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COMPLEMENTS SUR LES CORPS CHAINE-CLOS

Francoise Delon

Les corps chaine-clos ont été abondamment décrits dans ce séminaire. On a
vu qu’ils peuvent étre définis comme des corps portant une chaine et sans
extension algébrique propre sur laquelle cette chaine se prolonge fidélement,
ou bien comme des corps portant une valuation henselienne avec un corps de
restes réels clos et un groupe de valeurs G impair-divisible et vérifiant
(G:2G) = 2 . Leur classe est élémentaire. Nous allons préciser ici quelques
points de théorie des modéles & propos de ces structures: élimination des
quantificateurs dans une extension par définition et coincidence entre
inclusion élémentaire et cléture existentielle relative. Nous reviendrons
aussi sur la caractérisation, dans certains corps chaine-clos, des fractions
rationnelles & une seule indéterminée qui sont sommes de puissances 2% {voir
[DeG]), et donnerons des exemples et contre-exemples qui expliquent les
hypothéses restrictives et la forme de la caractérisation. Les trois parties

sont indépendantes.
1. Elimination des quantificateurs
Reprenons les différentes théories considérées par Dickmann [Di] :

T = théorie des corps chaine-clos dans le langage L ={0, 1, + -, ., }

TC = théorie des corps chainég chaine-clos dans le langage



IC =Ly { Pi s iEw }

TCV = théorie des corps chainés chaine-clos munis de leur valuation de
Jacob dans le langage LCV = 1LCU { D} , o D est le prédicat de
divisibilité: Dix,y) e vix}) ¢ vly) ; rappelons que la valuation de Jacob
sur un corps chaihe-clos K est le premier élément de 1’ ensemble V(K} = { v
valuation sur K ; K/v réel clos } ordonné par larelation v » w ssi
i’anneau de valuation de w contient celui de v , et qu’elle est
définissable dans la seule structure de corps de K .

Dickmann a montré que TCV est modéle-compléte {Di 2-3]. Nous allons
montrer que cette théorie admet l'élimination des quantificateurs. Nous
commencons par décrire les parties universelles des théories précédentes.
Signalons que Harman a employé 1'expression "extension de chaine” en un sens
qui contredit 1l’usage en théorie des modéles; nous n’utilisons qu’une fois

cette terminolog ie et précisons alors "au sens de Harman".

Lemme 1~1. TV est la thécrie des anneaux intégres ordonnables.

Démonstration. Pour une théorie S , 1’ensemble SV de ses cons€quences
universelles est la théorie des sous-structures de ses modéles. Un corps
chaine-clios est ordonnable, et réciproquement un corps ordonnable est

plongeable dans un corps réel clos, disons R , leguel se plonge dans
i 1

RUXZ )y 1= U R((x&H
n<N

}} qui est chaine-clos.l

Lemme 1-2. TCV est axiomatisée par les propriétés suivantes:
1. anneau integre;

2. P et P, sont des ordres, c’est-a-dire:

o i
_ 2 - s .
Pi+Pi < Pi 5 Pi'pi < Pi s X € Pi , X € Pi vV =X € Pi , pour 1i=0,1 ;
i
3 2
3. pour 22, X* ¢ P, , Pi'Pi = Pi s Pi(xy) A Pi(x) ] — Pi(Y) ’ Pi+Pi < P,
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2i
P {x) A P (x}) — W P, (x)v) ;
o 1 . i
J=1
4, Pi+1 ] ~Pi+1 = (PO ] Pi) U -(PO n Pi"
Démonstration. Soit To la conjonction des axiomes donnés dans 1’'énoncé.
Clairement To < Tv . Soit réciprogquement A = To « On vérifie sans difficulté
que 1’unique prolongement des Pi sur le corps des quotients QA) de 4

i

défini par Pi(abql) — Pi(ab2 ) continue A satisfaire To . Les axiomes 3
impliquent que Pi est sur Q(A) un ordre de niveau J pour un entier

J¢i . Cette situation a été étudiée par Harman ([H] lemme [-7),

- Ou bien tous les Pi coincident sur Q(A} . Dans ce cas, si R est la

cloture réelle de Q(A) pour cet ordre, et (Qi)i 1’unique chaine de K :=
1

R L ona (4,(P,)) < (K, (Q,))
= Ou bien il y a un entier d tel que Po' Pl Pd coincident sur @Q(A)
et (Pd+i)i est une chaine de Q(A) . Si d21l , prenons un point x de A
vérifiant Pd{x) A =1Pd+] (x) et considérons le corps B = Q(A)ly] , Y2 =% .
Il yasur B exa‘;ctement deux ordres prolongeant P d(Q(A)} et aucun
proiongeant Pd+1(Q(A)) . D’aprés f[H} 3-7, il Y a donc sur B une chaine
( Qi}i & unique a échange de ses deux ordres vrais prés, qui est extension de
degré 2 au sens de Harmen de (Pd+i(Q(A))iew y c’est-a-dire vérifie
Q, N QA) = ) N Qa) = Pd(Q(A))
@ N QA) = Pd_1+i(Q(A)) » pour 132 ,

ce qui nous permet de renommer Qi = I -1 +i(B) :On prolonge ainsi par

-d
induction les Pi sur C = Q(A)[x2 1 , o ils forment une chaine. Et C

muni de cette chaine admet une cloture, ce qui montre C = Tv donc aussi

AI-TV.D

Lemme ]1-3. Soient les axiocmes:

5. =D(0,1) , [ D(x,y) A D(y,z) ] — D(x%,z} , D(x,y) v D(y,x} ,



[ Dix,y) A D(x,z) | — Di{x,y+2) , 2 # 0 — [ D{x,¥y) « Dlzx,zy) | ,
6. [ Dly,x) A =D(x,5) ] — B_(v%4x)
(| Po(xy) A D(x,¥) A D{y,x) ] — Plixy) .

Alors TCVV='I‘CV+5+6+7.

Démonstration. Il a déja été expliqué dans [DrMM] pourgquoi il convient de
parler d’une valuation en termes de di visibrlité lorsqu’on s'intéresse a
1’élimination des quantificateurs. On trouve 1a aussi 1’équivalence entre les
axiomes 5 et la présentation habituelle d’une valuation. De la méme fagon
1’axiome 6 n’est autre que 1’expression, dans un anneau, de la convexité de v
pour Po , et l'axiome 7 1'expression de 1’égalité des ordres résiduels
définis par Po et P1 . Précisons. Comme il est usuel Av désiigne 1’anneau
de la valuation v , Mv son idéal maximal, K/v son corps résiduel et x/v
le reste dun élément x € Av . Soit T1 la conjonction des axiomes
ci-dessus. Clairement ‘I‘1 < TCVV . Sa't réciproquement A = T1 : on sait déja
étendre les Pi sur Q{A)} , ou ils satisfont toujours TCV . De méme v
s'étend de fagon unique sur Q(A) , ol il continue & satisfaire 5 + 6 + 7 .
Nous allons donc désormais supposer que A est un orps. Par définition wne
valuation v est convexe pour un ordre de niveau éventuellement supérieur Pi
lorsque 1 + Mv < Pi ; cela implique, pour vi{x) et v(y) 2 0,

[ x/v=y/v — (P (x) —=PAy) )]
et permet de définir 1'ordre quotient Pi/v sur K/v . Harman [H 1-8] a
montré que, étant donnée une chaine (Pi)i sur un corps, la valuation vy
archimédienne pour Po est convexe pour tous les Pi et telle que les P]./v
sont égaux. Une valuation v convexe pour P0 vérifie donc v < vy et est
également convexe pour tous les Pi . De plus si Po/v et P1/V colncident ,
d’aprags la relation Pi+1/v u -Pi+1/v e (Pi/v N PO/V) u -(Pi/v n Po/v) , On
voit par induction sur i que chaque Pi/v est égal a PO/V . En conséguence

T1 impose que v est convexe pour chacun des Pi et que les Pi/V sont
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égaux., D’aprés le lemme 1-2 on sait déja étendre A en un modéle K de TC.
On avait distingué deux cas,
l. Les Pi coilncident sur A . On prolonge v de A & K en Prenant pour

anneau de valuation la cléture convexe de A dans K . On se rappelle que
1
3

K = R{ (X2 }} , o R est la cldture réelle de A . Sur K 1ls valuation de

Jacob VK

2. Sinon K est algébrique sur A, v admet un et un seul prolongement

est la valuation associée & X v et vy Vg

convexe de A & K . Si v(K) < Vg s K/v est chaine-clos avec (Pi(K)/v)i
pour chaine (voir [De(] proposition 11}; mais K/v est algébrique sur A/v
et donc, d’aprés [H theorem 4-121, ( Pi+d(K)/v N Afv )ie» est une chaine de
A/v pour un entier d ; cela contredit le fait que tous les Pi(d)/v sont
égaux.

On s’est ainsi ramené i un corps chaine-clos avec une valuation v ) Vg

8i v(K) > v, , considérons le corps K(x) , o x est transcendant sur K

K
et ol on prolonge v en plagant v(x) dans la coupure ot de vK . On a
donc K(x)/v = K/v et VK(x) = vK x 2 (produit lexicographique). On prend la

cléture henselienne de ce corps, puis une cldture ordonnable Par racines

d’ordre impair, et enfin, pour un y fixé € K - tKZ y on ajoute un systéme

-n
compatible de racines (x:,r)2 1 D& 5 il y a sur le corps L ainsi obtenu un

unique prolongement de v . Alors (L,v) est un corps chaine-clos et sa chaine
2 gnlon

proleonge celle de K ; en effet, on a Pn(K) = K" u -y K et les mémes

relations dans L , or K est relativement algébriquement clos dans L (car

vk est pur dans v ). Parce que v(x) est dang la premiére composante

archimédienne de vL et n’est pas divisible par 2, on a v(L) = 3 0

Ihéoréme 1-4. TCV élimine les quantificateurs,

Démonstration. On sait déja que cette théorie est modéle-compléte, I1 suffit



de vérifier que, pour Ak TCVV , les différents plongements de A dans un
modéle de TCV sont compatibles. On peut par exemple supposer A dénombrable
et vérifier que le modéle que nous avons construit au-dessus de A dans le

lemme 1-3 se plonge dans tout modéle w,-saturé et contenant A de TCV .

1
Considérons d’abord le modéle de 1C .
- Dans le cas ou tous les Pi(A} sont égaux, un modéle de TC contenant A
2i
contient sa cloture réelle R pour Pi car TC w Pi g Po =M pour tout

i>1 , et un modéle wl—saturé M contient un infinitésimal par rapport a A
i
H
qui n'est pas un carré, donc R((X? }) se plonge dans M au sens de LC .

- Lorsque la chaine ne se réduit pas sur A a un ordre unique et que Po(A) =
. = Pd(A) avec d;! , un modéle de TC contient y car TCF Po 3] P1 ] M2
et les prolongements de Pd a Alyl sont conjugués au-dessus de A , donc
aussi les dewr familles (Pd+i—1)

Pour obtenir un modéle de TCV on doit ensuite éventuellement ajouter le
x de la seconde partie de la preuve de 1-3. Un groupe abélien ordonné
2-régulier satisfait pour tout entier n :

ve>0vg 3h [hsg(2") A 0<h<gl.

En conséquence, si M est un modéle w-saturé de TCV contenant K , M

contient un h dans la coupure 0+ sur vK et tel gque, pour tout entier

h ~v(y) , donc, pour x e M avec v(x) =h, xy ou -xy e M

n, on |

he <3 L
. . 2 . - . M2
nécessairement Xy ou -xy € M . Si on choisit x pour avolir Xy € ,

cet x est celul qu’on cherche.l

Dans un corps chaine-clos, checun des prédicats D et Pi , 122 , est
définissable. Ce n’est pas le cas des ordres vrais P0 et P1 » qui sont
certes définissables avec un paramétre, mais que certains automorphismes

échangent . On peut améliorer 1'énoncé précédent et obtenir 1’élimination pour
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une extension par définition de 1a théorie des corps chaine-clos., Définissons

LCV"-'{O,I,*',“,-:D}U{S}U{Pn;nlz}
TCV’ = théorie des corps chaine-clos
+ (P ) est une chaine privée de ses deux ordres vrais

n'ny2

+ D est la relation de divisibilité de Jacob

S(x) «— 3y (Y2=x).

+

Théoreéme 1-5. TCV' admet 1’élimination des quantificateurs. En reprenant les
notations des lemmes 1-2 et 1-3, ’I‘CV’v est axiomatisée par:
1.

2. SGE) L, a8(-1) , [ S(x) A S(y) ) [ SG) A S(xty) ], .

[ S(xy) AS(X) 1 —S(y) , [ +S(#x) A Slty) 1 — [ S(xy) v S(-xy) ] ;
zi

3’. 3 avec remplacement du dernier schéma par Six) — W Pi(ny) H
J=1

47, qu-P2=Su-S,

6’ [ D(y,x) A ~D(x,y) 1 — S(y%4x) :

8. [ Dy,x} A -D(x,¥) 1 — [ S(xy) v S(-xy) ]

Démonstration. Pour T2 =14+2 +3 +4 +54+6 4 8 et Am Té s la
LCV’-structure de A s’&tend de facon unique & Q(A) de fagon 4 en faire un

modele de T, . Si A est maintenant un corps, on définit sur A sans

2
Quantificateur dans I[CV’' une LCV-structure, unique a échange de Pb et P1
prés, qui en fasse un modéle de TCVY » conserve D et les Pi pour i»2 ,
et vérifie § = Po n P1

- 81 Ac #8(A) , alors ICV » comme ICV’ , ge réduit ay langage des anneaux
ordonnés.

- Sinon A contient un point a £ £5(A) , S(A) u aS(A) et S(A) u -aS(A)

sont deux ordres de A (gréce au dernier axiome de 2') et ils constituent une



chaine avec les (Pi) (gréce a4 4’). Toujours grace au dernier axiome de -

i22
2’, 1'ensemble de ces deux ordres ne dépend pas de a et ils sont donc les
seuls ordres a constituer une chalne avec les (pi)ieu .

Réciprogquement une LCV-structure peut é&re munie d’une LCV’-structure:,

qui est définie sans quantificateur en posant S = P0 fn PI et en conservant

les Pi , 122 , et D .0O

1a présentation des corps chaine-clos dans le langage LCV est naturelle
et pratique, Le théoréme d’élimination des quantificateurs montre aussi sa
richesse. Donnons une illustration: on sait maintenant que TCVV est une
t-théorie avec modéle-complétion et que s’appliquent tous les développements
que van den Dries fait a ce sujet dans sa thése. I1 faut par contre remarquer
que, contrairement & ce qui se passe pour les clotures algébriques ou réelles,
le plongement d’un corps chainé dans sa cléture-chaine n’a pas de bonne
interprétation en théorie des modéles. Cela vient de ce que la théorie des
caps chainés n’est pas universelle; on peut la rendre universelle en ajoutant
une constante ¢ et l'axiome vx ( c # txz } {(voir plus loin 2-3), mais
1’interprétation de cette constante dans un modéle est arbitraire. On doit
sinon ajouter au langage la valuation de Jacob; mais 2i K est un modéle et
A une sous-structure, la trace sur A de la valuation de Jacob de K n’est
pas la valuation de Jacob de A , ce qui détruit 1’existence d'un modéle

premier.
2. Inclusion élémentaire et cloture existentielle relatiwe

On notera Vi la valuation de Jacob d'un corps chaine-clos K .

Proposition 2~1. Soient deux corps chaine-clos K ¢ L . Sont alors

équivalents:



F. Delon

1. K existentiellement clog dang L {" K < L "}
2, K<L ;

3. VLPK = Vg et K relativement algébriquement clos dans [ (" K rac dans

L").
Démonstration. Trivialement K<L =— K <1 L = K rac dans | et K<L
= vLPK =V -

Montrons 3 = 1 . gj VL?K ¥ Vg on a une inclusion de corps valués
henseliens (K,VK) < (L,VL) avec K/VK < L/VL car ces deux corps sont réelg
clos. Si on montre VKK < viL , le principe d’Ax—KbchennErsov'pmmmettra de
conclure K < L . Cesg groupes ordonnés étant réguliers, il suffit de montrer
que vKK est pur dans vLL » ¢’est-a-dire 2-pur. Or pour keK ; on a les
équivalences: 2 [ v(k) dans ka = k e th2 pour un c¢ € X - 1K2 e (si
K est rac dans L) 2 { vik) dans vk

Montrons K <3 L = K <L . Supposons donc K <1 L ; certainement K
est rac dang L et jl suffit, d’aprés ce qu’on a vu précédemment, de montrer
VLPK = Vg o Du fait que K est rac dans L ona VLrK € V(K) , donc

2

VLPK 2 v, . Supposons par 1’absurde vL?K > Vg - Fixons k € K - #K° ot

K
choisissons sur L 1’ordre qui rend k positif. Cet ordre est définissable

de fagon existentielle dans K : x0 & x € K2 u sz ; et par la méme formule
dans L ., Considérons sur L la valuation dont 1’anneau est la cléture

convexe de Av dans L et continuons a 1’appeler Vg « Donc v, > Vg sur
K

L , et VKL est un quotient de VLL Par un sous-groupe convexe propre H .

Prenons g € VLL y 820, geH et 2{g dans VLL (cela est possible parce

que vLL est 2-régulier), et lel, , VL(].) =8 et 1>0 .0na g, donc
(1) =05 2fg dans viL, donc 1 e 02 . Par définition de v sur L
et parce que vK(l) =0, il existe a et b dans K vérifiant vk(a) =
VK(b) =0 et 0<a<l<b. Lénoncé & paramétres k, a et b :

31 3u a<l<b A ] = :tku2



est satisfait dans L : il ne 1’est pas dans K car tout x coincé entre a
et b a une VK—valua.tion nulle et est positif, c’est donc un carré.no
Proposition 2-2. Soit un corps chaine-clos K .

1. Si V(K) a un seul élément, alors pour tout corps chaine-cles L
contenant K ona: Kracdans L = K <L.

2, 81 V(K) a plusieurs éléments, il existe un corps L chaine-clos

contenant K ,avec K racdans L et KAL.,

Démonstration. 1. est un corollaire de la proposition précédente.

Pour montrer 2. on reprend la construction faite dans la preuve du lemme
1-3. Soit K= T et v la valuation archimédienne sur K . Si v > Vg
adjoint & K un point x tel que v{(x) soit dans la coupure 0+ de K ,

on

et on considére le corps L construit comme dans le lemme 1-3. On a alors une

inclusion de corps chainés chaine-clos avec K £ L puisque v, SV et vIK #
VK 0

Corollaire 2-3 (Laslandes [L]). Dans le langage Ve ={0, 1, ¥+, =, ., D, c }
la théorie T U " D est la divisibilité de Jacob" U " ¢ ¢ :I:K2 " est

modéle-compléte.

Démonstration. Scient K et L des modéles de TVc , avec K € L au sens de
LVe . D’aprés ce qui préceéde il nous suffit de montrer que K est rac dans
L , c’est-a-dire L2 nK-= K2 . Or, si x e K-~ iKz, ona X€ :thz donc x €

:l:cl.a2 , donc x ¢ :th .0

Proposition 2-4. 1. T n’a pas de modéle existentiellement clos.
2. Les mod&les existentiellement clos de TC sont les corps chainés chaine-
clos K avec un unique élément dans V{K) . Puisque cette classe n’ est pas

élémentaire, TC n's pas de modéle-compagnon.

