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ORDRES DE NIVEAU SUPERIEUR, EXTENSIONS ET CORPS CHAINE-.CLOS

par

Danle1 1 e GONDARD

(Universit6 de Paris VI )

U TIONS POE INTNTIRE£]

1 - Notion d'ordre de niveau supdrleur.

11 s'aglt de 1a notion d'ordre de niveau sup6rieur d6finie par E. Becker, en

1978 dans [ Be 2 ] a 1 ' 1 .M.P. A. , sur un corps commutatif K ,

rl

C'est un pr6ordre T de niveau 2n (i . e, T+T cT , T. T cT , Kd cT) , propre

(i . e. -1 dT ou de mani6re 6quivalente T n- T ; {0} ou encore car K ; 0
et T + K) , paxima1.

L'ordre sera dit de nlveau exact 2n si de p1 us

De te1 s ordres ne peuvent exister que si car K = 0 .

En fai t on a une premldre caract6risation des corps qui admettent des ordres de

nlveau sup6rieur :

Los +„ro£6 propr{dtd$ c{-dessous sont 6qu£vatentes

( i ) K a&net des ordT es de niveau 2r1

( I1 ) -1#EK2 (Oa [K2n = = {
p=1

nrl
car K ; 0 et EK2“ + K

-1 d =KZ

(Xl ,. .., xp)c KP})

( IiI )

(Iv)

Par Za propri6t4 (iv) on d6duit que leo corp8 admettant des arches de niveau 2n

80nt e=actement tes corps ordonnabtes .
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On peut alors 6tudier 1 e niVeau d'ordre n , s, d ' un corps non ordonnab1 e :

on appe11era Sn 1 e p1 us petit entier te1 que -1 sol t somme de s„ pulSsances

2n-lemes dans 1e corps . Les probldmes sont alors de d6termlner 1e nlveau d'ordre n

d' un corps non ordonnab1 e donn6 et de d6termlner en g6n6ra1 que1 s types de nom-

bres peuvent 6tre des n{veaux d'ordre n de corps non ordonnables (pour n=1

on salt que les s 1 sont des puissances de 2) .

Les ordres de niveau sup6rleur sont en relation avec les sommes de pulssances 2n

dans 1 e corps , p1 us pr6cls6ment on a :
n

£Kz = n p oO p d6crit I'ensemb Ie des ordres de niveau 2H . (de niveau

exact ou non, dorIC en fait tous les ordres de nlveau exact 2m avec m< n) .

Th6oreme Fondamenta1 -

Les ord res de nitlean 2n sont; don71Z s par les parties PC K t ettes que :

p + K # 0 ep ) p+PcP

b = p - {0) est un sous groupe de R at K/p e8t cyctique avce I K/pI

d£tl£8e 2n

L1 ordre est de nil>eau exact 2n si IR/ dl = 2r1

DANS TOUTE LA SUITE, K SERA UN CORPS COMMUTATIF, DE CARACTERISTIQUE O ,
,>n m P on

ORDONNABLE ET EK2 DESIGNERAL'ENSEMBLE u { E x T / (x1 ,. .., Xn)e KP) .
n- 1 1 = 1 1 & r

2 - Exemples

a) K = R((X))

pour tout i > 2 :

: am > 0 et

est un ordre de niveau 21 de K

(21) „ ,m< O ,t „ , 2l-1 (21)}
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Ttl60 r6me

S oit K un corps ordonnabt e , ato rs

ou tout o?dre de n£ueau sup6rieur est un ordr e

ou pour tout neIN {Z euist e des orcire s de n£uea tt eaaet 2n

11 s'aglt alors de d6term Iner quels corps rent:rent dans 1 ' un ou I'autre des cas

cl -des s us .

b) Parm1 1 es corps n 'ayant pas dlordre de niveau superieur distincts des vrais

ordres on peut clter

- Les corps ordonnables n'ayant qu'un seu1 ordre

- Les corps ordonnables dont tous les vra is ordres sont archlm6diens

- Les extensions alg6briques de corps n'ayant pas d'ordre de niveau sup6rieur.

an a dorIC par exqmple les corps r6els clos , et les corps de nombres alg6briques

r6els qui ne peuvent admettre d'ordre de nlveau sup6rieur distinct des ordres

usue1 s .

Les r6su1 tat s cj-dessus d6coulent en fait du th6or6me suivant :

Th6ordme

Soit K an corps ordortrtabZe .

:.cs pr'opr£6t6s c£-dessaus sont agu{vatente8 :

(i ) Tout ordre de nil>eau supdrteur est un ordre

(ii ) Tout serni-ordre nor7rle de n£oeatl supdrteur est un orxlre

( iII ) Taut arr72eabc de uaZuation rdeZ a un groupe dee uaZeur8 2-divisibLe

( Iv) EK2 = EK2 paur taut n

(V) [ Kan = [K2n+ pabLr an n

an peut dorIC dans les corps n'admettant pas d'ordre de niveau superieur non

trivia1 s'int6resser a 1a d6composition des elements totalement pos{tifs en

sommes de puissances 2n (nombres de puissances intervenant, constructibillt6, . . . )
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c ) Corps admettant des ordres de nlveau superieur non triviaux

- Tous les corps non de Pasch (ou non S.A.P. ) par exemple Q(X)

- Mais certalns corps de Pasch peuvent admettre des ordres de niveau sup6rieur

non triviaux par exemp1 e R( (X) )

- Q((x)) .

Enfln sl un corps K admet exactement deux ordres (vrais) et des ordres de ni veau

sup6rleur non triviaux, alors 11 exlste acK te1 que

( i ) p+ ; £K2 Ua E K2

p- = £Kz u - a E Kz sont les deux ordres de K
„n „n- 1 „n

(Ii) Pn = EK2 u - a2 EK2 est pour n>2 1lunIque ordre de njveau

exact 2r1

(iII) EK2n-1 ; EK2n u ain- EK2n pour tout n>2
n

(iv) £K£ est un pr6ordre de niveau superieur teI que pour tout sous

groupe maxima1 U , sur Ek2 , UU {0} est un ordre

3 - Relations avec 1a th6orie des valuations

Soit K un corps ordonnable, p un ordre de niveau n .

Remarquons que QC K ,N'c b et dOIIC Q+c p .

On pose :

U ; A(Q,p) = {a eK : 1 bc Q+ , bt a ep}

Ha ; I (Q,p) = {a eK : Vb€ Q+ , bt acp}

On a alors 1 e th6ordme dCI a Becker suivant.

Th6ordme

1) A( p) est un annea tI de vaLuation de K d 1 ideal rrn={rnat I (p) .

2) P £ndu£t sur Ze corps re 8iduel k = ACp)/I (p) &in ordre (vra£ ) E archiwddien.
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ACp) est done r6et puisque k est ordonrrabte

(P = {a + 1(P) „„' a€ ACP)'' P)) .

an dira qu' un anneau de valuation A est compatible avec p et on not:era A-p

sI 1+1 cp .

Alors $ est un ordre de niveau superieur de k = A/I et 1e nlveau de p est
inf6rieur ou 6ga1 au n{veau de p .

(DorIC A est ree1 car k ayant un ordre de niveau sup6rieur est ardonnable) .

Un +h6ordme re1 ie alors ACp) et 1 es anneaux de valuation compatibles avec p :

Th6oreme :

Un arlneau de valuat£arr A est caKpatible avec p si et seulement si ACp) CA .

4 - Une autre pr6sentation des ordres de niveau sup6rieur

Dans le cas des ordres vra is , si p est un ordre donne sur un corps K on peut

d6f Ini r un homomorphlsme an du groupe K dans 1e groupe { t 1) par an(x) = 1

si xc P est an(X) ; -1 si xe -P

On remarque que 1e noyau de cet homomorphlsme est additivement fenn6, 1.e.

sj ap(x1) = 1 et ap(x2) = 1 a lars ap(xl+x2) = 1.

Inversement si a est un homomorphisrne de K + B2 = {+1, -1} , avec Ker a
additivem8nt ferm6 alors

p = Ker a u {0) est un ordre sur K .

On peut effectuer une pr6sentation analogue pour les ordres de nlveau 2n

DefinItion

On appe11e signature de niveau 2n un homomorphisme du groupe k dans

u,, * {ZE a / 22n ; 1> , dont 1e noyau est additi„,me,t fe,„d.

La signature x sera de niveau exact 2n si 211 est I'ordre de Im x .
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Theoreme [ B - Ha - R I .

Un sous-' ensembLe P CK est un clare de nEt>eau (Resp . de n£ueabz e=act ) 2n si

et seuZe#7ent si p est Ze nope&t d’une signature de nit>eatt (Resp . de niveau e£act; )

2n

Remarquons que x n' est unique que dans 1e cas des ordres vrals ; dans les

autres cas xl et x2 d6termlnent 1e m6me ordre de niveau sup6rieur si et seu1 e-

ment S1 11 exlste T 9 automorphjsme de Upn 9 te1 que TO Xl = X2 .

Notations - On pose alors pour toute sIgnature x de K :

A(x) = A(Ker x -J {OI) = ACP)

I (X) = {ac K 1 Vnell ; } tac Ker X }

( i ) Alors A(x) est un anneau de valuation d'id6a1 maxima1 1 (x) . Le

corps resldue1 A(x)/I(x) est ordonnable.

(ii ) x induit 1a sIgnature d' un ordre archim6dien p de A(x)/I (x) via

Kx) ' x(£) s e€ A(x) (L'r'ites de A(x))
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Ordres de Niveau superieur et Extensions

So it L/K une extenslon du corps K .

Soit p un ordre de nlveau sup6rieur de L ;

Alors pn K est un ordre sur K et 1e niveau exact de Kn p est inf6rieur ou

6ga1 au niveau exact de p .

En effet on a K/Kn p '- L/p donc K/Kn p ext cyclique.

Le niveau des ordres ne peut dorIC que crottre lors des extensIons de (K,p) .

