob valuation over k. Thus
if ue O(k) II 6(k(T)), uP C M, and (1 + u)P > 0. Now applying Lemma 2.5. to
f = ELI hI a6igfi'1 . . . g£i'’ (1 + ui) we have that /(F) = jF = 0. This proves ii+i.

To prove i+ii, if f + SCA(X)2, a, gl , . . . , g,, 1 + O(k) [I 6( ACT))) then by Coronary 1.7
and Lemma 2.3 there exist in k a valuation w and an order g compatible such that f < 0,
gl, . . . , g, > 0, w(a) e 2to(bCT)) and O(k) g Aw. By Theorem 2.2 there exists an extension
(L, w, S) with w henselian, I/w real-closed and w(L) odd-divisible such that w(a) is a 2-
basis of mCE)/2w(E). By the definition of the Jacob ring we have O(k) 2 O(L) nk and by

7



construction O(b) S ,4„, g O(L), thus O(k) = O(E) n k. Denoting yo and wo the Jacob
valuations of k and I respectively we have (k, yo) g (E, too ). By the model-completeness
of the o.a.g. If odd-divisible, 2-regular an such that ( X : 2 X) = 2 and using the Ax-
Kochen-Ershov Theorem we obtain the elementary inclusion (b, ao ) 3 (L, too). In the two
fields the order for which a > 0 is defined by the same formula, hence (k, g) 3 (E, g).
Finally because of /(X) < 0, gi(1) > 0, i = 1, . , . , r in (E, g) the sentence expressing

(17)(f(7) , gl (r)9 , g,(F) are defined and /(F) < 0, gi(7) > 0, i = 1, ] r)

holds. By the elementary inclusion this is transferred to k showing (i) false. •
In the case of chain-closed fields for which Y(k) is a singleton we have a simpler form

of the positively defined functions. In order to do this we should keep in mind the following
fact: taking one of the two orders of k and if we denote W(b) the set of all valuations
convex for this order, if(k) is totally ordered (with the inverse inclusion of its valuation
rings) and contains Y(k). Further ([1] prop 11) Y(k) is a fInal segment of W(k) and we
have the following equivalences:

1. o e V(k) if and only if (u( A) : 211(b)) = 2
2. u ( Y(k) if and only if uCb) is divisible

THEOREM 3.5. Let k be any chain-closed field such that Y(k) is a singleton. Let
a ek – (lk2) and $ the order for which a > 0. Let f , gl, . . . , g, e k(X). Then the

following are equivalent:
(i) /(F) ? 0 for every 7 e k" such that /(F), gl(7), . . . , g,(7) are defined and gl(?) >

0 12 T

(ii) There exist k e N, &, b,,j e {0, 1} for i = 1, , . . , k, j = 1, . . . , r, hl, . . . , hI e k(X),
111, . . . , uk e Z [l 6(k(T)) such that I = Ef=1 h?a6ig{i'1 . . . g:i’'(1 + ui)

Proof. The proof is the same as in Theorem 2.6 but for two points: we use Corollary 1.8
instead of Corollary 1.7 and to prove O(k) = O( L) nk we will use the condition IV(k)1 = 1
instead of imposing O(k) C Aw. This is done in the following way: the order making a > 0
in A is the restriction of the order in L with a > 0 . Then from the convexity of wo we
deduce the convexity of mojl. Furthermore moCk) is not divisible (wo(a) { 2wo(E)), hence
u?oIt = ut) and thus (k, t/o) g (E, mo). •
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RAIIQNALCQMEIIIAIIWIREES

T. Recio (+)

&l. Algebraic computation trees (as in [B-O]) are usually inuoduced in
Computational Geometry to obtain lower bounds of the complexity of solving the
memtnrship problem for a (necessarily) semialgebraic subset W c RN. At each node of

the tree an arithmedcal operation or comparison (test instrucdon of the form f>0, M)

or f=0) is performed. In this model of computation, exact real arithmetic is assumed.

Then lower bounds for the height of any tree that decides correctly for every x c RN

whether xe Wor xe Ware obtained -using the Milnor-Thom Theorem- as a function of

N and the numtxr of connected components of W c RN

&2. Usually, arithmetic operations performed in an operational vertex of the tree

are +, -, x, +, plus real root extractions of polynomials (at the cost of the complexity of

evaluating the polynomial at a given point; for example roots of x2-f at cost 1, where f
has been previously computed in the path leading to the node which performs the

exuacdon d). The terms of the operations are either all precomputed along the path
or some of them are constants of R (for example, dividing f/2, exnacting the root of
x2-rx+f, or multiplying fxg).

Despite of the fact that the rational numtxrs Q are not closed for all these arithmetic

operations one can easily show the following: " For every set tY CRN such that Mere

is an algebraic computation tree solving the membership to W using no trascendental
constants, there is also an algebraic computation tree solving W which uses only the

four elementary operations +, -, I, +, and rational constants. Moreover there exists

another (maybe different) elementary operations tree for solving Wn av"

In general one needs higher elementary algebraic computation trees for solving a

given WCRN than if one is allowed to use trees which perform more complex
operations, but nothing is said about the height of the elementary nee for solving

WrIQN

&3. But we are thinking of applying this elementary algebraic computation uees
(rational computadon Eecs) for solving the membership problem for sets W c QN. The

philosophy is that most of the sets W that arise in Computational geometry can be
descritxd by trees that use only rational constants; and to compute these sets with exact

C) Partially supported by P. B. 62/86 CICYT



arithmetic it is more realistic to restrict to rational inputs and elementary operations;
else to restrict to real algebraic numbers suitably codified (c. f. [C-R], [L]), allowing

some specific weight to the performance of exact operadons, even if elementary. Thus,

the remark in &2 says that the consideration of rational computation trees does not
diminish essentially the set of problems in Computational Geometry that can tn studied

with this restricted model of computadon.

&4. In order to bound the height of a rational computation tree T that computes a

set W c QN one considers the descripdon -in terms of equalities and inequalides- given

by T of W, namely W=W(T). Now, WCT) can be interpreted as a system over RN, and

we write W('T)(RN) to represent the solution set, thus WCT)(RN)nQN=W. Clearly the
height of T, h(T) is bounded -using Thom-Manor- by the number of connected

components of WCT)(RN). But this number has a priori little relation with the closure

in RN of W, W ; connected components of W can be less that the ones of WCT)(RN)

(for example, two tangent open circles); or more (the case of [(x-1) (x-2) (x+1) - y2]
[x4+y4-1]22 0 in Q2). It is therefore relevant the following result that connects the

number 7 of compact connected components of W with non empty interior with the

height of T, h(T):

TheQrQm [B-O] ; hd)=Q (log 7 -N).

Stated without proof in [B-O] , it is just a matter of bounding 7 with the number of

connected components of some subsets WCT)(RN) -the ones defined without equalities

through the tree T (c. f. [P-R] for details) .

&5. One useful way of using the Theorem atx)ve is to obtain better lower bounds

for the membership problem of certain semialgebraic sets W c RN. In fact , if W is
defined with rational coefficients but if it is gQnneQtQd, the Manor-Thom method does

not give an estimation of complexity. Here we can consider , for every rational

computation ace solving W the same tree solving the rational set WnQN. Now the

closure of WnQN. in RN can well have several connected components with non empty

interior (as in the second example of &4); therefore we obtain better lower bounds for
the height of the trees solving W. On the other hand, it is clear that given a
senialgebraic set WC RN, with a number of equalities and inequalities of bounded
degree, one can construct a tree solving W with height bounded by a certain function

of the degree and the number of conditions. Thus we can obtain an upper tx)und for

the number of connected components with non empty interior corresponding to the

closure of WnQN.



Recio

REFERENCES:

[B-O] - Ben-Or M.. Lower Bounds for Algebraic Computation Trees. Proceedings
ISth A.C .M . Annual S)mp . Theory of Comp . 1983

[C-R] - Coste M., Roy M. F., Thom's Lemma, the Coding of Real Algebraic
Numbers and the Computation of the Topology of Semialgebraic Sets. Journal of

Symbolic Computation. Numbers 1 &2. Vol. S . Academic Press. 1988

[L] - Loos, R., Computing in Algebraic Extensions.Compuler Algebra. Symbolic
and Algebraic Computation. Springer-Verlag . 1982

[P-RI - Pardo L.M.,Recio T., Arboles Algebraicos: Un Modelo de Computaci6n en
Geometrfa. " Homenaje at profesor E. Vi LIar " . Universidad de Cantabria,

1988

T.Recio

Departamento de Matem£ticas, Estadfsdca y Computaci6n.
Universidad de Cantabria.

39005 SANTANDER





1

CQmPlexitv Qf the gQmPutatiQn Qa real ajgebraic nwmber$
Marie-Frangoise Roy, IRMAR, Universit6 de Rennes I

Aviva Szpirglas, CSP, Universit6 Paris Nord

A new method for coding the real algebraic numbers , based on the study of

simultaneous inequalities coming from [B K R],has ben introduced in [C R]. This
leads to various applications in the field of computational real algebraic geometry:

study of the topology of a real algebraic curve ([R]), or of the analytic branches of a
real algebraic curve ([Cu P 3R]).

In this paper we give some improvment of the algorithms in [C R] and we
study their complexity. We will apply our results to the study of the complehty of

some algorithms on curves: cylindrical decomposition and topology by the

methods in [R] , in an another paper.

In the first paragraph we introduce some basic tools we need, based on the
techniques of computer algebra (mainly results on 8ubresultants and divisors). In

the second paragraph, we study simultaneous inequalities at the real roots of a
polynomial,in the third paragraph, we consider the coding of real algebraic
numbers.

I)Basic tools and notations

In all the paper, for P = aoP+...+apa.polwomial with integer coefficients we

deane the norm of P, IV(P), by IV(P)<aoZ+......+ap2)1/2. The size of P is the log of

IV(P). The length of an integer is the log of the integer.

Our algorithms are based on a generalization of Sturm theorem, hence on
divisions of polynomials, taking care of signs. So we shall need various notions of
signed remainders.

In this paragraph we denote by :
P a polynomial with integer ceflicients of degree p ;

Q a polynomial with integer cefTicients of degree q with leading coefficient

bo+o I q£P .



1) Signed pseudo-remainders

2

We denote by rem(P,Q) the remainder of P and Q in the buclidian division
process: so rem(P,Q) has rational coefficients.

In order to perform division of polynomials with only integer coefficients, one

uses classically the pseudo-division process:

The pseudo-remainder of P and Q prem(P,Q) is the remainder of the

quotient ofbpH+\ P by Q .

The signed pseudo-remainder of P and Q sprem(P,Q) is the remainder of

the quotient of I b/d+1 IP by Q

The pseudo-remainder sequence of P and Q is by definition the following

sequence :

premo(P ,Q)

prem KP ,Q)

=P

Q

premI(P,Q) prem(prem jAP ,Q) , premj JP ,Q) ) forj'ij Q

where Jo is such that prem ja(P ,Q) is of depee 0 (sojogP–2).

The signed pseudo-remainder sequence is obtained by replacing in the

preceeding definition each pseudo-remainder by the corresponding signed
pseudo-remainder .

2) Signed subresultant sequence

One defect of the pseudo-division process is the growth of the size of the
coefficients. Is is well known (see for example [Lo]) that the subresultants
techniques allow to make divisions with integer computations and with a good
controll of the size of intermediate results.

Let us recall the definition of the subresultants :

If Q1 ,.... , Q I are & polynomials with integer coefficients ,of respective degrees

ql ,... ,% , Qi = E]Tai//-1, denote by i the number max(qi) +1 . We can write

q = ;Lai/-1 with ,irQ f,,Mi+r. Th,n d,n,t, by ,nat( Q1 ,.... , Q i ) th,



M.F. Roy et A. Sz>irgla8

3

Xxi–matrix of elements (ba) where bip il_j

For 0 sh<4 ,the h-th subresultant of P and Q , SI is defined as follows : denote

by a4 the Q7+q–2£,p+q4)–matrix mattxg-h-IP,._.p , p–k–LQ,__ ,Q ) . Then the

h–th subresultant of P and Q, Sh , is :W& det % J xp+q-k-i , where M@ is the

minor of A% obtained by taking the first p+q–2£-1 columns and t:he j-th column.

The subresultant sequence of P and Q is obtained by considering Q as a
polynomial of degree p–1 (the first p–jqz coefficients being equal to 0 ) and by

taking for Sp the polynomial P , for S hl the polwomial Q and for Si the h-th
subresultant of P and Q , for 05]gp–2 .

Let us recall the subresultant theorem, which indicates the relation between

the subresultant sequence and the pseudo-remainder-sequence:

Subresultant heorem :

If the depe of Sj+1 is equal to J+1 and the depee of Sj is equal to s , then :

O S _1 = .....= Ss+1 =0 for –1 Ss<j<P–1

(ii ) (Rj+IY-sS s= ic (S;Ii–s Sj for Ogs gjSP-1

( iii) (–194(Rj,IV-*28,_1= prem(Sj4Sj)

where Rj+1 is the leading coefficient of Sj+1 except for j=P–1 CRp =1) and Jc(SJ) tha

leading coefficient of Sr.

proof: see [Lo].

We deduce immediately the following corollary
pseudo-remainders.

for signed

Corollary :

For each ) , jv£j SP–2 , there exists $ Qaj9 and CJ eZ such that

CFL?prem}P,Q) .
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With the notations of the corollary the signed subresultant sequence is by
definition ,

ssub j'P Q) =ctS il for jog gP where $ is the sin of CJ.

3) Generalized subresultant Sturm sequence

The generalized Sturm sequence associated to P and Q , denoted by is
defined by :

P.. = P

Pl = Q

Pi = –rem+,P,Q .

One notes up Q(–aa) and up Q(+D) the number of sin changes in the sequences

of the signs of the Pi at –oo and +m.

The Sturm sequence of P is the generalized Sturm sequence associated to P
and P’.

We have the following property,due to Sylvester ( [SD.

Proposition 1:

Denote by c>0(P; Q) ( resp. c<0(P; Q)) the number of real roots ( of P such that

Q(e) is >0 ( resp. <0 ) . With the above definitions and notations , if P and Q are

coprime, one has c>0(P; Q) – c<0(P; Q) = up/"Q(–m) – upp'Q(+m) )

prooF. It is similar to the classical proof of Sturm theorem (see for example [J]
or [B C R]): look at the sign variations in the generalized Sturm sequence when
passing through a root of P .

In order to get only integer computations with a good controll on their size we

define the generalized subresultant Sturm sequence associated to P and Q ,
denoted by GSS(P,Q) by

Po P

PI

PJ

Q

–ssubJ(P,Q)
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It is clear by the definition of the signed subresultant sequence that the
number of sin changes in the sequences of the signs of the Pi at –aa and +m are

equal to up)Q(–m) and up Q(+m).
The subresultant Sturm sequence of P is the generalized subresultant

Sturm sequence associated to P and P’.

Remark 1

The computation of the generalized subresultant Sturm sequence associated

to P and Q takes O(pg) arithmetic operations.

By Hadamard inequality (tMa), the coemcients of all the subresultants of P
and Q are bounded by lv(Pylv(ep, hence the size of the coefficients of the
polynomials in the generalized subresultant Sturm sequence associated to P and Q

is in O(qlog(IV(P)hplog(IV(Q))).

4) Divisors

Let P and R be polynomials with no content (such that their coefficients have
no factor in common). Then R is a divisor of P over Q if and only if it is a divisor of

P over Z [La]). This implies that the coefficients of R are bounded by 2PIV(P),

hence that log(IV(B)) is O(p+log(NCP))) [Mi].

5) GCD

Using signed subresultant algorithm, we get the following way for computing
the GCD of P and Q (supposed with no content):

-compute the signed subresultant Sturm sequence of P and Q,

-get the last polynomial in this sequence, G,

-take the GCD , g, of its coefficients, deane GCD(P,Q) = GIg .

The polynomial OCD(P,Q) is a polynomial with integer coefficients, which is
(up to a rational) a multiple of the GCD of P and Q computed with ordinary
euclidean division, and a divisor of P and Q.

The number of arithmetical operations for computing GCD(P,Q) is in O(pg).
The size of coefficients of polynomials in the computation is O(E) with
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E =q log(NCP))+plog(N(Q), hence the complexity of the computation is is O(pqE2)

using classical arithmetic, and using "fast multiplication" in O(pqElogE).

Moreover, using 4, the norm of GCD(P,Q) is in O(I}+log(NCP)).

ID Simultaneaous inequalities

All algorithms are based on proposition 1, a result due to Sylvester ([S])
revisited by Ben-Ore, Kozen and Reif ([B K R]) .

Let P, Ql,...,Qb be polynomials with integer coefficients and let e =(cl,...,ek) be a

sequence of sign conditions (>0,<0,=0) . The subject of this paragraph is to study

the number of real roots of P giving to Ql,...,Qh axed signs .