- 10 -
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1
Démonstration. 1., Pour Kk T et ceK - th y L= K[czl est également
chaine-clos et K n’est pas existentiellement clos dans I, .
2. Inclusion élémentaire et cloture existentielle relative coincident entre
modéles de T , donc a fortiori de TC . 8i K et L sont des modéles de TC

avec K<L ausensde IC, K est rac dans L (en effet K2 =

(PI n Pz)(K) = (P1 n Pz)(L) nNK-= L2 N K ) . Le résultat découle alors de 1 et

de la preuve de 2-2.2.D
3. Le XVIIéme probléme de Hilbert au niveay n

On peut énoncer la solution donnée par Artin au XVIIéme probléme de

Hilbert sous la forme suivante : si R est un corps réel clos et f € R(X)
s =2 , % e jB° - 2

avec X '(XI""’Xh) » alors f € 2 R(X)° ssi vxe sy f{x) e Z R® ,
Danielle Gondard et moi-méme avons cherché a généraliser ce résultat pour les
puissances d’ordre 2% v N2 2, dans un cadre oil les corps réels clos avec
leur unique ordre seraient remplacés par les corps chaine~clos avec leur
unique ordre de niveau 2" , 13 encore il est apparu que les corps-chaine—clos

K avec un seul élément dang V(K)}) se comportaient plus simplement que les

autres. Enonqons le résultat que nous avions prouvé (voir [DeG]).

. € K(X) a la propriété *n) sur K lorsqu'elle vérifie :
Définition. f (X) 1 iété (*n) 1 'elle vérifi

i e K, f(x) e I K2n .

Théoréme. Soit un corps K chaine-clos avec un seul élément dans V(K) et

n
f eK(X) . Alors f e 2 K(X)2 ssi f a la propriété {n) sur toute

extension finie réelle de K .

Nous avions signalé les faits suivants.

- 11 -



- Pour n =1 1l'équivalence est vraie quel que soit le corps K . Elle peut
étre ref ormulée ainsi : f est une somme de carrés ssi elle est définie
positive sur les extensions finies réelles de K pour chacun de leurs deux
ordres,

-Desqu’ona nj} 2, si K est chaine-clos avec au moins deux éléments dans

V(K) , 11 y a des contre-exemples.

Construction du contre-exemple. Sar't K chaine-clos avec v € V(K) , K/v
non archimédien. Soit w la valuation archimédienne sur K ; donc w > v .,
Prenons c € K vérifiant vic) = 0 , wle) >0 et £ = (X2 + 1)(X° + c2)
Pour x dans K, ’

.- si wvix) <0, fix) ~y x4 (o "

a-~ b" , ou "a ~b" quand il n’y a pas
d’ambiguité, signifie v(a-b) > via) = v(b));
-si vix} 20, flx)/v= ((x/V)2 + 1)((x/v)2 + (c/v)z) >0 donc f(x) € K4 .

Le méme raisonnement montre f(L)} < L4

pour toute extension finie réelle L
de K car alers L/v = K/v est réel clos et {L,v) est henselien. Si f

était dans 2 K(X)4 on aurait f(L) < 2 L4 pour toute extension L de K .
Or considérons le corps L = K(t) ordonné de fagon & ce que, en continuant &

appeler v et w des prolongements convexes de v et w sur L , on ait

vit) =0, 0 < w(t) < wic) , ce qui correspond &4 la situation suivante :

4
5
+*
-

v w W v
- -+
+%
0

et wit) irrationnel sur wK . En tant que groupes, wL et wK & Z w(t)
sont isomorphes, donc w(t) n’est pas divisiblepar 2 dans wL . En
conséquence Tf(t) , qui est w-éguivalent & t2 s n'est pas dans I.;4 , hi dans

4

Z L° dés que L/w = K/v est réel.

-12 -
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Expliquons maintenant pourguoi il est insuffisant de supposer que f a

la propriété {sn) sur K . On a montré dans [DeG] que si f vérifie (*n)
sur K , ses racines se regroupent par paquets de cardinalité miitiple de
2n » ou toutes ont la méme valuation. On peut etre plus précis et regrouper
les racines "indiscernables" sur K .
Définition. 1) Soit (K< L , v) une extension de corps valués ; ¢ et o’
dans L sont dits indisc " sur (K,v) lorsqu’ils vérifient
v(ic—k) = vic’'-k) pour tout k € K .
2) Pour x € L on définit

J(x) = {vix-k) ; k € K}

I(x) = J{x) nvK .

On vérifie facilement que 1'ultramétrique impose : ou bien J(x) = I(x) , ou
bien J{(x) est égal & I(x) plus un élément maximal qui n’appartient pas a
vK . 8i J(x) a un élément maximal g, £ vk , x est dit ionnel sur

K onaalors J(x) = I{x) U { g } 81 J{x) a un élément maximal

g, € VK, x est dit résiduel sur K ; ona J(x) = I(x) . Dans les deux cas,
goit kx € K , vérifiant G v(x—kx) iosiog o= vix) , on choisi? kx=0 d

sinecn kx est défini & ~-équivalence pres,

Lemme 3-1. 1. Si x et y sont résiduels ou valuationnels sur K , ils sont
indiscernables ssi g =g et k ~ k .

X ¥ b8 ¥
2. 87i]1 existe k € K vérifiant v(x-k) = viy-k) £ vK , alors x et y sont

(valuationnels et) indiscernables sur (K,v}).

Démonstration sans probléme utilisant 1’ultramétrique.
2. a. Soit L la clbéture algébrique de K et v une valuation sur

L ; alors vL est la cléture divisible de vK et L/v est la cléture

algébrique de K/v .

- 13 -



b. Soit (K,v) henselien. Alors :
1} des éléments algébriques conjugués sur K sont indiscernables;
2} si x est algébrique sur K et K/v de caractéristique résiduelle nulle,

J{x) a un plus grand élément ;

Démonstration. Nous renvoyons & [R] pour les éléments de théorie des
valuations. {a) est classique, (b.l) se déduit de ce qu'une valuation
henselienne se prolonge de fagon unigue sur toute extension algébrique; (b.2)
de ce que, lorsque (K,v) est henselien et K/v de caractéristique nulle, un
point algébrique sur K n'est jamais "limite", ce qui signifie exactement que

J(x} a un élément maximal.d

Proposition 3-3. Scit K chalne-clos et f € K[X] unitaire. Alors vwx € K

vK = anv(f(x)) ssi les racines X, de f se regroupent par paquets Ci de
racines indiscernables sur K tels que:

- si X, € K ou est résiduel, 2" divise ICil

- si X, est valuationnel et m est le premier entier pour lequel

m.gxi evk , 2".m divise lc; 1 -

Démonstration. 1) Preuve de "si'.

-

Décomposons f =1 f.1 ou fi = I (X-x) pour des Ci ayant les propriétés

xeC,
i

indiquées. D’aprés le lemme 3-2.1, fi est & coefficients dans K .
- Si les x sont résiduels, v(k-x) € vK pour tout k € K , donc 2" divise

v(fi(k)) dans VK .

- Si les x sont valuationnels, on définit g(X) = f(X+a) = H(X-(x-a)) pour
Cil
un a € K avec a ~ kx s pour k€ K et vik) < vix-a) , glk) ~ k ; et
S
pour v(k) > v(x-a), g(k) ~ {(x-a) , d’oi vig(k)) = |Ci|.gx .

2} Soit f € K[{X] unitaire et tel que K k ¥x 2n]v{f(x)) . Considérons une

racine valuationnelle x de f , (xi)i les racines de f indiscernables de

- 14 -
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x , (yi)i les autres racines, k=kx . Définissons g(X) = f(X+k) . D’aprés
le lemme 3-1.2, les X - k sont les seules racines de g & avoir une
valuation ¢ vK . D’aprés le lemme 20 de [DeG] , les (yi—k)i peuvent étre
séparés en groupes oli tous ont la méme valuation, et de cardinalité divisible
par 2" . En conséquence on a 2n|v(E(yi~k)) , et 2n[v(g(0}) impligue
ZH,V(H(xi—k)) = g, - nombre de X Grace & 1 et & ce qui précéde, on peut
maintenant. supposer que toutes les racines de f sont résiduelles.
Décomposons f = fl' " .fr y ou les racines de fj sont indiscernables,
celles de fi discernables de celles de fj ~pour 1i#j , et, si x‘j est
racine de fj s ng+1 2 ng . Cela impose v(xj - er) < gxr pour

1'>3>r, donc, si on translate en posant g£(X) = f(X}kk ), les x.r—kx
T T

sont les seules racines de g ayant gx comme valuation, et le lemme 20 de
T

[DeG] donne le résultat (ce lemme est énoncé avec 1'hypothése plus forte f(K)

n
< Kz » mais dans la preuve seule est utilisée la propriété Kk vx 20

fv(f(x)) ) .o

n
Si nous nous rappelons 1’'équivalence x e K2 e | 2n[v(x} A x est

positif pour un ordre de K ] » hous voyons maintenant comment construire un
polynome f € Kix] ayant la propriété ({(sn) sur K et ne la conservant pas
sur une extension finie réelle L de K, il suffit que les racines de f
soient indiscernables sur K mais cessent de l’&tre sur L . Nous précisons

dans 1’exemple suivant.

Exemple. Soit ce K - + K2 s Vic) > 0, e4 =c et f € K[X] le polyndme
minimal de e2 + e3 sur K . Les quatre racines a = e2 + e3 et - e2 + ie3
de f sont valuationnelles indiscernables sur K { ka =0, g, = vic)/2 ) ,

mais cessent de 1’&tre sur K[e2] . Pour x € K ,

- 15 -



- 81 vix) < vic)/2 , f(x) ~ x4
-8i wvix) > vic)/2 , f(x) ~ c2
donc f a la propriété (xl}) sur K , alors que f(ez) ~ —4(e235

¢ (K[e21)2 .

Dans 1’exemple précédent les racines sont valuationnelles ; c’est,

d’aprés le lemme suivant, le seul cas ol le phénoméne décrit se produise.

Lemme 3-4. Soit f € K[X] unitaire, de degré 2P s , avec toutes ses racines
¢ vérifiant wvic) =0 et c/v £ K/v . Alors f a la propriété (xn) sur
toute extension algébrique réelle L de K .

Démonstration. Soit f = T (X - ci) : pour x € K,

n
-si wv(x) <0, fix)~ xz -5

-si wvix) > 0 alors v{fi{x)) =20

f/v est un polynome unitaire et sans racine sur K/v réel clos ; il ne prend

2?

donc que des valeurs strictement positives, et f(K) ¢ K .
Comre L/v = K/v , f satisfait les hypothéses du lemme sur L , ce qui achéve

la preuve.fl

Proposition 3-5. f satisfait (#n} sur toute extension algébrique réelle de
K ssi il satisfait (*n) sur toute extension finie réelle de dimensiom

< d(f) , o di(f) est le degré de f .

Démonstration. D'aprés la propositicn 5 de [DeG}, f a toutes ses racines

dans K'{i] o K est n'importe quelle extension réelle de dimension d(f)
oht

de K . Supposons f(K’) € K’ i

- Les racines qui sont dans K’ sont alors de multiplicité divisible par

v

- 16 -
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- Parmi les autres, considérons un paquet C de racines indiscernables sur

K' e g= 7 (Xx- €) ; ces racines sont résiduelles sur K’ » et donc il
ceC

existe a et b dans K' tels que g((X—a)bhl) satisfasse les hypothéses

n
du lemme 3-4, donc g{L) < L2 quelle que soit 1'’extension finie réelle L

n
de K’ , on a donc aussi f(L) < Lz :

Comme K’ est une extension réelle de degré d{(f) préelle arbitraire, on

k4]
obtient f(L) < L2 bour toute extension L finie réelle de K .n

Corollaire 3-6. " f a la Propriété (sn) sur toutes les extensions finieg
réelles de K " se dit pPar un énoncé sans paramdtres sur les coefficients de
f .

Démonstration. Les extensions réelles I de K de dimension Zd sont toutes

d
de la forme K[c] avec 02 € K .o

Cela nous permet de retrouver un cas particulier d’un résultat de Prestel

([P] théoreme 2 + corollaire du théorame 1}).

Corollajre 3-7. Définissons le degré de f € K(X) » D(f) = d(p) + d(q) ou P

et q € K[X] et f = p/q est irréductible, et K(X)<d ={ fekKX) ;

n

r n
D(f) < d} . Alors Yn32 ¥d wm ve K(X) 4N IK@% ¢ [K(X)<m]2 :

n r n
Démonstration. Sinon 22 3d 3m ar , K(X)(d nz K(X)2 c 2 [K(X)<m]2 .

Mais alors le théoréme impliquerait que K satisfait 1’énoncé suivant :

v¥f € K(X) de degrsé < d

r n
[f = (*n) sur les extensions ordonnées de degré £$d] -t eX [K(X)<m]2 .

Parce que la théorie des corps chalne-clos est compléte, tout autre corps

chaine-clos le satisferait i or on a vu qu’il y a des contre-exemples das que

— "o
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L'ZLIMINATICN RADICAIE IES INEGALITES .
©1Introduction:

On remplace souvent 1'inégalité x 0 par la Proposition. ®"x a une

racine carrée " ou par ® I tem . ° - & - 0" Crest 1'exemple le
plus immédiat d'élimination d'une inégalité . Ce probléme n'est
pas toujours aussi facile - trouver par éxemple un polynéze P(x,y,T)
qui a ume racine réelle si et seulement si x% 0 ou >0 ...

C'est une réciproque du probléme de 1'élimination des gquantificateurs,
Géométriguement » i1 s'agit de trouver un ensemble algébrique se
Projetant sur un emsembie Semi~algébrique donmé . Comme le fait
remarquer R.Thom, c'est le probléme que devaient résoudre les
habitants enchafnés de 1a caverne de Platon .

On démontre le résultat suivant ;
Théoreme :
Soit S un ensemble Semi-algébrique de R™ . Il existe un polyn8me
irréductible P(L,,..,,In,T) tel que :
(x.l,..,xn)es & 3 ter , P(xypeesx ,t) =0
et 1'équation d'inconnme T . P(XL',..,LLI,!L’) = 0 est résoluble par

racines carrées . .

On étudie d'abord le cas des coins ohtns:{xéﬁnl 11)10 ou ... Ou xn}/ 0‘},
. . ; n

puls le cas des coins aigus Cp, -{zeiﬂ ‘ x1)0 et ;. et zn)o et

enfin le cas général des semi-algébriques pas nécéssairement fermés .

L/}
Dans ce qui suit x = (x.z,..,zn)gmn est le "paramétre” et T la'variahle
ou “l'inconnue". On a aussi la“variable’ Y = (Xis 0oy X) .

§2Ie cas des coins obtus :

Provositiorn 1 : 11 existe une foncticn (’Vn continue semi-algébrique

sur R® , analytique saus peut-&tre sur un ensemble de codimensiog 2

(strictemert) positive ssi l'un des x; est (stric:ce:ent) positif



Four chaque valeur du parzm€tre X , '.Pn(z:) est la plus grande des

racines -@* un polyndme Qn(x,T) qui a toutes ses racines réelles .
Démonstration: Par induction : pour n = 1 ‘M‘(x) = X

V’afz'n’z) s+ ¥ xq vxf 5 Yalrgeeesmy) = Pol¥ g (Rpaeesny q)s %)
Ia ronctmn 9’ est analytique sauf sur un ensemble o deux au

poins des x; sont nuls , Les autres racines du polynSme de degre - L

que satisfait lP s’obtiennent en remplacant dans la constructlon
inductive certains ces W,. par q-" (x‘l ,za) =X + X, = f

et sont donc toutes réelles .

Remaroue: On peut démontrer que Qn(,x, ) est meductlhle -

§3Le cas des coins aigus:

Théorsme 1 ¢
Four chague n = 1 4 2 4.« il existe un polyndme réel Pn_(X,U)

unitaire en T ,homogére de degré 21 stel que 1'équation P (x,0) =
soit réspluble par recines carrées et tel que toutes les coordonmées
de x sont positives ssi Il existe un réel & tel que PnCz,tz) =0 .
De plus il n'existe pas de tel polynéme de degré plus petit 3 PIL(I,IZ)
est. irréductible et Pn(x.,'.Ea) a toutes ses racines réelles quand toutes
les coordonmées de x sont posifives .
Démonstretion: Far induction . P.I(I.l,Ta) = 0 -X, -
Pour P, 3 conasidérons le cercle 59'2 3 (:r_-“l)2 + (za‘l)a -1 =0
Le cdne positif sur s}é est le coin aigu C, , onr voit donc que
Pa(x,y,@) - (z—T2)2 + (1-‘112)2 — 2% a une racine réelle sai (x,y)ecz

Pour pouvoir faire la méme construction pour n =3 il suffit de Wrouver

"un ensemble algébrigue V’ tel que le c¢8ne positif sur ?' soit C—
Soit A {(z,y) € R l 0{x<1 , 0¥ £, x+y ('1} O peuk trouver
deux polyndmes de degré 2,B4(x,y) et B,(x,y) tels que :

(an)GAg %51(1,3)}0 et Ba(x 2¥)> 0 o L' ensemble algébrique
compact '59'3 d'équation PE(B1(x,y),Bz(x,y),za) = 0 se projette
verticalement sur .Az o 8i 1l'on fait une ‘wansforzetion projective

qui razzérze le point & 1'infini sur l'axe des z & l'origine,ef Az en
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A5 = {(x,y,z)ERE, x30, y720, Z30 , Xty+z = 1} « L’ensemble

algébrique ?3 se transforme en 59; qui & la propriété voulue .
'z . ’ . '

L'équation de ?3 est ( 5iB,= x - x° » By =(1-x}y - J’a J s
(x+y+z-1 )#-2(17+yz+zx)(x+y+z-1)2 +(xy+xz)? +y°z2 = 0

Ce qui nous donne comme précédemment :

P3(x,5,2 » ) =(z+y+z-12)% ~2(xy+yz+2x) (x+y7+2-1°)2 +(xy+xz)2 +y2 z2
La méthode peut donc se faire par induction grice au lemme :

Lemme: Il existe m polyndmes de degré 2, B,(x) ,.., B (x) tels que :
xeAn < (By(x)20 et ... et B,(x)> 0)
[a démonstration est facile ( C.f.[?] Y.

[

Fizure : Surface 95 Se projetant verticslement sur le triangle Aa

tlonircns maintenant que lz degré du polyndme obtenu est minimal s

€2 qui permeiirz aussi de voir sen irréductibiliss .

_3_'




Provo sition 2 : Soit P(x,T) un po lynOme unitaire en T qui a une

racine réelle 8si x€C - Alors P a au moins 2B racines réelles qui

sont diafinctes dans un ouvert de cn .