D6fin{ tion I1-1

On ait que P est w'a e=teTbBion fidlle de K£ R\ ai lee 71iUeau= e*act6 d' P
at K np sent aga&u done si jl : p 1 = [ K : Kn p ]

Si on adopte la pr6sentatlon avec les signatures on obt;lent : Soit K un corps

muni de I'ordre de nlveau sup6rleur PK . Sol t x une sIgnature te11e que

PK = Ker x , alors pour toute extension fidele (L ,PL) de (K,PK) iI exlste

une signature x1 de L te11e que :

xl(L) = x(K) , Ker XL = PL et

XLI
K

Toutes les extensions ne sont pas fiddles :

X

Exemple 11-2 - K = Q(X) est non de Pasch et a dOIIC des ordres de niveau exact 2n

pour tout n . Notons Pon un te1 ordre alors tous les P9n nQ sont I'ordre
usue1 de Q donc de n{veau 21 , puisque Q nla que llordre usue1 coalne ordre

de niveau sup6rieur.
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Exemp1 e I1-3 - Sol t K ; IR( (X) ) et L = KG,/7) (ou L = IR( ( Xl/2) ) ) .

Sur K 11 existe deux ordres usue1 s Po et Pl te1 s que Xe Po et -XC Pl et
P„ et P1 6tendent I'ordre de IR .

Po s’6tend en deux ordres vrals sur L , mais Pl ne s ' dtIend pas en un ordre
sur L .

P1 s'6tend au seu1 ordre de nlveau 22 de L qui est expllcltementI. :

: am > 0 et

am < 0 et

(4) au

(4))

Ici de manidre g6n6ra1 e I'ordre Pm de nlveau 2m , m >1,s'6tend a 1 ' unique

ordre de niveau 2m+1 de L ; 1e n{veau ne peut que croltre.

La th6orie des extensions des ordres de nlveau sup6rieur a dtd d6velopp6e par

Becker [ Be 2 ] puis simplifiee et amelior6e par Harman et Rosenberg [ H - R]

Th6ordme I1-4 -

Soit P un ordre de 72{Dean e=act 2n sur Ze co?ps K .

Solt L une eatens£on queZconque de K .

Les conditions suiDantes sont agu{Datentes :

( i ) p a(bnet une entension fidate p & L
n

( I1) T ; {/tuBes a1 xf 1 aj€p ' xjeL} est un preordre propre

(III ) -1 $ { . E. aj xf jai ep ,xj€ L }
finies

D6monstra tion

(ii ) + (iii ) est dvi dent car T est toujours un pr6ordre.

car T est 1e pr6ordre de niveau 2n engendr6 par p et donc

Tc' J . sl T n'etait pas propre alors T = K et auss{ $ = K ce

quI est imposslble.

(1) + ( iI)



D. Gondard

9

Si T pr6ordre de niveau 2n est propre alors tout ordre p te1

que TCB est une extension fid61e a cause du plongeaent

K/p + L/ i

(I1) - (1)

Remarque sur (iii )
n

On a dorIC -1 # E:xi , dorIC i1 existe bien un ordre de niveau (non forcement

exact) 2n sur L , mais c1 est en fait beaucoup p1 us car les a1 ne sont pas
„II „n

forc6ment dans EK£ ( E Kc est seulement contenu dans p) et p est un ordre

de niveau exact 2n

Dans la suite de ce S nous a11ons chercher quand il peut exister des extensions

fldeles de (K,p) pour une extension algebrique L de K .

Th6oreme I1-5

Soit K un corps lmm£ d 'u7t orae ae 72 iaea&t 211 , p

Soit L une entension atgdbr£ciw de K

Les propr{6te8 suivantes sont 6qu£vatent;es :

( i ) £Z e=iste une e=tension fidate (L,p) de ( K,p)

(ii ) pour toute sous e£tens£on finie F , Kc FC L , £Z e=£ste une entension

fiddle (F, PF) de (K,p)

(1) - (I1)
n

est dvident (sljlexiste F te1 que -1 et al xi , al ep et xj€ F ,
alors c'est aussi vrai dans L) .

n

En effet d'apr6s 1e Th6or6me I1-4 sl -le fIile al xf avec ale P

et xI cl alors -le IcI% InI al xi avec aiG P et xIeFI ,
FI extension finie de K te11e que les {xi }{ cI solent dans FI ,
ce qui est impossible.

(ii) n (1)
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Th6or6me I1 -6

Soit P an ordre de 72{Dean 2n du corps

So'£t L une entension atg6brique de K .

AZors ( K,p ) adrnet une e=tension fiddle

( 1 ) [ L : K 1 est impair

( 2) L est conterru darts Za ct6ture

(ct6ture pythago?£c'tenne k de

st a et b son I; darts k ,

K.

(L , p) dans les cas sll£v©tt s

pythagoricienne de K

K est d£finie par

a2+b2 ,,t dans t)

De plus dans ces detr= cas on a cta£rement

n

[ Kc2rlEL n K =

La d6monstration ut:11 lse dans 1 es deux cas

1 e lemme donn6 cl-aprds et dont 1a preuve trds technique peut 6tre trouv6e

dans [ Be 2 ] .

Lemme I1-7

Solt p un ordre de nlveau sup6rieur de K , compatlble avec 1a va1 IIation v

soit p I'ordre indult sur 1e corp r6sidue1 k .

Soit (L ,v) une extenslon de ( K,v) avec corps r6sidue1 1 .
Si (i ) e(v/v) est impair

(ii ) B ' est une extension fiddle a I de B- ,

Alors p admet une extension fld61 e pal et p = B'

D6mons t:ration

Par 1e th6ordme 11-5 iI sufflt de faire 1a d6monstration pour L/K algebrique

fi nie.
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Cas 1 . Soit v la valuation associde i ACp) .

On salt d6ja que 6 est un ordre de k

Les extension v, de val satisfont

: eI fI ; [ L ; KI dOIIC

[ e{ fr : 1 modulo 2

On peut dorIC trouver une extenslon v avec e et f impairs .

Alors (L, v) satisfait les conditions du lemme I1 .7 et dorIC p peut

6tre 6tendue a un ordre de I'extension impaire I .

Cas 2 . D'apr6s 1a constructiqn de 1a c16ture pythagorlclenne 11 est sufflsant

de CQnsid6rer 1 e cas L = L( 7l+a2) .

On prend v la valuation associee a ACp) et k 1e corps residue1

correspondant .

Soit (t, v) la c16ture hensellenne de (K,v) .

Alors si 1+a2€X2 , v est totaleaent decompos6e dans L c'est-a-dire

que e = 1 , f = 1 , g = 2 .
Autrement a doit etre une unite de .X , et 1+a2 # ka

Dans ce cas L est une extension non ramifi6e et I = kG/1 + a2) . On a
aIQrs les condltions du lemme I1 .7 quI sont v6rif16es .

Pour termi ner ce paragraphe donnons 1'6nonc6 ci-dessous qui mont:re une 1 imItation

dans 1e nombre possible des extensions fiddles .

Th6ordme I1 .8

Soit L une e=tertsiorr atg6brtque finie de K aIIce p were de nit?eau sup4rteur

donne sur K .

Ators Ze mantua d1 antensions fidale8 cb ( K,p) a L est inf€rteur on dgat a

IL : K] .

La d6monstration tr6s longue et technIque peut etre trouvee dans I Be 2 ) .
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Ill - CORPS REELS CLOS GENERALISEsI
Wnn==n•==nUn

Par 1 e lemme de Zorn 1 1 exi ste une extensIon alg6brique r6e11 e maximal e

admettant une extension fidd1 e de I'ordre de nlveau sup6rieur p , soit

(R , F) c16ture r6e11 e g6ndralis6e de ( K,p) .

Bien sar si p est un ordre habltue1, on retrouve 1 a c16ture r6e11 e

usuelle et 'b = RZ

t

Th6or6me II1-1 (6nonc6 de Lam [L ] )

Sett (R,I) Za c16ture rgeZZe g4ngraZ£sde de ( K, p) auea p ordre de n£ueau

e=act sup6rt eur oa dgaZ a 2z . aZors on a Zes prot>r igt 68 suivantes :

(J) R a e=actemerlt dew (vrais ) ordres Q at Q 1 et pour tout m> 2

an ordre unique de nit>eau e=act 2m

G) Si R1 et Ra sent des ct6tures r4eZZes (des OrMe s ) de (R,Q)

(R ,Q 1 ) re$pectivernent aZors

R = R.lIR, .

a une vaLuation hensdZ{enne atiec corps r6siduet ?deZ ctos .

est pgthagor{c£en pour tout m (R2m+R2m = R2 )

nta pas cite=tension de degr6 impair .

et

Donnons quelques indications sur 1a d6monstration des propriat6s G) et a) ,
1 e reste pouvant etre trouve dans [Be 2 ]

pour G)

Sol t & une extension fidd1 e de p a R , ,et soit v 1 a valuatIon sur R

associ6 a A(}) . D 'apr6s 1 es maximal ltd de (R ,B) , v est henselienne et

1e corps r6s{due1 correspondant est r6e1 clos .

pour @) :

So it X2 + y2 eR. Pour montrer que cec 1 est une puissance 2n on peut

supposer x = 1 et yeA(B) . Si ye I (B) , c'est termine puisque

1 + 1 (i) est 2-divisible. Supposons dorIC y fI (i) . Le corps r6sidue1
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dtIant r6e1 clos 1 1 existe une un ltd z te11 e que 1+y' = {+z‘

avec icI( 1). Alors l+y2 ; z2 (l+z-2nl)€z2n(1+1(}))CR2n et
cecl tIermine 1a demonstration

Remarquq : on aural t PU tenter de d6dui re @) de a) maI s e) n 'entraTne

pas a) . Si Rl et R2 sont des sous corps ree1 s clos de Q induisant

des ordres dl ff6rents sur R1 n R2 , Rosenberg a PU montrer que Rl n R2

n ' est pas pythagoricien pour tout m> 2 .

La question nature11e qui se pose alors est de regarder s ' i1 y a une certaine

unicit6 de ces c16tures r6e11es . Malheureusement en g6n6ra1 deux c16tures

r6e11 es g6n6ra1 i sees de ( K,p ) ne sont pas K-isomorphes . Aux paragraphes

suivant nous Introduisons d 'autres notions pour essayer d'obtenir une sorte

d'unic1 td .