One denotes by cAP\ QI,...,Qh) the number of real roots of P giving to Ql,...,Qh

the si os £l,...,ch. The sign conditions realized by Ql,..., q at the real roots
of P are the £-uples of signs conditions c sudh that

{x e IRI P(rH) and Q/(1)cf , J=1,._ X}
is non empty.

1) Basic situation: strict simultaneous inequalities: algorithm SSI

In this paragraph,

P will denote a squarefree polynomial with integer coeBicients, of degree p,

r will denote the nlrmber of real roots of P, KP

Ql,...,% will denote a finite list of polynomials with integer coeflicients of

respective depees ql,... ,qh, prime to P.

In this situation , any real root e of P dves strict sims (>0, <0) to P’ , Ql,...,Qh .

Algorithm SSI is a detailed version of algorithm b3 of [C R].

Presentation of SSI

The aim of the algorithm is to determine the number of real roots of P giving

to Ql,...,Qh fIxed signs.

Let us consider the case X=1 . Let Q be a polynomial with integer coefficients,

prime to P. We want to compute c>o(P; Q) and c<o(P; Q) . Using proposition 1 , we



M. F. Roy et A. Szpirglas

7

have

J!IEft 1 [ : : ( ; : : :1? ) ] = [ = = : : ( : ::::q: = = = = ( == ]

with Al=[11]

We can easily deduce c,0(P; Q) and c,o(P;Q) from u(1)= uPI,,(–m)–uPI,,(+w) and

vW=v PP'Qto')–Vp p'QM) .

The idea for A#1 is to compute the generalized subresultant Sturm sequences

associated to the products of the polynomials in subsets of (Ql,...,q) and use the

sign variations of these generalized subresultant Sturm sequences and some

linear algebra (generahzing h=1) to deduce the values of the %(P; Ql,...,Qh). If done

without care, this leads to an exponential algorithm, since we have 2£ subsets of

(Q1,...,QA} , hence 2£ generalized Sturm sequences to compute, to get the values c£

for the 2 A sign conditions c. To avoid this exponential growth the idea ([B K R ]) is

to remark that the number h of distinct sim conditions realized by al,..., Q& at the

real roots of P is, for any h, smaller than the number r of real roots of P.

We shall give a description of the algorithm and then an example to enlighten

the situation. Precisely one wants to determine the sign conditions

cCA,1 ),..., c(h ,rCP-, Ql,._,Q k)), with rCP-, Ql,...,Qh Mia , realized by Ql,..., Qi at the real

roots of P and the number Ckj=cetky$P', Ql,...,QD of elements of the non empty set

{x cIR 1 P(x)=0 and Q (x)c(h J)i , i=1 „.. a) .

The input of the algorithm consists of P, Ql,...,Qh.

The outPut SSIout(P,Q1,...,Qx) of the algorithm is the following:

(IA) the list £k=(£(£,1),...,£(X,rCP; Ql,...,Qh) )), rCP-, Ql,. . . ,QD=rh 9, of the &–uples of

sign conditions realized by Ql„.., QA at the real roots of p,

(2£) the numbers c(X,1),..., c(h,Q)
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(%) a list of polynomials (q J )j=11...7+ which are some product of the Qm ’s and

the numbers u(£J)=upPI P'q J(–ao) – upI P'oit( an),

(4£) an invertible matrix ACP; Ql,. . . ,Qh)ah of dimension rx such that At % = uh,

where c4 is the vector (c(h,1),_.,c(h,rh)) and ul the vector

u(P; Ql,...,Qi)qu(# ,1 ),...,u(A,h)).

Description of SSI

We are going to compute by induction on Z, 1 S / < A SSIout(P,Ql,_.,Qi)

The case Z=0 is aven by ro=0.

The passage from Z to Z+1 is given by the following procedure SSIadd.

The input of SSIadd((P;Q1,...,Qz),Qh1) is SSIout(P;Q1,_.,Qi), its outPut is

SSIout(P;Ql ,...,Ql+1 ).

Procedure SSIadd

We compute the rI generalized subresultant Sturm sequences associated to the

QJ/lfQz+IQzJ,j=1 ,.../1 and ua ,rnyu pp'Q1. m(–w) –up/"Q1. m(+aD) , nI =rI+1 ,''.,2r1' One

considers the 2r, dimension matrix

JE: ! ! !IcIEf1: /]

A

and the equality A’.c’=u’, obtained from (41) and proposition 1 where c' is the vector

(Ce(iD,>0(P; Ql,'-,Qi+1),i=1 t---r1 , C £eJ),<o(P; Ql’„'’QL+ll’j=1’•„FD

and u' the vector (u(Z,1),...u(Z,2rz)).

The matrix A’ is invertible. One computes c’ by invert:ing A’.

We define b1 as the number (gr) of non zero elements in c’ and let ml,...,mr1



M. F. Roy et A. Szpirgla8

9

(ml<...<ma+J2rD be such that the mi’th coordinate of c’, for J=1 , ... , hl , is

difFerent from 0. The sin conditions c(Z+1,1),_.,c(i+1 ,rJ+1) re4hzed by Ql,...,QI+1 at

the real roots of P are the mj 'th elements j=1 ,...,hl, of the list

((E(i,1 ),>0),...,(E(i,rJ),>0),(E(i,1 ),<0),...,(E(Z,rI),<0)).

One can then extract from A’ the m, ’th column. ... . the In_ ’th collrmn .
Z+1

which aves a 2rz, n+1 matrix A" . The rI 6rst lines of A" are independant, since at

least one of the columns of number j and rI + J of A’ appears in A". An invertible

matrix Al+1, of dimension rI+1 can be extracted from A". Let us denote

m’1,...,m'rl+1_ FI , m’1<_.<m'h_ rI the elements of {1,....a+1) such that the

(rl+m'i )'th line of A" appears in Az+1

The list (Q Lj)j=\ r..r14 is obtained by adding to the list (Qlj)j=II...IF 1 the

polWomials Qz+1 Q/J j=m'I,...,m’ r 1+1_ rI

It is easy to verify (lz+l),...,(4z+1).

Remark 2

The polwomials Qi J are always products of a number smaller or equal to r of

polynomials among Ql,..., q: the polwomial QE+1 appears in some q+1 ) if and

only if hl is peater than rI , and there is at most r such values of Z.

Example 1:
Let us consider

P = (X3–1)CX2–9)

Ql= X

Q2= X+ 1
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Q3= X– 4

Q4= X– 2

Q5= X+ 2

up?' (-aa) – v pp' (+aQ) = 3: P has 3 real rootsWe have

Also u pp' Qt(-ao) – upI„ Qt(+co) = 1: P has 2 roots with Ql>0 and 1 with

Ql<0 . So we have rt=2

and A1 =[1 –1]

Let us add Ql:

U pp' Q2(-ao) – \)pp' Q2(+aQ) = 1

and U pp' QIQ2(-ao) – uH,' QIQ2(+oo) = 3,

hence P has 2 roots with Ql>0 and Q2>0 and 1 root with Ql<0 and Q2<0. So we have

r2 = hand the list of Q2J is just (1 ,Q1),also 42=Al

Let us add Q3:

U pp' Q3(-ao) – Up ;„ Q3(+oo) = –3

and upI,' QIQ+-aa) -u pp' QIQ3(+DO) = –1 ,

hence P has 2 roots with Ql>0 and Q2>0 and Q3<0 and 1 root with al<o and Q2<0

and Q3<0. So we have r3=r2 = hand the list of Q3J is just (1 ,Ql), also 43=41.

Let us add Q4:

U pp' Q4(-ao) – V pp' Q4(+aa) = -1

and Dpp’ Q\Qf-aa) – pPP’ QIQ4(+a') = 1 ’
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1 root with Ql>0 and Q2>0 and Q3<0 and Q4>0

1 root with Ql>0 and Q2>0 and Q3<0 and Q4<0

1 root with Ql<0 and Q2<0 and Q3<0 and Q4<0 .

hence P has

and

So we have Q=3 and the list of Q4J is (1 ,Q1,Q4),

,*.”.=[; I–:=,]
We add Q5:

Dpp' Q5(-m) – Dpp' Q5(+w) = 1

uPP' QIQ5(-ao) – uPP' QIQ5(+aQ) = 3’

and Dpp’ Q4Q5(-“’) – uPP' 0405(+aa) = 1 ’

1 root with Ql>0 and Q2>0 and Q3<0 and Q4>0 and Q5>0

1 root with Ql>0 and Q2>0 and Q3<0 and Q4<0 and Q5>0

1 root with Ql<0 and Q2<0 and Q3<0 and Q4<0 and Q5<0.

So we have r5=3 and the list of Q5J is just (1,Ql,Q4), also 45= A4.

hence P has

and

Complexity of the computation

Let us denote by
P a squarefree polynomial with integer coefficients, of degree p,
r the number of real roots of P, rg>

Q II...,Qh a finite list of polynomials with integer coeflicients of respective

degrees q\,...ah, prime to P,

d the maximum of P,qr,...,qk',

N the maximum of NCP), IV(Ql),...N(ak),
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Q a polynomial with integer coefficients of degree q

n an integer bigger than d, log(N), h.

Proposition 2:

The complexity of SSI is in O(7111) , or using ’'fast multiplication" , in

O(n8lognloglogn).

prmf:
In SSladd , which is done i times , the number of generalized 8ubresultant

Sturm sequences to compute is bounded by r. Each computation of a generalized

subresultant Sturm sequence takes O(d2) arithmetical operation, since the QiJ
are of degree Sp+rd .

So, the total number in SSI of arithmetic operations is in O(£r2d2).

A bound for NCP'Qlj) is NtP’)Nt , hence a bound for log(IV(p’QzJ)) is
log(p)+log(IV(P))+rlog(IV). So applying c) the size of the coefficients of the
polynomials computed in SSladd is in O(rdlogW)).

So, using classical arithmetic, our total computation, after b) and d) is in

O(hr4d4Zog(N)2), that is O(n11).Using the "fast multiplication" [A A U], we get

O(£r3d3logW)log(rdlogW))loglog(rdlog(N)) , that is O(n81ognloglogn).

Remark 3
We get a complexity which is linear in the number k of polynomials and

where the number of real roots r plays an important role.

2) General situation: simultaneous inequalities: algorithm Sl

In this paragraph, let us denote by

P a square free polynomial with integer coefficients, of degree p,

r the number of real roots of P, MP

Ql,...,Qh a finite list of polwomials with integer coefficients of respective

degrees qI„..,qh.
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Presentation of SI

The aim of the algorithm is to determine the number of real roots of P giving to

Ql,...,Qh Bxed signs. We first replace P by the square free polynomial P/GCD(PP),

The algorithm SI is an improvment of 64 in [C R], and as b4 is based on SSI

as well as a splitting process, to take care of the situation where P and the Qi 's

have common real roots. So we shall have in the splitting process to introduce
divisors ofF. The improvment is based on the following remark

Remark 4

Let P1 be a divisor of P ; ifc,( P; Ql ,__, q) =0 then c,(Pl;Ql ,__, Q£)g) .This

means that if we are in the hypotheses of SSI and have already computed

SSIout(P,Ql,_.,Qx), we just need the following procedure SSIdiv to know

SSIout(Pl;Ql,...,Qh).

Procedure SSIdiv

The input of SSldiv is SSIout(P;Q1,._,q) and a divisor B1 of P.

The outPut of SSIdiv is SSIout(P1 ;Ql,...., q) and SSIout(P/Pl ;Q1,__,Qx).

The computations in SSIdiv are the following:

co"Wute '’1#<'’P1 & %,lq”)– nAn 1(–'*’))+1„.q

compute cl+=(c£(£#)(Pl; Ql,._,Q&) ) )J=ll_q by inverting the system A/1,h=ul#

-determine the j's such that cca J)(Pl;Q1,...,Q£) # 0 which gives

Fl ,k =%(Pl;Ql’„'’QA)

-compute the invertible rIk , rl A matrix Al & obtained by extracting from At

the corresponding rIk columns and finding q & independant lines.



14

It is clear that after SSIdiv we have the information to determine

SSIout(Pl ;Ql,...,Qh), as well as, easily, SSIout(P/Pl,Ql,_, q) since

c ,tP-,QI,.. Qh)=c ,tP{,Q\,...,Qh)+c£PIP BQ I„..,Qh) .

We go back to the algorithm SI .
ca$e &=1,

Let Q be a polynomial with integer coefficients. Let us indicate how to compute

c,0(P; Q) , c,o(P;Q) and c=o(P;Q) .

-compute R= GCD(P ,Q)

-if R is of degree 0 , apply SSI to P and Q with h=1
-ifR is of degree >0

takeS = P/R

apply SSI to S and Q with £=lto determine c>o(S;Q) and c<o(S;Q) ,

respectively equal to c>o(P;Q) and c<o(P;Q).

-compute c=o(P;Q) = N c>o(P;Q)+ c<o(P;Q))

ca$9 &#1 . We want to determine SIout(P;Q1,...Qi), which will consist of

(1 ’x) a splitting of P into Pp...Ps(b (this means that P is the product of PI,_.Ps(hP

(2%) for each sSs(h) the list Qs 1,...,-Qs)(s) ACs) Sl of the polwomials taken from Fhe

list Ql,...,Q1 which are prime to Ps , and such that if c is a £-uple of sign

conditions with c,(P',QI„.. ,QD different from zero, there exists s and c’ with e

composed of the non zero elements of c and cE(P-,QI,... ,Qh) = cE,(Ps',Qs 1,... ,Qs, nCs)).

(3 %) for each s£s(i) SSlout(Ps;Qs 1,...,Qs k(s))

Description of SI

We suppose the problem solved for P ,Ql „..,QI and we add the polynomial Q 1+1 by

the following procedure Sladd.
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Procedure SIadd

The input of SIadd is SIout(P;Ql,...,q) and Q 1+1 and its outPut is

SIadd(P;Ql,...Q/+1),

- define for each sSsI , Rs = GOD(Ps , QJ+1)

-apply SSIdiv with the inputs SSIout(Ps; Qs 1, __ , Qs/(s)) and Rs ( we get by

this SSIout(PPs; Qs 1, __ , Qs Ks)) and SSIout(Es; Qs 1, __ , Qs ;(s)) )

-apply SSIadd to SSIout(Ps/Rs; Qs 1, __ , Qs Ks)) and QI+1( we get by this

SSIout(Ps/Rs; Qs 1, __ , Qs iCs),QI+1) )

On the real roots of Rs one has Ql+1

During this process, the Ps have been sphtted (eventually) inP s/Rs and as for

the next step of the algorithm.

Example 2
We consider again

P = Cx;–1)(x’–9)

Ql= X

Q2= X+ 1

Q3= X– 4

Q 4= X- 2

Q5= X+ 2

Q,= X4 -X.and now

We have already computed SIout(P;Qt,_.,Q5), which coincides with

SSIout(P;Q1,...,Q5) since Ql,...,Q5 are prime to P:

P has 1 root with Ql>0 and Q2>0 and Q3<0 and Q4>0 and Q5>0
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1 root with Ql>0 and Q2>0 and Q3<0 and Q4<0 and Q5>0

and 1 root with Ql<0 and Q2<0 and Q3<0 and Q4<0 and Q5<0.

We have r5=3 and the list of Q5 J is just (1 ,Ql,Q4), also 45=44.

Let us add Q6 that is let us apply SIadd to SIout(P;Ql,...,Q5) and Q6.

The GCD of P and Q6 is X3–X. So we have a splitting of P in Pl=X3–X and

P,=X2-9

We apply SSldiv to Pl; we compute :

un/'1(-ao) – url!„I +oo) = 2

UPIP'I QI(-CD) – UPIP’IQ1(+aQ) =O1

and
UPlrP’IQ4(-CD) – Uplrp’IQ4(+m) = O'

1 root with Ql>0 and Q2>0 and Q3<0 and Q4>0 and Q5>0

and 1 root with Ql<0 and Q2<0 and Q3<0 and Q4<0 and Q5<0,

P2 has 1 root with Ql>0 and Q2>0 and Q3<0 and Q4<0 and Q5>0.

The outPut of SSIdiv applied to P1 is h 5=2, 41 5=At,and the list of the Qll5 J is

So P, has

(1 ,Ql).

We now apply SSladd to P1 and Q6: we compute

Dpl/'1 Q6 (-aa) – UPIP'1 Q6 (+aa) = 0

and

Hence

Pl has

and

P2 has

uPIP’l0l06(-oo) – UplP’IQtQ6(+'c’) = 2-

1 root with Ql>0 and Q2>0 and Q3<0 and Q4>0 and Q5>0 and Q6>0

1 root with Ql<0 and Q2<0 and Q3<0 and Q4<0 and Q5<0 and Q6<0,

1 root with Ql>0 and Q2>0 and Q3<0 and Q4<0 and Q5>0 and Q6=0.
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Complexity of the algorithm SI

In this paragraph we will denote by

P a polynomial with integer coeaicients, of degree p,

r the number of real roots of P, Hp

Ql,...,Qh a finite list of polynomials with integer coefficients of respective

depees qI I...)qh\

d the maximum of p,ql,...,qh',

N the maximum of NCP),N(QD,._BitQD,

Q a polynomial with integer coeaicients of degree q

n an integer bigger than d, log(N), i.