D€monstration : Par récurrence 3 clair pour n = 1«

Considérons le po lyndue P(x1 yoos Xp_as 0 ,?) » Toutes ses racines
réelles sont doubles si X, 20 et oo et x,_1y0 (par le théoreme
des fonctions implicites ) et elles correspondent & deux racines réelles
de P(x,F) = O distinctes si x est dans un ouvert de C . ke nombre
de racines réelles de P est donc l1e double du nombre de racine:s réelles
de P(x4yyeesXy qn 0, ) or ce dernier réalise la pro:jectfion sur C_4
et , per récurrence, & 8u moins 281 ~acines réelles distinctes dens
un ouvert de C _ 4 A.'.- )

Cela permet: de conclure que le polynOme Pn est irréductible : em

effet , soit P un facteur irrédwtible de P_(x,7°) non trivial .
Comme Pn_(x,Tz) a toutes ses rscines réelles ou bien aucune, P anssi
et pour les mémes valeurs dw paremétre x o P réalise donc la projection
gur C, et est donc au moins de degré 2P o= Pan, 12) . 14

Ce polynéme permet de dommer une démnstration trés simple d'un
théoréme de BErScker (cr:'[#] )z _

Corpllaire 3 Si A..,(x) — Ak(x) sont de;s polynémes réels tela que
c, -{xcﬂnjlﬂ(x)}o et —o et 4, (0)08; alors Xz
Démonstretion 2 PkCA,l(x),. - Ak(x) ,!L‘Z) qui est de degreé X o Téalise
1a projection sur C, ,on a donc 2K 2% par 1la proposition 2 .|

En raff inant un peu la méthode précédente on peut méme montrer que

C, n'est péunion finte de fermés {xeﬁn l 11(;:) 70 sees et Ak(:l'-)) O}que
gi 1'un des k est au moins égal 3 1 o Cela nous améne & la question 2
Mhut fermé semi—algébrique est-il réunion finie de fermés du type
{zem‘”, A4(x)P0 et ..o et 4, (x)7 O} avec k{n 12

Pour ce genre de que stions voir [4.] [g] .
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84 Ie cas général :
Définimsons une fonction ¢ sur R® -‘[(z,y)e IRZJ ¥ =0 et x( Oj t

¥(x,y) = —hd: AL . ya (xa + 32 ) et Y(0,00 =0 .
(x+ Vza-i-?)z

.On a g -W-(z,y)}o 8i et seulement si x20ouy >0 . Soit la fonetion

A

Q "conjuguie de fF- donnée par 3

81 y<0 et x<0 on n'a pas &(x,y)2>0 .On voit donc que -';’-(x,x)
Satisfait un polyndme K(x,y,“l;) ‘= 0 dw deuxiéme degré en W et gui
8 une racine positive gai x0 ou ¥>0 . De plus .li’- est méromorphe
sur B2 -{O} -

D*autre part , yoyons que tout semi-algébrique S peut se mettre sSous
la torme § =) (5, ) avec :
Bk -{xéﬁn l Aif(x) 20 ou .. ou B#(x))'o on ..} ol les polynBmes

Ali: et % sont premiers entre eux . En effet on peut écrire (ce [3])

(1) s a= ?{xeﬂn" Af;'(x))/O et .o et Bf}'(x))O et ..}
Si A= cn,{ay,o_}n{c;o et n}t{j tr{-c:)o et -n}o_} .
et 8i B = EF {E} o_} - {E)O et F}O} rr-{-z>o et -F}O} N

On peut donc supposer que dans 1l'écriture (1) tous les polynfmes

'sont irréductibles . En utilisant la distributivité on obtiemt la
représentation annonecde du semi-—algebrique S o
Définissons une fonction F, 8ssociée a Sy 3
8i aucune des femilles A¥ | B}; n'est wide 3
(0 - P]YuEm,. k), YEEG, .. 2]
S'il n'y a pas de Bg : F(x) = %(A::(x),_.. 15(1:)) o
. x -
Et 8'il n'y a pas de A7 Fix) = 1 /%(B]-f(x), o B‘E(x)) - F est
le quotient de deux fonctions analytiques, sauf sur un fermé de

codimension au moins deux -



Provogition 3 : Il existe un polynBme irréductible R, (X, T) tel que 3

pour tout x Py (x) estune des racines du polyndme Rk(x,T) qui &
toute s ses racines réelles . On a l'équivalence :
xes, <> P ()30 <> JEy0, R (x,t) =0
Démonstration :
Soit A = &(A],,‘ (X)y- .,AE(I)) sy B -‘fél(Bf(x),. .,Bz_(x)) ,et soit
BR,(X,F) le polyn8me obtenu en éliminant A et B du systéme (I) 1
Qp, (A5(X) 4o 0 hf(X),4) = O
é9) Qg, (BY(X) yoeb BE(X) 4B) = O
K(A, B,F) = O

On voit que B,(x,F, (x)) = O pour tout x. BoitR un facteur
irréductibie de B, tel que R(x,Fi(x))--O sur un ouvert de R™,alors

par prolongememt analytique on aursa R(x, ]?k (x) )=0 sur le domaine de
définition de Fe » qui est unm ouvert dense de E™ contenant By »

Si au point xeR®, R(x,F) 2 une racine positive y le systéme (I)

a une solution «p3,f . Comme Qp, et Qg, n'ont gue des racines réelles
& et 3 sont réels et comme K(x,3,F)=0 2 une racine positive «}0 ou (B3>0
ce qui montre que xesk - '
Réoproquement, si x €S, Fk(x) est une racine positive de R(x,?)=0 B

Théoreme

Si S est un semi-algébrique de BT, il existe un polyndme irréductible
B(X,T) tel gue :
. xS 4> JteR , R(x,t) =0

—

ST S est ferm€ on peut suvposer que R est unitaire en o

Démonstration : Toujours avec les mémes notations . Soit ¥ une

racine de Pg(Fay o os oFpy l'z) = O dans une extension de R(Fjyee,Ty),
5i Q,,(x, Flest le polynSme obtenu en &liminant les U; du syst éme {(II)
(B (X, T,) =0 i

(1D « B,(X,0,) =0

LB5(Ty 4 -en T o7 = 0

-6-
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On volt que Q4(X,3)=0 . Soit R(X,I) un facteur irréductible de
Q(X,I') tel que R(X,¥) = 0 .Mormtroms que ce polyn8me conwient g

- Si R(x,M=0 & une racine réelle, le systéme (II) a une solution :
Ty .. ,Ug ,"f -Comme les Ri(x,U)-rO n'ont que des racines réelles
les u; sonk réels et Py, -« ,,trK,J"a)zo a une racine réelle; les
Uy  somnk donc tous positifs 'T"BB les B;(x,U)=Q ont une racine
positive ¢ce qui montre que x GQ Si =8 o

—Réciproquement 8i xe S montrons que R(x,M)=0 & une racine réelle .
Les deux polyndmes R(x,I") et PPy oo ,Fn,r'a) ont une racine
commune § .Soit P lemr diviseur commun dans R(Fqp oo »Fy) [r_] .
P(F.‘(x), .e ,FN(::),I‘J a toutes ses racines réelles gi X e S puisgu’il
divise PH(F1(I), .o ,Fﬂ(z),r‘?) qui a toutes ses racines réelles les
Fi(z) étant tous positifs . R(x,l") qui est multiple de

P(Fqi(x)y .w +Fg(x),l) a donc une racine réelle . N

Remarquons comme dans [?] que cela implique :
Corollaire : Si S est un semi-algébrique de R® d'intérieur non—

5 est projection d'un ersemble algébrique irréductible de Rntd

vide ;

Tous les ensembles E:’l"géb‘riqnes ainsi construits admettent
des paramétrisations par radicaux ! par exemple la gurface %

est donnée par ¢z -:i_'JB,, + 32 t\’aB1BZ
avec B, -x =~ x° . 3’2 = (1.g-x)y-yz
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ANNEAUX SEMI-CHAINABLES

EBERHARD BECKER (Universitit Dortmund)

DANIELLE GONDARD (Université Paris VI)

Orderings of higher level on a field have been introduced by Becker (1978)
and chains of such orderings by Harman who also defined chain-closed fields
(1982). Fields admitting orderings of higher level also admit chains of such
orderings. Gondard ( C.R.A.S., 304, 1987 ) gave aXiomatizations, in the
Artin-Schreier manner, for chainable fields : K is chainable iff K is real
and there exists o € K such that o« ¢ ¥ K* » and for chain-closed fields :
K is chain-closed iff K is real and does not admit any algebraic extension
of odd degree, K* + K = K* , and there exists « € K such that «~ & K4 and
K=K u- K’ v« K v - a K? . Using these axioms we develop the theory
of chain algebra ; a ring A is formally a-chainable if A is real and
(§a14—angj4=0)=b(Vi a=0 and VYj bJ=O};an ideal I is an
a-chain ideal if it is real and ( Ej a’ - a® E bj4e I)» (Vi ael and vj
b]c—: I} ; with these definitions we obtain that for a prime ideal I of A ,
I is an @«-chain ideal iff the quotient field of A/l s formally a-chainable

For a ring A we define notions of o~spectra of higher level and of
a-preorder (of level 4), and show that the spectra are non empty iff ¥ A% is
an a-preorder. We introduce the a-chain radical of an ideal I of A as
a‘/? =P where P={p,p21,p prime and «—chain ideal { and

P

give a description of it. Finally, for some chain-closed fields, we obtain a

Nullstellensatz and study its validity.
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Introduction

Le but de cet exposé est de construire ce que nous appelons 1'Algébre de
chaine & partir de 1a théorie des corps chainables de maniére analogue & 1a

construction de 1'algébre réelle § partir de 1a théorie des corps ordonnables.

Rappelons d'abord que les ordres de niveau supérieur ont &ta introduits par
Becker[B1] et qu'un corps chainable est un corps qui admet une chaine d'ordres
de niveau supérieur telle que définie par Harman [H] ; une suite (pi),iE]N est

une chaine d'ordres de niveay supérieur du corps commutatif K si -

(i) Po et P; sont deux ordres vrais distincts (par ordre vrai on entend

ordre total compatible avec 1a structure de corps) ;

(11) pour tout i=2 , P; est un ordre de niveau exact 2i tel que
défini par Becker dans [B1] (P; €K tel que Pi+PjCP; 5 Py = p; - {0} est un
Sous groupe de K = K - {0} tel que R/ﬁi est un groupe cyclique et
ke 1= 27) 5

(111) pour tout i1 :

PiY= Py = (py_ NPy )u- (Pi_1Mpg)

Rappelons également le théoréme que naus avons obtenu dans [Gl] et [ G2)

Caractérisant les corps chafnables :



Proposition 1 -

Un corps K est chainable si et seulement si on peut y trouver un glément o

tel que (K,a) satisfasse :

(a) les axiomes de corps commutatif ;

(b) pour chaque m=1 1'axiome AXy e AXmT(—l = X% + + Xi);
(c) pour chaque n=1 1l'axiome AX; ... AXn—I(Or.2 = Xl{ + + X::)

Ceci conduit 3 poser la définition 1 :
Définition 1 :
Un corps chainable K tel que a€ K et 'o¢2 ne soit pas somme de puissances

quatriémes dans K sera dit o-chainable.

La terminologie est justifiée par le fait qu'il existe alors dans K une
a-chaine (pi)ieﬂl’ c'est-a-dire une chaine d'ordres de niveau supérieur
(pi)iesn teile que uz & Py - D'aprés [H] on sait que si K admet un ordre

Ps de niveau exact 4 tel que a2 & Py alors K est a-chainable.

Par exemple Q(t) est un corps t-chainable ; en effet nous verrons (lemme 2)
que Q(t) t-chainable est équiva]ent a Q[t] formellement t-chatnable
(def1n1t1on 2}. Soit alors (p (t)) t E(q (t)) = 0 dans Q[t} ; si
Z(pi(t)) # 0 a un degré 4n (les termes de plus hauts degrés, donc de degrés
multiples de 4, ne pouvant s'annuler car leurs coefficients sont des puissances
quatriémes dans @ ordonnable) et Z(qj(t))4 #0 a un degré 4p on aurait

alors un polyndme de degré effectif 4n égal & un polyndme de degré effectif
4

4p+2 ce qui est impossible ; donc Z(pi(t)) 0 et z(qj(t))4 =0 et ceci

entraine dans Q[t] formellement réel que Vi P = 0 et Vj qB =0 .

Remarquons aussi qu’'il est clair qu'un corps o-chafnable est aussi aBz-chaTnable

et (- asz)-chainab1e pour tout REK (et réciproquement).
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I - Algébre de chaine : Jes premiers pas

On sait qu'un anneau A est formellement réel si et seulement si
Eaf =0 = Y¥i a; =0, et que A intégre est formellement réel si et seulement
si son corps des quotients est ordonnable (donc bien sGr un corps est formelle-

ment réel si et seulement si il est ordonnable).

Rappelons é&galement qu'un idéal I d'un anneau A est réel si et seulement si

A/l est formellement réel, si et seulement si Zafe I = Vi aie I.

Dans 1a suite A désignera toujours un anneau commutatif avec unité et o un
€1ément de A .
Nous alions maintenant définir T'analogue des notions d'anneau formellement

réel et d'idéal réel.

Définition 2 :

A est un ameau formellement a-chatnable si

n
(1) A est formellement réel (Z.e. L a? =0=¥i a, =0) ;
i i
n m i=1
(i1) £ af-of 5 bhoo = v a,=0 et ¥j b, =0 .
i=1 j=1 J
Remarque 1

Si A est un corps on sait déja que A ordonnable équivaut 3 A formellement

réel et nous avons aussi ici que s7 A est un corps, A o-chatnable équivaut

a A formellement a-chatnable s en effet :

=351 A est formellement a-chatnable et que az = zc? alors Ec? - a2 =0

et donc Vi c; = 0 , A est donc bien a-chafnable.

= Réciproquement, supposons A a-chainable et soit une relation

N4 2 M4
L a; - a I bj =0 avec un bj au moins non nul ; alors
1 1



n m
ai  (zad) (z b}

A étant oa-chainable chacun des é&léments de cette somme de puissances quatrié-

mes doit &tre nul. Or nous avons

n m 3 n
(z a?)(z (b%) + ..) I a? bi2 oo 3
2l T~ _ o=t ' Yo
mb44 mb44
L Db, 5
(1 i) (>i 5)
ol jo désigne 1'indice du bj supposé non nul précédemment. On obtient
donc Vi a. bq = 0 ce qui entraine bien, puisque b; #0 , que Yi a,=0.
1 7, Jo i
- . 2 M 4
A étant ordonnable on déduit aisément ensuite de~o” I bj =0 que VYj bj =0 .
1

A est donc bien formellement a-chainable.

Définition 3

Soit 1 un idéal de A . 1 est un 1déal de a—chafne st

n :
¢st un idéal réel (.e. I a €l » Vi a,€l)

1
i=1
N4 2 M 4 . .
I a., -~a ‘%L b:el = ¥i a,€l et ¥Yj b.,e1l .
=] ! j=1 L J

s

i

Par exemple, considérons R[X,Y] ; soit (Y} 1'idéal engendré par Y .
Alors RI[X,Y1/(Y) --R[}]:]R'[X] s Or nous savons que R[X] est X-chainable
{cf.: Q(t)}. Le théoréme 1 montrera alors que 1'idéal (Y) est un idéal de

X-chaine de RI[X,Y] .

Remarquons qu'il peut exister des idéaux réels dans un anneau intégre dont le

corps des quotients est chainable qui ne soient idéal de a-chaine pour aucun a :
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Par exemple soit R[X] et 1'idsal réel  (X-a), alors RIX]/(X-a)=~ R dont

on sait qu'il est non chafnable, donc (X-a) n'est jamais ideal de a-chafine.

Notons aussi que dans un anneau A intégre, si I est un ideal premier de

a-Chaine alors I est un ideal de B-chatne pour tout B = + aaz avec a€ A\l .

. . A S S SR "
En effet soit I un idsal de a-chaine. Supposons ¥ a; -~a a’ I bjE I,
n m ' i=1 j=1
c'est aussi 3 a? - a2 z (bj a)4€ I et donc nous avons Vi a;€l et
i=1 j=1

Yi bj a€l . Puisque I est premier et a € I alors bJGEI et I est bien
un idéal de cxaz-chaine.

La réciproque est vraie pour a inversible dans A .

Théoréme 1
Sott 1 wn idsal premier de A » les propriétés suivantes somt équivalentes :
(1) I est un <déal de a~chatne.

(2) le corps des quotients de A/l est formellement o~chatnable.

Ce théoréme est un corollaire immédiat des deux lemmes suivants :

Lemme 1 : Soit 1 wun idéql premier de A alors 1 est un idéal de a-chatne

st et seulement si A/l est formellement o~chatnable.

Lemme 2 : Soit B un anneaw commutatif intégre avee unitsd et o €B ; alors B
est formellement o-chatnable sf et seulement si le corps des quotients de B

est formellement o~chatnable.

Démonstration du lemme 1

= Soit I un idéal de a-chaine. Montrons que A/I est formellement
a~chainable

(i) I est un idéal réel donc A/l est formellement réel ;

-5-



B N4 2 M 4
(i) On suppose I 3; o I b:=0 dans A/I alors
. s J
i=1 J=1
g 2™ 4 .
X ai -o I bJe I et I é&tant un idéal de a-chaine alors Vi aie 1
i=1 j=1

et Vj b€l , d'ol ¥i a; =0 et V] Eﬁ

I
[

< Supposons A/l formellement a-chatnable.
Alors (i) A/I est formellement réel donc I est réel

n m N _p _o M
et (ii) Soit I a? & a2 z b4e I alors X a? -cxz z b4 0
j=1 j=1 Y j=1 j=1 9
dans A/ et donc ¥i @, =0 et Vj E& = 0 d'aprés 1'hypothése, d'ol

¥ aie I et ¥j bJGEI ; 1 est bien un idéal de a-chafne. O

Démonstration du Jemme 2

« est clair
= Supposons B formellement a-chainable.

Soit dans q.f.(B), corps des quotients de B , une relation

4 m
(Bl) -o® % (Eﬁq =0 avec Vi b A0 et ¥j d;#0
i =1 j

QJ
ﬁ
=

alors nous obtenons dans B 1la relation :

n m n 4 o, m n m 4
z(a].(n d, nbk))-a z(c(nb I dJj) =0
i=1 j=1 9 Kk#i j=1 i=1 ' k#j
k=1 k=1
B étant formellement a-chainable on en déduit
m n
Vi a, (M d; T b)) =0
j=1 9 ki
k=1
n m
VJ C»(H b.iIId)‘:O
V=1 T kg
k=1
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Les b et d &tant non nuls et B intégre on obtient :
i a; = 0 et Vj cj =0

Donc q.f.(B) est formellement a-chafnable. O

Remargue 2

St B est un annequ intégre avec unité et q.f.(B) formellement a—chatnable

alors q.f.(B) est formellement o'-chatnable pour un o' € B .

En effet :
% *
51 a=— avec a, # 0 , et q.f.(B) formellement — _chafnable.
a, 2 O
n a, 4 a; 2 m c; 4
Soit % (p) =~ (=) 3% (=) =0 alors Vi a. =0 Vi c.=0
1By o’ 1 0y ! J
? , noa, 4 oM c. 4
posons a' = &y @, alors si on a une relation f (E;) -a ? cai) =0
n a. 4 m c.4
t . 4 : |2 4
c'est aussi a, I (B%J o' a, I (a%J =0 donc
1 5 1 |
n (aia2)4 o M ( Cj )4
z ~a I =0 et on obtient Vi a. =0 et Y¥i ¢, =0
1D 1 9 ! 307

puisque B est intégre et o, #0.