Pour terminer cette partie nous a11ons citer quelques caract6r{sations qui

permet;tent d 'obtenir des c16tures r6e11 es K-isomorphes .

Th6ordme 111-2

Soit K an corps rrrbtrt£ aturt ordre de n£oea tc sup6r£eur p. So£t Rl et

R2 debt= ct6tures recItes gdndraZ{sZes de ( K,p) .

aZors Rl et R2 sont K-£somorphes si et seuLement si pour tout ncH ,
Rf n K = RI n K.

Remarquons que si P est un ordre usuel (niveau 21) a1 ors 1 es c16tures
n n

r6e11es Rl et R2 v6r jf lent Rf = R: et Rg = RS , pour tout n> 1.
Donc Rf n K = RjnK = P et Rg n K = Rgn K = P ce qui montre bIen I'un Ic ltd

des c16tures r6e11es dans la th6orie classique d ' Art in-Schre jer.

Th6ordme II1-3

Soit K an corps , p url ordre de niuea&I 2n aDec n > 2 donn6 , ators

debt= oZOtures reette8 ggnZraZ£sde6 de (K,p) sont K-£60rnorphe$ si ef
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3euterr,enb sE IB/ dl =2 on B dd,Lane Z, groupe de, paZ,u,s de Za

uatuatton v assoc£6e d A ( p ) .

Th6oreme 111-4

Soit K un corps . Un ordre p de n£uea tt arb£trair e a une ct attIre

rdeZZe gdndraZ£sde unique a K-£somorph{sme pres si et seaZement; si pour

toute LUZ La+ion rd,ZZ, ,Hr K de groupe des vaLe„r, B on a IB/ # 1<2 .

Un corps de Pasch v6r{ fi ant entIre autres condItIons ce11 e du th6ordme II1-4 ,

on en d6dul t que tout corps de Pasch , admet pour tout ordre de nlveau

supirieur une c16ture ree Ile g6n6rall sae unique '

(on rappe lle que d 'aprds 10-11 de [L ] un corps ordonnabl e K est de

Pasch sl et seulement sI les deux conditions suivantes sont r6alis6es

( 1 ) pour toute valuation r6ell e sur K de groupe des valeurs b

on a I B// I<2

(2 ) sj IB/621 =2 a1 ors 1 e corps r6sldue1 correspondant doit avol r un seu1

ordre ;

et al rappe11e que pour un corps ordonnab1 e etre de Pasch 6quivaut a 6tre sap) .

On obtient dorIC ai nsl que IR( (X) ) par exemple qui est ordonnab1 e et de

Pasch admet pour tout ses ordres de tout nlveau une c16ture r6e11 e

gendra1 i sae unIque a IR((X))-isomorphi sme pres .

Th6ordme II1-5

St Ze corps K muni de t t ordre de nit;eau 2n , n > 2 , adrnet pLus a tune

cLasse dt£somorph{sme de cZ6tures r6elItes g6n6ral:{s6es aZors it en’adnlet une

infinit;a .

C'est par exemple 1e cas de RCX , Y) qui admet dOIIC une infinite de c16tures

r6e11es g6n6ralls6es pour chaque ordre de niveau sup6rieur 2n avec n> 2 .
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IV - CHAINES D'ORDRES DE NIVEAU SUPERIEUR ET EXTENSIONS DE CHAINES

Les notions et r6sultats de cette partie sont essentie11ement cius a Harman et

peuvent etre trouv6s dans [Hal .

D6finitlon IV-1

Sol t K un corps ordonnable. On d6finit une chaTne de K, not6e

(1 ) Po et Pl soot des ordres (vrais ) distincts .

(2) pour tout i > 2 , Pj est un ordre de niveau exact 21.

(3> pour tout i> 1, Pi u-Pj ; (pI_In P,)u - (pi_In P,).

(Pi ); par

Fxemp1 e IV-2

Soit K = IR( (t) )

P, = {jEm aj tJ ja„ '0}

P 1 = { j : m a j t j I a m > 0 s j
m:

<0OU a
m

(2)

si m : 1 (2 ) }

Vi , i > 2
aa

a > 0 siP a= { E
rn

J =m

a < oOU
m

m : 0 (21 )

si m : 21 -1 (21 ) }

niveau exact 21.Vi > 2 P{ est un ordre de

11 est clai r que Poo pon Pi_l3 Po'l Pj .

V6rifions 1 a condition (3 ) .

So it xe Pj_1 rr Po . Alors 1 e premIer terme non nu1 de 1a serie a un coefficient

am > 0 et m : 0 (21-1 ) , do„c m = 121-1

St X = 2p alors m = 2p2l-1 : 0 (21 ) et xc pi .

Si X = 2P+1 alors m = (2p+1) 2l-1 : 2l-1 (21 ) et -xc pI done xc -PI .

On a dorIC bien xc P{_1 n Po + xc P{ ou xc -Pj .

De meme si xc - (PI_1 n Po) , -xe (Pi_1 n Po) et -xe (Pi u -PI ) par le raisonnement
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pr6c6dent et flnalement xc -PI ou xe p

Donnons pour commencer quelques th6ordmes mont:rant des cas oO I'on peut avoi r

1 ' existence d ' une chaTne d'ordres de njveau sup6rieur.

Th6ordme IV-3

Si p est an or(ire de nit>eau e=act 2n aDec n> 2 aZor8 £Z e=£ste bme cha£ne

aPec Pn = P(P, )j /o

11 exi ste dorIC des chaTnes d'ordres de n{veau sup6rjeur dds qu ' i 1 ex i ste de

vra js ordres de n{veau sup6rleur.

Th6oreme IV-4

Soit; K un corps rmlni :e dean vra£s ordr es Po et Pl tolls delta compatibt es

auee une vaLuation v et tet s que Po = B1 dayt6 Ze corps r68£duet k .

4Zors £Z eH£s£e une ch,tn, (Pl ): d’,,d,,, d, „ i„,,a ,npd„i,u, ,,rr,„,r,g,nt

par Po et Pl.

Ces deux th6or6mes sont obtenus comme coro11a{res du th6or6me IV-5

suivant et dont 1 es demonstrations se trouvent dans un prepri nt [Ha-R ]

apparemment impossible a ot)ten ir. .

Th6or6me IV-5

So£t K &In corps , v une DaZuat;{on rgeZZe sur K et n un ent£er sup6rLeur

on ggaZ a 1.

Ator s £Z e=iste un £somorph£sme ;

O : x2„(K/(1,i)) = x2,(k) * x2„< g).

tel que si 0(x) = (1 ,P ) ator$ ker x = Ker T

De pLus X ddtewn£ne un ordre de K si et seuZement; si Tr det ennine un
ordre de k
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(La notation x n(G) desi one 1e groupe des caracteres de G dans CA
2 2

c'est-a-dire Hom(G ,C n ) oD C „ est 1 e groupe cycll que multiplicati f
2 2

d 'ordre 2n ; Rappelons que compte tenu de la pr6sentation des ordres de

niveau sup6rieur a I'aide des signatures , PC K sera un ordre de niveau 2n

si et seulement si p est 1 e noyau additivement ferm6 d'un x de x „ (K) . )
2

Th6or6me Fondamenta1 IV-6

Sett (P1 ): une cha£ne du corps K. 4Zors ZZ arista une uaZuaf£on v

compatible atiee cha£pe Pi tette que Les Pl co€ncident tolls et sont an
or(Ire arch£m6dien de k .

La demonstration est longue et technique (2 lemmes et 3 etapes . . . ) et

utilise signatures et valuations .

Remarquons que si (Po Pl P2 . . . ) est une chaTne du corps K al ors

(P1,Po,P2 , . . . ) en est une 6galement .

Un des int4rets des chaTnes sera de pouvo1 r obteni r au S .V une notion de

c16ture unique a K-isomorphi sme prds ; Mais on a aussi des r6sultats p1 us

raffin6s , par exemple sur 1 es sommes de puissances comme 1e mont:re 1e

th6orame ci-dessous :

Th6or6me IV-7

So it K an corps ord07mabte et n> 1.

az,,, £K2 ; n ((„d,„ d, K) u{,rd„, d, „i„„, „,Ct 2n de K}) .

Rappel ons que pour un entier m quelconque Becker avait obtenu que

E K2m = n ( { ordres de niveau 2m de K})

ma is icI de niveau exact ou non ce qui donne beaucoup d 'ordres possibles .
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D6monstration de IV-7
n

(e) L ' inclusion EKz cn((ordres de K}u(ordres de nlveau exact an de K})
est 6vidente .

Cb) Sol t aeEK2 Oonc a taut ordre de K ) mai s te1 que a $ EK2

n

On va montrer qu ' ll exlste un ordre de ni veau exact 2n qui ne conti ent pas a .

D 'aprds 1 e r6su1 tat de Becker iI y a un ordre p de niveau exact 2m

avec 1 < m< n te1 que a $ p et par 1 e th6ordme IV-3 i 1 existe une

chaTne (Pl ): avec Pm = P. Donc ae Po et a $ Pm . Parla condition

sur 1 es chaTnes Pm+1 u - Pm+1 ; (Pm-a Po ) u - (Pmn Po ) on dedui t a # Pm+1

En lt6rant a9 p„ . C>n a dorIC I'lncluslon
rl

EKz 3n({ordres de K}u(ordres de niveau exact 2n de K})

On peut alors d6flni r une notion d 'extension de chaTne comme suit.

D6fi nition IV-8

Soit K an corps rrrurli d lune cha£ne (pl )n . Soit L une e=tension de K.

O n dE r a q A e ( L 9 ( P k ) I: ) e s t u n e e a t e n 6 i o n de a haCKerZ dazed e ( K ) ( Pl ) : )

St on a

IJ (pk): ,,t „„, ,ha£r„ d, L.

2) Vl em , p\n K = P{

(Notons que chaque (L,ph) sera une extension fjdele de (K,Pi) au sens

donna par Becker) .