Proposition 3:
The complexity of SI is in O(7111) , or , using "fast multiplication" , in

O(n81ognloglog/z).

p-mf:
We first replace P by E ,the quotient of P by GCD(Pp’). The degree of P is

less than p and the number of real roots of p is equal to r. We have NW£WN tP)

[Mi].The computation of e takes O(p2) arithmetic operations.

In SIadd, the number of generalized subresultant Sturm sequences to
compute is bounded by 2r (in the worst case where GCD(Eal+1) is of depee >0).
Each computation of a generalized subresultant Sturm sequence takes at most

O(d2)) arithmetic operations.

So, the total number of arithmetic operations is in O(£r2cl2).

In SIadd we compute subresultants of a factor of P and products of a number

smaller or equal to r of Qi ’s. So applying Remark 2 the size of the coeflicients of

the polynomials computed in SIadd is bounded by rd(d+log(N)).

The computation of a is in O(p2®®+logW(P)>+plogN(F))2), i.e in

O®4(p+logW(P)))2) using classical arithmetic , and , using "fast multiplication'
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in Ob2b(p+logW(P))logO@+log(NCP)))loglog(pb+logW(P))).

Using classical arithmetic, our total computation is in O(£r4d4(d2+Jog(N)2)),

that is O(all).
Using the "fast multiplication" [A A U] the total computation is in

o(hr3d3(d+log(M)log(rd(d+logav))loglogI'M(d+log(M)) ,that is O(n81ognloglogn).

Remark 5:

The complexity of b4 in [C R] ,involving one more looP ,is in O(n12).

IID Real algebraic numbers

Algorithms proposed before [CR] to work on real algebraic numbers were
semi-numerical: one characterizes a real algebraic number by means of a
squarefree defining polynomial P with integer coefficients and an interval that
isolates ( from all other roots of P ([con). The new approach is purely formal and

relies on Thom's lemma. We shall present a slight improvment to b5 in [C R].

D Real algebraic numbers coding

In this paragraph let us denote by
Pa polynomial with integer coefficients, of degree p,

r the number of real roots of P, rgp,

n an integer bigger than p,log(NCP))

Principle of the coding

It is based on the following proposition:

Proposition 4 :
Let P be a polynomial of degree p with integer coefficients. Let e and {’ be two

real roots of P. Suppose the signs c(e)pI and c(e’ b_i of in (e) and P(') (e’),
i=1,_.,p–1 , are given. Then:

(i) if c(e)i = c(e)i for all i=1,...,P–1 then ( = e’.



M.F. Roy et A. Szpirgla8

19

(ii) in the other case one can decide whether e<e’ or e>(’:

let i be the smallest integer such that c(e)k and c(e’)i are different ;

(ii a) ece)+_1 = e(e’)x _1 is different from g),

(ii b) if c(e)h_1 = He’)i _1 is >0 one has e > (’ if and only if AP-l)(e) is bigger than

PCp-h)(e’) (which is known by looking at £(€)£ and c(e’)+ ,

(ii c) if c(e)h_1 = £(€')h _1 is <0 one has e > (’ if and only if PM)(e) is smaller

than lip-h(e ’) (which is known by looking at c(e)i and £(€’)£ ,

proof: cf [C R]

Algorithm RAN

As seen in proposition 2, a real root ( of P is characterized by the sequence of
signs it gives to the derivatives pG) of P . So a possible coding of e is this sequence of

sims .The algorithm b5 aven in [C R] for coding the real roots of a polwomial

was simply, after proposition 4, 64 applied to P-P’ ,..., PO–1),

We could here use SI (which is an improvment of b4) applied to PP’,..., PCP-1) ,

The algorithm RAN is an improvement of this strategy, based on the following
remarks :

Remarks 6 :

a) it is better to introduce the derivatives in the order PCP-V ,__p" jY , since after

proposition 2 (ii), if condition (+ ,Q , i) holds :

"for all J-uples c’ of sign conditions on pb-1),_.pp-i-1) we have

Ce(Q;PO–1),._., pb–l–1)) equal to 0 or 1 , with Q a divisor of P "

(i) : we have an individual code of length gi of all the roots of P which are roots
of Q

(ii): if we code all real roots of P as indicated in ( i) we can still compare them
using proposition 4 .

With the notation introduced in the description of SI this will allow us to stop

the branch of the computation in SI corresponding to PA as soon as (+Pi,I) is
fulfilled



20

b) Situation (+, Pi, Z) is automatically verified when we consider Pha common

divisor to P and pb–l–1) and sign conditions on the derivatives pb-1),._/P–i-1)

So the code of a root ( of P will be a list of length Ke) (sd ) of the signs of

p(d–1)({),...p(d– Ke)), and hence will be shorter in some cases than the code given by

b,\ in [C R].

Let us take an example to illustrate this situation.

Example 3

Let us consider P=X? –X. The polwomial P has three real roots 61, €2 and €3.

If we apply b5 in [C R] we shall have to compute the sMs of P’, P", P(3) and P(4) at

ejI C2 and C3.

Now, we apply SI to P and P(4). We compute Pl = GCD(PP(4)) = X. We compute

the generalized Sturm sequence of P2 = PIP I = X:3–X and X. The polynomial P2

has two real roots, el with X>0 and €2 with X<0. The polwomial Pl has one root €3
with X= 0.

So we have an individual coding for each real root of P just using P(4). This

code allows to compare €1, €2 and €3, since P(5) is constant and positive: we have

€2 < €3 < el)

Presentation of RAN

We want to determine the following output of RAN applied to P , RANout(P),
which will consist of :

(1 ’d) a splitting of P into Pl,...Ps(d) (this means that P is the product ofP1,_.Ps(d))

(2’d) for each sa(d) a list Ps 1,..., Ps ,dCs) ofpolwomials ,taken from the list pki-V ,

PC/(s)) in this order, with J(s) 21 and Ps dCs) = Pg(s)) , which are prime to Ps , and
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such that for every s and for every sin condition c’ ,with cd(PsP sl,._P6aQ\\

different from 0, Ce.(Ps'Ps\,I,...Ps dCs)) =1

(3'd) for each sgs(d) SSIoutfPsPs ,I,._Ps (s))

Description of RAN

We suppose that we have computed the output of RAN applied to P at step i
RANout(P,h), which consists of :

(1 ’x) a splitting ofF into Pl,...Ps(A

(2’x) for each sss(h) a list Ps I„.., Ps &(s) ofpolwondals , taken from the list IId–V,

pG(s)) in this order , with J(s) ? d–k and Ps iCs) = pG(s)) , which are prime to Ps, and

such that for every 8 , we have :

either (+, Ps, d- J(s)+1): for every sim condition c’ with cr(PsPs3\,._Ps. +(s))

different from 0 , c£,(PsPst1,...PsA(s)) =1

or (Cs):J(s) = d–k .

(3’h) for each sgs(4) SSlout(PsPs ,I,...Ps, k(s))

We suppose the problem solved for step h and we add the polynomial PU-i-1)

by the following procedure RANadd.

Procedure RANadd

The input of RANadd is RANout(PX) and its output is RANout(P&+1).

-If for every s gs(h) (+, Ps, d–j(s) +1) holds, then RANout(P&+1)

RANout(Pa).

-Else , for each s ss(h) such that (Ce) holds

-take Rs = GCD kP s, pki–k-V ).

-apply SSIdiv toP fR s , Ps 11, ..., Psa(s)

–apply SSIadd toPs / Rs and lid-k- 1)
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( thi, dv,, SSI,ut ( P S/RS & ,1,...P, I(,) , pa4-1))).

On the real roots of Rs , Eid-k-V = 0. During this process, the Ps have been

sphtted (eventually) in P fRs and Rs for the next step of the algorithm. We get a

new splitting Pl,...Ps(k+u of P and we can check for all sa(A+1) whether

(+Pq , A+1) holds or not.

Notations :

For any real root (, we denote by ((e) the Z(€)-uple of <0 , >0, =0 coding ( by

algorithm RAN.

Complexity of the algorithm RAN

Proposition 5:

The complexity of algorithm RAN is in O(n11) (using classical arithmetic, or ,

using "fast multiplication" , in O(n81og/zloglogn).

prmf :

The complexity of RAN is smaller or equal to the complexity of SI applied to P;
P').. . I)(d–1)

Instead of the signs given by the real roots of Pto pm ’s we shall consider

equivalently the signs given by the real roots of P to B(i)=lit)/i! (i! is a common
divisor of the piy s coefficients ) . Remark that Neil) g $NLP\

A bound for the products of r NUm) is 2PTNtPY , hence a bound for their log is

r(p+log(IV(P))). So the size of the coefficients of the polynomials computed is

bounded by O(pr(p+log( iV(P))).
After proposition 3 the total complexity using classical arithmetic is in

O(r4p5E2), with E =p+log (NCP) and using "fast multiplication
O(r3p4ZlogEloglog£;).

So the complexity of RAN is in O(1111) using classical arithmetic,

O(n81ognloglogrI) using "fast multiplication" .
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2)Simultaneous inequalities at real algebraic numbers

Algorithm RANI :

One wants to compute the signs taken by Q at any real root of P .

We denote by :
P a polynomial with integer coeHicients , of degre p ;
r the number of real roots of P;

Q a polynomial with integer coeflicients of degree q

d the maximum of p and q;

n an integer bigger than d , log(IV(P)) , log(IV(Q)) ;

el for lg££r the r real roots of P .

Description of RANI

The input of RANI is RANout(P). Its output is for every real root ( of P the
sign of Q at e. With the notations used in RAN, RANI consists just in s(d)

applications of SIadd applied to SSlout(PsPsy „..Psd(s)) and Q.

Complexity of the algorithm RANI

Proposition 6:
The complexity of RANI is in O (7110) using classical arithmetic, and in

O(n7lognloglogrr) using "fast multiplication".

prmf :

The complexity of RANI is in O(r2pqE2) , with EuIr(p+log(NCP)))+plog(N(Q))

using classical arithmetic, that is O (7110) , and O(r2pqElogEloglogE) that is

O(n7lognloglog/z) using "fast multiplication".
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We denote by

P a polynomial with integer coefficients , of degre p ;
r the number of real roots of P;

Ql,...,Qh polwonHals with integer coeaicients, of degree less than q;

d the maximum of p and q;

n an integer bigger than d , log(NCP)) , log(N(Qi)) .

One wants to compute the sims taken by Q1,..., % at any real root of P .

Description of RANSI

The input of RANSI is RANout(P). Because each root of P is individually
coded, MNSI consists just of k applications of RANI.

Complexity of RANSI

Proposition 7 :

The complexity of RANSI is in O (1211) , and in O(n71ognloglogn) using -"fast

multiplication
prmf :

The complexity of RANSI is in O(£r2pqE2), with EqIr(p+log(NCP)))+plog(N(Q))

using classical alrthmetic, that is O (7111) , and O(£r2pqElogEloglogE) that is

O(r171ognloglogn) using "fast multiplication".

An application of RANSI : the comparison of two real algebraic
numbers.

Algorithm RANSIis fundamental in the computation of topoloy of curves for
example (see [R]). We give here another application.

We want to compare two real algebraic numbers el and €2 coded by RAN as

real roots of the polwondal P1 of depee nl and P2 of depee 712: we apply RANSI to

P1 and the derivatives of PIPv then RANSI to P2 and the derivatives of PIP2 .
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Then , the coding of e and e’ as real roots of PIP,2 is known and those two algebraic

numbers can be compared by proposition 4 as real roots ofPIP2.

References
[A H U] A. Aho, J. Hopcraft, J. Ullman: The design and analysis of computer algorithms. Addison
Wesley, Reading (1974).

[B K R] M, Ben-Or, D. Kozen, J. Reif: The complexity of elernentary algebra and geornetrv. J. of
Computation and Systems Sciences 32 251-264 (1986).

[B C R ] J. Bochnak, M. Coste, M.F. Roy: G€om€trLe atg€brique r€eUe. Ergebnisse der Mathematik,

Springer-Verlag, Berlin (1987).

[Col] G. Collins: Quantifier elimination for real closed fields by cylindric algebraic decomposition. In

Second GI Conference on Automata Theory and Formal Languages. Lecture Notes in Computer

Sciences, vol. 33, pp. 134-183, Springer-Verlag, Berlin (1975).
[C R] M. Caste, M.-F. Roy: TFrorrt' s lemma, the codIng of real algebraic numbers and the topology of

semi-algebraic sets. J. of Symbolic Computation (to appear in january 1988),
[Cu P 3R] F. CIICker, L. M. Pardo, M. Raimondo,T. Recio, M.-F. Roy: On the computation of the
local and global analytic branches of a real algebraic cutie. To appear in hAE.C.C.-5 Conference of
Minorca (1987).

[J] N. JacobsonBasic algebra. San Francisco Freeman (1974).

[La] S. Lang: Algebra. Reading, Addison Wesley (1965).

[Lo] R. Loos: Generalized polynomial remainder sequences. In Computer algebra, symbolic and
algebraic computation. Springer Verlag, Berlin (1982)

[Mi] M. Mignotte: Some useful bounds. In Computer algebra, symbolic and algebraic computation.

Springer Verlag, Berlin (1982)
[R] M.-F. Roy: Computation of the topoLagI of a real algebraic curl)e. To appear in Computational

geometry and topology, Congress in Sevilla 1987.

[S] J. J. Sylvester: On a theory of SIaRctic relations of two rational integral functions, comprising an

application to tha theory of Sturm's function. Trans. Roy. Soc. London (1853).





1-

an Basic Open Semialgebraic Sets
by

Ludwig Br6cker

Throughout this article a ring A will be commutative with unit. We denote by
Sper(A) its real spectrum and by Spec(A) its Zariski-spectrum. Note that

Sper(A) = IJ Sper( ACp) )
p C Spec(A)

where ACp) is the resicue field of A at p _ Moreover, Sper(ACp)) is the space of
all orderings of A(pJ [L] . which admits the structure of an abstract space of
orderinqs EM 1] . [M 2] . [M 3] . [M 4]
For a1....,ar e A let U(a1,...,ar) := {a C Sper(A) I ai ( a) > 0 , i = 1,...r} and

V(a1, . . .ar> := {a C S,per( A) I ai (a) = 0 , i = 1, . ..,r} . For a real prime ideal p

of A let V(P) := f PpV(f) = {a e Sper(A) I supp(a) ) P) .