IT - Le spectre de niveau supérieur d'un anneau

Les anneaux sont toujours supposés commutatifs et avec unité. Pour un anneau A

on connait la notion de spectre réel défini par :
SperiA = {(I,p)|1 idéal premier réel de A et p ordre de q.f.(A/I)}

Un des théorémes de 1'é1gébre réelle donne alors que Sper A #0 si et

seulement si 1'anneau A est semi-rée1'(i.e. -1 ¢2:A2) si et seulement si ZAZ

est un préordre.

Nous allons ici poser les définitions permettant d'obtenir un théoréme

analogue dans le cadre de 1'algébre de chaine.

Définition 4
Sott A un anmeau et o € A,

Nous appelerons a-chaine-gspectre réel de A

a~ Sper A ={(I, (pi)ie]ﬂ)|1 idéal premier de o-chaine de A ,
(Pi)jey ohatre de q.f.(MT) telle que TC¢ py} .

Définition 5
Soit A un anmneau et o € A,

Nous appelerons w-spectre réel de A

Sper® A= {(I, Py) | 1 idéal premier de a-chatne de A , p, ordre de
niveau exact 4 de q.f.(A/1) tel que @ ¢ pyt
pour 1a commodité des notations dans les démonstrations nous poserons ainsi :
Définition 6
Sott A un anneau et o € A .

Définiseons le a—spectre de A par :

Spec® A = {I |1 idéal premier de a-chatne de A} .

Les lemmes 3 et 4 suivants résultent immédiatement du théoréme 1,du fait
que par tout ordre Py de niveau 4 i1 passe une chafine d'ordres (Pi)ienu
(voir [H])et que ZK4 = Np,Nn ZKz (voir [B1] et [HI]).

-8-
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Lemme 3
Soit A un avmeau et o € A
Spec® A = {I | 9. (A/1)  admet un ordre Po de niveau exact 4 tel

que G%¢ py) .

Lemme 4
Les propriétés suivantes sont équivalentes :

(i) o -Sper A#§ ;

(ii) Sper® A #p ;
(iii) Spec® A # 8

Pour 1'&tude d'une topologie du spectre de niveau supérieur c'est sans doute
la notion de a~chaine-spectre réel qu'il convient de prendre car c'est la
plus riche puisqu'il existe une surjection de a~sper A sur Sper® A (qui
confond toutes Tes chaines passant par un p, ordre de niveau 4 tel que
Eizi p2) et une autre surjection de Sper® A sur Speca-A (qui confond
tous les Pp ordres de niveau 4 tels que 526;'4 Ps).

Par contre pour 1'étude qui suit 1a notion de Spec® A est suffisante.

I1 nous faut encore introduire deux autres notions correspondant aux notions

d'anneau semi-réel et de préordre dans le cas de 1'algébre réelle.

Définition 7a
Soit A un anmeau et o € A .

Une partie T de A est un a—préordre (de niveau 4) si et seulement si

T+TCT 7T, AteT |

4k+2 2
o

VKEN vteT (I+t) € T-a° T

Définition 8

Un anneau A sera dit amneau a-semi-chainable .

st T = Z‘A4 est un a-préordre.

-9



Enongons alors le théoréme principal de cette partie :

Théoréme 2
Les propriétés suivantes sont équivalentes :
(i) A est a-semi-chatnable ;
(i1) A admet un o-préordre ;
(i11) Spec® A #p . {ce qui dquivaut bar le lemme 4 &

Sper® A #9 oud o - Sper A# D)

(i) = (i1) est clair.
(iii) = (i) Supposons que ZA4 ne soit pas un a-préordre. Cela signifie

4 4k+2 2

qu'il existe k€N , t, t', t"€ A" tels que o (14t} = t' ~a" t".

Soit che Spec™ A ; dans q.f.(A/Ia) on obtient la relation

sla™wn - -3l .

Soit p, un ordre de niveau exact 4 de q.f.(A/I ) tel que 52 ¢ p, . Alors
2 o 2

automatiquement - 32e p, et donc T - 32

‘fuepz .
Le facteur &K (1+t) appartient & & (q.f.(A/Ia))4 et est non nui.

On en deduit g2 €p, ce qui est impossible.

(i1) = (ii1) résulte immédiatement du lemme 5 ci-dessous qui est 1'analogue

de la proposition (4.1) de [B2] .

Lemme 5
Sott A un anmeau et o € A . _
Soit TCA tel que T+TCT , T.TCT et A4CT . les propriétés suivantes
sont équivalentes :

(i) T est un a-préordre ;

(i) 21 extste I, € Spec® A et P, ordre de niveau exact 4 de
q.f.(A/1,) tel que T p, et T<p, on

- 4
T = {Ztxy [teT , X €q.f.(A/1 )}

-10-



E. Becker et D. Gondard

(i1) = (i) 1la démonstration est la meme que celle de (iii) = (i) du

Théoréme 2.

(1) = (i1) Nous allons, comme dans le cas de 1'algébre réelle, définir
une partie multiplicative $ telle que 1€5 et 0€ S, et 1'idaal Ia
cherché apparaitra comme un id&al maximal pour la propriété d'atre disjoint

de S .

Posons :

2 4k+2
Sope1 =T -a" T-g (14T) , k>0

et S 2

T-o" T+a®(141)  , k>0

2k

D'aprés 1'hypothése "T est un o- préordre", 0 & 52k+1 ; si OGS 2k alors

De (-a ) S ok » Or nous avons (-a ) 52kC52k+1 » c'est donc impossible.

Soit g = - a2 et soit SP, =T + BT + BR(1+T) pour £ >0 . Alors en utili-

2
sant B"€T on montre que Sg : SmCSMm

Soit alors S = U SR » S est une partie multiplicative telle que 0 €S
L=0 -
et 1€5 .

'

Soit Ia maximal parmi les idéaux I tels que INS =g, Ia est un idéal

premier,

Considérons alors T ={:I% xz |teT , Xt€9q.f.(A/I )} et montrons d'abord
que 3%eT- T°T est impossible.

Supposons donc G 2€T -g2 T . En‘ supprimant Tes dénominateurs et en reve-
nant & 1'anneau A on obtient 1'existence de re i\ Ia s t, t'ET  tels que :

4 2

(1) t-a t modI

Comme r & Ia alors Ia + (r), d'aprés Ta maximalité de Ia » doit rencontrer

S . Donc i1 existe uela et vEA telsque u+vr=3s5€S . 0On en déduit



que v4 r4 = s4 mod Ia ce qui montre compte tenu de 1a relation (1) qu'il

existe sS€S et ts t,€T tels que

4 2 _ 2
(2) s'a’ =t -o t, mod Ia

Ceci signifie que 1:1 - a2t2 - 54 QZEIa .
Soit k tel que 546 Sk puisque

k 2

S|< =T+ 8T + 8 (1+T) oli B= - a” on obtient

tl + Bt2+ 54 BE T+ BT + B(T + BT + Bk(1+T))

soit encore puisque 82€T

4 k+1

ty+ B, +s  BET+ 8T+ (14T) CS S

kel ©

d'oll tl - a2t2 - 54 a2 = 'f;1 + Bty + 54 B GIG NS ce qui est impossible.

Donc o2 g7 - 2T . I reste d montrer que ch satisfait les conditions
de (ii).

. . -2 -2 —2 -2 —2
-1 T, sinonon aurait - a“ €a°T etdonc a°€-3°TCT-a°T ce

qui est impossible.

En particulier - 1€ E(q.f.(A/Ia))4 ce qui montre que le corps q.f.(A/Ia)

est ordonnable (voir [B11]).

2 2

De plus -1¢ T - 5°T, puisque sinon on en daduirait %€ T - 32T qui

est faux ; ceci montre que T - '&ZT est un préordre propre de niveau exact 4
et donc i1 existe p, un ordre de niveau exact 4 tel que pZDT - Ty,
Enfin cet ordre Py est bien tel que a'2 & Py : d'abord 52 £ 0 puisque

Eze T - 22T ensuite puisque - e Py » 3% e peut appartenir & p, qui

est un ordre,

L'idéal Ia est donc bien un idéal premier réel tel que q.f.(A/Iu) admette
un ordre Po de niveau exact 4 tel que EZQE Py (ce qui montre que

I, € Spec” A) et tel que Tsz . O

-12-
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Notons que la définition 7a est remplacable par la définition 7b donnge

ci-dessous.

Définition 7b :
Soit A un anmmeau et o € A ,

Une partie T de A est un u-préordre (de niveau 4) si et seulement &i

T+TcT , T.1cT1 , MecrT,

vkeN GMktZoqg_ 2

Les definitions 7a et 7b sont &quivalentes car si o2 (14t) t; o’ t,

(ts >t dans T) alors ot¥2 .y o’(ty + a*t) = t; - ot o

ty = (t2 + a4kt) est clairement dans T . '

De méme si o K*2 - t' - uz-v' (avec t' et t" dans T), soit te€T alors
a2 (1et) = (10 -of ) (14t) = t; - o t,

avec t, = t'(1+t) et t, = t"(1+t) qui appartiennent bien & T .

Une conversation avec R. Berr (Septembre 88) nous a conduit i ajouter une
définition dans Te cas ol o est inversible, car la définition 7b de

T'a-préordre peut alors prendre une autre forme :

Définition 7¢

Soit A un anneau et o € A un élément inversible de A . Une partie T de A

28t un o—préordre (de niveau 4) si et seulement 8t :

T+TcT , T.TcT , Atcr , s1g1-271

dk+2
2

2

C'est clair car o T est &quivalent dans ce cas i az T - az T

€T -qa

etdoncd -1¢T7-¢g°T.

-13-



Remarque 3
La condition -1¢ T - az T de la définition 7c ne saurait convenir dans

tous les cas. En effet si o est nilpotent, a4 = (0 par exemple, TC A tel

4 c T ne satisfait pas‘ vk u§k+2 T - a2 T mais satis-

fait -1¢7T -o°T dés que -1¢ T .

que T+TCT, A

En effet si -1=1t - azt‘ alors 1+ t = uz't' et donc (1+t)2 = a4't'2= 03
dloi -1=2t+tlerT.
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IIT - L'a-chaine radical d'un idéal

IT parait alors naturel d'introduire la définition suivante :
Définition 9

Sott A un anneau commutatif avee umité et o € A .

Sott I wun idéal de A .

On appelle a-chaine radical de 1 s U'intersection des idéaux premiers de

o~chaine le contenant :

vI= n I
o ICIa
Ia € Speca

D'une maniére analogue i la proposition 4.3 de [ B2] nous utilisons le lemme 5

pour obtenir une description de 1'a-chaine radical d'un idéal.

Théoréme 3
Sott A un anmeau commutatif avec unité et o € A . Soit 1 un idéal de A
VI = (feA | 3keN, 3t, t', t* € 1A' teols que
o
a4k(f4k-+t) + t' - az't"e I}
Désignons par J = {f€A |3keN , at, t', t" € ZA4 tels que ‘

Otﬂfk (f4k 2

+t) + t' - a" t"e}

On démontre successivement les deux inclusions.

JcVTI.
a

Soit Ia € Speca A tel que Ia > 1, nous allons montrer que f€ ax
En utilisant 1'hypothése sur 1’,a4k (f4k4-t) + t' - az t"€l et en multi-

i on obtient que az .a4k (f4k4-t) + a2 t' - a4't"€ I.

pliant par «
Supposons que f ¢ Ia » alors puisque o £ 0 dans A/Ia et que Ic:Ia on
obtient

a%e 1 (q.f.(m1 )t - 5?2 Z(a-f.(A/1))"

ce qui contredit le fait que q.f.(A/RI) est a-chafnable.

-15-



Vvicuy.
(s
En passant & A/I on peut supposer I =20 .

Soit FevT . Si f est nilpotent alors =0 pour un certain k et
a

donc f appartient biend J .

Supposons maintenant que f ne soit pas nilpotent et considérons 1'anneau A

Supposons que Af est a~-semi-chainable, alors par le théoréme 2, nous pouvons
trouver un idgal I € Spec” A; . la trace I 0 A appartient & Spec® A et

pourtant f € Ia , c'est donc impossible.

L'anneau Af n'est donc pas a~semi-chainable ce qui signifie que ZAi n'est

pas un a-préordre et donc qu'il existe une relation

2
t tl i t"
(1+ 42) = 2

0t4k+2
£ £

o0 k, £, mEN et t, t', t" ezt .

s P 2 - .
Revenant & 1'anneau A , en multipliant par o° et si nécessaire par les

puissances convenables de a4 et f4 » On obtient une expression du type

4k

o (f4

kd—t) + t' - az'U'= 0 avec

keEN et t, t', ﬂ'E_ZA4 » ce qui signifie que f&J ., @

Remarque 4

Dans le cas ol o € A est inversible, 1'expression du radical donnée ay

théoréme 3 devient :

JT={feA | 3keN , 3t , t'ex A tels que fK+t-olt'e 1}
a

-16-
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IT est connu qu'un idéal est réel si et seulement si i1 est &gal & son radical
réel. Nous pouvons ici obtenir un résultat analogue avec les définitions que

nous avons données :

Théoréme 4 :
Soit 1 un idéal d'un anneau commutatif A ; alors sontéquivalentes les
propriétés :

(1) T est un 7déal de a-chatne :

(2) I=+T.

Qo

La démonstration utilise le lemme suivant :

Lemme 6 : Soit yp wn iddal de A .

Alors g§ est un idéal de a~chafne si et seulement si § = N B, ou les ¥
L

sont des i{déaux premiers de a~chatne.

= Lla propriété de m d'Gtre un idéal de a-chafne entraine que g est un
idéal réel et donc que p=0n F; avec p. 1idéaux premiers réels.

Montrons que ces idéaux premiers R; Vverifient aussi la propriaté (i1) des

idéaux de w-chaine (Nous supposons la représentation g=n p; minimale).
i

Supposons que :

m g
4 2 4
(Fi: Q - a § bg) € By

4% 4 29 4 .
Soit heén yu. et he R; on forme h'(Z a - o I b)) ceci est dans o
R i k £ i
J#i 1 1
comme la parenthése et aussi dans N g comme h .
J#i

-17-



m

q : o
Donc Z (h ak)4 - o z (h b2)4 € N p;=p . Puisque g est un idéal de
1 1 L.
a-chaine alors chaque h a, et h bz est dans p .
Mais
Yk hake g o= {11 By avec h & ;= o3 € Py
Ve hbg'e R = ? p'i ) " = bl_e F.i. ]

p; est donc bien un idéal de a-chafne.

< La réciproque est évidente. O

Le théoréme 4 résulte alors de la définition 9 et du lemme 6.
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v

- Un Nullstellensatz Pour certains corps chaTne-c]o%

Nous savons que si K est un corps réel clos i1 existe un Nullstellensatz réel

qui affirme que le radical réel d'un idéal I est &gal & J(V(I)) oi nous

utilisons Tes notations classiques : V(I) = {xeK" , vre1 f(x) = 0} est 1a

variété de K" définie par 1'idéal I et J(W) = {fe K[Y] » YXEW f(X) = 0}

est 1'idéal des polyndmes s'annulant sur e sous-ensemble W de K" .
Afin de pouvoir obtenir sur les corps chaine-clos un analogue du

Nullstellensatz sur les corps réel-clos, on peut aussi retrouver la notion

de a-chaine radical d'un idéal en suivant la méthode générale indiquée par

Cherlin dans [C] .

Définition 10 :
Soit K un corps a-chafnable et soit 1 un idéal de KIX] . I G—chalne
rodical de 1 est défini par

P={p, p <déal premier de Kf?] s pO 1 et K[ij/p est plongeable dans un

eorps a~chainable} .

Théoréme § :

Soit 1 un iddal de .K[ij o K est un corps a-chatnable alors

ﬁ:ﬂpoﬁ
a REQ

Q=1{p,p <idéal premier de Kff] » $21 et § est un idéal de a—chatne}.

Ce théoréme montre bien qu‘il s'agit de la méme notion d'a~chaine radical

d'un idéal que celle définie en III-9.

-19-



Démonstration :

KCKIX1/p<q.f. (K[X1/p)

on sait que q.f.(K[ij/p) est (formellement) a-chainable ssi KIX1/p est
formellement a-chainable (lemme 2), donc si et seulement si 1'idéal ® (qui

est premier par hypothése) est un idéal de a-chaine (théoréme 1). O

Rappelons également qu'un corps chaine-clos K est un corps admettant une seule
chaine d'ordres de niveau supérieur (pi)'iE]N et tel que (K, (pi)'iEJN) n'admette
pas d'extension algébrique fidéle (on dit que (L, (55)1610 est une extension
fidéle de (K,'(pi)iepﬂ si (P;);ep est une chaine d'ordres de niveau

supérieur de L et si pour tout i€N E}FWK = p;).

Dans [G1] et [ G2] nous avons montré qu'un corps K chaTne-clos était
caractérisé par : K ordonnable et pythagoricien, tel que tout polyndme de
degré impair a une racine dans K et il existe o € K satisfaisant

2 2 2

Larkt et K=Ku-Kuakiu-ak

Enfin dans [D-G] &crit en collaboration avec F. Delon, nous avons démontré le

résultat suivant que nous allons utiliser pour obtenir le théoréme 6 :

Proposition 2

Soit K et L deux corps chatne-clos u-chainables. Supposons que K n'admette

qu'une seule valuation hensélienne d corps des restes réel clos, alors K<L .

F. Delon ayant remarqué que le Nullstellensatz général donné par Cherlin
pouvait s'appliquer d&s que 1'on avait une inclusion &iémentaire, voir [D]
(proposition 3 ci-dessous), les définitions et résultats précédents permettent

alors d'obtenir :
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Théoréme ¢ (Nullstellensatz)

Sott K un corps chatne-clos a-chatnable ayant une seule valuation hensélienne

d corps des restes réel-clos. Soit 1 un idéql de .K[}j alors

IVI)) =T
ol nous notons toujougé :
V(I) = (xeK" , vfel £(X) = 0}
IM) = {fEKIX] , YXEW f(X) = 0} .

Le théoréme résulte du Nullstellensatz général de Cherlin (proposition 3

ci-dessous) et des définitions et résultats précédents.

Proposition 3 (d'aprés [D1)
Soit K un corps queleonque, T sa théorie dans le langage des anneaux plus
éventuellement un nombre fint de constantes.

Powr un idéal 1 de K[X] on définit :
T-Radieal (1) =N g og
o

P = {p 1idéal premier de ng] s g2 1 et K[ij/p se plonge dans un
modéle L de T avee K<L} . |
Alors J(V(I)) = T-Radieal (1}.

Démonstration du théoréme 6 :

En effet K[X1/I » avec I 1idéal premier de a-chafne, peut se plonger dans

un corps L chaine-clos a-chainable te] que K<L car nous avons :

KSKIXI/T CQf (K(XI/T)
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qﬂ(K[&j/I) étant (formeliement) a-chainable, i1 existe une chaine d'ordres de
niveau supérieur (pi),ie]N telle que o? ¢ Py - Soit alors L 1la cl6ture de
chaine de ce corps pour la chaine fixée, L est un corps chaine-clos

o-chainable. Si nous supposons de plus que K n'admet qu'une seule valuation

hensélienne & corps des restes réel clos nous obtenons K<L {gréce & la

proposition 2). O

Remargue 5

L'hypothése faite sur le corps K chafne-clos que celui-ci n'admet qu'une
seule valuation hensélienne & corps des restes réel-clos équivaut au fait
que K n'admet qu'une seule valuation hensélienne & corps des restes réel-clos

avec groupe des valeurs impair-divisible et |vK/2vK| = 2 .