Pour terml ner cette partie donnons deux 6nonc6s sur les extensIons alg6briques

de chaTnes .

Th6or6me IV-9

Soit L une eztens ion de degr6 impair du corps K. Ators pour tout;e

,h,£r„ (Pl ): d, K , iZ ,,i,t, „„, ,at,„,i,„ fidel, (L,(pk):) de

(K,(p, )':) .
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Th6ordme IV-10

S,it L ; K(a) ,„,, ,€K\K2. az,„, „„, ,h,a„ (Pi ): de K petIt

s 16terrdre fiddtement d L si et 6euZement si ac ponp1. De pLus EZ y a
ators e=actement debt= entensions fidates .

,Remarque : on a volontairement om is 1a notion d 'extension non fiddle et

1 es th6ordmes techniques permettant d'obtenir les r6sultats donn6s ci-dessus .
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V - CORPS CHAINE-CLOS

L'int6ret des c16tures de chaTne est d 'obten ir une unicit6 a K-isomorphisme

prds de cette c16ture

En faI t 1 es corps chaTne-clos seront 1 es memes que les corps r6e1 s clos

g6n6ralis6s mais 1 e manque d'{somorphi sme vjent du fait qu'un ordre de

niveau sup6rieur peut apparteni r a plusieurs chaTnes diff6rentes .

Les th6ordmes de Becker qui caract6ri sent quand des c16tures r6e11 es

g6n6ralis6es sont isomorphes , revlendront en fait a dIre que ces corps sont

des c16tures de chaTne d 'une meme chaTne

D6fi nition V-1

s, it K „„ ,,rp, ,t (p j )= „„, ,hat„, d, K. (R,(pk):) ,,t „„, ct6tHTe

de cha£ne de (K,(pl):) si R est tiTle entension atg6brique de K

ma={mate pour Zes pToprtetds d’atre une eztens£on fiddle de (K,(Pi)o) .

D6fi nitIon V-2

Un corps R sera ait cha£ne-ct os , s ’£Z e=iste une cha£ne de R qui no

sl6te7rd fidaternent & auc tIna eatension aLg£brique de R.

L ' existence de c16ture de chaTne de ( K, (Pl ):) est assur6e par 1 e lemme

de Zorn .

On peut a1 ors obteni r un premIer th6ordme caract6ri sant les corps chal'ne-clos .

Th6oreme V-3

So£t R un corps et (Pl ): une chatne de R. AZor8 R est cha{Be-eZOS

si et seuZement si Les delta conditions suivantes sont vertfiee6 ;

ri) PnnP1 = RZ.

(2) R n ’a pas d ’eztension impUre dans sa cZ6ture atgebrtque .
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Lemme V-4

Sol t K un corps n 'ayant pas d'extension impai re dans sa c16ture alg6brique.

Alors toutie extension fi nie non tr{via1 e de K contIlent une extension

quadratj que .

Demonstration du lemme V-4

Soit L une extension finie de K. Soit N 1a c16ture normale de L

sur K de groupe de Galols G. Soit H un 2-sous-groupe de Sylow de G.

Si H f G alors K aural t une extension impai re. DorIC G est un 2-groupe .

Soit alors V 1e groupe de Galois de N sur L ; V est contenu dans un

sous-groupe d ' ind ice 2 dans G. Ainsi on obtient une extensIon quadratique

de K contenue dans L .

D6monstratlon du th6ordme V-3

• Supposons R chaTne-clos . 11 exi ste dorIC une chaTne (Pi )n de R qui ne

s'6tlend fid61ement a aucune extension alg6brique de R.

D 'apres le theoreme IV-9 R n 'a pas d 'extension alq6brique de deqr6 impair.

D 'aprds 1 e th6ordme IV-10, si ac pin P{ alors ag R-Ra dorIC ac RZ . Cc)mme

p£'tpjDRz toujours, on a exactement pin Pi = RZ. On en d6du jt 6vjdemment

que Pi et Pi sant les seuls vra js ordres de R donc que pon Pl = RZ.

R6ciproquement

Supposons

lmpa1 r .

D 'aprds 1e lemme V-4 tout;e extension finie de R cont:lent une extension

quadratique. Mais si ac R-R2 alors a$pnnp1 done (R,(p1 ) ) n 'a pas

d 'extens ion f{ddle a une extension quadratique de R. DorIC R est chaTne-clos.

et R n ' a pas d'extension alg6brique de degr6

Th6or6me V-5

gait (Pl )o une cha€ne de K

Soit Ro une ct6ture rZeZZe de (K,Po ) .

4Zors Ro cont£ent une unique cZdhre de cha£ne de (K,(Pl ):).
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Coroll aire V-6

So£t K an corps at ( pl )': une cha{ne de K. AZors debt= eZdtares de obaMa

de (K,(Pl ):) $onE K-isomorphes .

Solent (E,(pT):) et (F,(pT):) les deux c16tures de chaTnes de

(K,(Pi )o) cholsies.

Sojt Eo une c16ture r6e11e de (E,pE) et Fo une c16ture r6e11e de

(F, P:) .

11 y a un K lsomorphi sme Q : Eo + Fo et par 1 e th6oreme V-5 on a $( E) = F .

(pulsque une c16ture r6ell e de ( K,Pn ) ne contient qu ' une unique c16ture

de chaTne de ( K, ( Pl ):) ) .

Th6ordme V-7

Un corps reel cEos g6n6raZ£s6 (au sens de Becker et pour un or(ire de n£veau

eaact 2m ) est cha£ne ctos faa sens de Harman) et r6c£proquernent .

Soit K un corps et p un ordre de n{veau exact 2m sur K avec m> 2

Sa1 t (R , pR) une c16ture ree11 e de ( K,p) .

DorIC R est une extension alg6brique de K, pR est de niveau exact 2m

pR n K = p et pR ne s'6tend fiddlement a aucune extension alg6brl que .

Par le th6orame IV-3 , R a une chaTne (Pl ): avec pR = Pm. Donc R est

chaTne-c1 as cette chaTne ne pouvant s'6tendre f{ddlement a aucune extension

alg6bri que

R6ciproqueme nt

Soit K un corps et (Pl ): une chaine de K. So it P = Pm. Soit

(R,(pT):) une c16ture de chaTne de (K,(Pl)=).

Nous atlons montrer que (R ,PS) est une c16ture r6e11 e gen6ralisee de

(K,p) . En effet sol t L une extension finie de R. Supposons que pE

s'6tende fidalement en pl sur L. Alors soit (pk): avec pl = p: une

chaTne de L .
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Pujsque pk est une extension fjddle de p= 1a chaTne CP!): doit etre
une extension fiddle de 1a chaine qu'e11 e ddt;ermine sur R. Comme R est

chaTne-c1 os i 1 faut que L = R , donc (R ,pE) est une c16ture r6e11 e

g6n6ra li sae de ( K,p) .

Theor6me V-7

Soit R an corps cha£ne-ctos . Ators R a ezaetement deli= cha€ne8 . Soit

(Pi )o t ’une de, d,HE ,h„Cr„, ,t ,,it „ ; „(Pi ) (, ' ,,t Z, marr„ poa,

tolls Les PI ) . AZors v est hensdZ£enne et Ze corps r6siduet est rdeZ eZos.

D6monstrat lorI

R est chaTne clos et a donc deux chaTnes,soit (Pi ): 1 ' une d'ell e et

soit v= v(Pl ) la valuation associ6e a tous les Pj .

R a seulement deux vrais ordres , dorIC R a seulement un seu1 ordre de

niveau exact 2n pour n> 2 .

Les deux chaTnes sont dorIC (Po Pl P2 . . . Pj . . . ) et (P1,Po,P2 , . . . ,Pj , . . . )

LeHensel ise (R ' ,v ' ) de (R ,v) contient Pi et Pi 1 es uniques

extensions fiddles de Po et P1. Le corps r6sidue1 de v ' dtIant k 1 e

corps r6sidue1 de v , alors Pi et Pi sont 1e meme ordre P de k que

( et q. Donc 1 1 existe une chaTne (P; ): de R' , et P; 6tant

extension fiddle de P1 pour 0 et 1 alors (P 4 ): est extension fidele
de (P1 ): . DorIC R ' ; R.

PnflP1 = RZ ent:raIne p = kZ . Si k avai t une extension impai re

aural t aussi une dorIC k est finalement r6e1 clos .

R en

Th6or6me V-8

Soit K an corps et' p an ordre de n£Dea tt enact 2111 ,m> 2 . AiLor s debt=

c16tures rdeZZes gdn4raZ£8Ze6 (R ,pR ) eb (E ,pE) sont K-£sornorphes si

et seuLement si ettes ddt errrrLnerrt; Les memes dew cha£rles de K.
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Demonstration

oR est chaine-clos donc a deux chaTnes (pE,pT,pE,. . .) et (Pr,PE,Pg,. . . )
R R

avec Pm = P .

Cette extension 6tant fid61e pour p, les deux chaTnes sont des extensions

fidd1 es des chaines qu'elles determinent sur K , solent (Po,P1,Pa , . . . )

et CP, ,P„,. . . )

Si R et E sont K-lsomorphes cet jsomorphi sme transformera les chaines

de R en 1 es chaI'nes de E et dorIC E d6terminera les deux memes

chal'nes sur K que R .

+ R6ciproquement

SI R et E determjnent les memes chaTnes (Po ,Pl, . . . ) et (Pl )Pos . ' ' ) de

K alors (RI(pT);) et (E)(pT):) sant deux c16tures de chaTnes de

(K> (p 4 )':) donc e11es sont K-lsomorphes (coro11aire V-6) .
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THE MODEL THEORY OF CHAIN-CLOSED FIELDS. (+)

M. A. Dickmann

CNRS - University of Paris VII
Paris - FRANCE

Introduction . The notion of a hIgher level orderIng is a gen-

erallzation of the usual notion of an order introduced by Becker

in the study of sums of even-powers in a fIeld ; see [ 1 ] for

a general reference. A precise definition of an ordering of level
211 (level n in the terminology of [ 1 ] ) is given in Definition
1, 1 (I1) below.