Now assume (for simplicity) that R is a real closed field and A is an
algebra of finite type over R . Thus , if S c Sper(A) is constructible. then so is
its closure i and its boundary 85 [B-C–R, 7.2] . We denote by gz the Zariski-
closure of S in Sper(A) . that is , S ' = _ O.. ,.V(f) . Also for a subset' ' ' SC V(f)

X c Spec( A) let lz := nv(f) where f ranges over n p. Our main result
is the following P e X

Theorem 1 : Let S C Sper(A) Ae construct ible such that S n &z = g and /et
f1. . ..f, C A . Suppose that for all real prime ideals p of h there exist
gr+l, . . .,gm C A (depending on p), such that S r-1 Sper( ACp) ) =
U(f1,...,fr,gr,1,...,gm) n Sper(ACp)) . Then there exist fr+l,...,fm CA with
S = U(fl,...,fm)

Corollary 2: (See also [Sch]) . Let V he an algebraic affine real R- variety of di-
mension n and let S c VCR) be a basic open semialgebraic set. Then S =

{x C VCR) I f1 (x) > 0 , .. .,fn(x) > Ol for suitable f1,. . ..fn e R[V]

Proof of the Corollary: Note that we have a canonical 1–1 correspondence
between the semialgebraic sets in VCR) and the constructible sets in Sper(A)
where A = R[V] . Moreover, for a real prime ideal p of A , ACp) is a real function
field over R of dimension g n . Thus the stability index of Sper( ACp) ) is g n
[Bro 1, 94t , that is, in Sper(ACp) > each basic set is generated by s n elements
Now. setting r= 0 . the Corollary follows from the Theorem
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For the proof of the Theorem we need a corresponding result, first in an ab–
Stract and then in the semilocal situation

Theorem 3: Let (X ,G) he a space of orderings . Let S D X he construct ible and
let f , , . . .,f, e G such that S t– K ( t , , . . .,f.J . It for all finite fans
F c X(f , ,...,f,) one has „(S n F) I '(F) and 2m(S n F) = O mod aCF) , then there

exist fr+1, . . .,fm e G such that S = X (f1, ...,fm)

Here, for g 1, . . . ,gn ( G X(91, ,gn) = {o C X I o(gi) = 1, i = 1, . . .,n}

Proof: See [B rH 2 , b4t , [Bra 31 Th 5.4]

PropositIon 4: Let (X,G) he a space of order ings and let fi , gi ,hi c (J ,
= 1,...,r , j = r+l,...,m , ,.,h th,t S = X(f1,,,.,fr, gr+1,...,gm') J

X(f 1,...,fr,hr,1,...,hrn) and let kr,1 C D( <gr,1,hr+1 >) . Then there exist
kr,2, . . .,km EG such that S = X(f1, . . .,fr ,k r+1, . . . ,km )

This follows easily from [M 3 , for . 3.5 and L. 6.3]
See also [Bra 3 . Prop . 4.14]
It was discovered bY Scheiderer [Sch] that this result is crucial for the proof
of Th . 1

Theorem 5: Let A be a sernilr,cal ring . Let S ( Sper(A) be open and c/os,ed
and let fl,.. .,fr C A+. If tor all real prime ideals p of A there are
grt1,''',gm e A s '.I ch that S n Sper( ACp) ) = U(f1,...,fr ,gr+1,. . .,gm) n
Sper < ACp) ) then there exist fr+1, . ..,fm F A- such that s = u(f1,. . .,fm)

Sketch of the Proof-. Let T := {a C A 1 aCa) ' 0 for all a C Sper(A) } and
T+ = A+ 1-1 T . Then (Spermax(A) , A+/T+) is a space of orderings . Moreover
for all non trivial fans F c Sperrnax (A) there exists a real prime ideal p of A
such that P = supp(a) for all a C F [Kn] . Thus, from our assumption follows
that the numerical conditions of Th . 3 hold for S . from which we get the result

Proof of Theorem 7: We try to move the assumption from r to r+1. For
fr +t e A let Y be the collection of all real prime ideals p of A such that
S n Sper(A(pl) is not of the form U(fl, . . .,fr ,fr+l,gr+2 , . . .,gm) n Sper ( ACp) )

and let Z := Y ' C Sper(A) . We choose ff+, such that Z has smallest possible
dimension d . We claim that Z = D . So assume a + Z and Z. ,. . ..Z, are the

components of Z with generic points z1.....zk . Then Zi a nz U V(f1)U...UV(f ),
= 1,. . . ,k , since for Zi c 8S ' U V(f1)U. ..UV(fr) one can choose gi = 0,
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j = r+1. . ...m , in A(zi) . Let B := A,. , . ...,, (semilocalization). Then

fi C B+ , i = 1,...,r and S n Sper(B) is open and closed in Sper(B) by
[Br6 2, L. 6.1]. S, by Th. 5 we fi„d hr,I,...,hm e B+ such that S rl SpPr C8

T n S per ( B) for T := U (f1, . . , ,fr ,hr+1, . . . ,hm) . Let D := (S U T) \ (S n T)

Then V(zi > a D ' for i = 1. . . .,h . By multiplicatIon with positiv equations for :
and D respectively we may assume that ff+1 vanishes on Z and hr,
on D - . Now let Y1 be the set of all real prime ideals p of A such that
S n Sper( ACp ) ) is not of the form U(f1,. ..,fr,hr+1+fr+1,grt2 ,...,gm) n Sper( ACp) )

and Z1 := Y1 ' correspondingly. Then Z1 n Zi c D' n Zi is a proper
subvariety of Zi for i = 1,.. .,k . On the other hand, if V(p) a Z for a real
prime ideal, then either V(P) c az , so hr,1 CP and f,,1+hr,1 = fr,1
fullfills already the assertion over ACp) . or we have S n Sper(ACp)) =

U(ft ,. . . ,fr.fr+1,gr,2 , ...gm) fI Sper(ACp) ) = U(f1,..,,fr,hr+1,hr+2 ,...,hm) n
Sper( ACp) ) for suitable gi , i = r+2, .. .,m . depending on p . But in the space

of orderings, which is associated to ACp) we have fr+l+hr+1 C
D (<fr+1, hr+1 > ) where – denotes the residue class modulo sums of squares
Now by Prop. 4 we find kr+2 , ....km such that S n Sper(ACp))
U(ft,....fr,fr+1+hr+1,kr,2,...,km) n Sper(ACp)) . Thus ZI cZ and dim(ZI )
< d . Contradiction
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Nullstellensatz effectif et Conjecture de Serre
(Th6orbme de Quillen-Suslin) pour le Calcul Formel.

NoaFFitchas 1 ) Andre Galligo 2)
(Buenos Aires) (Nice)

1, IntrQdUc;tion,

Le Nullste11ensatz de Hilbert d6montre que, sur un corps alg6briquement

clos, I'id6al de polyn6mes d6finissant une vari6t6 alg6brique affine contient

1 si et seulement si 1a vari6t6 est vide. L'ob jet de ce travail est d'6tudier

des versions effectives de cet 6nonc6 en vue d'applications en Calcu1 Forme1

et en th6orte de 1a Complexit6.

Soit k un corps (commutatjf) quelconque et Xo ,... ,Xn des ind6termin6es sur k.

Nous notons deg(F) Ie degr6 tota1 du polyn6me F de k[Xo ,... ,Xn]

Nous appelons Nullste11ensatz effectif relatlf a la fonction V
(qu'on appe11e une borne) 1'6nonc6 suivant :

solent F 1 ,... ,Fs c k[Xo,...,Xn] et d=max deg(Fl) ,

alors 1 ((Fl ,...,Fs) ssi i1 existe des polyn6mes PIc k[XO,...,Xn I tels que

1 == 1 <i<sPiFj et max(deg(PjF1)) < vCd,n).

N2 oN

] ) Groupe de travail constitu6 par Leandro Caniglia, Gpillermo Corti6as,
Silvia D5n6n . yoas Heintz, Terdsa Krick , Pablo Solern6. .
Fn;i jiu iJa;'Pt;{;?na{ic;:t5onsejo-Nacional de InvestigaUones Cientfficas y
tan j-cas;-Vjam6nte 163’6 , ( 10’55) Buenos Aires - A'Fgentina.

2) D6partement de Math6matiques , Unlversit6 de Nice ,
Parc Valrose, 06034 NIce ced6x , France
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Des versions de Nu11stellensatz existent depuis le d6but du sibcle, de fa9on

implicite chez Macaulay (voir par exemple [23], chapter 1, Art 16) puis de

faQon complbtement explicite relativement a des fonctions y dQUblemen\

exPQnentielle$ en n et polynomiales en d (voirt4aa tUb.Ces r6sultats

s'obtiennent essentie11ement en bornant les degr6s de certains r6sultants

aprds avoir convenablement pr6par6 les donn6es,

Une borne VCd,n) = dn a 6t6 conjectur6 depuis longtemps. Un exemple de

Masser et Philipon (voir dans [3]) montre qu'i1 n'existe pas de borne

inf6rieure a dn-dn- 1

Le premler Nu11ste11ensatz effectif relativement a une v $1mp 1 e

exp9nentie11e en n : w(d,n) = 3n2dn mais pour un corps k de $ara$teri$tlque

a, est du a Brownawell [3]. La d6monstration est difflcile : elle ut11ise des

connaissances sp6cialis6e d'analyse complexe notamment un th6ordme de

Skoda(voir [3]) et une th6orie de 1'61imination assez sp6cifique [25].

Aprds cette perc6e, nous avons d6montr6 dans [4] et [5] un Nullste11ensatz

effectlf pour un corps de caract6ristique quelconque et relatlvement a des

bornes V simples exponentlelles

w(d,n) = d(n+1 )(n+2)/2 et w(d,n) = dn(n+3)/2.

Enfin, J. Kollar a d6montr6 dans [ 19] le mei11eur r6sultat actue11ement connu:

pour un corps de caractaristique quelconque, une borne

VCd,n) = max{dn, 3rl}.

La d6monstration de [ 19] est 616gante mais fait appel a de la g6om6trie

alg6brique approfondie : th6orie des faisceauxlcohomologie a support, th6orie

de I'intersection. Elle reste dorIC herm6tique a la plupart des non

sp6cfalistes, notamment aux chercheurs en Calcul Forme1 qui utillsent plut6t

de I'algebre ''classique'‘
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Du point de vue du Calcul Formel. la connaissance d'un Nu11ste11ensatz

effectif avec une borne simple exponentielle permet d'am61iorer la

comp16xit6 de nombreux algorithmes s6quentiels ou para11dles. Par exemple

le calcu] de 1a dimension d'une vari6t6 a]96brique affine, le calcul d'une base

standard d'une vari6td affine de dimension z6ro, Ie test d'appartenance d'un

polyn6me a un id6al 6quidimensione1 (voir [4] , [7]). Egalement, sur un corps

al96briquement clos, ]'6]imination des quantificateurs dans les formules

pr6nexes a nombre d'alternations de quantificateurs fix6 (voir [8], [ 1 1 ]) ou le

test de "consistence" d'un ensemble semi-algdbrique (voir [ 15])

Pour illustrer ce type d'application nous donnons, dans 1a deuxidme partie du

pr6sent travail, une version effective et tout a fait 616mentaire de I'

ex–conjecture de Serre (d6montr6e en 1976 ind6pendamment par Suslin et

Quillen). Notre r6sultat peut 6tre am61ior6 : une version plus g6n6rale et plus

pr6cise que nous 6nonQons sera pub1 ide u]t6rieurement par Ie premier auteur

[ 9 ]. Voir aussi [27].

Quoiqu' 11 extste encore une petite diff6rence entre les bornes de 1'exemple de

Masser–Philippon et les bornes de Ko11ar, du point de vue de 1a th6orie de 1a

comp]6x{t6 et du Calcu1 Formel Ie pas essentiel est fait. Nous pensons que

dans ces domaines, 1a recherche va plut6t s'orienter vers 1'6tude

g'algorithmes adapt6s a des situations sp6cifiques : polyn6mes creux ou

donn6s par des straight-line–programs (voir [ 1 3] , [ 1 4] , [ 18]).

Dans la premiare partie de ce travai1, nous d6montrons un Nullste11ensatz

effectjf relativement a une fonction en 0(dn) , plus pr6cis6ment

w(d,n) = 3 dn .

Notre preuve est compl ate et d16mentaf re : nous n'utilisons que des

connaissances usue11es que I'on trouve dans les manuels d'algdbre

commutative. Nous pensons que cette d6monstration pourra 6tre comprise
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par les chercheurs en Calcu1 Forme1 et nous esp6rons qu'e11e contrlbuera a

am61iorer les algorlthmes existan’ts

Nous discutons ensuite du lien entre 1e Nullstellensatz effectif et I'exister.ce

d1 une syzygi e finale (VOi r aussi [ 28 ] et [ 4 ] ) qui correspond a 1 a notion d

inconsistance stable" d'une famille de polyn6mes

Une autre m6thode de recherche expl{cite d'une fam111e {pi} te11e que

1 = EP jF 1 est d6crite dans [ ] ]. Cette approche a 6t6 exploit6edans [3] et

paratt trds prometteuse

schema de nQtr9 preuve du Nu11$te11en$atz effectlf,

I ere 6tape : On se ramine au cas 1 cl oO I = (F 1 ,... ,Fs) est une intersection

complite de k[X 1 ,... ,Xn] , avec s < n + I et deg(Fl) < d. an homog6n61se chaque

Fi en un polyn6me de m6me degr6 Gj de R = k[Xo ,... ,Xn]

On veut alors majorer m te1 que Xom ( (G 1 ,... ,es)

Pour chaque l= 1 a s, on regroupe les composantes primaires de (Gl ,,,.,Gi) en

composantes a "distance finie" et composantes contenues dans I'hyperplan a

I'infini. On note Bi I'intersectIon des composantes "a distance finie'

On remarque que B 1 = (G 1 ) et Bs = ( 1 ).

2eme 6tape : Pour chaque 1 = 1 a s, on d6compose de meme

(Bi ’Gi+ 1 ) = Bi+ 1 n Ff+ 1 nAi+I

[ j + 1 d6signe I' Intersection des composantes Mia "a I'infini" et

A j+ 1 I'intersection des composantes mIRElies "a I'infini".

Une in6galjt6 de B6zout permet alors de borner ej, 1 tel que
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XOP i+ 1 Bj+ 1 c [j+ 1

Plus pr6cis6ment si bi d6signe la somme des "degr6s" des composantes de BI

on a bj+ 1 + e j+ 1 < dbI , dorIC par r6currence ei, 1 < dl+ 1

3eme 6tape : an d6montre que pour ci satisfaisant 1a formule de r6currence

cj+ 1 < 4cj + Pi+ 1, et cl =0; on a

Xo2ci+Pi+ 1 Bt+ 1 c Ai+ 1 ; d'o0 Xo2ci di+ 1 Bi, 1 c (Bl, Gj, 1 ) .

La preuve procdde par "dualit6" : on montre facilement qu'i1 suffit de

majorer c tel que Xoc HomR( R / Ai + 1 ,R/( Bi ,Gt + 1 )) = 0, et n6cessite

I'utilisation d'un argument 61dmentaire d'algdbre homologlque que nous avons

complitement explicit6.

4eme 6tape : an utilise cette derni6re inclusion pour construire une suIte

de polyn6mes RIc B j et une suite de polyn6mes Aj tels que

XO2ci+ 1 +? i+ 1 Rf+ 1 = Ri +AjGj+ 1 a~,,ec Rs = 1 etR 1 c (G 1 ).

D'oO Xom c (Gl ,.,. ,Gs) , avec m = 2_ 2ci+e i + 1 que I'on sait borner par ds

lorsque d>3.

5eme 6tape : On am61iore cette borne en majorant directement en+ i lorsque

s = n+ 1

Cette preuve reprend dorIC I'approche inductive que nous avions d6crit dans

[4] et [5]. La diff6rence essentie11e provient de la 3eme 6tape, qui a dti

inspir6e par 1a lecture du prd-print de J.Ko11ar [ 19]. Cette 6tape permet de

profi ter complatement des majorations obtenues a chaque pas de 1a

r6currence .
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2. Un Nu11$tellen$atz effectlf,

Dans toute 1a suIte k sera un corps commutatif fix6, de caract6ristique

posItive ou nu11e. Nous d6signerons par k 1a cl8ture alg6brique de k, et par

Xn ,..,X„ des ind6termin6es sur k

On considdre des polyn6mes F 1 ,... ,Fs c k[X 1 ,...,Xn] dont le maximum des degr6s

est 6gal a un entier d, on d6slgne comme d'habitude par (F 1 ,... ,Fs) 1'id6a1

qu'ils engendrent. Nous a11ons d6montrer 1e th6orime suivant

TheQremQ 1 (HIlbert Nullste]lensatz effectif ; voir [3] , [4], [5] , [ 19] ) :

1 c (F 1 ,... ,Fs) si et seulement si

1] existe des polyn6mes P 1 ,...,Ps c k[X1 ,.., ,Xn I tels que

l=El<i<sPjFj et maxl€i<sdeg(PIFi) < 3 dn

PemQn$1rOt Ion, Comme nous 1’avons indiqu6 a 1a fin de I'introduction , la

d6monstration est constitu6e de 5 etapes.

La lePe 6tape conslste en une pr6paration des donn6es,

Comme il s'agit de trouver des polyn6mes Pi de degr6s rnajor6s par une

constante explicite, 1a question peut atre reformu16e en termes d'algdbre

lin6aire sur k, et ne d6pend que du plus petit sous-corps qui contient les

co6ffjcients des Fl . Nous a11ons donc supposer , sans restrIction de

g6n6ralit6, que k est alg6briquement clos, soit k = F, qui est dorIC infini,

Salt r le degr6 de transcendance de I'extension de corps k c k(F 1 ,... ,Fs) ,

alors r<n et r<s. 11 existe alors r combinaisons lln6aires des Fi (a

co6ffjcients dans k) qui sont alg6briquement ind6pendantes et forment une

suite r6guljare F’ 1 ,...,F'r ;le degr6 maximum des F' j est d . D'o0 une suite

d'jd6aux 6quidimensionels de hauteurs 1 , 2, ... , r :

(F' 1) c (F' 1 , F'2) c ... c (F' 1 ,..., F'r) inclus dans (Fl ,..., F,) = ( 1 ).tV''" t47:1.)
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De Plus k[F' 1 ,,,.,F'r] c k[F 1 ,... ,Fs] est une extension alg6brlque finie. Sur

chaque composante irr6ductible de I'ensemble des z6ros {F' 1 = ...= F'r= 0},

chacune des Fi est n6cessairement constante (6ventue]lement nu11e). DorIC 11

existe une autre combinaison lin6aire "g6n6rique" F'r+ 1 des Fi qui 6carte les

composantes superflues, i.e. te1 Ie que {F' 1 = ...= F'r+ 1 = 0) = {F1 = ...: Fs= 0} =

a . DorIC 1 C ( F' 1 ,...,F'r+ 1 ). On peut alors supposer, sans restrictlon de

g6n6ralit6, s = r+ 1 et F'i = Fi . +

Pour I <i<s, soit Gj c k[XO,...,Xn] , 1’homog6n6is6 de FI, on a deg(Gl)=d.