Cette condition peut donc aussi &tre vue comme A(p,) = O(p,) ot A(pz)
désigne 1'anneau de Becker et O(pz) 1'anneau de Jacob, le premier correspon-
dant 3 la plus fine des valuatiorsayant les propriétés énoncées ci-dessus et

le second d Ta plus grossiére de ces valuations (voir [ B31).

En combinant le théoréme 3 et le théoréme 6 modifié par la remarque 4, nous

pouvons obtenir un Nullstellensatz plus descriptif sous la forme du théoréme 7
donné ci-dessous : |

Théoréme 7

Soit K un ecorps chaine—clos a-chainable tel que A(pz) = O(pz). Alors pour
tout idéal 1 de K[X1 seers Xn] n=1l

FO(D)) = {FEKDy ..oy X1 [IKEN , 3L, '€ T (KIX, 5ouns X 1)

4k 2

tels que f  +t-a t{'€1} .

Remarque 6

Pour un autre Nullstellensatz (sur les corps réels clos généralisds) on pourra

consulter [B-J] .
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V - La validita du Nullstellensatz

Nous montrons ici que Tes &noncés du Nullstellensatz donnés dans Ta partie
précédente aux théorémes 6 et 7 peuvent atre généralisés 3 un corps chaine-clos
quelconque dans Te cas d'une seule variable et ne peuvent étre améliorés pour

plus de variables.

Théoréme 8
501t K un corps chaine-clos o-chatnable 3

Sott 1 wun idéal de ¥ [X1] y alors

TV(I)) =vT
-

De VI = n et de J(V(I)) = n &
o recp ¢ KIX)) 1 h= K

o
Ia € Spec” K [Xl]
On deduit puisque de tels .# sont dans Spec® K [X;] que

9(\/(1)5 >V
o

Mais dans le cas de n=1,K [xll/Ia est une extension finie a-chafnable
du corps K .

K &tant chaine-clos on a K [X1]4/Ia = K pour tout 'Ia € Spec® K [Xll .

Théoréme 9

Soit K wun corps chaine-clos tel que A(pz) # O(pz), ol A(pz) désigne
L'anneau de Becker et 0( Po) celui de Jacob (voir [B3)) ;

Alors le Nullstellensats JNV() =vVT  nrest paé vérifié dans

o
K[)(1 P— Xn]pour n=2 .,

La condition A(pz) # 0(p2) est équivalente au fait que Te groupe des
valeurs T de la valuation ¥V correspondant 3 A(pz) admet un sous groupe
convexe divisible non trivial. Notons A 1le sous groupe convexe divisible

maximal de T .



D'aprés 1'hypothése on peut trouver t tel que v(t)>0 et v(t)€ A .

Considérons le polyndme f(X) = (1+X2)(t2+X2)-. Montrons que pour tout x€K,
f(x)EK*4 . Il est clair que f(x) #0 .

Si v(x)<0 alors f(x) = Xt e avec v(e) =0 ; € est alors une puissance
quatriéme puisque la valuation v est hensélienne avec corps des restes

réel-clos ; donc si v(x)<O alors f(x)GKM ]

2
Si O<v(t)<v(x), alors f(x) = tz.sl {1+ (xt_l) ). Le dernier facteur est
une unité et une somme de carrés, c'est donc une puissance quatriéme.

Puisque v(t)€2r , alors t = €9 x2 ol e, est une unité, donc
2 2 4 _ *4

t" =g, x €K et donc dans ce cas encore f(x)€ 4 .
IT reste le cas O<v(x)<v(t). Alors f(x) = x2.e avec ¢ une unité.
Puisque A est convexe nous avons v(x) € AC 2T et donc, comme pour t

4

ci-dessus xze K~ , d'oll encore f(x)€ 4 3

*
Comme conséquence du fait que pour tout x€K , f(x)€K 4 nous obtenons que
le polyndme g{X,Y) = (1+X2)(t2+X2) - cx2 \f4 n'admet pas de zéro dans K2

(puisque ozz & K4 le corps K é&tant chaine-clios a-chainable).

Supposons que 1'on ait F(V(I)) = V1 alors on pourrait trouver une identité
o
u4k (1+t1) +t, - az ty = h.g ol les

t. € (KIXYDY, hek X,¥] et keN .

2

Supposons maintenant que g admette un zéro (a,b)€L" , avec L extension

Ze g1,

ordonnable de K . Alors, puisque t3(a,b) # 0 on obtient que o
I1 nous suffit alors de construire un corps LOK' tel que az & EL4 et que g

admette un zéro sur L , pour montrer que le Nullstellensatz n'est pas valable.

Pour cela &tendons la valuation v & K(X) en posant

w(Za, Xj) =min {(v(a.), J)}ET xZ
J j J

avec Z e plus petit facteur.

SOk
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Puisque v{a) + 2I' engendre T/2r' on trouve
PXZ/ATXZ) = <o o) > x < yiq) > |
Alors i1 existe un Caractére n: T xZ/4(r XZ) = u(4) tel que

nw{X a_l) =1 et nufa) = 7§ .

Ceci entraine T'existence d'un ordre p'CK(X) tel que X a'le pt, - a2€ p'

et le niveau exact de p' est 4 .

Considérons maintenant une cldture réelle (L, P) de (K(X}), p").

Puisque 0 < w(X) < w(t) nous obtenons

FX) =X e =% 0% avec yel |

-1.2 .
De (X a™)e P12 = 14 on geduit que £(X) = o’ v} avec yel
Le poTynéme 9(X,Y) admet alors le zéro (X,v) sur L .
De plus puisque - a‘?ETJ' , alors o2 e¢sLt .

Ceci termine 1a démonstration et montre que le Nullstellensatz n'est pas

valable dé&s que A(pz) # O(pz). O
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COUPLES D'ORDRES CHAINABLES

M. A. DICKMANN
CNRS - Université Paris VII

RESUME. Dans cet exposé nous abordons les questions suivantes:

(1) Premiérement, nous nous demandons quelles sont les paires d'ordres PO, P1 sur le corps

k(X) des fonctions rationnelles & une variable et coefficients dans un corps ordonné <k, <> qui
constituent le début d'une chafne d'ordres de niveay supérieur sur k(X) (dans le sens de
Harman [3]); on suppose, sans perte de généralité, que Py, P1 prolongent 1'ordre < sur k.

L'étude de cette situation a pour objectif de maitriser un certain nombre d'exemples
simples. Pour certains corps k il est possible de determiner toutes les paires de tels ordres en
exploitant la connaissance de toutes leg valuations sur k(X); c'est, notamment, le cas lorsque k
n'admet pas de valuation réelle non—triviale, p. ex., lorsque k est archimédien.

Notons qu'une paire d'ordres totaux PO’ P1 sur K est chafnable —i.e., le début d'une

chaine sur K— ssi il existe une valuation v sur K avec les propriétés suivantes:
(i) v est compatible avec PO et P, ie, 1+ M, C Py Py

(i) A, N Py=4,1 P, et ceci est un ordre total sur le corps résiduel ?\:

En utilisant ce critére nous avons:

Exemple et Proposition 1. (k CR). Une paire d’ordres Py P sur k(X) est chainable ssi ils ont

lune des formes suivantes:

—P,="P wPy=P _, avec a€F (= cloture réelle de <k, <>), ot P o (resp. P _) désigne
a a a a

la restriction & k(X) de Uordre sur k(X) qui rend X infinitésimalement proche i droite (resp. &
gauche) de a, c’est—a—dire, Uordre tel que a <X < b (resp. b < X < a) pour tout b e Ea<b
(resp. b < a).;

—PO = P_fm, PI = P_w, ou P+m (resp. P_m) désigne l'ordre sur k(X) qui rend X plus grand

(resp. plus petit) que tous les dléments de k. a



Remarquez la "symétrie" des paires d'ordres chainables dans ce cas. La méthode utilisée
permet également de traiter certains cas ol k n'est pas forcément archimédien. La situation se
complique rapidement dés que l'on considére d'autres corps de coefficients k, 3 cause de
l'excessive complexité de l'ensemble des ordres, voire 1'ensemble des valuations, de k(X). Pour
information, le lecteur peut consulter la discussion informelle du cas R(X, Y) contenue dans
Brumfiel [2; §8.12].

(2) Deuxiéme question abordée dans cet exposé. Existe~t—il une description explicite et
relativement simple —ne serait—ce que dans certains cas— des ordres de niveau supérieur qui
forment la (ou les) chaine(s) d'un corps K commencant par deux ordres donnés P Pl?. Plus

05
précisément, nous cherchons une construction en termes de PO, Pl’ et de l'une des valuations
v vérifiant le critére de chafnabilité ci—dessus.

Dans le contexte des ordres de niveau supérieur, Becker [1; pp. 23-25] donne une
construction de ce type pour le cas plus général; mais, justement A cause de sa généralité, cette
construction parait peu maniable dans des cas concrets.

* *
Remarquons, en passant, que l'ensemble ¥ (K) = ¥ (K, Py, Pl) des valuations ayant

les propriétés (i) et {ii) ci—dessus est totalement ordonné par la relation d'inclusion de leurs
%
anneaux de valuation; si ¥ (K) # ¢, il a un premier et un dernier élément.

* :
Dans le cas ot I'ensemble 7 (K) posséde une valuation v telle que |I‘V/2P | =2, 0u r,
v

désigne le groupe de valeurs de v, on obtient une carfctérisation assez "parlante". [Notez que
la condition [T /or | =2 est vérifiée par un v € ¥ (K) ssi elle est vérifiée par la valuation
v

d'anneau maximal dans 7/*(K).]

Proposition 2. Soient PU’ P 1 des ordres totaur sur un corps K et v e 7~ (K). Désignons par U-;)L

Uensemble des unités (résiduellement) positives de v, U_;; ={ze K| vz)=0e7 p 0}, ou P

désigne Uordre résiduel Avn PO (= Avn PI)' Soit a € P0 N —P, un élément quelconque. Pour

n2> 2, posons:
-1 n—1 n—1
_ 2 2"+
P, =(PynN P U,U-a (Pyn Py) v,
Alors, on a:

(1) P, est un préordre propre de niveau ezact n (cf. Becker [1; pp. 1 et 5]); P ne dépend pas

du choiz de lélément a dans PO N PI‘
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(i) {P } new €S une chqfne de K ssi |T 1/2I‘vl = 2; la méme chaine est obtenue en augmentant

la valuation v dans ¥* (K).
(i) La valuation v est compatible avec tout Pn’ et résiduellement on a A o Pn =4 o1 }TO pour

n2 1
(iv) Réciproquement, si {PO’ P, Qn} n>g €5t une chaine de K commencant par Py, P, telle

qu’il existe une valuation we ¥*(K ) compatible avec tous les Qn’ avec |T° u/2F | =2, et telle
w

que Qn n A'w = Pon A;pour tout n > 2, alors Qn = Pn pourn > 2. u]

Pour les corps de Pasch {ou corps SAP) les préordres P définis ci-dessus constituent
*
une chaine quels que soient les ordres chainables PO’ P1 et la valuation ve ¥ (K), et toute

chaine est de cette forme; cf. Becker [1; Thm. 17, p. 41].
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A remark on the classification problem for
ordered structures

Salma Kuhlmann

1 Introduction

In [H], Hausdorff introduces the notion of an Ne-set: let £ = N, be an infinite
cardinal and A a linear ordering; A is an fNa-set (or: is k-dense) if given A,
and Aj; subsets of A s.t. A; < 43 and card(A4;) < R, for { = 1,2, then there
exists a € A s.t. A] < a < Aj. For example A is a DLOWEP (dense linear
ordering without endpoints) iff A is an Ng-set. Hausdorff also proves that:
two 714-sets of power R, are isomorphic.

‘The Hausdorff 5,-sets were later on examined in the context of ordered
algebraic structures: BErdés, Gillman and Henriksen prove in 1955 that for
« > 0, any two RCF (real closed fields) that are n,-sets of power R, are
isomorphic {c.f. [E-G-H]}, and in 1960, Alling proves the corresponding
result for DOAG (divisible ordered Abelian groups): for & > 0, any two
DOAG that are n,-sets of power R, are isomorphic (c.f. [ALL 1]). In their
article, Erdds, Gillman and Henriksen ask the following question: what are
the possible invariants characterizing a real closed field? Does the order
type determine the RCF up to isomorphism?

In the next section, we will answer this question negatively, indeed for
every infinite £ we shall construct 2* RCF which are isomorphic as ordered
sets, but not as ordered fields; in fact we shall examine that question in the
following more general context: Let L be a countable first order language
and T a theory in L extending the theory of linear orders, T' is o-minimal
iff for every model M of T and every formula ¢ with one free variable and
parameters in M, ¢ is equivalent to a finite union of intervals (cf. [P-S]). The
most important examples are DLOWEP, DOAG, RCF, and many theorems
now follow easily via this model theoretic property that they share, for
example the following theorem holds for any o-minimal model M :

Theorem 1.1 For k > ¥y, M 4s x-saturated iff M 13 k-saturated as an
ordered set.



From general model theory and from this theorem, the above mentioned re-
sults of Hausdorff, Erdés, Gillman and Henriksen, and that of Alling follow
immediately. The question now translates as follows: does the order char-
acterize the o-minimal model? An o-minimal theory being unstable, look-
ing for invariants (a classification problem) is rather risky, but is in some
sense motivated by the good model theory that has been done for these
theories: some theorems that are true for w-stable theories, like “existence
and uniqueness of prime models”, “Vaught'’s conjecture” were proved for
o-minimal theories (cf. [P-8] and [MA]}. To the above question we will give
however a negative answer by giving counterexamples in DOAG and RCF.
The following strengthening of the hypothesis was proposed by D. Lascar:
Does the order characterize the k-saturated o-minimal models, at least for
large enough x? The last part of this talk will be devoted to give a nega-
tive answer to that question as well, some theorems will be stated and used
without proofs, those are to be read elsewhere.

2 Construction of 2®* DOAG of cardinality «, isomorphic
as ordered sets, but not as ordered groups

We first need some definitions. Let G be a DOAG and g € G, put |g| =
max(g, —g). For g1 € G, g2 € G, g1 is archimedean equivalent to ga (we
denote it by: g ~ g2) iff there exists n € w s.t. n|gy| > |gz| and n|gs| > |g4|,
¢1 is infinitely smaller than gs iff for all n € w,n|g1| < |g2| (we denote it by:
g1 < g2). G is archimedean iff any two nonzero elements are archimedean
equivalent; an archimedean group is a subgroup of IR. Given g € G, g # 0,
let C,; be the smallest convex subgroup containing g, and D, the largest
convex subgroup not containing g, then Cg/D; is archimedean, it is called
the archimedean component corresponding to g. We order the set of equi-
valence classes of nonzero elements as follows: [g:] < [g2] iff g2 < g1; the
rank of G, denoted by Ig, is the order type of this ordered set For: € Ig,
we let B; be the archimedean component corresponding to any element of
the equivalence class 1. This is well defined because g1 ~ g2 iff Cy, = C,,
iff Dy, = Dy,. The skeleton of G is [Ig; B;, { € Ig); it is an invariant: if
G ~ ', there exists an order isomorphism ¢ of I onto Igr, and for every
i € Iz, an isomorphism ¢; of archimedean ordered groups from B; onto
B"#(*')‘ Given an ordered set I and a choice B;, ¢ € I of archimedean groups,
we form the group [er B;: it consistz of all functions f from I into U;er By
s.t. f(f) € B; and [ has well ordered support in I. Addition is pointwise,
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and the order is lexicographic: f > 0iff f (f) > O where ¢ = min(support(f)).
The subgroup consisting of the functions with finite support is denoted by
Dicr Bi. Clearly, both T'yerB; and @,; B; have skeleton [I; Bi, ¢ € I].
Finally, we rote that if given [I; 4;, i € Il and [J; B;, j € J] s.t. there is
an isomorphism ¢ from I onto J, and for every 1+ € I, an isomorphism ¢;
from A1 onto Bqﬁ(i), then I‘s'GIAi o= I‘J‘EJBJ' and @ieIA“ o ejEJ ,BJ'.

Now let an infinite cardinal x be given. Let A; and As be two count-
able archimedean DOAG which are isomorphic as ordered sets, but not as
ordered groups (e.g. @ and Q(\/ﬁ) ={p+¢v2;p,q € Q} as ordered sets
are countable DLOWEP and so are isomorphic, but dim(@ : @} = 1 and
dim[@(\/2) : @] = 2). For every function f & 2%, put Gy = @,e, Af(a)-
It is not difficult to verify that since the archimedean components are all
isomorphic as ordered sets, then also for all fifle2 G 5 and Gp are
isomorphic as ordered sets. However if f# f', then @ 7 and Gy are not
1somorphic as ordered groups, for if they were, then by a previous remark,
we should have that for every a € K, Af(a) and Ajpi(a) are isomorphic as
ordered groups (the only automorphism of « being the identity), but since
/# I', there exists a € k s.t. f(a) # f'{e) and thus Ay % Afifa)-

We now proceed to answer the question of Erdos, Gillman and Hen-
riksen about RCF. We need some definitions: Let (K,+,.,0,1,<) be an
ordered field and consider the set G of equivalence classes of the equivalence
relation “archimedean equivalence” defined on the ordered abelian group
(K,+,0,<). On G we define the following addition: [z] + [y] = [ey); in this
way, G becomes an ordered abelian group, and the map v: K\ {0} — @
defined by v(z) = [z] is a valuation on K, i.e. it satisfies the following prop-
erties: v(ab) = v(a) + v(b) and v(a + b) > min(v(a),v(d)). The valuation
ring, denoted by R,, is the set {z € K \{0}; v(z) > 0}; the valuation ideal,
denoted by M,, is the set {z € K\ {0}; v(z) > 0}; the residue field, denoted
by K, is the field R, /M,; finally the valuation groupis G. X and G are in-
variants for isomorphisms of ordered fields. Given an ordered abelian group
G, the field of formal power series with coefficients in /R and exponents in
G, denoted by R((Q@)), is the set of all functions from G into IR with well
ordered support in &; addition is pointwise and the order lexicographic;
multiplication is given by: (f- f'){g) = Ygea F{9') (9 —¢'). It is clear that
the residue field of IR((G)) is IR and its valuation group is G. Now let k an
infinite cardinal be given, and let {G, ; a € 2%} be a set of DOAG which are
order isomorphic but not isomorphic, and put: R, = IR((G4)). Since G, is
divisible, R, is real closed (for a proof see [PR]). For every a,f €2 R,
and Rg are isomorphic as ordered sets (even (R4, +,0,<) and (Rg,+,0, <)



are isomorphic), but if @ # § then R, and Rp are not isomorphic as ordered
fields since they have nonisomorphic value groups.

3 The case of the k-saturated structures

For every infinite & we shall construct two x-saturated DOAG (RCF} iso-
morphic as ordered sets but not as ordered groups (fields). We need some
definitions and some theorems. Let A be a limit cardinal and (a,),ex a se-
quence of elements of a DOAG {or a RCF), (a,),e» is pseudo- cauchy iff
for all v < p < p < A we have a, - a, € a, — a,. a is & pseudo-limit of
(as)sex iff for all v € A, a2 —ay4q <€ a — ay. For & > Ry, the following two
theorems characterizing the x-saturated DOAG and RCF can be deduced
from Alling’s theorem about DOAG which are n,-sets {c.f. [ALL 2]}, a proof
treating also the case k = Ry is given in [KU].