In [ 1 ] Becker worked out the extension theory of fields wIth

a higher level ordering and Introduced the notion of a (generaIIzed)

real closure- for such fields. For a survey of (the analog of )

Artin-Schreler 's theory of fields wIth a higher level ordering,
see [ 21 , in [10 ] Jacob proved decidability, completeness and model

compLeteness (in a suitable language) for the theory of generalized

real closed fields . Jacob's results are in a sense optimal insofar
the non-uniqueness of generalized real closures (see [ 1 ; Ch. IV,
Thms . 12 , 13 ] ) prevents quanti£ier eliminatIon results from

holding in languages natural from an algebraic point of vIew.
The following remarkable fact stems from the work of Becker

and Harman : a field having a proper ordering (1. e . one which is
not just an order) of any level, necessarily has an ordering of

(exact) level 211 for each integer n = 2 , plus two usual orders
and, morqover, a tight connection holds between orderings of two
consecutive levels (cf . [ 9 ; Cor . 1.4 ] and [ 1 ; ThIn. 15 , p. 37 ] )

The typical example is the field IR ( (X) ) of formal power series
in one varIable with real coefficients , t 9 , Example lo 2 ] . Thus ,

( #) TO be published in J. S . L. .
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it became clear that the natural object of study in this
setting are fields together with two orders and a chaIn

of orderin';s of each 2-power level, as above ; these

are called chain fieLds ( see Definition 1, 1 below) ,

In [ 9] Harman extensively Investigated the algebra of

chain fields o He worked out a satisfactory extension the--

orr ( [ 9; g 3 ] ) , proving, inter aZ£a , that every chain field

has an algebraic extension maximal for the property that the
chaIn extends faithfully, i, e , preserving the level of each

ordering; see [ 9; ThIn. 4.6 ] . Furthermore , such a chain-cIo
sure is unique, that is , two chain-closures of a chain field

are exchanged by an isomorphism which fixes the base field
[ 9 ; Col . 4.7 1 . He also gave an Artin-Schreier type charac-

terization of chaIn-closed fields [ 9; ThIn, 4 , 3 ] , He

established as well the connectIon between chain-closed

fields and generalized real closed fields by showing that ,

for n = 2 , the nth orderIng of a chain-closed field makes

it into a generalized real closed field of level 211 and that ,

conversely, given a generalized real closed field <K,P> of

level 211 , K is chain-closed for some chaIn whose nth term

P [ 9 ; p. 167 and Cor. 1.4 ] .

In this paper we draw the model-theoretic consequences

of this algebraic theory and , using technIques pertaining to
the model theory of valued fields , estabIIsh the following
results :

( 1) Completeness of the fIrst-order theorY of chain-closed

fields . ( Theorem 1+ 11) +
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3

Chain-closed fields are naturally endowed with a famIly
of henselian valuatIons with real closed residue fields , Draw

ing from Becker 's work, Harman [ 9 ; Thm, 1.8 and Prop. 4.4 ]

exhibits one such valuation , having an archimedean residue

field, while another example (originating in Ax) comes from

Jacob [ 10 ; Thro. 1] ; the latter has, in addItion, the good

taste of being first-order definable, We prove :

( 2) Model-completeness of the theory of chain-closed valuation

fields in the language for fields plus unary predicates
for the members of the chain, and a unary predicate for
the ( Jacob) valuation ring. (Theorem 2.3) .

( 3) Quantif ter eliminatIon for the theory of ( 2) in the lan-

guage enlarged by yet one individual constant (needed to

distInguish the two orders) , (Theorem 3 , 1) ,

In 54 we establish some connections between the preced-

ing results and previous work in the model theory of real

fields , showing the following:

( 4) The theory of chain-closed valuation fields is the model-

companion of the theory of valued fields with precisely

two orders compatible with the valuation and inducing the

same order on the residue field . (Proposition 4 + 1> .

These orders are called superdependent o Their theory was in-

vestigated in B . Laslandes 1 dissertatIon [ 13 ] (see [ 11] , 112] > ,

who estabIIshed the existence of a model-companIon and gave

an explicit axiomatlzation for it. We also prove :
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( 5) The theory of chain-closed fields is identical with the

theory of Rolle fields with exactly two orderso in par-'

ticular, the latter is complete and decidable+ (Proposi-'

tion 4.2 , Corollary 4 , 3) .

Thus , chain-’closed fields constitute the simplest example of

Rolle fields beyond the real closed case .

I wish to thank D. Gondard whose expositions in the Paris

DDG semInar aroused my interest on chain-closed fIelds and
introduced me to the work of Becker and Harman. Thanks are

also due to Le B61air, F, Delon and F, Lucas whose comments

helped to clarify some poInts , and to the referee for suggestIons

helping to improve the presentation of thIs paper .

g 1, Completeness n

For the sake of readability we begin with the following

definition from Harman [9 ; lol, 3 , 1 and 4 , 1 ] B

Definition 1, la Let K be a £ielde

( A) A sequence < Pi> icu is a chain of K if :
( 1) Po, Pl are different orders .

( I1) For n > 2 , Pn is an orderIng of exact level 2n ,
that is :

i) Pn + Pn g Pn (where P = P - { 0 } ) ;

Ii) Pn a Png Pn;
iii) 1 CPn;

iv) Pi1 S Pn

v) The group K/6 is cyclic of order 2rI.
( II1) For n > 1, Pn u - Pn = (Pn_1 n Po) u - (Pn_1 n Po) .
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(B ) Let L be a field extension of K and (Pi> ico a chain

of L, < Pi > leo is a faithful e£tens£on (of < Pin K >icu ) iff

< Pi nK >i€o is a chain of K. [ Note : since the sequence

< pi nK>leQ automatically satisfies II. (i) - (iv) and K/6 n K
is a cyclic group of order 2111, m < n, then we have a faithful

extension Iff [ K : Pnn K ] = 211, for n > 2 , iff the orders

Pa nK, P1 ng are distinct (cf. [ 9 ; Lemma 1.7 ] )] .

( C) A chain field < K, Pi> ie u is chain-cLosed if the chain
< Pl. > jr rj does not extend faithfully to any proper algebraic
extension of K, A field is ch a£n- cLosed if there is a chaIn

with respect. to which it is chain-closedo O

Notation, Ln = { +, – , , , -1, 0 , 1 } denotes the usual language

for fields (with inverse for multiplication) , and Lcr =

LF U { Po,P1,P2 , , , , } its expansion by countably many unary

predicates ; LcF is the language for chain fields . . a
We shall consider the following additional conditions on

a chain field < K, Pi> icu

( IV)

(V) Every polynomial in K [X] of odd degree has a root
Kin

We call CCCF the set of Lan-sentences which formalize con

cIlt:ions ( 1 ) - (V) together with the axioms for fields o We have :

Result 1.2 (Harman [9 ; That. 4.3 ]) .

The models of CCCF are exactly the chain-closed chain fields .3
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It is clear from the work of Harman (cf . specially [9 ;

SSI, 4 ]) that the orderings Pn , n > 2 , are (impIIcitly) de-

finable from Po , Fl ' Using Result 1.3 below one can dispense

with Po, PI as well, and obtain an explicit axiomatizatlion of
chain-closed fields in the language for fields ,

Result 1.3 . (Becker [ 1; Cor . 2 , p , 43 ] ) .

Let K be a Pythagorean field havina exactly two orders P_,
An _n+1

P1 , and such that Kd / Ki for some n > 1. Then :

(a)

(b)

Let a be any element in Pon -Pl; then

P1 = K2 U -aK2.

Let a be any element so that a, -a e K2 , Then, for n > 2
'.n _n- I ._n

p = Kz u - az Kz is the unique ordering of level

2n , and K2n-1 = K2nU a2 In-1 K2n'

In particular, these identities hold for < K, Pi> icu b CCCFo O

Thus , replacing Pn (x) (n > 2) for

<t) 32(x = z2;1)v V), gz [ VW(y #tw2) + x = -Yf'- z2 ln],

the axioms of CCCF can be translated into the language of

fields . The neatest Artin--Schreier type axiomatizatlion for

this translation was obtained by D. Gondard [ 7 ] , t 8 ]

Proposition 1.4 . ChaIn-closed fields are exactly the models

of the following set of axioms in Lr (which we call CCF) :
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for commutativeAxioms fields

' Pythagorean axioms :

" A sum of two squares is a square " ,

" A sum of two fourth-powers is a fourth-power" +

w (y + W2A y + -w2)AVX lz (x = z2 v x = -22 v x = yz2By [V
v x = -yz2 ) ] +

a- "Every polynomial of odd degree has a root" ,

Remarks . (a) The third axIom just says that the sets Po, Pl
of 1.3 (a) are positive cones for tata Z orders ,

(b) For several alternatives to the Pythagorean axioms , see

[ 8] and [9 ; Col. 2.4] .

(c) Result 1, 3 shows that a chain-closed

field K has exactly two chains , differing only in the order

of the first two terms , They begin with the two orders of K,

and their nth term, n > 2 , is uniquely determined by ( t) ; cf +

also Harman [ 9; Prop, 4.4 ].

Definition 1.5 . ( Jacob [10 ; p. 214 ]) . Let K be a field and

P an ordering of level n> 2 in K. Let:

J 1 (K , P) = { x ( KIx ft P and 1 + x ( P} ,
J11 (K , P ) = { x eK [ x ( t P and x nJ 1 (K , P) s J1 (K , P ) I,

J(K,P) = J' (K,P) U J" (K,P) O

For a chain field < K, Pn> nc u we set Jn = Jn (K) = J (K , Pn)
n > 2 . O

Jacob [ 10 ; Ttlms , 1, 2 ] proves :
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Result 1.6 + (a) J (K, P) is a valuation ring of K, and

Pn J ( Kr P) is the positIve cone of an order on the residue
field .