Pour chaque i , 1 <i<s, on note Bi I'intersection des composantes primaires

de (61 ,...,G1) qui ne contiennent pas Xo dans leur radica1, on dira qu'e11es sont

a "distance finie". En particulier, on a B 1 = (61 ) et Bs = ( 1 ).

Dans toute Ia suite, on est dorIC r6duit a un probTime projectlf, on uti IIsera

1a term inologie et les notations suivantes (volr [24] )

cf(A) d6signera Ie corps de fraction d'un anrleau intagre A

R = k[XO,... ,Xn] , R est une k–algibre munie de la graduation par 1e degr6 tota1.

1 6tant un id£al homogine de R , on notera rad( 1) le radjca1 de 1 et { 1 =0 } la

sous–vari6t6 ferm6e de IP n d6finie par 1, a laquelle correspond une dimension

dim { t=0 } et un degr6 deg { 1=0 }

Soft A = R/1 , A est une k–algibre gradu6e et un R–module, nous noterons

dim(A) 1a dimension de Krull (affine) de A et deg(A) 1e degr6 d6fini par 1a

fonctlon d'Hilbert de A. On a alors dim(A) = 1 + dim { 1=0 } . Explicitons dans

les seuls cas que nous utillserons dans cet article.

Si 1 est un id6a1 premier dorIC A une algdbre intagre, dim(A) est le degr6 de

transcendance de cf(A) sur k , et deg(A) = deg { 1 = 0 } .

Si 1 est primaire, n = rad(1) est premier, dim(R/1) = dim(R/rl) , deg(R/1) est

un multiple de deg(R/n) . Plus pr6cis6ment, notons Rn la localisation ck Ren n



-8

et e la longueur du localisd de R/1 en n (consid6r6 comme module sur Rn ) , P

est la longueur maxImum d'une suite :

0 c Sl c ... c se = R/1 te11e que Sj/Sj_ 1 = R/n pour 1 <j<e ;
on a alors

deg(R/1) = e deg(R/n)

Dans 1e cas oO I est de dimension pure (1,e. toutes les composantes primaires

donnent 1a meme dimension) , 1e degr6 est 1a somme des degr6s correspondant

aux composantes primaires

Soit Fl un R–module gradu6 de type finl, on notera dim(M) 1a dimension de

Krull de M , soit dim( R/ann(M) ). On notera MXn 1e localis6 de M en XO.

Avec ces notations, remarquons que pour tout i , 1 <i<s,

( 1) Bj = (Gl ,...,Gi)Xn n R

(2) B,= (G,)

(3) R/Bl est de dimension pure n–i + 1 ;

et Gi+ 1 n'est pas diviseur de z6ro dans R/Bl

NotatIons : Pour chaque i, I <i<s, on considdre une d6composition primaire

irr6dondante, puis on regroupe les composantes en

(Bi’Gi+1 ) = Bi+1 n Fi+1 nAt+1

[ j + 1 est I'intersection des composantes MM dont le radica1 contient XO ,

Al + 1 I'intersection des composantes "M1££a6e£ dont le radica1 contient XO

Ce sont des id6aux hornogdnes, A j + 1 n'est pas uniquernent d6terrnin6

Lorsque I'on fixera i, on notera A = R/Bl , B = Bi, 1 /Bj , F = FI, 1/Bl ,

A = Ai+ 1 /Bl , et g 1a classe de Gi+ 1 dans A, D'o0

A g = Bn rnA
En rajsonnant sur les composantes irr6ductibles, on voit que A/ F =

R/E,1 est de dimension pure n–I
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Dans la 2eme 6tape nous a11ons d6montrer une version simple et utile de

I'in6galit6 de B6zout (voir aussi [ 12] Theorem 1 , et [4] Proposition 5). Ce

r6sultat est difflcilement accessible dans les livres sp6cialis6s te1 que

celui de Fulton[10] qui ne tralte et m6me n'6nonce que des r6su]tats sur des

situations plus sophistiqu6es . CommenQons par bien pr6clser la d6f]nition

du degr6 et a d6montrer un lemme simple .

Solent A une k–algdbre gradu6e, Tr 1 ,.,. ,nt ses id6aux premiers mlnlmaux de

hauteur minimale (g6om6triquement cela correspond aux composantes

irr6ductibles de dimension maximale), On salt qu’il existe une suite de

composition (Mi)0<i<m de A , i,e. OcMmc.,.cFlo=A, te11e que Mi/Mi+ 1 soit

isomorphe d A/Pi oO Pi est un id6a] premier de A. Pour j fix6, 1 < j<t, 18

nombre de fois oCl Pi = nj est 1a longueur long(An .) du loca1 156 de A en nj

DefinitiQn : deg(A) = = 1 < j<t long(An .) deg(A/nj) .

LQmmQ 2 : Soit K un corps (commutatlf) et D une K–algibre de dimension

finie. Soit l1 n ...n it une d6composition primaire irr6dondante de ]'id6a1 (0)

de D. Posons nj= rad(1 j) , Xj = min { X ; n jX c lj } et consid6rons long(Dn ,)
pour tout j , 1 < j<t . Alors

E 1 <j<t Xj dlmK.(D/nj) < = 1 <j<t long(Du.) dimK(D/nj) = dimK D .

PrQuye: Remarquons tout d'abord que puisque D est de dimension 0, dog(D) =

dimK(D) et pour 1 <j<t, nj est un id6al maxima1, deg(D/nj) : dimK(D/H j) , de

plus D/ I I = Dn
J

Par 1e Th6ordme du Reste Chinofs, on a D = D/Ilo ... oD/it ce quI entraine

dimK D = = 1 < j <t dimK(D/1 j ). 11 sufflt dorIC de consid6rer le cas t= 1 , c'est a

dire 1e cas DEl D est loca1 .

Notons alors rt I'id6al maximal de D et soit X entler te1 que nx =(0) et

HX– 1 #(0). Dans ce cas nous avons les X inclusions strictes
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(0) = nX c nX- 1 c nX–2 c ... c n c D

11 est alors clair que X < long(Du ,) , +

PrQPQ$]tIQn 3 : Soit F = J 1 n ... n Js une d6composition primaire
irr6dondante dans I'algdbre A.

Pour tout j , 1 <j<s , posons xj = min { X ; (rad(J j)x c II ) . Alors,

E 1 < j<s deg(A/nj) . Xj + deg(A/B) < deg(A) d .

COn$eqq9nQe : Comme XO c nj pour tout 1 < j<t,.on obUe.ndra XOXi e 1 j ; donc en

posant e = max(Xj), on obtiendra XO€ c [ et deg(A/B) + P < deg(A) d

Preyve : Rappelons que A est gradu6 de dimension pure n–1+ 1, et que g,

homogdne de degr6 d , est non-diviseur de z6ro dans A,

Solent xO ,... ,Xn les images de XO ,... ,Xn dans A et yO ,... ,yn_ I des cornblnaisons

lin6alres "g6n6riques" de xO ,... ,Xn ; e11es sont homogines de degr6 1. Les

,yn_1} et {yo , ... , yn_ I) sont chacun alg6briquementensembles {g, y 1,

ind6pendants sur k

Notons C = k[g,y 1 ,... ,yn_]] et E = k[yO ,,..,yn_ j ] , ce sont des sous algdbres

gradu6es de A.

Par une forme convenable du Th6orame de normalisation de Noether (voir par

exemple [ 12] , Lemma 1 ) A est un E-module de type fin1, autrement dit

I'extensIon de k-algdbres gradu6es EcA est enti6re,

Par cons6quent, iI existe une relation de d6pendance int6grale de degr6

m{nima1 r de g sur E :

(*) gr + ar_lgr- 1 + ,.. + aO = 0 ,

L=s at pour I < j<r-1 sont nuls ou homoganes de degr6 (r- j) d

et an est non nu1 de degr6 r d.
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On considdre les aj /0 comme des polyn6mes homogdnes en go ,... ,yn_ I de

degr6 (r– j) d. Quitte a effectuer encore un changement lln6aire g6n6rique des

yo ,,.. ,yn_I , on peut supposer que le degr6 en yo de aj #O est (r-j) d.

On interprdte maintenant (*) comme une relation de d6pendance int6grale (de

degr6 r d) de yo sur C. Donc yo est entier sur C, ce qui imp ligue que

A est une extension entidre de C.

Solent (0) = 11 n ... n Et une d6composltion primaire irr6dondante dans A et

solent Tr 1 ,... ,TIt les fd6aux premiers minimaux de A. Fixons momentan6ment j ,

1 < j<t , n = TrI , c'est un id6a1 homogdne. Comme g est non diviseur de z6ro

et que les yO ,...yn sont g6n6riques, les applications canoniques E+A/rr et

C+A/Tt sont injectives. E11es d6finlssent donc des extensions entidres

d'aTgebres gradu6es. Nous ldentifierons g, yo ,.,. ,yn avec leurs lmages dans

A/rt

En consid6rant les corps de fractIons, on obtient des ex.tensions al96briques -

de corps : cf(E) c cf(A/n) et cf(C) c cf(A/n)

g comme d16ment de A/rl est entier sur E et E comme anneau de polyn6mes

sur k, est int6gralement clos. On en d6duit que 1e polyn6me minimal de g c

A/n sur cf(E) est de 1a forme (*) avec r = [cf(E[g]) : cf(E)] .

On peut de nouveau Interpr6ter ce polyn6me comme une relation de

d6pendance int6grale de yo sur C. D'-oCl

[cf(C[yO]) ; cf(C)] < [cf(E[g] : cf(E) 1 d.

Notons par ailleurs que C[yo] = E[g] et que 1e choix g6n6rique des yo ,.,.,yn_ j

implique, par le th6orame de normalisation, que [cf(A/rl) : cf(E)] = deg(A/rl) .

En rassemblant ces r6sultats, on obtient :

[cf(A/n) : cf(C) ] = [cf(A/n) : cf(C[yo])] . [cf(C[yo]) : cf(C) ]
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< [cf(A/n) : cf(E[g])] . [cf(E[g]) : cf(E)] d

< deg(A/n) d .

En reprenant les anciennes notations, nous 6non90ns

pour tout j , 1 < j<t, [cf(A/nI) ; cf(C)] < deg(A/nI) .

Soient K' = cf(C) et D' = A®(,K' . Montrons que dimK, D' < deg(A) d,

Comme A est entier sur C, on voit que D' est une K'-algabre de dimension

finie. On voit que n' 1 = Tt 1 D' , ..., n't = nt D' sont les id6aux max{maux de D' ,

soit (0) = 1' 1 n ... fl I't 1a d6composition primaire irr6dondante de (0) , avec

rad(I' j) = n' j . Pour I <j<t , on a :

D'in' j = A/nj oC cf(C) = cf(A/nj) d'o0

dimK'(D'in' j) = [cf(A/nj) : cf(C)] < deg(A/nj) d , et long(D'm'.) = long(An,)

dorIC

dimK'(D'/I'j) = long(D'n'.) dimK'(D'in'j)

< long(An .) deg(A/nj) d = deg(A/1 j) d,

En sornrnant puisque D' = © j D'/I'l , on obtient

dimK' D' < E 1 <j<t deg(A/I j) d = deg(A) d .

Solent K = k(y 1 ,''' ,yn_i) et D = A/Ag ®k[y1,,.. ,yn] K ' Montrons que dimK(D) <

deg(A) d .

On a C/Cg = k[y 1 ,... ,yn_1] , on la considdre comme une sous-algebre de A/Ag

car 185 images des yI sont alg6briquernent ind6pendantes dans A/Ag. On

obtient ainsi un diagramme commutatif
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hINt\ = A®CC/Cg

kry1,...,y._I] = c/cg

Comme A est un C-module de type fin i et que C est int6gralement clos, iI

existe un b c C te1 que Ab est un Cb module libre de rang 6ga1 a dimR.- D' .

DorIC (A/Ag)b = Ab®(.'h(C/Cg)b est un (C/Cg)b –module libre de mame rang.

D'o0

dimK D = dimcf(c/cg)Ao(..,cf(C/Cg) = dimK' D' < deg(A) d .

D est une K–algabre de dimension finie, nous pouvons dorIC app11quer 1e

lemme 2. V6rifions qu'on trouve bien le r6sultat cherch6.

Pour tout id6a1 J de A, notons a son extension JD dans D . Reprenons 185

d6compositions :

Ag = BnF nA et BnF = J 1 n...n Jr , dont F = J 1 n...n Js .
Comme A contient une lntersection de composantes immer96es, dorIC de

dimension tnf6rieures, on obtient une d6composition primaire de m dans D :

la)= m =Brlt=Jln..,rI Jr ;

D 6tant une tocalisation de A/Ag , on volt que

xI = m in { X ; rad(Ji)Xc J1 } = min { X ; rad(Ji)Xc Ji )J - """ L '' ’ ' --'-j' - -J J – """ ' '- ’ ' --*XJ’ -EJ

rappelons que par te choix g6n6rique des yI ,,.., yn_ I on a :

deg(A/nI) = [cf(A/ni) : K] .

On conclue en regroupant les composantes de B et en appliquant le lemrne 2

aux composantes de F . +
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La 3eFne 6tape contient 1e r6sultat essentie1 qui permet d'am61iorer les

bornes de [4] et [5]. Comme nous I'avons expliqu6 dans 1e sch6ma de la

ddmonstration, iI s'agit de montrer que les entiers { cj ) qui v6rifient la

relation de r6currence ci + 1 = 4 cj ' P j+ 1 , c 1 = 0 , satj sfont :

XOci. 1 +P i. I Bj, 1 c (Bl , G j+ 1 ). Autrement dtt, avec les notatlons pos6es pour I

fix6 (i.e. A = R/B1 etc,..) et 1e r6sultat de 1a 2eme 6tape qui entralne Xr)e B c

F , on doit montrer XOci+1 +e B c Ag ou de fa9on 6quivalente XOci+1 +e B c A

Soit c un entier arbltraire .
LanDal Jc ons suivantes (4) o (3) o (2) + ( 1 ) o ( 1 ') :

(1) XOc*g B cA , (1') XOc'e (B/Ag) = O ,

(2) XOc HomR(A/A , A/Ag) = O ,

(3) Xoc ExtJR(A/A , A/Ag) = 0 , pour j = 0 a dlm (A/Ag) – dim (A/ A) - 1

(4) Xoc ExtJR(R/1 , A/Ag) = 0 , pour j = 0 a dim (A/Ag) - dim (R/1) – 1 ,

et pour tout les iddaux I de R tels que (61 ,,.. , 61+ 1 ) c 1 , XO c rad( 1 ) ,

et dim (R/1) < dim (A/Ag) .

Prey\,'e. ( 1 ) o ( 1:) et (3) q (2) sont triviales. (4) + (3) s'obtient en

consid6rant I'image inverse I de A par 1e morphisme n : R + A = R/Bl , on se

rappelle que (G 1 ,... ,Gl) c Bj que TI(Gl, 1 ) = gc A , et on remarqye que

dim(A/ A) < dim(A/r) = dim(A/Ag) = n–i , pulsque les id6aux premiers

associ6s d A contiennent les id6aux premiers associ6s d r

(2) n ( 1 ) s'obtient par un argument de "dualit6" : pour tout b € B , on sait que

xoe b appartient a BnF donc pour tout 6 c A , XO€ b6 ( BnFnA = (g) . Ainsi 1a

multipllcatlon par xoe b est un 616ment bien d6fini Qb de HomR(A/ A , A/Ag).

De Plus Xoc. Qb = 0 si et seulem’ent si Xoc+e b c (g) sojt 31 et seulement
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st Xoc+P b CA , pour tout b€ B. +

Notation Pour tout R–module de type nni M, et pour tout i , 1 <i<s , on

d6finit I'entfer cCI ,M) en posant

cCI,M) = min { c ; Xoc.ExtJR(R/1, M) = 0 , pour tout les id6aux I de R tels que

(G 1 ,..,, Gi) c 1 , XO e rad( 1 ) , dim (R/1) < dim (M) ,

et pour tout les j tels que 0 < j < dim (M) – dim (R/1) )

FRemarque : Pour tout M, c(i*1 ,M) < cCI,M) .

Lemme 5: Solent 0 +H' + FI + FI" + 0 une suite exacte courte de R-modules

de type fini avec dim(M") < dim(M') et i , 1 <i<s .

Alors cCI,M) < DO etc(I,FI') < DO impliquent cCI,M") < cCI,F1) + cCI,M') .

Preuve : Remarquons tout d'abord que dim(M) = dlm(H'). Pour tout I tel que

dans la d6finition de cCI ,M") , on considare 1a suite exacte longue des

ExtR(R/I,-). Pour tout j < dim(H") – dim(R/1) , on en extrait la suite exacte

suivante de R–modules (on note ip et w les morphismes)

ExtJR(R/1 ,M) + ExtJR(R/I,M") + ExtJ+IR(R/1 ,M')

Comme XOc(],rl)ExtjR(-R/1 ,M) = 0 et XOc(j,rl')Extj +l R(R/1,MI) = 0 ,

pour tout a c ExtiR(R/1,M") on a Xoc(i’FI')a € Ker(w) = Im(Q) , donc

Xnc(i,M)+c(i,FI')a = 0 . +

C;9r911gjre : c( 1 ,R/G 1 ) = 0

PrQvye ; On d6duit le r6sultat de 1a consid6ratton de la r6solution libre de

R/61 : 0 + R + R + R/61 + 0 et du fait que ExtJR(R/1,R) = 0 pour tout j .