Theorem 3.1 Let G be a DOAG and k an infinite cardinel, then G i3 k-sa-
turated iff:

its rank is k-dense

all its archimedean components are IR

every pseudo-couchy sequence indexed by A < k has a pseudo-limit in G.

Theorem 3.2 Let F be ¢ RCF and k an infinite cardinal, then F isk-sa-
turated iff:

its value group is a k-saturated DOAG

its residue field is IR

every paeudo-a uchy sequence in a subficld of absolute trancendence degree
< Kk has a pseudo-limit in F.

The following theorem computes the rank of the group of positive elements
of an ordered field, the proof is given in [KU].

Theorem 3.3 Let (K,+,.,0,1,<) be an ordered field, and G its valuation
group. Then rank(K>°,.,1,<) = rank(G) + 1+ G, this last sum being a
sum of ordered sets, and 1 being the ordered set wnsisting of one element.

A corollary to this theorem is
Corollary 3.4 If (K,+,.,0,1,<) admits an ezponential function, then
rank(G) =~ G<°

as ordered sets.
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The following three propositions are easily verified.

Proposition 3.5 Let (B, +,.,0,1,<) be o real closed field, then
(B, <) = (R, <)
as ordered sets.

Proof: In fact ¢ : R — R>° defined by

1 .
. 541 fx<0
"{’(m)“{iﬂ ifz>0

is an order preserving bijection. O

Proposition 3.6 Let i be o xt-sgturated DLOWEP of cardinality 2% and
let n' be the sum of 2 copies of n, then n' is again k™ -saturated.

Proposition 3.7 Let I be an infinite chain of cardinality A, and suppose
that I contains a well ordered subset of cardinality A, then card([ier R) = 22,

We now have all the material needed to construct the counterexample:
Let & be an infinite cardinal and 7' like in 3.6. Let G = DicyrfR. 1t is
known (c.f. [KR]) that such groups are maximal, i.e. every pseudo-cauchy
sequence has a pseudo-limit in @, and so by 3.1 G is x-saturated. Clearly,
n' contains a well ordered subset of cardinality 2%, so by 3.7, card(G) =
2e2d() = 22", Now let F = (IR((G)),+,.,0,1,<). Then F is a RCF.
Put Gy = (R((G)), +,0,<) and G = (RR((G))*%,.,1,<). then Gy and G,
are DOAG. By 3.2, F is x-saturated, hence also G and Go, and by 3.5
G1 and G, are isomorphic as ordered sets. Now if they were isomorphic as
ordered groups, we should have rank(G) = rank(G;) as ordered sets, and
it would then follow by 3.3 that G ~ rank(G) + 1 + G>°, or equivalently
rank(G) =~ G<0 as ordered sets, but rank(G) = #' so card({rank(G)) = 2~
whereas card(G <°) = card(G) = 2%", s0 G ~ G is impossible.

Finally to produce two «-saturated RCF isomorphic as ordered sets but
not as ordered fields, let G; and G be the two DOAG of the counterexample
above and set F; = IR((G1)) and Fy = IR{{G3)). Then F; and F; are x-sa-
turated, isomorphic as ordered sets but have nonisomorphic value groups,
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ORDERED CONES AND APPROXIMATION

Klaus Keimel and Walter Roth

Introduction.

Using order theoretical concepts instead of topological structures has proved
to be useful in quite 2 number of situations in analysis. In our investigations on
Korovkin type theorems in approximation theory we were led to introduce a new
concept of locally convex (partially) ordered cones which might be of independent
interest.

Looking for a unified presentation of Korovkin type theorems for positive
linear operators (see e.g. [2], [31, [4], [23]) and for linear contractions (see e.g. 1],
[171), as well as for order preserving linear operators on spaces of set-valued
functions (see [22], [9]), we were indeed forced to leave the setting of vector spaces
and fo turn to more general structures which we call locally convex ordered cones.
Our prime example is the set Conv(E) of all non-cmbty convex subsets of a locally
convex topological vector space E which has a natural addition and a scalar
multiplication by non-negative reals; it is ordered by inclusion and it carries a topology
which is induced in a canonical way by a subsét V C Conv(E), namely an arbitrary
base of convex neighborhoods of 0 in E.

In this vein, a locally convex ordered cone will be a set P with an addition, a
scalar multiplication by non-negative reals, a partial order £ and a distinguished
subset V of positive elements v € P which act as abstract neighborhoods of 0. The
axioms that we impose look very natural. They allow to derive a canonical topology
on P, the properties of which justify the term "locally convex”. .

For our purposes, it was essential to include cones with unbounded elements
as P = Conv(E), which are not embeddable in vector spaces. At the other hand, we
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cannot use a very general notion of a cone as e.g. Fuchssteiner and Lusky in their
monograph [6]. As we need to apply fundional analytic methods, we need an
appropriate duality theory and, in particular Hahn-Banach type extension and
separation theorems. We believe that the concept introduced here has the desired
generality but is close enough to the classical theory of locally convex vector spaces in
order to work with the analogues of the classical functional analytical methods.

In this paper, we present the basic theory of locally convex ordered cones as
ordered algebraic structures. A more detailed study of its duality theory and the
applications to approximation theory will be dealt with at a different place.

1. Cones and preordered cones.

1.1 Con es. We define a cone to be a set P endowed with an addition (a,b) — a+b
and a scalar multiplication (¢,@) = aa for real numbers a>0. The addition is only
supposed to be associative and commutative and a neutral element 0, (shortly 0) is
required to exist, i.e.

(a+b)+c = a+(b+c) forall ab,c eP,

a+b = b+a forall ab eP,

O+a = a forall aeP.

For the scalar multiplication we require as usual:
aBa) = (af)a for all a,B>0 and a€P,

(a+B)a = aa+pBa forall o,f>0 and aeP,
afa+b) = oa+ob for all a>0 and a,b P,

l'a = a forall aelP.

In this definition of a cone P, thescal ar multiplication is only required to be defined
for real numbers (. We may - and we shall do this in the sequel - extend the scalar
multiplication to ¢ = 0 by defining 0-a =0 for all ae P, and all of the above rules
remain valid. At the other hand, o0 = 0 for aill >0 is a consequence of these rules.
Indeed, for all aeP we have

a = oo 'g+0) = a+ol,
whence o0 =0 by the unicity of the neutral element.

1.2 Subcones. A subset @ of a coneP is called a subcone if
atbeQ and aaeQ forall a,b €@ and a20.
Note that every subcone of P contains 0.
Of course, cones in real vector spaces are cones in the above sense. They have

the cancellation property
© a+c = b+c implies a=»b
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for arbitrary elements a,b,c. Conversely, cones which satisfy the cancellation property
are embeddable in real vector spaces. It is important to note that cones in our sense are
in general far from being embeddable in vector spaces, as the addition is not supposed
to be cancellative, This is essential, as we want to include examples like the following:

1.3 Example, With its straightforward addition and multiplication with 00, the set
R=Ru {+o0} is a cone.

1.4 Example: Cones of convex sets. Let P be a cone. A subset A of P is called
convex, if aa+(1-o)b €A, whenever g,b €A and 0<a<l.
We denote by Conv(P) the set of all non-empty convex subsets of P. With the

L4

addition and scalar multiplication defined as usual by
A+B ={a+blacA and b eB} for A,B € Conv(P),

0A ={oalaeA} forA € Conv(P) and a0,
it is easily verified that Conv(P) is again a cone. Convexitly is required to show that
(a+B)A equals cA+BA; Clearly (0+B)A is a subset of oA +BA. To show the
converse, consider an arbitrary element ¢ € td+BA; it can be written ¢ = oa+Bb with
a, beA; as

¢ = (o) = a + —E’— b |, (thecase a=B=0is trivial.)
o+f3 o+f

and as

-—g—a +-—B—b € A by the convexity of 4,
a+f  a+P

we conclude that ¢ e (a+fB)A.

Note that every subcone Q of P is convex and satisfies @+Q = Q. In
particular, the non-empty convex subsets of a real vector space form a cone in our
sense which is far from being cancellative.

1.5 Example: Cones of cone-valued functions. Let P be a cone, X any a set.
For P-valued functions on X the addition and scalar multiplication may be defined
pointwise. The set F(X,P) of all such functions then is a cone in our sense. But again
the addition is in general not cancellative, as it is not in P.

1.6 Preordered cones. A preordered cone is a cone P with a reflexive transitive

relation < such that
a<b implies a+c<b+c and ca<ob forallabceP and all 0=0.

If < is in addition antisymmetric, i.e. < is a partial ordering, then P is called an

ordered cone.
Examples of preordered cones are R with its usual order (Ex.1.3), the set

Conv(P) of non-empty convex subsets of a cone P ordered by inclusion (Ex 1.4) and
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if P is a preordered cone, the set of P-valued functions on a given set X endowed
with the pointwise ordering (Ex. 1.5). Every cone P is preordered by its natural
preorder defined by a< b if a+tc=b forsomeceP.

Convex sets in cones may look rather peculiar. For example inR all the two
element sets {a,+oc} are convex. This phenomenon is somehow remedied by
considering only increasing or decreasing sets, or more generally convex sets that are

also order convex:

1.7 Example: Canes of decreasing convex sets. A subset a of a preordered
cone is called decreasing,'f a € A and b < a for some b € P imply be A. For a subset
B of P we denote by:
lB={aePla<b forsomebeB},

the decreasing subset generated by B. In a dual way one defines the notion of an
increasing subset and TB, the increasing subset generated by B. It is easily verified,
that 4B and TB both are convex, whenever B is convex. We denote by DConv(P)
the set of all non-empty decreasing convex subsets of P.

For a decreasing convex set A and >0, the set A is also decreasing and
convex. But A+B need not be decreasing, if A and B are. We therefore modify the
addition on DConv(P) and define

A®B =l(A+B)=[cePlc<a+b forsome geA, beB}.
With this addition and the usual scalar multipl ation DConv(P) becomes a cone
ordered by inclusion the set (0} acts as the addiive zero element. There is a natural
map
a — l{a} of Pinto DConv(P),
which is order preserving. It is an embedding, i.e. injective, if and only if the preorder
on P is in fact an order. If not, the image
P = {l{a)l aeP}
is called the ordered cone associated with P.

2. Locally convex cones.

We want to endow our cones with a locally convex structure. Our definition
will be guided by the example of the cone Conv(E) of all non-empty convex subsets
of a locally convex topological vector space E. In this case we can choose a base V &
convex neighborhoods V of 0 in E. We may suppose that U+V eV and aVeV
whenever U,V € V and o>0. Note that V is a "cone without'zero"_down directed

towards 0. A neighborhood basefor a convex set A is given by the sets
A+V, VeV
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This induces three hyperspace topologies on Conv(E) given by the respective
neighborhood bases for 4 e Conv(E)

in the upper topology V(A)= {BeConv(E)| B C A+V L, VeV,

in the lower topology (A)V= {BeConv(E)1 A C B+V 1, VeV,

in the symmetric topology  V(AYNA(V), VeV,
On a subcone @ of Conv(E), we shall consider the induced topologies, also in the
case where @ does not contain V. On Q =E all the three topologies coincide with the
given locally convex topology.
We now present an abstract formulation:

2.1 Abstract 0-neighborhood systems. Let P be a preordered cone. A subset V
of P is called an (abstract) O-neighborhood system, if the following properties hold:
O<v forallvev;
for all u,ve V there is we V withw <y and w < v:
u+veV and aveV whenever u,y eV and a>0,
One could say that V' is a "subcone without zero directed towards 0". The elements
atv, veV,
may be called abstract neighborhoods of g € P.

2.2 Locally convex topologies. Let P be a cone with a O-neighborhood system
V. For every ae P we define

v(@)={bePIib<a+v)
to be a neighborhood of a in the upper topology, and

(@v={bePla<b+v}
to be a neighborhood of a in the lower topology. One easily verifies that these
neighborhood systems define indeed topologies on P. The common refinement of
these two topologies is called the symmetric topology on P.

Note that the v(a) are decreasing convex sets and the (a)v are increasing
convex sets. The neighborhoods in the symmetric topology are both convex and order
convex. Thus, all of these three toplologies merit to be called locally convex. Of
course the upper and the lower topology are far from being Hausdorff. Since all of the
three topologies are defined in terms of the preorder on P, we will not need to work
with them expicitely. Continuity properties etc. will be expressible by means of the
ordering and the 0-neighborhoods alone.

We also consider subcones @ of P not necessarily containing V. They will be
endowed with the topologies induced from P, Thus, for a € @, the neighborhood
bases for the upper and lower topologies on @ will be given by

vo(a) =v(@nQ =[{beQ lb<a+v}, veV
@ev =@vnQ ={beQ la Sbhtv}, vey,

respectively,
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2.3 Bounded elements. Let P be a preordered cone with a0-ner ghborhood system
V. ForveV, anelementa e P is called

upper v-bounded, if a <ov for some o0,

lower v-bounded, if 0< a+Pv for some >0,

v-bounded, if it is both lower and upper v-bounded.
An element a is called upper (lower )} bounded, if it is upper (lower) bounded for
every ve V. The following is straightforward:

2.4 Propostion. The set B(v) of all upper v-bounded and likewise the set B of
all upper bounded elements is a decreasing subcone in P.

Now we are ready for our main definition which proceeds in two steps:

2.5 Locally conwx cones. Let P be a preordered cone and V C P an abstract

O-neighborhood system. The pair (P,V) is called a full locally convex cone, if every
element of P is lower bounded. In a full locally convex cone the bounded elements
therefore coincide with the upper bounded ones.

Finally, a locally convex cone is a pair (Q,V), where Q is a subcone and V
the 0-neighborhood system of some full locally convex cone (P, V). Of course, Q
inherits the preorder and the topological structure of P. We have neglected to indicate
P in the notation, as only those elements of P play a role for @ which are of the form
a+v with ae ¢ and ve V U {0}, and these elements form a subcone of P already
containing V. But one has to keep in mind that ¢ in general does not contain the
0-neighborhood system.

Clearly every locally convex topological vector space E with 0-neighborhood
base V is a locdl y convex cone (E)V) in this sense, as it is a subcone of the full
locally convex cone Conv(E) ordered by inclusion, which contains V and in which
every element is bounded below. The preorder induced on £ is just the equality.

If, on the other hand, the locally convex cone Q is a vector space, i.e. contains
all negative s of its elements, then b < a+v, if and only if b-a $v. All elements of Q
are bounded, as they and their negatives are bounded below, and the neighborhoods
of 0 with respect to the symmetric topology

Vo= Owvv(0) ={beQ|b<v and 0 < b+v}
={be@lb<v and -b<v}
form the basis for a locally convex vector space topology onQ (not necessarily
Hausdorff). But it is obvious that distinct abstract neighborhcod systems V in our
sense may lead to the same symmetric topology. So even in the case of vector spaces
there is a substantially larger variety of locally convex cone topologies than vector
space topologies.
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The following are our standard examples for locally convex cones to which we
will frequently refer in the sequel:

2.6 Example. The cone R = RU{+eo) will always be endowed with the abstract
neighborhood system V = {ee R | £>0}. For g € R the intervals (-eo,q+€) are the
upper and the intervals (@-g,4e<) the lower neighborhoods, while for g = +eo the
entire cone R is the only upper neighborhood, and {+%0} is open in the lower
topology. The symmetric topology on R is the usual topology on R with {40} as an

isolated point,

2.7 Example. Let (E,<) be an locally convex ordered topological vector space with
O-neighborhood base V. For A,B € Conv(E), the cone of non-empty convex subsets
of £, we define
A <B if forevery a €A there is some b € B such thata <b.

Since Conv(E) contains V, and all its elements are bounded below in this sense,
(Conv(E),V) is a full locally convex cone. E may be considered as a subcone of
Conv(E), hence (E,V) is a locally convex cone. Note that the upper neighborhoods of
a € E contain all elements smaller then a, the lower neighborhoods all larger ones. The
symmetric toplology on £ coincides with the original one if the neighborhoods v e V

are order convex.

2.8 Example. Let (P,V) be a full locally convex cone. If we identify the elements
of V with singleton sets, then V is a subset of Conv(P), which can be preordered
using the preorder of P. For A B e Conv(P) we define

A <B ifforallacA thereis some b B such thatg <5,
Since its elements clearly are bounded below as are the elements of P, (Conv(P),V)
becomes a full locally convex cone. )

If (Q,V) is a locally convex cone, i.e. a subcone of some full locally convex
cone (P,V), Conv(Q) is a subcone of Conv(P), hence for any cone D of non-empty
convex subsets of @, the pair (D,V) is a locally convex cone.

We shall also consider the families DConv(Q) and DConv(Q) of decreasing
convex subsets, respectively closed decreasing convex subsets of Q, where closure is
meant with respect to the lower topology on Q. If we slightly modify the addition (c.f.
Example 1.7), both sets will become cones as well:

A®B = L(A+B) for A,B e DConv(Q),
A®B = [I{A+B)) for A,B € DConv(Q) ,

where {I{A+B)} denotes the closure with respect to the lower topology. (We shall
see in the following section that the closure in this topology is decreasing for any
subset of 3.) With the preorder and the abstract neighborhood system induced by
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Conv(Q) (For decreasing sets this preorder coincides with inclusion), both
(DConv(Q) ,V) and (DConv(Q@) V) then are locally convex cones.

29 Example, Let F(X,P) be the cone of P-valued functions on the set X, where
(PY) is a full locally convex cone. If we consider its pointwise preorder and identify
the elements ve V with the constant functions x — v for all x € X, then V is a subset
of F(X,P) and defines an abstract neighborhood system there. Of course, not all
functions in F(X,P) will be bounded below. So we have to restrict ourselves to the
subcone BX,P) of elements with this property, and (B(X,P)V) thenis a full
locally convex cone.

Again, if (Q,V) is a locally convex cone, every subcone of B(X,() is seen to
be a locally convex cone as well. If in particular X is a topological space, we may
consider the following subcones of F(X,0Q):

The cone C, (X,Q) of functions continnous with respect to the

upper topology on Q,
the cone C(X,Q) of functions continuous with respect to the
lower topology on @,
the cone C (X ,P) of functions continuous with respect to the
symmetric topology on Q.
Their respective subcones of elements bounded below then are locally convex cones.
If X is compact, then obviously all functions in C(X,0) and in C«(X,0) are
bounded below.

3. Local and gobal preorder. Closure.

Throughout this section we assume that 0 is a locally convex cone, i.e. a
subcone of the full locally convex cone (P,V). By means of the abstract
neighborhood system V we shall define a new preorder on”, hence on @, which in
general will not coincide with the original one. It will however turn out to be more
appropriate to describe the topological properties of a locally convex cone. We shall
proceed in two steps:

3.1 The local preorder <. For a fixed element ve V we define a relation £y on
P by:

a <, b if and only if a < b+pv for all p>0.
It is easily seen that <, is a preorder on P called the v-local preorder and that P
endowed with this preorder and the abstract 0-neighborhood system V is again a full
locally convex cone. And again, as a subcone of P, Q is a locally convex cone.