(b) if KhCCF and < Pi> icQ is a chain of K, then the va-
luation rings Jn , n > 2 , are henselian with real closed re'-
sidue field. a

Notation . We denote by F(K) the family of all henselian va-
luations on a field K with real closed residue fieldo For

vc 7(K) , Av , Mv , Fv , iv denote the ring, maximal ideal,
value group and residue field corresponding to v, We denote

by jn the valuation defined by the ring Jnr and Mn = Mjn/
F_ = F. , etc,

n

The next Proposition s\lmmarizes the basic properties of

valuations in V’(K) ,

PropositIon 1'7+ Let K b CCF, ( Pi> iCO be a chain of K,
and vC 7(K) . Then :

(a) Let u be a residually positive (resp, negative) unit
an nn

of AV. Then ue Kd (resp. uC -Kx ) for all neo

In particular :
n

(b) 1 + MxrgKZ for n > 1, Hence the valuation

patible with every Pn ( i ' e' 1 + Mvc Pn) ,

(c) The ring Av is convex wIth respect to each

( i ' e ' , a ( P , b-a C P and b C Av imply a ( Av) .
(d) The group Fv is divisible by every prime p / 2 ,

( e) Fv/2Fv = 7/27,
( f ) F., is dense .

is com

a
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Remark 1, 8 , in the case v = jn, Proposition le 7 yields : let

z / 1 Pn ; then jn ( 2) # 0 , Moreover:

( i) z ( t Pn and 1 + z CPn imply jn ( z) > 0 ,
(ii) z i t Pn and 1 + 2 e Pn imply jn (z ) < 0 .

Proof . The first assertion follows at once from 1.7 (a) .

(1) We show that J' (K,Pn) s Mn . If x C J' CK,Pn> and jn (x) = 0 ,
then x-1 f t Bn and x-1 e J 1 (K,Pn) ; it follows that 1 + x ,

1 + x-1 ( Pn , whence x-1 = (1+x) -1 (1+x-1) ( Pn , a contradIctIon.
i

(ii) if jn(z) > 0, i.e. Z€Mn, then 1 + z C O Kz S Pn , by
1.7 (b) . a

A field is called a Rolte fieLd (Delon [ 5] ) if it is

orderable and Rolle 1 s theorem for polynomials holds in one

(equivalently, each) of its orders . Brown, Craven and Pel-

ling [ 3] characterized Ro11e fields as those fields carrying
a henselian valuation with real closed residue field and odd-

divisible value group , Thus 1, 6 and 1, 7 (d) yield :

Corollary 1.9 , Any chain-closed field is a Rolle field. a

We are now in a position to use Delon 1 s analysis of valua

tions in Rolle fields , [ 5 ; Prop, 1 ] , in order to prove the

main properties of the valuatIons jn and their groups .

proposition 1+ 10 ' Let K b CCF and ( Pn> nCo be a chain of K .
Then :
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(a) The valuations jn , n > 2 , are minima in V(K) , i . e .

Jn 2 Av for every v € y(K) , in particular ,

(b) Jn = Jm for n ,m ) 2 ,
(c) Fn contains no non-trivial 2-divisible convex subgroup+

(d) Fn is regularly dense , that is , mFn is dense in Fn
for every m > 1 ( cf . Robinson-Zakon [ 15 ; Def . 3.3 ] ) .

(e) { 7 ( Fn 1 lg 2 Fn } is dense in Fn.

Proof . (a) Delon [ 5; Prop, 1 ] shows that V(K) is totally
ordered (by reverse inclusIon of the valuation rings) wIth fIrst

and last elementg, The largest valuation ring , B , is first-

order definable in the language of fields ;

B = {x eK Vt[VZ Ct ft z2 j AA (t) closed under multipIIcation

–> x c ACt-1) ] 1

where A (t) = {x e K 1 3y(l+tx2 = y2) }

It suff ices to show that BE Jn . Let x g 'Jn ; since
I

xz Z Jn fOI all I C o , we may assume x e Pn . By 1.5 r there

i, y r , Pn „,ch that 1 + y C Pn and 1 + x2y g Pn ; by 1.8
n

we have jn (y) > 0 and jn (x'y) < 0 . Clearly Y gtR' and r

by th, p,,,£ or L,mma 2.4 b,1,w, 2l= / jnCy) . Hence in€y> = 21'inCa:

for some 0 s k s n and some a such that 2 y jn (a> ; clearIY

w, ,I,, h,„, jn(a) > O and jn(x2a) < O . Hence 2 / i„C*2;> =
jn(1+x2a) . Putting b = a-1 w, ,on,rude that x + A(b-1) . By

[ 5; Prop . 1 ( 3 ) ] we also have that A Cb) is closed under

multiplication. Thus we have shown that x g B•

(b) Trivial
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Equivalently, P2 can be replaced by any Pn , n > 2 ( Ie 10 (b) ) ,

by Pon Pl (Axiom (II1) ) or by K2 ( Axiom (IV) ) . Note that

the condition xy et P2 is superfluous o

t+e will need the following result of Robinson-'Zakon

[ 15 ; prccf of ThIn. 4 , 6 ]

Result 2.2 . The theory of regularly dense ordered abelian groups

with specified invariants [ G : pG] (= a power of p , or m)

for each prime p , is model-complete in the language / for

ordered groups augmented by the dlvisibility predIcates

DmCa) +- 3B(m'B = a)
for m = 2 , a

By Proposition 1.7 (d) , ( e) , the prime invariants of

the (Jacob) value group F (K) of a chain–closed field K

are 1 for p / 2 , and 2 for p = 2 ,

Theorem 2 , 3 . The theory CCVF is model-complete ( in Lap ( A) ) .

Proof , By the Ax-Kochen-Ershov transfer principle for model-

completeness the problem gets reduced to showing that, whe-

never ( K, Pj , J (K) > = ( F, Qi , J (F) > are models of CCVF, the
value group F (K) is an f-suk>structure of F (F) , which

Is done in Lemma 2 , 4 below,

Indeed , model-completeness of real closed fields and

Result 2.2 imply, then, that the canonical inclusions of

residue fields and value groups are elementary.



Lemma 2.4 . The ( lifting of ) divisibility predicates Dm , m : 2 ,

are quantifier-free definable in Lrv modulo the axioms of CCVF .

In particular , if <K , PI , J (F) > S <F ,Q1 ,J (F) > are models of CCVF ,

then F (K) c F (F)
£

Proof . By odd-divlslbility ( 1.7 (d) )

we need only consider the case m = 211 . For x CK, where

< K, Pl. , J (K) > # CCVF, we have :

F(K) hD n (j (x) ) iff <K,J (K) > b 3 y (j (x) = 2nj (V) ) iff
n

< K, J (K) > b 3 yz(xz = yz A "z is a unit of A" ) ,

n
The unIts of J (K) are in £ Kx ( 1.7 (a) ) . Hence the last

term of the equivalence above implies

an all
K k3yz Cz / OAt(XZ2 ) = y2 ) ,

n

showing that x €tKz , Hence we obtain

r (K) = D _ ( j (x) )
2

n
Since Kz is quanti£ier-free definable in terms of the pre-

+ nb n n
dicates P_ (namely, Kz = n P.. ; cf . 1.3) , the lemma is

ai
proved . O

Re clarke Another model =comD Iet erless result for cha tRue :Los ed

fields , in a different language , was subsequently proved by
DeLon and Gondard ; see [ 6 ] .
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53 . Quantlifter elimInatIon .

In order to obtain a guar.tif ier eliminatIon result we en-

large the language LcF (A) with a new indIvidual constant

needed to distinguish the orders Po and Pl. We call CCVF+

the theory CCVF plus the axiom:

(VII) Po (c) A I Pl ( c) ,

and prove :

Theorem 3.1 o The theory CCVF+ admits quantifier elimination

in the language i'CF ( A, c) ,

Proof . The sImplest way to proceed is using the quantifier

elimination transfer theorem of Cherlin-Dickmann [4 ; Thrn, 5 ] .

We note the followina facts :

( 1) The theory of F (K) – the value group of any model < K, , , .>

of CCVF+ -- admIts go ee in the language for ordered groups

at1.talented by the divisibility predicates Dm , m > 2 .

T.-,is follows from weispfenninq [16 ; [Fhm . 2 , 6] , 1, 10 (d) and 1, 7

( d ) r ( e > +

( 2 ) The residue fields of models of CCVF+ , being real closed,

admit q . e . in the language with a predicate for the order .
_ ( 1 if m odd

(3) [ U(K) : U(K)IR 1= j 2 if m even I

where U ( K ) is the multiplicatlive group of units of J (K ) .
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IJ,qF'P’i , if m = 2'1 . : , rIC '.. , t, „'tl,d , I.hen 1.7 td ) shows that
In __ . __, 2n - _ :

t; ( K ) ' ' = O C K> '- . SInce UfI : = ' k '- ( . . 7 ( a ) ) , then

L J K /U(K}2n A T/ 2 : if a ;- t ::: p=rtlcular’ this shows

t 4 > The constant 1, if m iF, cd.I.. alla 1, –1, if n\ is even ,

from a colnplet= set C' i r'ei"rf::enLdtives of tlr Kj /,at,. K/ m

TrI view of these rein,, , I._, , L 4 ; Thr.I, S J shows 1: ! ! , t_ i.he

( auxiliary) tlrecry : do SL:Li bed b31low admit: i . = . In the

expansion I of the lang1,lat;c LF ( \) of vaIlred fields by :

( a) Unary predicates Pm , it jn , r > 2 ) denotrng react:cErvely
che lifting of the divislbilt.ty pIed.i oates in the value

group language , and the rt:h povers .

ib) A bina£y predicate < ' lifting the residual order ,

: is the theory of Hen sel.ian valu£ J fields X h.ifiI real

closed reqidue field , val. '. Ie group as in 1, 7 (d ) , (e'i ind 1.10

( d ) , [ U ( K) : U (K ) ml as ,II ( 3 ) above , and axioms gx\,rIng the

predIcates Pm, Pr and ' lh the meaning stated tn (d) , (b )
above .

ReturnIng to the th.3-’,r'/ CCVF+ , lve renal}= =

( S > To every model < K , Fl, J ( K ) > of CCVF is assocIated a

< unIque ) model X oC : with raine '\nderl'' in,-r I/aIred

field < K , J ( K)> .