+

CQrQ11aire : Pour 1 < i < S, Si cCI,R/Bi) < DO , on a

c(i+1 , R/(Bl ,Gi+l ) ) < 2 cCI, R/Bl).
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MuIR : Du fait que G j+ 1 n'est pas diviseur de z6ro dans R/B{ , on d6duit que

dim( R/(Bl ,G j + 1 ) ) < dim( R/B1) et que ]'on a la suite exacte courte associ6e

a la multIplication par GI+ 1 :

0 + R/Bi –> R/Bi + R/(Bj ,Gj + 1 ) + 0 .

D'oCl c(i+ 1 ,R/(Bi,Gj, 1 )) < cCI, R/(Bi,Gi,1) ) < 2 cCI, R/Bi). +

LEEluna 6: Pour 1 < i < s, si c(i+ 1 ,R/(Bt,Gi,1 ) ) < DO , on a

c(i+ 1 , R/Bl, 1 ) < e 1+ 1 + 2 c(i+ 1, R/(Bl,Gi+ 1 ) ).

PrQVyQ : Avec les notations abr6g6es, 11 s'agit de prouver que c(i+ 1 ,A/B) < ! +

2 c(i+ I ,A/Ag). D'apris le lemme 4, xc)e +c(i+ 1 ’A/Ag) est dans I'annulateur du

R–module B/Ag , i1 est dorIC dans I'annulateur de ExtIR(R/1 ,B/Ag) pour tout j

et tout I. Considdrons 1a suite exacte courte {nduite par I'inclusion de B dans

Ag

0 + B/Ag + A/Ag + A/B + 0
et 18 fragment suivant de 1a suite exacte longue associ6e

ExtJR(R/E ,A/Ag) + ExtJR(R/1 ,A/B) + ExtJ + 1 R(R/I ,B/Ag)

pour tous I et j comme dans la d6finltion de c(t+ I ,A/B), Un raisonnement

identlque a celui de la preuve du lemme pr6c6dent donne c(i+ I ,A/B) <

c(i+ 1 ,A/Ag) + e + c(i+ 1 ,A/Ag), +

On r6sume 1a situation dans 1a proposition suivante.

Prono$1tion 7 : Pour 1 < i< s on a

( 1 ) XO b1 + q Bi+ 1 c (Bi’ Gi+ 1 )

(2) c 1 = 0 et cj + 1 < 4 ci + e i+ 1

PreuyQ : On pose cI = cCI,R/Bl) , 185 nombres ej pour 1 <i<s sont d6termin6s

par 1a 2erTle 6tape. D'aprds 1e premier corollaire , c1 = 0. Le second coro11aire
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et 1e Lemme 6 mis bout a bout donne :

c(i+1 , R/Bi+1 ) < el+1 + 2 c(i+1, R/(Bi,Ci,1) ) < ej,1 +4c(i, R/Bi)

Ceci montre inductivement que tous les c(1,R/Bi) et c(i+ 1 ,R/(Bi ,Gi, 1 )) sont

fIn is et justine ]'utilisation de ces r6sultats. Le ( 1 ) est alors d6montr6 par

1e Lemme 4
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Dans 7a zlem e 6tape on r6soud les relations de r6currence 11ant d, n, la borne

cherch6e m et les ei, ci , et bj . On a pos6 bj = deg(Bi)

Pour cela on introduit les nombres ]ntermddiares d1 ,... ,ds d6finis de 1a fa9on

suivante, et qui seront les degr6s de polyn6mes que nous allons construire :

d, = 0

di = di+ 1 + e f+ 1 + 2 cl

Ils sont 1166 par les relations :

ci, 1 < ei, 1 + 4 ci a\''ec c1 = 0,

bj, 1 + e i+ 1 < bid a','ec b

Pours = 2 , on a d 1 = e 2 < d2

Pour s > 2 , on a d1 = P s + E2< 1<s_ 1 P j + 2 E2<1<s_ 1 ci ;

1a premidre in69alit6 de liaIson donne pour 2 < i < s– 1

4–1 cl < E2<j(j 4-J ej , d'o0

E2<i<s- 1 ci < E2<i<s–1E2<j<1 4 –J P j = E2<j<s-1 (4 -J – 1 )e] /3 ;
en regroupant on trouve ;

dl <es + 1/3 Z_2<1<s_teI + 8/3 . 4s–IE2<1<s_l Pl/41 .

En sommant de i= 1 a s-2 les instances de 1a deuxidme in69alit6 de lialson

E2<i<s- le i < (d- I )E2<i<s–2 bi – bs– I +d

en portant pour i<s-2 , bi < d1 et en effectuant Ia somme on obtient :

E2<i<s- lei < ds– - bs- 1 ;

de meme en rempla9ant e i par 4–1P j, bi par 4-lbi et d par d./4 ,



19

N. Fitchas et A. Galligo

E2<i<s- 1 4-let < 4–s+1 (ds– - bs- 1 ) ;

en gardant es < bs_ 1 d , on obtient alors

d1 < b,_ld + 3(ds-1 – b,_1 ) = ds- (d-3)(ds–1 - b,_ 1),

R6sumons

si d= 1 1e.problame est trivial, d1

si d = 2 on trouve d1 < 2s + 2s– 1 – bs_ 1 < 3,25– 1

si d > 3 on trouve d1 < ds

Construisons, par r6currence sur i , des polyn6mes hornogenes Rl qu1

satisfont pour 1 <i<s les conditions suivantes

Rj c Bt , deg(RI) = dj ,

Rt = XOdi + Xi<j<sh( 1)Gj pour certajns polyn6mes Aj(1).

Comme Bs = ( 1 ) , posons Rs = 1 . Supposons construit Rj, 1 pour s>i> 1.

Appliquons la proposition de la 3eme 6tape

XO i'1 +2ci Ri+ 1 c (Bi’ Gi+ 1 )

doric l1 existe des polyn6rnes hornoganes Rj dans Bi et Al tels que :

XC; i*1 + 2ci Ri+ I = Ri + Al Gi+ 1

on pose A1,1 (i) = -Ai ; et on remarque que

deg(RI) = dj = dj+ 1 + e j+ 1 +2 ci

Comme B 1 :(61 ) , 11 existe un polyn6me homogdne Ao tel que :

Rl = XOdl + £1<j<sq(1)Gj =AOGl ,

Donc

XOd1 c (61 ,..., Gs),



La 5dme 6tape cons{ste a am61{orer, ]orsque s=n+1, 1a majoration de d1

trouv6-e dans 1a 4eme 6tape . on avait 6tabli que :

d1 < ? n+ 1 + 2 Cn + en + 3(dn–1 - bn_1 )

Dans ce cas {Bn_ 1 = 0} est form6 de courbes de kn, son prolongement a

I'infin1 n'a dorIC que des points, qui ne peuvent intersecter {Cn = 0} qu'en des

points. Reprenons les notations : (Bn_ 1 , Gn) = Bn n rn n An , { Bn = 0 } est

aussi form6 de points, { An = 0 } est \,'ide . On a aussi (Bn, Gn, 1 ) = Fn, 1

En reprenant comp16tement 1'6tude g6om6trique et en 1a pr6cisant, on

con9olt bien que I'on peut remplacer 1e terme ( P n+ 1 + 2 cn + en ) par une

borne fine.

Nous nous contenterons icI de d6montrer que e n+ 1 est major6 par bn +d et

d'utiliser les in6galit6s pr6c6dentes, ce qui donnera :

cn_1 <4n–1 E2<j(n_1 ej/41 < dn–1 – bn_1 ,

2 On < 2 (Pn + 4 Cn_ 1 ) < 2 Pn + 8 (dn– 1– bn_ 1 ) ,

d1 < bn + d +3en + 1 1 (dn-1 – bn_ 1) < 3 bn_ld -2 bn +1 1 (dn-1 - bn_ I) + d

SDlt d1 < 3 dn –2 bn – (3d – 11 )(dn- 1 - bn_ 1 ) + d .

Si d = 3 on qvalt d6ja d1 < dn+ 1 = 3 dn

si d > 4 on a (3d = 11 ) > 1 , dorIC dans tous les cas on aura :

dl < 3 dn .

Reste dorIC a rnontrer que end< bn + d.

Pour cela, on considare ]'id6al I = (F 1 ,... ,Fn) de k[X 1 ,.,. ,Xn] , 11 correspond a une

IntersectIon compldte affine form6e par des points dont la somme des
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degr6s est 6gale a bn. On a dorIC dimk[X 1 ,... ,Xn]/(F 1 ,... ,Fn) = bn .

Soit HI ,... ,Ht une base standard r6duite d8 1 relativement au degr'6 tota1

raffi nd, par exemple, par I'ordre lexicograph]que inverse - –– . Notons Hi

les homog6n6is6s des HI , 1 <i<t et L I'id6a1 de R = k[Xo ,... ,Xn ] qu'ils

engendrent. Alors, (d1 ,.., ,Ht) est une base standard r6duite de L relativement

a I'ordre lexicographique inverse :

en effet s'il y avait un 616ment II de I dont le terme dominant ne serait pas

rnultiple du terme dominant de I'un des ELI (qui d'aprds nos choix, ne contient

pas de XO) iI en serait de meme en faisant XO = 1

On en d6duit que (I : XO) = ! , autrement dit L n'a pas de composante a I'lnfini ,

dorIC 1 est 6ga1 a notre ancien B"

De Plus, puisque I'ld6a1 des termes dominant it(B„) est engendr6 par des

mon8mes qui ne d6pendent pas de Xo , on peut borner par bn (qu1 est 1e

nombre de points "sous I'escalier") 1a r6gularit6 de 1a fonctlon de Hilbert de

M = R/Bn ceci signine que, en notant M = ©o< j<mMI la graduationde M , on a

dimk(Mi) = dimk(Mj) pour tOUt i et j > bn . (Voir [21 ou [22] ' )

Consid6rons enfin Gn+ 1 qui induit dans M un 616ment g non diviseur de z6ro

et de degr6 d. Notons p 1a multiplication par g dans FI, c'est un morphisme

Injectif et gradud de degr6 d; Q d6finit dorIC une application k–lin6aire

bijective en degr6s a > bn

Q : FIa + Ma+d

Le R–module gradu6 N = R/(Bn, Gn+ I ) est le conoyau de P , on d6duit de ce qui

pr6cdde que N est nui en degr6 a > bn + d , c'est a dire

(Xo ,... ,Xn)a = (Bn, Gn+ 1 ). DorIC , en+ 1 < bn + d . cqfd.
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Le lecteur pourra remarquer que dans 1a d6monstration du th6ordme I

on a seulernent utilis6 le fait que G 1 ,... ,Gs forment une sulte r6gutidre a

distance finie, c'est a dire hors de I'hypersurface { XO = 0 }. En particulier , 1e

fait que XO est de degr6 1 n'intervient pas. Dans notre d6monstration on

peut dorIC remplacer XO par un polyn6me hornogdne G et obtenir la version

projective suivante du (Hentzelt) Nu11ste11ensatz effectif

TheQrerne 1 Q : Soit k un corps quelconque et soient G,Gl ,...,Gs des polyn6rnes

homogdnes de k[X(.) ,... ,Xn I tels que d = max 1<j<sdeg(Gl) , Posons w(d,n) = 3 dn ,

St G C rad(G 1 ,,.. ,Gs) alors

CV(d’n) C (G 1 ,... ,Gn)

La seule pr6caution a prendre est, dans la premidre 6tape, de bien multiplier

les Gj par de monornes en Xo ,... ,Xn pour_6galiser les degr6s a d , ann de

pouvoir consid6rer des combinaisons lin6alres g6n6riques quI remplaceront

les G,. +
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3. FRemarque$ sur I'incQn Si stance $teh le

Dans ce paragraphe on supposera k alg6briquerneh+ clos.

DefinitiOns : Par analogie avec 1e vocabulaire ut11is6 en logique, on dira

qu'une fami11e de polyn6mes Fl ,.., ,Fs de k[Xl ,... ,Xn 1 est inconsistante si 1 c

(Fl ,...,Fs). On dira qu'e11e est $tablement incan$19tank s'f I existe un ou~,'ert

de Zariski U de ks , tel que 0 € U et pour tout X = (X 1 ,... ,Xs) c U on ait 1 c

(F 1 –\ 1 ,... ,Fs-Xs)

On appe11e£UZUgjLan2le (vofr [28]) de F 1 ,.., ,Fs un polyn6me P de k[Y 1 ,... ,Ys] ,

oO les YI sont de variables auxiILajres, tel que :

PCO,...,O) = 1 et P(F1(X1 ,...,X„),...,F,(X1 ,.,.,X,)) = O.

LQmmQ 1l: t[28],6.4) II existe une syzygie finale pour la fami11e de polynames

FI ,... ,Fs ssi e11e est stablement inconsistente.

Nous a11ons a pr6sent retourner a la situation du th6ordme 1 , c'est a dire 1 (

( F 1 ,... ,Fs) avec les hypothdses supp16mentaires suivantes

deg(F 1 ) = ... = deg(Fs) = d

trdegk k[F 1 ,,., ,Fs] = n+ 1 , oO Fi est l’homogdn6js6 de FI pour I < i<s.

Soient C1 ,... ,Gn , 1 des combinaisons lin6aires de F1 ,... ,Fs quI forment une

suite r6gulidre a distance finie et telles que k[G 1 ,...,Gn+ 1 ] c k[FI ,.,. ,Fs] soit

une extension entf6re. On a XO ( rad(61 ,,.. ,Gn+ I ) et d'apras I'jn6galit6 de

B6zout ([4] , Proposition 5) on a [ k(XO,...,Xn) : k(G 1 ,... ,Gn+1 ) ] < dn+ 1

Propo s iII(in 12 : Avec les notations et hypoth6ses pr6c6dentes :

Xo est entier sur k[G 1 ,. .. ,Gn + ] ] ssi 1a fami]le F 1 ,... ,Fs est stablement



inconsistante

PreUVQ : SuPposons que XO est entler sur k[61 ,.,,IGn+ 1 ] ,

Comme kFC 1 ’'-' ’On+ 1 ] est int6gralement clos, 1e poIYn6me minima1 de X„ sur

k(61 ’"' ,On, I ) est une relation de d6pendance int6grale de degr6 69a1 d :

f k(61 ’"'’On+ 1 ,Xo) : k(61 ,...,6„ 1 ) 1 < [ k(Xo,,-,X,) : k(G1 ,,,.,On+1) ] < dn* 1

C;ecl signifie qu'i1 existe un entier r , 1 < r < dn+ 1 et r polyn6mes homogdnes

AO,'-' ,Ar– I dans k[01 ,.,.,On,1 ] tels que ,

XOr +Ar_lXOr– I ,..., AO = 0.

et deg(Ai) = r-i ou At = 0 pour 0<i<r_ 1

Remarquons que Ai est a priorI polyn6me de k[Gt 1...lbn+ 1 ]I homogdne en

XO’"' ’Xn ; mais comme Ies G 1 ,.., ,On , 1 sont homog6nes de degr6 d et

a]gebrjquement ind6pendants sur k, on d6dujt que At est aussj homogine de

degr6 < dn* 1 dans k[61 ,...,6,, 1 J . En particuli„ Ai c (F1 ,... ,Fs).

Spec]alisons XO on 1 ( k' Les Fj se sp6cja IIsent en Fj 1 les A1 en certajns A'i

de k[Xl ’"-,Xn] qui on une repr6sentation (non n6cessajrement unique) comme

poIYn6mes en F 1 ,.,.Fs "sans terme constant" et de degr6 < dn+ 1

I +A'r_1 + .,. + A'0 = 0

Autrement dit, on obtient une SYZYgie finale de degrb < dn + 1 de 1a fami11e

F1 ,Fs

Recfproquement s' jl existe une syzygie ffnale P pour la fam jlle Ft 1...IFs en

homog6n6fsant Ia relation correspondante , on VOjt facilement que Xn est

entieF sur k[FI ’„' ,F,] ' ComAe k[61 ,...,C,,1] c k[F1 ,... ,F,] e,t „, „t,„j„

entlePe' on en d6duit que XO est entier sur k[GT 1...,(,n+ 1 ] . +
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F\emQrquQ : La proposition pr6c6dente pose dorIC la question de d6terminer sl

XO est entier sur k[G 1 ,.., ,Gn, } ] , Nous n'avons qu’une r6ponse partielle qui

d6coule de ( [4] , Remark 9)

k[GI ,...,Gn, 1 ] c k[XO,... ,Xn] est une extension entiare ssi { F1 =o,...Fs=o ) = a,

Donc si F 1 ,...,Fs n'ont pas de z6ros communs mame a I'infini, on peut conclure

que cette famille est stablement inconsistante. (vorr aussi [21 ] . )

mn3JW Dans 1e cas g6n6ral, iI est clair que ]'on doit multiplier FI ,...,Fs par

des mon6mes en XI ,... ,Xn pour obtenir une syzygie finale. Si on savait borner

18 degr6 de ces mon6mes, on obtiendralt une d6monstration vraiment

616mentaire d'un Nullste11ensatz effectif bas6e uniquement sur I'in69a]it6 de

B6zout
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4 . La conjecture de Serre : point de vue quantitatif et effectif

Nous a11ons appliquer notre Nullstellensatz effectif , Th6or6me 1 ,
dans le contexte de 11 ex–Conjecture de Serre ,
Cet:te conjecture a 6t6 r6solue en plusieures 6tapes . Nous nous
occupons seulement de la derni6re oa on d6montre que les anneaux
polynomiaux sur un corps sont hermitliens . Les premi6res damon-
strations de ce fait ont ata donn6es par Suslin et Quillen inda-
pendemment . Notre point de d6part sera la d6monstratlion de Sus:Lin
(voir [ 20 ] ) .