Clearly a < bin the original preorder implies a £, b.
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3.2 The global preorder <. The global preorder is defined as the intersection of
all local preorders, i.e.
asb iff a<a+v forall veV,
if asyb forall veV.
Endowed with this preorder and the abstract neighborhood system V, P is again a full
locally convex cone, Q a locally convex cone, and a < b in the original preorder
implies g < b,

3.3 Closure. In Example 1.7 we studied decreasing convex subsets of a preordered
cone and in particular the sets 1{g} generated by a single element a € P. We shall do
the same now with respect to the global preorder:
For every a e P, the closure of a is defined to be the set

a = {bePlbsa)
{beP|b<a+v for all ve V}.

= mw,_-_v V(a).
By definition, 4 is the intersection of all the upper neighborhoods of a. Clearly, 4 is
convex and decreasing with respect to both of the preorders < and <. The collection

P ={a |aecP)
of all one point closures is again a full locally convex cone, if we endow P with the

1l

operations

a +b = a+b Aa =%a  for A>0,
with the inclusion order and the abstract O-neighborhood system V'= {v | ve V.
There is a canonicalmap a —» @ :P— F which preserves the whole structure

of P.
For a subcone @ of P we may restrict the closure to Q and consider @ N Q instead of

a, and we obtain again a locally convex ordered cone 0.

3.4 Lemma. If cea, then there is a lower neighborhood of ¢ and an upper

neighborhood of a which are disjoint.

Proof. If ¢ ¢ a, then there is a v € V such that ¢ £ g+2v. We claim that (c)v and
v(a) are disjoint. Indeed, if x were an element in the intersection, then we had ¢ < x+v
and x < a+v, which would imply ¢ < a+2v.

3.5 Corollary. The closure T is the closure of {a} with respect 1o the lower

topology.

Proof. Indeed, the complement of 7" is open for the lower topology by the preceding
Lemma. Conversely, if ¢ < a, then every lower neighborhood of ¢ contains a; thus
every lower closed set containing @ must contain ¢ as well.
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3.6 Remark. This shows in particular that the original preorder < and the
global preorder ¢ on a locally convex cone coincide if and only if the sets
L{a} = {b1b < a} are all closed in the lower topology, i.e. a=l{a}.

In a similar way, one shows that the set {b|a £ b}, which is the intersection
of all lower neighborhoods of g, is nothing but the closure of {a} with respect to the
upper topology. Finally, the set {b!b <a and a < b}, which is the intersection of all
symmetric neighborhoods of a, is nothing but the closure of {a) with respect to the

symmetric topology.

3.7 Proposition. For a subset A C Q its closure A with respect to the lower
topology is given by

A= (beQlforall veV thereisacA suchthat b<a+v).
In particular, A is decreasing with respect to the global preorder of Q, and convex

if A is.

Proof. Clearly beA if and only if (b)vnA £ @ for all v eV, i.e. there is some
aeA such that b <a+v. Nowlet beA and ¢ <b. Then for veV, we have
c<b+v/2 and b <a+v/2 for some a €A, whence c<a+v,and ceA as well.

Again, a similar statement can be made for the closure of A in the upper
topology. The following observation will be crucial for our further investigations in
locally convex cones. It demonstrates the importance of the global preorder:

3.8 Proposition. Let O and @'’ be locally convex cones. Then every mapping
- Q@ — Q' , which is continuous with respect to the upper (or lower) topologies on

both cones, is monotone with respect to their global preordérs.

Proof. Since a continuous mapping between topological spaces maps the closure of a
subset into the closure of its image, this renders f{@) < f{a) for all a € Q, whenever

[ 1s continuous with respect to the lower topologies on Q and (. So clearly b < g,
i.e. bea implies f{b) e f{a), hence f{b) ¢ fla). If f is continuous for the upper

topologies the same argument holds for the sets {bia < b}.

3.9 Definition. A locally convex cone is called separated if a =5 implies a = b,
1.e. if different elements have different closures.

This property corresponds to the Hausdorff axiom in locally convex vector
spaces. The following is clear from the above:
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3.10 Proposition. For a locally convex cone (Q,V) the following properties are
equivalent:

(i) (Q,V) is separated.

(ii) The upper topology on Q is Tp.

(iii)  The lower topology on Q is Tp.

(iv)  The symmerric topology on Q is T).

(v)  The symmetric topology on Q is Hausdorff.
Moreover, on a separated cone the global preorder < is in fact an order and the
canonical map a — a from Q with this order into Qisan isomorphism.

3.11 Corollary. For every locally convex cone (Q,V), the cone 0, V) of one

point closures is separated.

We shall call (Q,V) the separated reflection of (Q,V). This terminology is

Justified by the fact that continuous linear mappings from @ into separated locally
convex cones all factor through Q. This will be dealt with in detail in section 6.

3.12 Examples. Reviewing our standard Examples 2.6 through 2.9 for locally
convex cones reveals the following:

The cone R clearly is separated (Example 2.6).

In Example 2.7 the locally convex ordered vector space (E,<) is separated as a
locally convex cone (E,V) as well, if only its positive cone E* is proper, i.e.
E*M(-E*) = {0}: For elements a,b € E g ¢ b translates into b-a € E*+V, for all
O-neighborhoods V e V. Since E* is closed, this means @ < b in the given order of E,
which therefore coincides with the global preorder. @ =& then implies @ = b because
of the condition on E*. Note that in the light of Proposition 3.8 this implies that
mappings between locally convex ordered vector spaces, considered as locally
convex cones, which are continuous with respect to their upper (or lower) topologies,
need to be monotone with respect to the original orderings.

For any locally convex cone (Q,V)and ABe (Conv(Q) ,V)one has A < B
if A is contained in the closure A of A with respect to the lower topology (c.f.

Proposition 3.7). So in fact (EWQ) ,V) is the separated reflection of
(Conv(Q),V) and likewise, of (DConv(Q),V) (Example 2.8).

Finally in (B/(X,0),V) (Example 2.9) for two () -valued functions
[,.8 € B{X,0) we have fs g if fix) < g(x) forallx eX. So B(X.Q) is a separated

locally convex cone, whenever Q is.
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4. Can cellation.

Let a.b ¢ be elements of an arbitrary preordered cone Q. In section 1 we
insisted on the fact that we do not require the cancellation law

© a+c = b+c implies a=b5,
as we wanted to include examples like the cone Conv(E} of all non-empty convex
subsets of a real vector space E. In this section we want to show that certain restricted
cancellation laws hold in a locally convex cone (Q,V). For the proofs, it is no
restriction to assume this cone to be full. The first property holds in any preordered
cone:

4.1 Lemma. a+c<b+c implies a+pc<b+pc forall p20.

Proof. Suppose a+c < b+c. Adding a and b, respectively, we obtain 2a+c < g+b+c
and a+b+c € 2b+c, whence 2a+c £2b+c orelse a+c/2 € b+c/2. Repeating the
same argument, we obtain

c c
a+ > < b+§;

for all natural numbers . If p is an arbitrary positive real number, choose an n such
that 1/2” < p; adding (p-1/27)c to the last inequality, we obtain a+pc < b+pc as
desired.

Ifc 20, then a < a+pc, and we may conclude:

42Lemma. Ifc 2 0, then a+c < b+c implies a < b+pc for all p>0.

From now on we place ourselves in a locally convex preordered cone (Q,V):

4.3 Lemma. Let ¢ be v-bounded for some v € V. Then
atc S b+c implies a<b+pv fora

i.e. a+c<b+c implies asy b.

Proof. As ¢ is v-bounded, there is a A>0 such that ¢+Av 20 and ¢ S Av.
Suppose a+c £ b+c. Then a+(c+Av) < b+(c+Av). By Lemma 4.2 we conclude
a £ b+p(c+Av) S b+2phv for all p>0.

4.4 Proposition. For every bounded element ¢ one has :
at+c<b+c implies a+v<b+v forall veV,

i.e. a+c<b+c implies a < b, where < isthe global preorder.
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This is an immediate consequence of 4.3. We may apply this to the global
preorder on @, and we obtain the

4.5 Order cancellation for bounded elements:
atc < b+c implies a £ b, whenever ¢ is bounded.

For the closure of the elements we obtain (cf. section 3):

4.6 Corollary. Whenever c is bounded, one has:
a+cc b+¢ implies ac b,
a+c=b+c implies a= b,

As in separated cones the global preorder is an order, i.c. antisymmetric, we conclude:

4.7 Corollary. For bounded elements ¢ in a separated locally convex cone one
has:  a+b =b+c implies a=b. (cancellation Jor bounded elements c).

Now we are in a position to embed a separated locally convex cone (Q,V)
with its global preorder into a locally convex preordered cone (Q",V"), in which the
bounded elements form a vector space which is locally convex with respect to the

symmetric topology:

4.8 Embedding. Let us consider first a full locally convex cone (P,V). By ¢ we
denote the global preorder on P and by B the subcone of all bounded elements. In
order to embed B into a cone, in which the bounded elements become invertible, we
perform the usual construction:
On the cone  PXB of all pairs (a,b) with a eP, be B, we define

(a,b) £ (@.b) iff a+b' < a'+b.
This relation on PxB clearly is reflexive. Let us verify that it is transitive as well: Let
(a,b) £ (@',b") and (a',b") < (a",b"). Then a+b' ¢ a'+b and a'+b" £ a"+b'.
Adding 5" and b to these inequalities, respectively, we obtain

a+b'+b" ¢ a'+b+b" and a'+b"+b < a"+b'+b,

whence a+b'+b" < a"+b'+b by transitivity, As b' is bounded, we may cancel b'
by 4.5 and we obtain a+b" g a"+b, ie. (a.b) ¢ (a",b").
Thus, < is a preorder on PxB which clearly is compatible with the addition and

scalar multiplication. We have an obvious embedding

a— (a0 : P > PxB
which allows to consider P as a subcone of PxB. Moreover, the set Vx {0} of all
pairs (v,0), veV, is an abstract neighborhood system on the preordered cone PxB,

Using the cancellation property for bounded elements again, one proves that
(PxB,Vx{0}) is indeed a locally convex cone. We now pass to its separated
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reflection PXB of one point closures (a,b) as in section 3. For every bounded
element b, the relations (b,b) < (0,0) £ (b,b) imply (5,5) = (0,0). Thus
&.0) + (U.D) = (5,b) = (0,0). We see that (b,0) has an additive inverse, namely
(0,6). We may write shortly @ for (@,0) and -b for (U,b), and a-b for (a,b).
Finally, we writte P-B for PxB. If P is separated, the canonical map
a@a—d : P — P isan isomorphism with respect to the global preorder on P, and
considering this, we may omit the bars: We have embedded (PV), preserving ist
global preorder, into the locally convex cone (P-B,V) in which the bounded
elements form a vector space E =B-B. As we mentioned before (Section 2.5), the
topology on E induced from the symmetric topology on the locally convex cone
(P-B,Y) is given by neighborhoods of 0 in E :
Vo= (Ovv(0) ={beEIb<v and0 ¢ b+v)
={beElbsv and-b g v}
For v € V, these sets are convex and order convex and form the 0-neighborhood basis
for a Hausdorff locally convex vector space topology on E. For an arbitrary element ¢
e E , the respective neighborhoods obviously are
ve=(clvv(c) =ct+y,

Thus, the symmetric topology on E = B-B is the Hausdorff locally convex vector
space topology with the v, , v € ¥V, as 0-neightorho od base. Note that the negative
(hence also the positive) cone is closed in £ by Lemma 3.5.

Until now, we have considered a full cone (P,V). For a subcone Q of P we
may consider its set By of bounded elements Inside P-B we form (-By and we
have embedded Q in a cone where the bounded elements form a vector space
E,=By-B, . Thus we have proved:

4.9 Embedding Theorem. Every separated locally convex cone (Q,V)can be
embedded in a separated locally convex cone (Q",V") in which the bounded elements
form a vector subspace Eg.. With respect to the symmetric topdogy Eg is a locally
convex ordered topological vector space. The embedding is an isomorphism for the
global preorders on Q and Q'.

4.10 Remark. If we start with a Hausdorff locally convex topological vector space
E and if we consider the cone P = Conv(E) of all non-empty convex subsets of E,
the cancellation laws 4.3 through 4.7 are well-known (c.f. Hérmander [7], Pinsker
[12], Radstrém [15], Rabinovich [13], [14], K. D. Schmidt {19]. Also the embedding
of the cone B of non-empty closed bounded convex subsets into a locally convex
topological vector space hasbee n investigated by the same authors. It has been done
in particular detail in [19].
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We want to investigate now separated locally convex cones (Q,V) which may
be represented as a cones of closed decreasing convex subsets of a locally convex
ordered vector space. This representation should be injective and faithful with respect
to the global preorder. It will represent the scalar multiplication as well, but
unfortunately, without additional requirements on @, the addition of unbounded
elements as well as the abstract 0-nej ghborhoods do not seem to be reflected in a nice
way

By 4.9 we may suppose that the bounded elements of Q form a vector space
E, which we endow with the abstract 0-neighborhoods inherited by Q-B,. With the
symmetric topology, £ is a locally convex ordered vector space as shown in 4.8. This
is the vector space that we use. For everya e, let

Cl@={beElbza).
The set C(a) clearly is convex and decreasing. It is closed with respect to the lower

topology (hence also for the symmetric topology), by 3.5. Thus, we have a mapping
a = C(a) of @ into the cone DConv(E) of closed and decreasing (with respect 1o the

global preorder and the lower topology) subsets of £ . Recall that DConv(E) isa
locally convex cone with its addition &, the canonical preorder < and the abstract
neighborhoods via those in E, as described in Example 2.8. Moreover, as the
separated reflection of Conv(E) (Examples 3.12), DConv(E) is separated itself, its

given and its global preorders coincide and are nothing but the inclusion.

Our mapping a — C(a) clearly is monotone with respect to this preorder on
DConv(E) and the global preorder on Q. But this embedding will not necessarily be
injective and an order isomorphism without additional requirements: Q should contain
sufficiently many bounded elements, which already describe its abstract
O-neighborhood system.

4.11 Tight coverage by bounded elements. A locally convex cone (Q,V) is
said to be tightly covered by its bounded elements if for all a,a’eQ and veVsuch
that a ¢ v(a’) there is some bounded element be@suchthat b<ag andb ¢ via’.

Obviously, now, this property will guarantee that a § a’+v for some v e V,
implies the existence of some bounded element b e C(a), but bda'+v, ie.
C(a) ¢ v(C(ah); our embedding is indeed an order isomorphism.

Considering the algebraic operations, we clearly have C(Aa) = AC(a) for A>0.
For the addition, in general, we only can prove C(a)®C(a’) C C(a+a"), but not

equality. Furthermore, our representation is not yet faithful for the abstract
0-neighborhoods of @ and DConv(E). In order to obtain this we shall require the

4.12 Continuous decomposition property. If in addition Q has the
continuous decomposition property for bounded elements
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(CDB) If d isbounded and d ¢ a+a™+v for a,.a’e@, veV then there are
bounded elements b,b'eQ suchthatb < a, b" < a’ and d< b+b'+v.

then for every element d e C{a+a), ie.d < a+a’ andv eV we choose b,b’ as in
(CDB). So, b +b’ e C(a)+C(a), d € C(@)®C(a) by the definition of the operation
®, and indeed C(a+a") = C(a)+C(a).

Now suppose that a < a’+v for a,a’€Q. Then for d € C(a) we have d ¢ a'+v.
Applying (CDB) with g =, this renders bounded elements b'<a’, b <0, whence
b+b'e C(a"), and d < b+b'+v, whence C(a) e v(C(a")) as well. The converse was

shown to be a consequence of property 4.11.

Summarizing this, yields:

4.13 Representation Theorem. Every separated locally convex cone Q which is
tightly covered by its bounded elements may be represented as a cone of closed
decreasing subsets of a locally convex ordered vector space E. This representation is
an isomorphism with respect to the global preorders on Q and DConv(E). It
represents the scalar multiplication and, if Q has property (CDB), the addition and the
abstract neighborhood system as well.

4.14 Examples. Reviewing our standard examples for the properties 4.11 and
4.12, this renders:

—

R clearly is tightly covered by its bounded elements and has property (CDB)
(Example 2.6).

The same obvious ly holds for the locally convex ordered vector space (E,<) as
a locally convex cone (Example 2.7).

As in Example 2.8, let {Q,V) be a locally convex cone with its global
preorder, B the subcone of its bounded elements. If D is any a subcone of Conv(B),
which contains all singleton sets (b}, b € B, then properties 4.11 holds for D:
Suppose A £A'+v forsets A,A’eD, and v eV, ie. there is some a € A, such
that a § a'+v forall @' €A’ Since a is bounded in @, so is {a} in D, and we have
{a) €A, but {a} £ A'+v.

No general statement seems possible for (CDB) in this case.

The same holds for cones of cone-valued functions (Example 2.9) But in
many applications of this we will restrict ourselves to bounded functions anyway, for
which both 4,11 and 4.12 are trivial.
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S. Locally convex cones via convex semiuniform structures.

We want to show that the notion of a locally convex cone can be defined in a
natural way via sermiuniform structures in the sense of Nachbin [10]. For this, we use
the notation Re§ = { (a,c) | there is b such that (a,b) eR and (b,c) €S ) for the
relational product for two binary relations R and § on a set @, and R-/ for the
converse relation {(b,a) | (a,b) €R}; the diagonal is denoted by .. We recall the

following:

5.1 Semiuniform structures. A collection U of subsets of QxQ is called a
semiuniform structure on Q, if the following hold:

(Ul) aC U forevery UeU;

(U2) forall UVelU thereisa We U such that W C UnV;

(U3) forall Uel thereisa Vel such that VoV C U.
Nachbin has called this a basis of a semiuniform structure, as we require U to be a
filter basis only and not a filter.
To every uniform structure U on Q we associate

(a) a preorder defined by a <b iff (ab) el forall U e U; the graph of

this preorder is the set Y= My y U.
(b) two topologies: The neighborhood bases for an element a for the upper
and lower topology are given by the sets
Ulag) ={beQlBa)eQ}, Uel,
@U ={beQl@b)eQ}, Uel,
respectively.
(©) auniform structure Ug= (UNU-| UelU }; the topology associated
with this uniform structure is the common refinement of the lower and upper
topology; it is Hausdorff iff the preorder ¢ is in fact an order,

5.2 The semiuniform structure of a locally convex cone. Let Q be a

preordered cone and V an abstract neighborhood system (contained in some

preordered cone P > Q). For every abstract neighborhood v eV, we put
V={(a,b)e Ox@ |a<btv)

The collection V of all ¥, v eV, is a semiuniform structure:

As 0<v, we have a < g+v forall a, whence (Ul). As V is directed downward, we

also have (U2). Furthermore, we have the property
(U'3) Ao (uv)~ < ((A+Hu)v)~ for all A >0;
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indeed, a< b+Av and b <c¢ +uv imply a £ c+(A+p)v. Choosing w = v/2 in (U'3)
we obtain We W € ¥, whence (U3).
In addition, it is easy to see that all the ¥ areconvex subsets of @xQ, and
(U4) for UeU, A>0, we have AU elU as well.
Finally, if (Q,V) is a locally convex cone, the condition that every element
has to be bounded below, translates into:
(US) Forall ae@Q and U eU there is some p>0 such that

0,2) e pU.

So we have a convex semiuniform structure in the following sense:

5.3 Convex semiuniform structures. Let @ be a cone. A collection U of
convex subsets U COxQ is called a convex semiuniform structure, if U satisfies the
properties (U1), (U2), (U'3) and (U4).