I f ) The chain predIcates Pn are je fInal) Ie ( WIth. ' inant t fiers : )

Ln It'.. ( c) . ( Res tIlt 1.3 ) .

(7) The predicaces ; m , ;._ , are equivalent irl CC'rr tr . qua: tr'-

f .icr- free for'rlulas of L._p . ( Le-rr.-,a 2.4 ) .
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( 8) The predicate

Lcr ( A) .

Indeed, by 1, 6 ( a) we have, for x CK:

< R is quantif ter-free definable in

R

R + = > 0 iff ( K, Pi , J (K) > b A(x)AA(x-1)AP9 (x) .

Quanti£ier elimination for CCVF+ is now an easy conse-

quence of that of E , as follows : given a formula P (v) of

LOT ( A, c) , use ( 6) to transform it Into a formula P 1 (v) of
£ (c) ; then , get a quantifier-free £ (c) -formula P' (v) equi
valent to P ' (v) modulo E ; finally, use ( 7) and ( 8) to get

back a quantlfier-free formula P (v) of Lcr ( A, c) . It is

routine checkIng that CCVF+ proves the equivalence of P (;)
and V/ ( i) , a

Remarks . (a) The theory CCCF+ is not complete . Its tv/o comE>le-

tions are obtained by fixing the sign of the Jacob valuation

of c . In the language Lcr (c) this amounts to adding as an
axiom either one of the statements "l+cC Po " or " 1+c-1 CPD " .

(b) As pointed out by the referee , Theorem 3.1 can be improved

to "CCVF+ admIts prImItIve recursIve quantif ter elimination" ,

Indeed , in [ 17 ; Thrr.. 4.12 ] Weispfenning proves , under assumptions

more stringent than those of [ 4 : ThIn. 5 ] , that primitive recursive

q. e . of the theory of the residue field (here real closed fields)

and of the theory of the value group (here regularly dense ordered

abelian groups wIth specific primitive recursive prime irlvariants ,

see [ 16 ; Thn . 2.6 ] ) lift to Drimitive recursive q . e . of the
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theory of the valued field . Proposition 1.10 (d) ins tires that

the additional assumptions are fulfilled in the present case ;

see [ 17 ; 4.1 and 4.13 (iv) ] . Thus , the auxiliary theory E has

primitive recursive q. e . ; the translation of CCVF+ into E

and back clearly is primitive recursive .

(c) it is an open question whether the additIonal constant c

Is really necessary to get quantif ter elimInation. S

g 4 . Chain-closed fields , superdependent orders and Rolle
fields

In [ 11, 12, 13] B . Laslandes investigated several theo-

r ies of fields with f init:ely many orders + Among others he

considered the theory COSDn of fields with n suP erdep en-

dent orders , namely n orders defining the same topology ,

provided with a valuation ring convex for all of them, and

inducing the same order on the residue field, He proved that

rOSDn has a model-companion , caR , and gave an explicit
axiomatization of it in the language with symbols for the n

orders and the valuation ring; see t 12 ; Prop+ 1 and That. 5 ] .
We have :

ProDOsition 4 , 1, The theory @ is identical with the

theory CCVF (or, to be precise , with the obvious re£ormula-

tIon of the latter in the language LF U ’: Po, Pl, Ai ) +
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Proof . Both are complete theories satisfying Laslandes ax-

toms for msB , [ 12; Prop. 1 ] ; namely:

Po , Pl are distinct orders ;

- The valuation ring A is convex for both Po , Pl, and these
induce the same order on the residue field (Proposition lo 7

(e ) and Result 1.6 ( a) ) .

A is Henselian with real closed residue field ( Result lo 6

(b) ) .

The value group F of A is divisible by every odd prime,

F/2r = Z/2 z (PropositIon 1'7 ( d) , (e) ) and regularly dense
(Proposition lola (d) ) , a

//

Laslandes goes on defining an expansion COSDn of COSDn

which admits q, e , in a suitably enlarged language o

As in 4 , 1 it is easily checked that his theory COSD2 coin
cides with CCVF+ modulo trivial changes in the languages in-

volved ; see [ 13 , Cho III , g 4 ] a

Finally we prove :

Proposition 4 , 2 , The theory CCF is Identical with the theory

of Rolle fields with exactly two orders .

Proof , After 1.9 it only remains to be proved that a Ro:LIe

field with two orders is chain-closed . Using the characteri-
zat.ion of Rolle fields mentioned before 1.9 , we infer form

Harman [ 9 ; Cor. 1.5 ] that K carrIes a chain < Pi> iCu ' We

only need to check Axioms ( IV) and (V) of il. Axiom (V)

readily follows from Hensel 's lemma and the fact that the
residue field is real closed .
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Axiom ( IV) . Since K has two orders , the value group FV

of any valuation VC Y(K) cannot be 2-divisible ; otherwise

K itself would be real cLosed , Further , K2 zZ Kd , as 12 g K4

for any x such that 2 / v (x) . Since a Rolle field is P)'tha-

gorean (Becker [ 1 ; P. 66 ] ) , Result 1.3 (a) shows that P 1 =

K2 u aK2 and Pl = K2 U -. aK2 for any ac Pon .. Pl. Hence

P n P. = K2 . a
0

Corollary 4 + 3 . The theory of Rolle fIelds with exactly two

orders is complete and decidable , The theory CCVF of $ 2

is its model companion. a

Proposition 4 + 2 clearly establishes that CCF is the

simplest theory of Rolle fields beyond the real closed ones

(a Rolle field with only one order is necessarily real closed,

as the value group of any of its valuations in 7(K) is 2-

divIsible) ,
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Cancellation and absorption of lexicographic powers

of totally ordered abelian groups

by M. Giraudet .

(Survey )

Abstract : We prove that an ordered abeIIan group G is

determined up to IsomorphIsm by any of Its fInIte

lexicographic powers whenever , for any ordered abeIIan

groups A and B, if the lexlcographic product A+G+B is

tsoInorphlc to G, then so are the lexlcographlc products Ad(;

and C;qB; we gIve a list of ordered abelian groups wIth these

properties. WIth similar techniques, we also prove that any

finite lexicographica1 power of any ordered abeIIan group G

determInes the fIrst order theory and the order type of G .

& Q – NQ tat iQ ns ;,

In thIs paper , “ ordered abelian group“ will stand for

“ totally ordered abeIIan group“ .

For any ordered abeIIan groups A and B

AaB denotes the lexlco8raphlc product of A and B, read

from left to rIght : for any a and a ’ cA and b and b’ cB,

<a , a ’)€ (b, b ’ > in AgB if eIther a<a 1 or a=a ’ and b( b’ .



A' , k a positive Integer , denotes the lexlco8raphlc

product of k copIes of A, we refer to it as the k’"

lexicographic power of G.

AxB is the <un–ordered> cartesIan product of the <un-

ordered groups ) A and B.

A ~ B means A and B are isomorphic as ordered groups <In

the language (+ , $ ) ) .

A = B means A and B are elementary equivalent as ordered

groups <still in the language {+ , ( ) ) .

A ~ + B means A and B are isomorphIc as groups <In the

language <+> )

A - * B means A and B are IsomorphIc as ordered sets < in

the language { $ > )

If X and Y are totally ordered sets <chaIns> we shall

also use the notation XqY to denote their lexicographic

product defIned as above

&l–Problems and hnckgrnllnqi

In tO–2] , F . Oger gave an example of two non- IsomorphIc

ordered abelian groups wIth IsomorphIc lexicographlc squares

whIch was a strong motivation to the present work. The

following question arose :

Let # stand for “ IsomorphIc as ordered 8roups'1,

“ elementary equIvalent as ordered groups“ , or “lSOInorphic

as chains'’ , when should the following cancellation rule :

<Can , #) : “G''' = A- ImpIIes G # A for any ordered abeIIan
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group H’

be true , for a given group G , and a gIven integer k, k# 2 , '?

Rost of our proofs of an eventual satisfactIon of a

'.Can, #) ('IheorerBS on isomorphism, elementary equIvalence and

order isomorphIsm in this paper ) make use of the fact that

the followIng absorbIng rule happens to be satIsfied :

' At>s , #) : “ G = AqGqB ImpIIes G # GrB <or , equIvalently

G # AJG) for any ordered abeIIan groups A and B . '’

ObvIously , in order to have < Abs, #; , it is enought that

ally ol the followIng <E , # , LJ and (I , #R > holds:

cE , # , L > : “ G = AIG, A an ordered abelian group, implies

G # A ' ''’ ’ dX for bone ordered abeIIan group X . '’

tE , ++ , R > \ “I; - GatS, B an ordered abeIIan group, implies

G # XqB'""" ’ ivr some ordered abeIIan group X . “
From these observations follows a list of ordered abelian

groups which are unIquely deterrnined by any of their

k’- lexlcoBraphica1 power <Examples in & 3 here ) .

In tO– IJ , F . UBer also proved that any o , –saturated

ol-tIered abeIIan group G satIsfIes:

( TI, '= , L ) : “ G - AIG , A any ordered abeIIan group, Implies

G = A-’oX for some ordered abel tall group X . “

v/hi ':h also Implies ( Abs , e > , hence , by our theorem on

t ':,': Jlnorph thIn, any CJ t –saturated ordered abelian group G is

a 1 so characterized by any of its k'- lexlcographic power .