Dans ce paragraphe nous supposons que k est in£ini . (Ce sera
1 ' unique hypothese sur k . En particulier la caract6ristligue de k
peut etre arbitraire . )

No tons R = k[x1, . . . ,Xn] .

Soit F = (F, , ) , <, <_ , <, <. eRrxs une

avec F11 eR pour 1 S iSr , 1 Sj Ss . Notons

deg F = max deg F, , le degr6 de F ,
1 S j.gr 11 Sj SS a II

rx S - matrice polynomiaILe

Si les rx r–mineurs de F enqendrent I'id6al trivial R nous
di ons que F est unimodulaire . Considarons les deux cas Farticu-
lters r=1 et r=s .
Si r=1 et F = (F, , , , . , F_ ) , la condition F unimodulaire signi-
fte R F, + + . . + R F_ = R .
si r=s la condition F unimodulaire signif ie det F e k \ { 0 }
( det F est le d6terminant de F ) .

induite par
F unimodulaire signi£ie que 11 application k - linaaire

F
Rs F ) Rr

est sur j ective .

Le Nullstellensatz effectlf entraine
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Th6or6me 13 ( [ 9 ] , [ 4 ] ) : Soit k un corps infini , R =k[x1 , . . . ,Xn]
et F ( Rrxs une matrice unimodulaire avec d : = deg F e
Alors iI existe une matrice unimodulaire M eRSxS avec Ies pro-
pri6t6s suivantes : S

(i)

(1)

(Ii)

deg M
0 (n)(rd )

M a une reprasentatlion M = N1• ..'• ND comme prodIlit de
p S ns (rd)2n matrices Nk ( Rs xs telles que pour

1 Skip : deg Nk = (rd)O tn>

N, est 616mentaire ou de la forme

Nk avec Nf ( SLr+1(R) .

( iv ) On petIt calculer M par un r6seau arithrn6tique E 8 ]

temps s6quentiel rO Cn ) sO Cr ) dO (n2 + 1 )

lale O(n6 r4 log4 rd log2 sd) .

en

et en temps Faral-'

Le fait que R est hermitien signif ie, dans les hypoth6ses du
Th6or arte 13 , qu ' ll existe une matrice unimodulalre M ( RSxS qui
satisfait (i) .

Les bornes du Th6oreme 13 (ii) et (h) repr6sentent le (nouvel)
aspect quantitatif et les complexit6s dans (iv) 11 aspect algorith-
mique du r6sultat qui est Far ailleurs classique . Ce r6sultat dont
les d6monstrations classjques ne sont Fas constructlives imp:Ligue

la r6solution de la Conjecture de Serre (voir [ 20 ] ) +

On peut se limiter au cas r S min (n , s ) . De ce point de
vue Th6orame 13 ( iv) repr6sente une solution algorithmique de la
Conjecture de Serre simplement exponentie11e en temps s6quentiel
et (simultan6ment) polynomial en temps paral161e .
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Les propri6t6s Thaor6me 13 (i) et ( i) impliquent un Nullstellen-
satz effectif (poser r=1 et consid6rer la premi6re ligne de M ) .

On d6duit de I'exemple cit6 de Masser et Philippon ( [ 3 ] ) que
tout:e borne pour deg M est intrinsequement exponentielle en ne

Corollaire 14 : Solent R et F comme dans le Th6orlame 13 .
Considarons la suite exacte courte de R- modules ind trite par

F
O P –> R - –, R ’- 0

E+ :

oa P est un sous–module de Rs .
Alors P est un R– module libre de rang

en temps s6quentiel rO ( s > sO (r ) dO tn + r >

O(n6 r4 log4 rd log2 sd) une base de P
N c R (s-r> xs de degra deg N = (rd) O (n)

et on petIt trouver

et en temps paral161e

d6crite par une mat:rice

D6monstratlon : Soit R,F et M comme dans le Th6or6me 13 .
Consid6rons le diagramme commutatif

0 –, P –> R- + R- 0FS

„T„ -{(: I1)
0 –> Rs-r–> Rs /

On en d6duit que les s–r derni6res colonnes de M forment une
base de P .

Pour la d6monstration du Th6or6me 13 nous r6f6rons le lect:eur a
[ 9]

Nous allons ici consid6ref le cas r=1 . Voici une version quanti-'
tative et effective du Th6ordme de Suslin ( [ 20 ] ) :

Th6ordme 15 ( [ 4 ] , [ 9 ] ) ; Soit h Inflni et R = k [X,
Sol t F = (F, , . . . , F_ ) C Rs un vecteur unimodulalre
Alors il existe une matrice unimodulaire M ( Rs* s
pri6t6s suivantes

avec les pro-

(i) F ' M = ( 1 , 0 , o . . , 0 )

( 1 ) deg M $ s dO €n)
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(m) M a une repr6sentation M = N1 • . . . • ND

PS 2 n S2 d matrices Nk CRSXS

1 Sk SP : 1 IO(n)sd

ebU,

comme prodIlit de

telles que pour tout

dea N. == ''k

N]f est 616mentaire OU de la forme
2

I
Ol ' ' 1 ]

N k = 2 { 1 : i + 1 :
avec Ni ( SL2(R) .

(iv) On peut calculer 'M en temps s6quentiel
temps parallale O (nb logi sd ) .

54 dO (n2) et en

Pour la d6monstration du Th6or6me 15 nous avons besoin de quel–
ques pr6parations .

Soit A : = k[X1 , . . . ,Xn_1 ] et X : = Xn . Nous consid6rons les
GCR = A[ X] comme polyn6mes en X a co6fficients dans A . Dans ce
sens on peut substituer des 616ments B C R dans G . Nous 6crivons
G (B) Ie r6sultat de la substitution . Evidernment G (B) C R en
gan aral, et G (B) C A si B C A .

Pour un vecteur F = (F, , . . . , F_ ) C Rs et B eR nous 6crivons
F(B) = (F, (B) ,. . . , F,(B)) C Rs

POur ce qUi suIt, soitent S=2 , F = (F1, . . . , Fe) C RS un vecteur uni-
modulaire et d : = deg F .

Lenune 16 : Soit c : = Res., (F, , Fn) Ie r6sultant de F, et F,,

comme pol},names en X .. Etant donn6s B , B' C R avec
D = max { deg B , deg B'} et B – B' CRc .
Alors il existe une matrice unimodulaire NC RS XS avec

( i)

(ii)

( iii)

F (B) N

deg N S

F (B' )

D (d + d2 )

N a une repr6sentation N = E1 • ...• ED re_9 \ S , Oa

E 1 / o o ex / 1]= 2 ( S 2 ) ( 1]F:b S x 5 S 0 ]n1 t 1Eh1les matrices 616 men tailresetSCR-’ -- '’ est de la forme

oa S' C SLa(R) .
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D6monstration : Partant de la matrice de Sylvester correspondante

a F1 et F2 on peut calculer deux polyn6mes G1 ,G2 CR tels que

(15) c = GIF1 + G2 F2 et deg Gl , deg G2 . S d2

<?n a – aussi deg c S d2 . Comme c CA ne contient pas I'ind6ter–
min6e X , on obtient de ( 15 )

( 16) c Gl(B) F1(B) + G2(B) F2(B)

Sett 3 gj Ss . On a F4 (B) - FR (B1 ) ( R (B - B1 ) c R c , donc pour
(I/c)(Fl (B) - Fh(BT)) on a Al ( R , deg Aa S Dd et

Fj (B> – Fj (B') = %c = AjG1 (B) F1 (B) + AjG2(B) F2(B) .

A A1 G1(B) et A1 G2 (B) correspondent deux sx s- matrices 61amen-
t:aire; a co6fficients dans R qui transforment

(Fl (B) 'F2(B) '''''Fj(B) '''''Fs(B)) en (F1(B) 'F2(B) ''''.Fj(B'),'''.FsCB)) .

Avec 2 (s–2) _ _.__ matrices 616mentaires E1,...,E2 Cs_2) ( Rsxs
on obtient F (B) E1 • '''• E2 ( s_2 ) = ( F1 (B),F2(B),F3 (B') , . , . , Fs (B')) .

Consid6rons maintenant la matrice
SII

+
11S avec :[:::::::::][-==::::

F2(B' )

G1 (B' )
I 1

On a det $1 = 1. A premi6re vue
cients dans cf (R) = k (X,
D 'autre part B - B1 C R C in.plique que tOUS les co6fficients du
pro dutt

S' est une matrice a co6f fi-

[

sont dlvisibles par c .
DorIC S' C R2 x2 . Cela imp:Ligue

:::::] [-==::::
F2(B' )

G.(B' )

s1 c SLotR) .

On v6rifie que - – (F1 (B) , F2 (B)) S1 = (F1(B1 ) , F2(B1 )) et
(F1 (B) ,F2 (B) , F3 (B' ),. . . , Fs(B’ )) S = F(B’) .

Pour N : = E1•'''• E2 (s_2) S on a finalement= F (B) N ; F (B1 ) ,
d ' oCr (i ) et ( a) ,

On a -–-- deg S1 SD (d + /) et, pour 3 Sj Ss et 1£k£2 , deg Al Gk(B) $
S deg Al + deg Gk(B) S D (d + dz) . Cela implique (a) .
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t - -– -- - La matI:ice N eRSXS de la d6monst:ration du Lemme 16

est calculable en temps s6quentiel (Dd)O (n) et en temps paralldle
O (nz log2 Dd) .

Lemme 17 : Supposons deg\, F = deg F1 .

Soit Z : = ( s-2 ) d + 1 et soient donn6s a, , . . . , a, e k tous di-
st:inct=s .

Pour 1 S IS ! notons F2 i = F2 + aiF3 + a{F4 + . . . + asi-2 Fs et

ci = ResX(Fl’F2 ,i ) •

Alors , on a A c1 + . , , + A co = A ,

D6monstration : 11 suf fit _ d6montrer que c1 , . . . ,ct n lc>nt pas
de z6ro commun dans k
Supposon, re ,o„t,ai,, ,t ,oit , C in-1 t,I qu, ,1(,) =. . .= c (,) = O.

Comme de$x F1 = deg F1 , cette condItion implique qu'il existe des
£1, . . . ,EZ eE t'1' que pour 1 SiSI, F1 (',Ei) = F2 1(' ,Ei) = O .

L t&galit6 degx F1 = deg F1 S d implique que le polyn6me
F1 (z , X) e k [X] a au Plus d z6ros . Done # { E 1, . . . , el ) Sd (# da-
signe Ie cardinal ) n

Sett L = { 1, . . , , 1) , Consid6rons Ia partition P de L qui
correspond a la relation d '6quivalence sur L qui identif ie
k, , k, C L si

{iCL ; F2/(z,€k1 ) = 0 } = { tel : F2r(z,€k2) = O ) .

On voit que P a au plus d classes . Comme Z = ( s-2 ) d + 1 iI existe
d lapr6s le principe des tlroirs une classe dans P qui contient au
moins s- 1 616ments de L , Cela signif ie qu ' iI existe un
( C {€1, . . ' , El } qui annule s- 1 des polyn6mes F2 1( z ,X) ck [X] .
Sans restriction de g6n6ralit6 on peut supposer

F2ri(z,E) = ' ' ' = F2rs_l(z'e) = 0' D-e pIus' on a F1 (z'E) = 0 .
Consid6rons x : = ( z , E ) e kn , x est contenu dans

{F1 = 0 , F2fl=C),''',F2 rs_1 = 0 ) qui est dorIC un ensemble non–vide .

Or, on obti,nt re v,,teur (F2r 1, . . . , r2.s_1 ) C Rs-1 en multi-
pliant le vecteur (F1 , . . . , FC ) ( Rb- 1 par la matrice de Vander-
monde inversible :
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1 B . . 1

a1 ' • • as– 1

s- 2
a1 ' '

Cela implique gb + { Fl = 0 , F2r1 = 0 ' o ' ' ' F2 rs_1 = 0 } =
= {Fl = 0 , F? = 0 , . . . , FC ; 0 ) . On obtient donc une contradiction
avec llhypothase que F = (F1, . . . ,FR ) est unimodulaire.

Remarque 18 : Puisque deg c1, . . . ,deg cZ S d2 notre Nu11stellen-
satz et, le Len'me 17 Im,)liquent qu 1 iI exlste des q1, ' ' ' ,qI C A
avec dbg q1 $ 3 d2 (n-1 ) _ __ pour 1 SiSI , tels

que 1 = 1 S i<2 ql ci

On peut calculer

O (n4 log2 Id) .

en temps s6quentiel 14 dO (n )

et en temps paral161e

Fin de la d&monstration du Th6or6me 15

Comme k est inf Ini nous pOUVOns supposer qU lapr6s un eventue1
changement lin6aire des variables X1 , . . . ,Xn la condition

degXj F1 = deg F1 est satisfaite pour tout 1 Sj Sn .

Dans une premi6re 6tape nous construisons une mat:rice unimodulaire

Mn CRsxs telle que F'Mn = F (0) , deg Mn = s dO(n) et Mn a une

: : : : : : e n : : T : E x S T n 1 = $ = 1 : i • : o NN: : : 1:: : = = : d = : tr : : e : 1 : m : n : : : re : : M
de la forme r N ' 1 0

r
1

01

Nk =
avec

Ni ( SL2(R) .

'1

En plus on a s dO(n)

On peut calculer Mn en temps s6quentiel
paral161e O(n6 log2 ( sd)) .

s4 dO (n2) et en temps

On a

–- et
degx j F1 (0) = deg F+0 ) = deg F1

deg F (0) S d .

pour 1 S j S n- 1
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F unimodulaire imF>ligue F ( 0 ) unimodulaire . Comme au paravant on
trouve maintenant une sxs-matrice unirnodulaire Mn_1 qui trans-
forme F ( 0 ) en F(0,0) : = (F1(X1, ' ' ' ,Xn_2,0,0),...,Fs(X1,...,Xrl_2,G,0))
Donc F Mn Mn_1 = F (0 , 0 ) .

Continuant ainsi on arrive finalement a une mat:rice unimodu=Laire

M1 ( Rs xs qui transforme F en F (0 , . , . , 0) : = (F, (0 , , , , , 0 ) , , , , ,

FC(0 , . . . ,O) ) C ks

Comme F ( 0 , , . , , 0 ) est unimodulaire , c 1 est-a–dire F(0, , , . ,0) / (0, . , , ,0)

on peut mettre F ( 0 , . . . , 0 ) sous forme ( 1, 0 , . . , , 0) par une trans-
formation unimodulaire . En composant cette derni6re transformatIon
avec M' on obtient une matrice tulimodulaire MC RSXS qui satis-
fait Ies exigences du Th6or6mes 15 .

Construisons maintenant M_

Choisissons des 616ments distincts a1 , . , , , a, C k
Solent c, , . . . , c , C A comme dans Lemma 17 .

Choisissons maintenant q1 , + + + ,qI ( A d 'apr6s la Remarque 18 .

Solent P1 : = X q1 ’ ' ' ' ' Pt : = X qt • On a X = 1£}5£Pici•

( k est inf ini) e

Pour chaque 1 S iS I appliquons le Lemme 16 avec c : = c . ,

B : = 1£i£i PI(ck ’ B : = 1£k hi_1 Pkt ck1 pour transformer

(F1(B) .F2pi(B) ,FB(B) ,''',Fs(B)) en (F1(B'),F2rJB'), FJB') ...., FsCB') .

Maintenant on transforme par des s xs - matrices unimodulaires
F ( B ) en ( Fl ( B ) r Fa ; ( B ) / Fo ( B } I - . . I F_ tB )) r pui = en

(FICB'> , F2rJB' ) , F3tB') , ' ' ' , Fs(B') puts en FtB') .