If we start with an abstract neighborhood system V on a preordered cone as
above, the lower and upper topologies on  are precisely the lower and upper
topologies associated with the semiuniform structure V. The preorder associated with
this semiuniform structure coincides with the global preorder on @Q; indeed, (a b) €V
for every veV means a <b+v forevery veV. Thus, the global preorder and the
various topologies on a locally convex preordered cone are all described by the

semiuniform structure V.

5.4 The abstract neighborhood system for a convex semiuniform
structure. Let U be a convex semiuniform structure on a cone Q. We shall embed
Q in a preordered cone P containig an abstract neighborhood system V in such a way
that the canonical semiuniform structure V associated with V is equivalent to the
original semiuniform structure U on Q.

For this, let B be any 'subbasis' of U, which means that for every U eU
one can find Uy,..,UyeB and Ai,..A,> 0 such that MUin.nAUn € U.
Let V be the set of all families

r=(ry)yes Where ry is a strictly positive real number for finitely many

UeB and ry =+ else.

Adjoining a zero (0) to ¥V, we obtain an ordered cone V, with componentwise
defined operations and order.

Let P be the direct sum P = 0@V, with the usual addition and scalar
multiplication. Define a preorder on P in the following way:

x®r<yds if r<s and (x,y) € AU forall A > sy-ry, whenever sy < +oo.

This relation clearly is reflexive. Let us show transitivity: Let x®r < y@s <z@t.
Then firstly 7 <5 <t; secondly, consider any Uwith #y< +ee, and let A > try.
Then there are A 1,A2 such that A =X +Ag, Ay> Sy-ry, Az > ty-5y. We conclude

[N
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that (x,y) eMU and (y,2) € AU, whence (x,z) €AMUAU C (M+A)U = AU
by (U'3). Thus xor < ze:.

Let us show the compatibility of this preorder with the algebraic operations:
Let xor <yos. Clearly, A(x@r)< A(y®s). Let us show that (x@er)+(zet)
os)+(zot ): Firstly, r<s implies r+t < s+, Secondly, take any U such that
Sytty < +oo. Then ry,sy,2, are all finite and for eVery A > (Syt+ty)-(ry+ty) = Su-ry
we have (x,y) e AU. As (z,z) e eU for all e>0 we conclude that
(r+z,y+2) € (A+e)U, whence the assertion.

Now we have proved that P = Q®YV, is a preordered cone. It is easy to see
that V' (identified with {0)8®V) is an abstract neighborhood system on P,

When is x <yeor for xyeQ and reV ?Let Uy,..U, be the members
of B such that ry, is finite. Then

X syor iff (y) SMU; forall ;> ry; and all i,
ie. xsyer iff (xy)e Alry, Uiy, Uy for all A1,
As B was chosen to be a 'subbasis' of the semiuniform structure U, we see that I/ is

equivalent to the semiuniform structure iconsisting ofall ¥={(x,y)Ix< yor].
We summarize:

5.5 Proposition. The notions of an abstract neighborhood system V and a convex
Semiuniform structure U for a cone Q are equivalent in the following sense:

For every abstract neighborhood system V for a preordered cone Q there is a
convex semiuniform structure V on Q which induces the global preorder on Q and
the same upper, lower and symmetric topologies.

If Qis a cone with a convex semiuniform structure U, then one can find a
preorder and an abstract neighborhood system V for Q such that the semiuniform

Structure V is equivalent to U.

As we mentioned above, the condition of lower boundedness for elements of a
locally convex cone translates into condition (US) in terms of the convex sermiuniform
structure. Thus, the two approaches to locally convex cones firstly via a preorder and
an abstract neighborhood system and secondly via convex semiuniform structures
turned out to be equivalent. In fact, in applications the second approach will often
arise more naturally, as it avoids the explicit construction of a full cone containing the
abstract neighborhood system.
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6. Uniformly continuous operators.

6.1 Linear operators. For cones Q and P ,amap T:Q — P is called a linear
operator, if
T(a+b) = T(a)+T(b) forall a,be@ and
T(oa) = aT(a) for all ae Q and a<0.
Note that this implies T(0p) = Op.

62 Uniformly continuous linear operators. In the following let (Q,V) and
(P,W) be two preordered locally convex cones. A linear operator 7:Q — P is
called uniformly continuous or u-continuous for short, if for every w e W one can
find a v eV such that
a<b+v implies T(a) <T(b)+w.

Uniform continuity is not just continuity. It is immediate from the definition
that it combines continuity with respect to the upper, lower and symmetric topologies
onQ andP.

6.3 Remarks. (a) Let us consider on  and P the semiuniform structures
V and W as in section 5, i.e. V is the collection of all
V={(ab)eQxQlasb+v}, veV

and likewise for W. Then a linear operator T: Q — P is u-continuous if and only if
it is uniformly continuous withrespect to these semiuniform structures in the sense
that for every we W there isa ¥e V such that (a,b) €V implies (T(a),T(h)) €.

(b) If Q is a full cone, then a monaone linear operator T:Q — P is
u-continuous, if for every we W thereis a ve V such that T(v) S w. Indeed, if
T(v) <w, then a < b+v implies T(a) < T(b+v) = T(D)+T(v) S T(b)+w.

As an immediate consequence from Proposition 3.8 we haw:-.

6.4 Monotonicity Lemma. Let T:Q — P be a u-continuous linear operator.
Then a < b implies T(a) < T(b), where < denotes the global preorder on Qand P,
respectively.

Since for the original preorder < onQ a <b implies a <b we conclude that a < b
implies T(a) £ T(b) as well. Using the notations of sections 3 and 4 we obtain:

6.5 Proposition. Let T:Q — P  be u-continuous. There is a unique

corresponding u-conti nuous operator
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T': 08, » PR,
such that T(a) =T(a] forall aeQ, where By and By denote the subcones of
bounded elements in Q and P, respectively, and @ and T(a) the closures of a and

T(a).

Proof. Firstly, we observe that under T the image of each bounded element of 0
is bounded in P: Indeed, let a €By and we W. Then there is v eV such that
a £ b+v implies T(a) ST(b)+w. As a < pv for some p>0, this shows
T(a) < pw. Secondly, if a=5 for ab eQ then T(a) < T(h) as well as
T(b) < T(a). Thus, T(_a)' = TTE, and T is well defined; u-continuity is easily
checked. Thirdly, any linear operator on Q'-B_Q obviously is already determined by
its values on Q.

6.6 Examples, (a) Addition (a,b) > a+b is a u-continuous operator from QxQ
into Q. Indeed, given w eV, we choose v = w/2 and we obtain that a < ¢+v and
b<d+v imply a+b < c+d+w.

(b) For fixed A20, the operator a — g - Q — @ isu-continuous.

(c) For every bounded element 5 2 0, the map A Ab:R, - Q is
u-continuous. Indeed, given w eV, choose an €>0 such that b <ew. Then
HsA+e and b2 0 imply pb < (h+e)b = Ab+eh < Ab+w,

(d) As an immediate consequence of (a) and (b) we obtain: For finitely many
bounded positive elements b1s-sby in Q the map

(?ul,...,ln) - Zlibi H Rf - Q
1

is u-continuous.
(e} Let E and F be locally convex topological vector spacesand T:E S F a

continuous linear operator. We extend T to non-empty convex subsets by

defining ’T"(A) ={T(@)!laeA}. In this way we obtain a linear operator

~

T: Conv(E}) = Conv(F) which is readily verified to be u-continuous.
The same procedure can be applied more generally to extend any u-continuous
operator T:Q — P between arbitrary locally convex cones to a u-continuous linear

~

operator T : Conv(Q)— Conv(P ). Extension to the cones DConv(Q) and
DConv(Q) (for their locally conves structures, see Example 2.8), however turns out

to be less straightforward: It will require properties similar to 4.12.

6.7 The cone of u-continuous linear operators. For two linear operators §
and T from Q into P and for A0, the sum S+7 and AT are also linear. If both §

and T are u-continuous, so are S+7T and AT by 6.5(a,b). Thus, the u-continuous
linear operators from Q into P form a cone L(Q,P). We do not intend to discuss
locally convex structures for this cone in this paper.
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7. Linear functionals and the dual cone.

Throughout this section, let ((,V) be a locally convex cone with its preorder
< and the global preorder <. A linear functional on @ is a linear operator W :
0 -R.

71 T he dual cone. According to 6.1, a linear functional Y on Q is called
uniformly continuous or simply u-continuous, if there is a ve V such that

Q) a < b+v implies pa@) € ub)+1.
Every u-continuous linear functional is monotone by 6.4, even with respect to the
global preorder on Q. The u-continuous linear functionals on @ form again a cone
(c.f. 6.7), denoted by Q" and called the dual cone of Q. We shall endow @* with

the topology w(@*,Q) of pointwise convergence of the elements of @, considered as
functions on Q with values in R with its usual topology. (Studying duality theory,

later on we shall considerR  with its symmetric topology, which isolates +ee, and the
resulting finer topology s(Q*,0) on Q* as well.)

If Q is a full cone and |1 a monotone linear functional on @ , then the definition
of u-continuity becomes particularly simple: | will be u-continuous if and only if
thereis a v € V such that p(v) < 1. Proposition 6.5 renders for linear functionals:

72 Proposition For every | e Q" there is a unique 1 €(Q-Bg)* such that
ja-b) = wa)-ud.
If Q is separated then Q* and (Q-By)* may be identified.

7.3 Polars. For every v €V, the polar of v is defined to be the set vy of all linear
functonals |t on @ satisfying (O), i.e.

vg ={peQ® | a<b+v implies p(a) < p(b)+1}
We simply write v° instead of vg, 1f no confusion is possible. IfQ is a full cone,
the definition of the polar becomes particularly simple: vg is the set of all monotone
linear functionals on Q suc h that p(v) <1,

7.4 Proposition. The polar v° of any v eV is a compact convex subszt of Q*

in the topol ogy w(Q*,0).

Proof. Clearly, v° is convex and closed for pointwise convergence in the set of all
functions f:Q — R. Remember thatevery ae( is bounded below, i.e. there
is a real number A,>0 such that 0 < a+A,v. For every § in v° we then have
0 = pn(0) € p(a)+A,, whence p(a) 2 -A,. Thus, v° is in fact a closed subset of the
compact space HaE g [-Aa+e2]  and hence compact.
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It is an important feature of our notion of locally convex cones that with only
slight additional requirements, such as 4.1 1, we are able to prove all of the desired
Hahn-Banach type theorems on the existence of sufficiently many u-continuous linear
functionals. Qur prime model Conv(E) for locally convex cones has plenty of them,
indeed: Every continuous linear functional K on a locally convex topological vector
space £ may be extended by defining

H(A) = sup{ (@) laeA} for every non-empty convex subset A of E.
Thus, we obtain a functional {I: Conv(E) — R which is easily verified to be linear
and u-continuous. For deriving our Hahn-Banach type theorems in general we cannot
apply directly the corresponding results that one finds e.g. in the book of Fuchssteiner
and Lusky [6]; the reason is that in the literature mostly linear and sublinear
functionals with values in R U {-e=} are considered, whilst we have to deal with
functionals which have valuesin K =R U {+o0}. The difference between those two
points of view is essential and not just a question of reversing the order on R. We
have to begin with a few remarks on sublinear functionals:

7.5 Sublinear functionals. Amap p:Q — R is sublinear if
pla+b) <p(a)+p(b) and p(ha)=Ap(a) forall ab €@ and A>0.

A a sublinear functional p is called u-continuous, if there is a neighborhood v eV
such that

O a<b+v implies p(a) <p(b)+1 whenever abe.
Every u-continuous sublinear functional is monotone by Proposition 3.8, even
monotone with respect to the global preorder on 0.

If @ is a full cone and p a monotone sublinear functional on Q, then the
definition of u-continuity becomes particularly simple: p will be u-continuous if and
only if thereisa veV such that p(v) < 1.

7.6 Lemma. Let Q be a subcone of the preordered locally convex cone (P,V).
Every u-continuous sublinear functional on Q can be extended to a u-continuous
sublinear functional on P; more precisely: Let p be a sublinear functional on Q and
veV such that

(0 as<b+v implies p(a)<p(b)+1, whenever abeQ,
then there is a sublinear functional & on P extending p such that

(0" x<y+v implies p(x) <p(y)+1, whenever xyeP,

Proof. Forevery xeP we define
B(x) =inf{ p(@)+A | x <a+Av for some aeQ and A>0 }.

We verify:
()) P is an extension of p: Let x e Q. Clearly, 7(x) < p(x). For the
converse inequality consider any o such that F(x) < o. Then thereis an a € 0 anda
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A>0 such that x £ a+Av and p(a)+A < o Condition (O) implies p(x) < p(@)+A < .
As this holds forevery o > p(x), we infer p(x) <p(x).

(ii) p satisfies (O"): Let xyeP with x <y+v. We want to show
P(x) < p(y)+1. This is clear if p(y) = +e. So suppose F(y) < +eo. For every
o > F(y) wemay find ae€Q and A>0 such that y <g+Av and p(a)+A <o We
conclude x < y+v < a+(A+1)v, Whence F(x) € p(a)+A+1 < a+1. As this holds
for every o > p(y), we obtain p(x) € j(y)+1.

(ifi) P is sublinear: The proofs are similar to the above, and we leave them to
the reader.

7.7 Superlnear functionals. A map g : Q =R U{+ee,-0} is superlinear if
gha) = g(a) forall A20, ae @ and
q(a+b) 2 g(ay+q(b) forall a,beQ suchthatboth g{a) and g(b) are finite.

7.8 Sandwich Theorem. Ler (Q,V) be a preordered locally convex cone. Let
q:Q — R U{+oo,-00} be superlinear and p:Q — R W{+eo} sublinear with
gla) <p(a) for all aeQ. If p is u-continuous, then there is a u-continuous linear
fwnctional W :Q — R such that g(a) <(a) <pla) forall aeQ,
more precisely: If, for some v €V, the functional p satisfies

(9)] a<b+v implies pla) <pb)+1 whenever abe(,
then there is a linear functional W in the polar vg of v such that
g(a) < w(a) £ pla) forall ac Q.

Proof. We may suppose that @ is a full cone. In fact, by Lemma 7.6 we canextend
p to a full cone containig @ without disturbing hypothesis (O), and g may be extended
by defining its value to be -eo on the new elements. Now we consider the subset of Q
Qr={aeQlplay<+e).

As p is sublinear and monotone, Q; is a decreasing subcone of Q. Let us show that @,
is a face of @: Let a,b be elements of Q such that a+b € Qf, i.e. p(a+h) < +oo.
Recall that in a locally convex cone every element is bounded below. Hence there is a
A>0 such that 0 € a+Av, whence b <a+b+iv. As p satisfies (O), we infer that
p(b) < pla+b)+A, whence p(b) < +eo,ie. be(y.

On @, the sublinear functional p does not take the value +ee, and we may apply
the Theorem 12.5 ‘in [6] which assures the existence of a monotone linear functional
K on @, with values in R U{-eo} such that g(a) < pu(a) < p(a) forall ae@,. By (O)
we have p(v) €1, whence p(v) < 1. This shows that in fact i does not aitain the
value -0 : As every a €Q is bounded below, there is A,>0 such that 0 <a+A.;
ie. 0=p(0 <u(a)+h, and p(a) =-A,. Weextend p toQ by H(a)=+ee for
all aeQ;. As @, is a decreasing face, | is still monotone and linear, and obviously
g(@) < u(a) < p(a) holds for all ae Q. Finally, p(v)<1 implies pevg.
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7.9 Extension Theorem. ¢ Q be a subcone of the locally convex cone r,v).
Then every u-continuous linear Junctional on Q can be extended to a u-continuous
linear functional on P; more precisely: Forevery p e Vg thereisa [ evg such
that L= i, .

Proof. By Lemma 6.5 we may extend i to a sublinear functional p on P which
satisfies (O) for all a,b eP, We define a superlinear functional qon P by
a) if ae
_ ={ Hia) 0

-0 else.
By the Sandwich Theorem 6.6 we find a linear functional [ e vg such that
g(a) < {i(a) <p(a) forall aeP, As gla) =l(a) = p(a) forall ae Q, the functional j{
extends 1.

7.10 Weak separation. Ler a.beQ with b0 and let v eV such that a £ b+v.
Then there is a linear functional W on Q such that
WMa)z1l and HO) <1 whenever x < b+v;
more generally: X)) S u@y)+1 whenever x < y+b+v.

Proof. Let w = b+v. We may suppose that w eV, as 520. Let 0, = {aal =0},
and define Ho:Q, = R by
Ho(cta) = a0 inf{A>0 1 g < Ay},
Then ,is a linear functional on Q, contained in the polar of w in Q:. By the
extension Theorem 7.9, Mo has a linear extension K to O which is contained in the
polar of w in Q*. The extension (L has the desired properties.
In order to obtain strict separation, we have to reinforce the hypothesis:

7.11 Lemma. Let veV, letq be g v-bounded and b an arbitrary element of Q
such that a £ b+pv  for some p>1, then there is a linear functional pevg
such thar pia) > up)+1.

Proof. We may suppose that @ is a full cone. First we choose an o such that
0 < b+av. We then have
a+av £ b+av+ov whenever 1< g < v,

Indeed, the inequality g+av £ b+ov+ay would imply a < b+pv for all p >0C by
the cancellation Lemma 4.2, Replacing a by a+oav and b by b+av in 4.10, we may
find a linear functional v € Q* such that

i) via+ov) 2 1 and (i1) V(b+av+ov) <1,
From these inequalities we conclude that

v(a)+ov(v) = v(b)+ov(v)+ov(v), whence
(iii) v(a) 2 v(b)+ov(v).
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From (ii) we also get that v(v) # +oo. Indeed, if v(v) = 0, then we choose A>0 such
that @ <Av (which is possible, as a is supposed to be v—boundéd) and we get
v(a+av) € v(Av+oav) = 0 which contradicts (i). So (iii) implies

(iv) v(a) > v(b)+v(v).
Now we put 1 =v/v(v). Then (iv) becomes W(a)> u(b)+1 and p is contained in
the polar of v as {(v) =1.

7.12 Strict separation. The separation property as formulated in the preceding
lemma will in general not hold for unbounded elements ¢ in an arbitrary locally
convex cone (Q,V). This property, however, turns out to be crucial in the
investigation of Korovkin type approximation.

We shall say that (Q,V) has the strict separation property , if

(SP) forallabeQ and veV suchthat a{, b+v, i.e a £ b+pyv for some
p>1, there is a linear functional | evg such that wia) > pu(b)+1.

(Note that p(x) < u(y)+l1, whenever x <y+v, as [ € vg.) In view of the
preceding lemma, we will obtain strict separation if we have sufficiently many
bounded elements in Q. This will be guaranteed by property 4.11:

7.13 Separation Theore m. Every locally convex cone (Q,V) which is tightly
covered by its bounded elements (c.f. 4.11) has the strict separation property (SP).

Proof. By (4.11) choose a bounded element a’<ga such that @’ £ b+p'v for some
p'>1. Lemma 7.11 yields a linear functional | €vg such that plad =z wd)+1. As
pa) 2 uia"), we have the desired result.

The Sandwich Theorem and its corollaries will provide the main tools for
further studies of the duality theory of locdly convex cones. Korovkin type
approximation theorems may be derived using the precedimg separation results. We
shall deal with those subjects at a different place.
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