Grace au Lemme 17 on obtient une chaine de sx s - matrices unimodu–

laires qui transforment

F en F (1 g&E-1 P){ck ) r pUIS' en F (1 skEE–2 P leak1 ) ’ ' ' '
. _ . et finalement F (P, c, ) en F ( 0 ) ,

Les propri6t6s (1) et (iii) se d6duisent maintenant par appIIcation
it6r6e des bornes des Lemrne 16 et Remarque 18 ,
Similairement on verif ie la proFri6t6 (iv) .

Observons que notre preuve du Th6or6me 15 constitue une d6monstration
nouvelle , 616mentaire et constructive du Th6or6rrIe de Suslin e



- 34 -

(Le Th&or6me de Suslin [ 20 ] correspond a notre Th6or6me 15 (i ) . )

Une aut:re d6monstration constructIve du Th6or'-.ame de Suslj_n est
donn6e dans [27 ] .

RalnnWns We les F/ropri6t bs (I1) et (iv) du T!£orare 13 ne slobtiennent
pas par simple itaration du Th6ordme 15 (la croissance des degr6s
et par cons6quent la croissance de la complexit6 seraient trop
grandes) .
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La th6ode 616mentaire dlun a)rps ordonn6 ne d6termine pas

la th6oHe de son plongement dans ga c16ture r6elle

Frangoise Delon

Pour un corps K , Ka d6signe sa c16ture alg6brique. Jerome Keisler a prouv6 que si

deux corps K et L sont 616mentairement 6quivalents, alors les paires ( K E Ka ) et

( L C La ) sont 6quivalentes dans le langage { 0, 1, +, –, ., E } oa E est un pr6dicat unaire
repr6sentant I'appartenance au petit corps. Si Ks est la c16ture alg6brique s6parable dlun

corps K , on a de la m&ne fagon: K = L + ( K g Ks ) : ( L C Ls ) (clest une cons6quence

de [D2]). Que se passed–il pour d'autres notions de c16ture? ll convient bien sar dl6tre

prudent; prenons par exemple Ie cas de la c16ture parfaite: il existe des corps K = L avec

KP / LP , voir [V]. On doit ne consid6rer que des notions de c16ture pour lesquelles les

c16tures de deux corps 6quivalents sont 6quivalentes. En particulier Ia question se pose de

fagon naturelle pour les corps ordonn6s:
9

( K,< ) = ( L,< ) -+ ( K [ Kr ) = ( L [ Lr ) ,
oil Kr est la c16ture r6elle. La r6ponse est n6gative, et le contrhexemple que nous allons

d6crire prouve aussi

( K,v ) = ( L,v ) =/+ ( K C Kv ) = ( L C Lv ) ,
oil v est une valuation et Kv la c16ture henselienne de K pour v

Construction du contrbexcmple

Soit k un corps de caract6ristique nuDe,

(Pn)nco la suite croissante des nombres premiers,

Ko = k , Kn(Xn) g Kn+1 g Kn(Xn) n

– 1 –



oil ... n d6siglle la ('16t11re llensclienn(' T)011r la valtlat.iOTI v11 ass(t('ic’'e i X11 ; 1)I'(“('is6lll('Ilt
\

Kn+1 est line ci6t11r( t aIEc’'I)riqlte relative do l<11(X11) dans Kn(X11) n p(mIr It’s rxtt'llsiolls (1('

degr6 $ Pn . Aut,re fagon (Ie dir(' la !116lllc' ctlost:: Kn+1 llla(llrret pas d'cxtcnsion

Vn–imnr6diat(: de dilllension gPu . Sur 1(n+1 sc>nt, aus\si d(’lnnics los valllatiuns ('onII)ost-'os

(voir [R.] gC) Vn x v11_1 x ... vi pour n $ i $ 0 . D6nnissons

K = U K
new 11

et sur K la valuation v d'anneau

IIv = nyu I\EVII x „' x vo ;

d,n, „K = Z(–”) ,t , P.„, „,„–g„„P„ '.„,T„, O = Ho < 111 q ... < IIn < IIn+1 q ...vK ,

oil chaque IIn , nZ 1 , est le sous–groupe convexe principal engendr6 par v(Xn_1) et est

isomorphe i Zn . On pro]onge vn de Kn+1 a K en posant Vn = an ov , on rn est la

projection vK A vI</Hn ; on a K/Vn = Kn .

Lemme I. Pour tout n , K n'admet pas d'exteIlsion Vn–imm6diate propre de degr6 $ Pn .

D6monstrat.ion. Soit x Vn–imm6diat sur K (c'cst–idiire que I'extension ( K E K(x) , v )
V \

est imm6diate), et dg6b'ique su' K , do"c ' e K 11 = y Kn Ii , et il existe icH tel que
V

xc Knli . Chaque Km est relativement dg6briqucnlent clos dans Km+1 done dans K ,

dorIC x est de m&ne degr6 sur Kn+i que sur K

– Si x est alg6brique sur Kn , comme Vn F Kn est triviale, on axe Kn .

– Montrons par induction sur i qulon a pour tout (i,n)

Kn+i+1 C L C Kn:i+1 1

t ='} L = Kn+i+1 '
[ L : Kn+i+1 ] $ Pn

1) Pour i = 0 , clest vrai par d6finition de Kn+1 .

2) Soit L comme cjq]essus avec i : 1 . Alors

[ L : Kn+i+1] ? [ L/vII+i : Kn+i+l/Vn+i 1 ;

or L/Vn+i E Knli+1/Yn+i = Kn Ii (parce qu'une valuation compos6e est hensehenne ssi

chacun de ses facteurs I'est) et Kn+i+1/vn+i = Kn+i , done, en appliquant le r6sultat Nur

-2-
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(i–1,n) , L/yn+i = Kn+i , ce qui montre que 1lextension (K g L) reste Vn+i–imm6diate.

On achdve en appliquant le r6sultat i (0,n+i–1) . O

Reformulons ce lemme en termes de I'limites".

D6finition. Soient des corps valu6s ( MEN , v ) et xc N . On d6finit kx,M,v) = { g e vM ;

Im eM , vCx–m) = g } , not6 aussi Kx,M) , ou mane Kx) , lorsqu'il nly a pas ambiguit6;

clest un segment initial de vM ; x e N–M est dit limite sur M , lorsque Vm CM Im1 e M ,
vCx–m1) > vCx–m) , ou, ce qui est 6quivalent, lorsque Kx,M,v) coincide avec { vCx–m) ;

m e M } et nla pas d'616ment maximal. Pour ces notions et celles de suite pseudc>-Cauchy de

type alg6brique ou transcendant, n-ous renvoyons i [Ka].

Lemme 2. 11 nly a pas sur K de point Vn–limite, iK , et alg6brique de degr6 $ Pn .

D6monstration' Soit x contredisant 1l6nonc6. Une suite pseudc>-Cauchy (Xa)a<a de K

maximale approchant x est de type alg6brique, et un polyn6me Q e K[X] de degr6 minimal

Nur lequel v(Q(Xa)) nlest pas asymptotiquement constant a un degr6 $ celui du polyn6me

minimal de x sur K S Pn . On put valuer K[X]/Q de fagon i en faire une extension

imm6diate de K , donc K[X]/Q = K dlaprds le lemme pr6c6dent; alors Q est lin6aire, et la

suite Xn nlest pas maximale, contradiction. O

Notations. Soit ( M,v ) un corps valu6 arbitraire, Av d6signe son anneau de valuation

– Pour A g vM et g e vM , A est la c16ture convexc de A dans vM ; A + g =
{ a+g ; a cA } ; –A = { –a ; aeA }
– Pour Pe M[X] , J(P) = { v(P(x)) ; x eM } , H(P) = J(PJ n –J(PJ ; H(P) at non vide
des que P a des coefficients entiers pour v ; H(P) peut avoir ou non un 616ment maximal.

Lemme 3. Pour un corps valu6 (M,v) arbitraire et x ( Mv , il existe Hq vM , H + 0 , et
g e vM tels que H + g est un segment final de Kx,M)

D6monstration: voir [D3]

Lemme 4. Soit un corps valu6 (M,v) , P unitaire e Av[X] tel que H(P) soit un sous-8rouw

convexe non nuI de vM . Alors J(PJ = ky,M) pour un y c Mv dont le degr6 sur M est $

degr6 de P .

D6monstration. Ecrivons J pour J(P) . Soit P(X) = II (X–xi) oil les xi sent dans la

c16ture alg6brique de M ; on a v(xi) ? 0 . En d6composant M en

-3-



P { x ; vCx–xi) > vCx–xj) , Vj#i } U .U. { x ; vCx–xi) = vCx–xj) > vCx–xk) W A,j } U ''' ,

on voit que J est une union finie d'ensembles de la forme { m.vCx–xi) + g ; x e M , " x Plus

pas de xi que des a„tr„ „d„„" } po„, „„ mc W* et u„ g d,„s la d6ture divisible

D(vM) de vM , donc que ltun dlentre eux est cofinal dans J . Le xi correspondant est limite

dlune suite pseudnconvergente maximale de type alg6brique de K . Prenons-en une limite

alg6brique y de degr6 minimal sur K ; alors J = win . On sait par ailleurs qu' il

existe H1 4 vM et h' e vM tels que H' + g' soit cofinal dans Ky) ; n6cessairement

H = H1 , soit J = 1(xi) + h , h e D(vM) . Comme J contient I(xi) , on Nut prendre hZ 0 ;

comme 0 e I(xi) , on a h c J , d'otr J = 1(xi) = Ky) . O

. Soit (K,v) comme au d6but, P e Av[X] unitaire de degr6 $ Pn et tel que H(P)

soit un sous-8roupe convexe H non nuI de vK . Alors H est H1 ou H2 , ... Hn .

D6monstration. Le y du lemme pr6c6dent est de degr6 $ Pn sur K et v–imm6diat, ce qui

signifie que Ky,K,v) n'a pas d'616ment maximal. Ky,K,Vn) est la projection de Ky,K,v)

modulo Hn . Si H > Hn+1 , Ky,K,vn) n'a pas non Plus dl6j6ment maximal et y reste

v_–limite sur K , contradiction avec le lemme 2 . O

Lemme 6. Pour PCT) = TPn+1 – (1+Xi) , i=1,...n , on a H(P) = Hi+1 .

Corollaire. H1 , ... Hn sont uniform6ment d6finissables dans (K,v) : ce sont des H(P) pour

P comme pr6c6demment.

D6monstration. D'apr6s les lemmes 5 et 6. O

Corollaire. Si (L,w) = (K,v) est c,uatur6, iI existe gc wl v6rifiant

(V P c Aw[X] unitaire et tel que 0 + H(P) < wl) ( H(P) < g )

Corollaire. M6mes hypoth6ses. Alors (L E Lw) satisfait

(lg e wl) (V x) [ ( O # [ Kx,L) n –1(xIL) ] < wI' ) –- ( Kx,L) < g ) ] .

Coronaire. (L E Lw,w) # (K E Kv,v)

Si k = e ou IR , alors v est d6nnissable dans Kv ([DI] proposition 9), dorIC

–4 –
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(L E L") # (K E K") .

Cas des c16turm raIM

Lemme. Soit K construit comme pr6c6demment i partir de k = R et sur K I'unique ordre

Nur lequel tous Ies Xi , iec,I , sont positifs. Alors v est d6finissable dans (K,<)

D6monstration. Av est la c16ture convexe de at dans K . On va montrer Av = [–1,1] U C ,

oa C = { x eK ; lxl > 1 A Vy lz ( jyl < 1 –H El+y3H31 < lxl–1 ) } .
1. Soit XC R , x # 0 , ye K , jy [ < 1 ; dorIC v(y) ? 0 et v(l+y3) : 0 et le polyn6me

1+y J–Zi admet un z6ro r6siduel puisque K/v = R est r6el clos, ce qui signine

lz cK , v(l+y3H3) > 0 , dOrIC l+y3–z3 est innnit6simal, donc < lxl–1 . Cela montre

R g [–1,1] U C , et comme [–1,1] U C est convexe, Av [ [–1,1] U C

2. R6ciproquement. L'e„semble { aX=1 ; aeR*+ } est cm„itial da.s K+IR , il s„Hit do„c de

montrer que C ne contient aucun aXEl ; pour y = –1 + Xo.a–1 , v(1+y3) = v(Xo) n'est
pas divisible par 3 dans vK et est donc distinct de v(z3) , Vz cK . Alors

– ou bien l+y3–z3 N 1+y3 ~, 3Xna–1 > Xna–1

– ou bien v(z) $ 0 et l+y3q3 ~ q3 et F,31 > to„t 616me„t de „ah,ation „(Xn) . O

Corollaire. II existe (K,<) = (L,<) avec (K q Kr) # (L E Lr) , oi Kr est la c16ture r6elle de
K

D6monstration. SDlt K et L d6finis comme pr6c6demment avec k = R . On a vu que

est d6finissable dans (K,v) . Continuons d'appeler v 1’unique prolongement convexe de v

sur KF . Il est d6nnissable dans (K C KT) , et la meme formule que pr6c6demment distingue

(L E Lr) et (K g Kr) ( Kr + Kv mais exiger que Kx,K) n –1(x,K) est un sous-€roupe # 0
impose que x est limite et dorIC se comporte cornme un point de Kv ) . n
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On the Stability Index of Real Varieties

Claus Scheiderer (Regensburg)

Let R be a real closed field and Y an affine algebraic variety over R. For polynomial
functions /1 , . . . , f , e R[Y] = F(Y, Or) we put

St fl.---,f.) := {„ e VCR): /1(#) > 0, . . . , f.(') > 0}. (*)

Subsets of this form are called basic open (semi-algebraic) subsets of Y(R). Given a basic
open S C VCR), one denotes by sCS) the minimal number r of inequalities needed to
describe S as in (+). The supremum sups sCS) with S ranging over the non-empty basic
open subsets of F(R) is denoted by s(V) and is well known to be finite. It has been called
the stability £7Idea of the variety Y,

It had been conjectured for some time that s(Y) = n holds for every n-dimensional
real Y (n > 0). This conjecture has now been confirmed, and the aim of the talk is to
present a sketch of the proof. The lower estimate s(Y) ? n was already known before
and is due to L. Br6cker [Bl]. In the other direction he had given upper bounds for s(Y)
growing quadratically with n and giving s(Y) = n for n = 1, 2, 3, see [B2].

One may ask a similar luestion concerning basic closed sets (replacing > by ? in (+))
and the corresponding in un 'ant i(V). Also this had t:c’en an open problem which has now
been solved, to the end that iCY) = f (n + 1). Here the $-part is due to Br6cker [B3]
However we will only report on the basic open case hr're

The main ingredients for the proof of s(1’) = n are the concept of the real spectrum
on the one hand (see [CR] , [BCR] ) and reduced quadratic form theory over semilocal rings
on the other. More specifically, one needs M. Marshall’s theory of spaces of orderings,
together with the fact that every semilocal ring gives rise to a space of orderings. For this,
see e.g. [M] and [K].

If A is a semiloca1 ring, put Xx := (Sper A)max (the topological space of closed points
in the real spectrum of A) and Gx := A*/{u e A’: u > 0 on Sper X}. Then the pair
(Xx, Ga) is a space of orderings.

Let X = (X, G) be a t pace of orderings. A constructible subspace of X is a subset
Y C X of the form

Y = {rex '(fll = - ' - = =t/m) = +1 1 = X n {fl , /n}1

with h e G. Each construt'.L.ible subspace of X is a stPace of orderings by itself. The least
possible m : 0 is denoted by sx(Y). The stability in.i, ez st(X) of X can be described as
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contains some f with /IS > 0. Since /IS ? 0 for each j e L, and moreover L + Icl
holds, it suffices to find for each p e S some f e L with /(p) > 0

Fix P e S and put a := OHp; one has to show sanxf tg n Xc) g m. By the
representation theorem for spaces pf orderings this means

IS n GI = 0 mod 2k–'”

for every fan G in Un Xc with ICI = 2k > 2'n. Let Z C V be the support variety of
such a fan G. Since Ov,z is a regular local ring, there is a place R(V) –> R(Z), oo over
R which coincides with the residue homomorphism Ov,z –> R(Z) on oHZ. Pulling back
the fan G with respect to this place one arrives at a fan F in un xR(v) together with a
“specialization map” s: F –} a satisfying s(n) c {3} for = e F (the closure formed e.g. in
Sper Oy,z) and Is–1(y)1 = 2d for y e G, independently from y, with some d : 0. Hence
IPI = 2k+d , and by (++) of the lemma this implies IS nFl = 0 mod 2l+d–m. From this
congruence one concludes that IS naI = 0 mod 2k–m, as desired

It should be mentioned that this method of proof applies to a much more general
situation. In fact, if ,4 is any noetherian ring whose (real) singularities do not behave too
bad (for example it suffices that Sing ( A/p) is closed in Spec ( A/p) for every real prime
ideal p e Spec A), then one gets a result concerning the basic open constructible subsets
of Sper X which is completely analogous to the theorem. For details see the author’s
forthcoming paper.
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