From the fact that cE , = , R > holds for any ordered abeIIan

group (ProposItion on elementary equIvalence ) , follows that

the theory of any ordered abeIIan group is unIquely

- 3 -



• 'J .dr ruined by any of the k"' ]exicographi c powers of thIs

or'-ler'e'i abelian group (’Fheoreru on elelnentary equIvalence >

In LD– L– LI and [ D–L–21, the fact that the theory of any

ordered abelian group is unIquely determIned by the theory

of any of Its k'- lexlcographic powers (C,qro11ary 4– 14 in

I D– L– II > and Theorem 5 in [ D–L–2 ] , was estabIIshed using the

classIfication of theories of ordered abeIIan groups gIven

in LS] . We get , from our technIques, a new proof of this

result <indeetl two proofs , one using and one not using the
r csu ] t of [ O– 1 ] )

I'he fact that the or'der type of a chain is not uniquely

d'='i.er Tnt ned by the order type of its lexlcographi c square is

e sta bll6lled in CSI ] (ExercIse 9 p. 232 ) . A very slight

'- Lange in the example of [ Si 3 shows that QaZ and <Q+ 1 ) +Z

( where Q is the chaIn of rat Iona is and Z is the chain of

intelSf Irs > have isomorphIc k’" lexIe.'Qgraphlc powers <k) 2 )

whence Q9Z is groupable c=admits a str'ucture oI ordered

abelian group, see fR] p . 125 > and (Q+ 1 > dZ is not even

tr'-ansi t, ive . The characterIsation of count;able groupable

':ha ins , given in [ R] rnakes it easy to check that at least,

the urlscattered ones are determIned by any of their km

re::t':'ographtc power , However , the problem does not seem

qtJ ite so clear in the uncour\table case , and the fact that

the or'der type of any ordered abeIIan group is determIned

by the ordered group structure of any of Its k-"

Lexicographic powers follows very easIly from our technIques

\ Theorem on order IsomorphIsm> . Wot;e that <= , z , , R) holds for
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every ordered abelian group but (E , ~ „ , L) does not (example

at the end ) .

ba Results and technlquen

Our main tool is indeed the following lemma:

HaIn leman :

Let G , G ' , H and H’ be ordered abelian groups, the following

are equivalent :

–ii GoG ' - HqH

–ii J For some ordered abelian group A

either : G = HoA and H ’ = AoC 1

H - c;qA and G ’ - AqH’

Proof

– i > +iii : Let f be an Isomorphism from GqO’ onto }{oH’ , let G“

denote f < < 0 JoG ’ ) , which is a convex subgroup of H4H ’ , and

assume that G“ is a convex subgroup of <0} oH’ <otherwise ,

consider f ' - ’ >

Let. H“ denote <0> dH’ . Since G“ is a direct sumrnand of HqH ’ ,

it is a direct surnnnnd of H“

Set A = 111 t / Gt1 : A 1 = 1111 = Ad GIt = A+G 1 ,

Now: G = <GHG’ ) / < <OJ dG’ ) = <HHH’ > /G’' = H+ <H“ /G“ > - HoA

– iI ) +1 > is easy to check.

- 5 -



Using the main lemma , the problem of <can, B ) can be

completely settled for k=2 :

PFQPQS it ian Qn SqN aFes i

let G and H be ordered abelian groups, the following are

equivalent :

–i ) G-' ~ H-

–ii ) For some ordered abelian group A:
either: G - HdA and H - A+G

or: H - G+A and G - AqH.

–iii ) For some ordered abelian group A:

G = adc+x, and either H H H+C; or if = GoA.

The Qre m on squares ;

Let G be an ordered abelian group, the :following are

equivalent :

– JJ For any ordered abeIIan group a, G = J+C+Z implies

G = C;dI

–2 > G-== H-: implies G=H .

rote that , if G = AqGdB, then G e GqB is equivalent to

G = AdG , but if G and OdB are not IsomorphIc , GdB and AiG

may or may not be isomorphic , even when A=B: they are not in

[ C)–2] , but it may happen that exactly two non–Isomorphic

ordered abelian groups have the sarne lexlco8raphlc square

can be seen from an example at the end of thIs paper
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We now want to deduce (can, #) (for any Integer k> from

< abs , #> , and the technIque falls into two cases:

– Case 1 : SInce some ordered abeIIan groups do not satisfy

<abs , - ;> < <our theoremem on squares shows that the counter

example in [ O–2 ] is a counter example to thIs> , it is not

suItable , when considerIng G'':-H": where G satIsfies <abs, ~ ) ,

to assurne H satisfies <abs, - > too . Fortunately, sInce the

conclusion of tabs, z ) , is concerned wIth a as well as the

prelnices , the proof gets throu8ht applying twice <abs , - J to

the same group G , and gives:

Theorem on ISQmarphism

Let G be an ordered abelian group and assume G satisfies i

< 1 ) For any ordered abeIIan groups A and B, G = A+GoB

implies G - A+G c or , equivalently , implies G = GoB> .

Then G satisfies

( E’ ) For any ordered abelian group H and for any positive

integer k : G'--H" implies G=H.

– Case 2 : Proovi ng that <abs , = ) and (abs , ~ ' > hold for every

ordered abelian group is now the way to proove that so do

(can , = ) and <can , a „ ) , and we get :



PrnpQsi t,Ian on elementary equIvalence:

Let G be any ordered abelian group , let J and B be

<possibly trivial ) ordered abelian 8roups, and let P be a

positive integer.
If , G - A+G+B"'

then : G = XdB-"’ ’:: -’ for some ordered abelian group X

hence G = A+C = C3dB

Theorem an elementary equivnlencei

Let G and H be ordered abelian 8roups such that , for some

positive integer k: Gh - Hl-

Then G = H.

ProposItion an order lsnmQFphlsmi

If , for some ordered abelian groups A , G, and B and some

positive integer n :

G = A+GqB" <as ordered groups)

then: <as ordered sets>

–1 ) G = * XqB'.'-'"}' .’ for some ordered abelian group X.

2> C; a' AdC; -. GoB

Theorem Qn order isnmorphlsrai

Let G and H be ordered abelian groups such that , for

positive integer k:

then :

G and H are isomorphic as ordered sets.

Gh a
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Both ceses I and 2 luke use of the following technical

lemna (case 1 using 1 zand 2 , case 2 using 3 )

TeQhn ical le nIna :

let G and H be ordered abelian groups such that , for some

integer k, k> 2, G'=-H" , then:

–1 ; For so Ine ordered abelian 8roups A , B, C, and D:

G - A4HqB and H = C9GqD, where A or C is a trivIal group

–2 1 For so IIIe ordered abelian groups A’ , B' , Ct , and D'

G = A'4HqB ’ and H = C’oG9D ' , where B’ or D' is a trivial

group

–3 ) For some ordered abeIIan groups A, B, C, and D, one of

the following four conditions holds :

–i ) G - Ao}{ - HqB and H = C9GqD

–ii ) G = AqH and H = OdB

–it ) and ii ' > obtained from i ) and ii ) , by exchanging G
and H

However , none of the techniques descrIbed here have

worked out the problem of (Lan, a„_ ) , and wether all ordered

abelian groups satisfy <abs , -..I- ) and <can , -„t.. ) seems still

u nknown
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&3 Applications and examples :

Games of cancellation of pnwern;

The following ordered abelian groups satisfy (abs, a ) , hence

are uniquely determined by any of theIr km lexicographic

powers , k finite

– 1 > ordered abelian groups in which every convex subgroup is

a direct summand : divisible ordered abelian groups,

<whatever the order relation they are provIded with

is),summs and Hahn products of archimedlan ordered abelian

SFC)ups

–g .) ordered abelian groups in which no chaIn of convex

direct. summands is of order type v+o+ .

3 > ordered abelian groups without proper direct summand,

groups which are isomorphic to none of their proper direct

summands <whatever the order relation they are provided with

is > , groups which are isomorphic to no proper homolnorphic

image of one of their proper convex direct sumrnands .

4> Any finite lexicographic product of the ordered abelian

groups mentioned above <and , more generally, of groups

satIsfying Cabs , = ?).

R£TA3_FIt I

Bv fO- 11, Lemma 4– 1, whenever G is An v, –saturated

ordered abelian groups, G = AoC Implies G = A'"4G for any

ordered abelian groups A , where A'” is the product of o

copies of A . We ment;loaned in &l that it follows from this
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copies of A . We mentionned in &l that it follows from this

and our Theorenl on isomorphism that every v, –saturated

ordered abelian groups is uniquely determined by any of its

k"' lexico8raphical powers (and so is any finite lexico8aphic

product of o, –saturated ordered abelian groups with groups

ment;i onned above .

It also follows that any ordered abelian group which is

not determined by its km powers is elementary equivalent to

some o , –saturated one which is , whence , by corollary 8 , in

sorne elementary classes of ordered abelian groupq

qdivisible ones for instance ) every model is uniquely

determined by any of its km powers .

Rep,Rr A 2 ; One may reasonably wonder wether there is any

simple relationship between <abs , ~ ) and the following

absorption property <abs , squ . ) consIdered in [ O– 1 ] :

( abs , s(au . ) : A":dG - G implies AdO - G for any ordered

abelian group A

The answer is no : in [ O– 13 , F . C)ger gave two examples of

groups G not satisfyIng <abs,squ . > . In both cases, the order

type of the set of convex subgroups of G is o, hence , for

any ordered abelian group B, G = AqGqB Implies B = <0> and

G - A4G , hence G satisfIes <abs , E ) . On the contrary, the

example in CO–2] of an ordered abeIIan group G not

determined by its lexico8raphic square , hence not satisfying

(abs , ~ ) <by the Theorem on isomorphIsm) , is such that , if

- Il -



A-'dG - G for soine ordered abeIIan group A, then A = <0> ,
hence AdC} = G.

Remark 3 (miscellaneous> i

i– When G ~ Ad(;, there is not always a chaIn X such that
G = ,; A' '" :’ qX.

ii– in CO–2] , C)ger 's example is an ordered abeIIan group

not determIned by Its square but determIned by Its cube :

ii– For any Integer n <n> 2 > , there can be exactly n non–

IsomorphIc ordered abelian groups wIth the same square (or

infInItely many , IIke in CO–2] ) .
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If M and N are ordered groups , we denote by MR the group MxN

equipped with the lexicographical order: ( a,b) < (a’ ,b’ ) if and only if

a< a’ or (a=&’ and b<b’ ) ,

In [ 1 ] , A.S,L, Corner gives an exwrrple of two court;able atnlian groups

A,G such that G and AxAxG are isamrphic while G and Ax(} are not

isomorphic; he also gives an exemple of two nonisonnrphic countable atnlian

groups G,H which satisfy Gx(; a HxH ,

On the other hand, we can easijy deduce from [5, Theorem 5,2] that, if A

and G are &knlian groups and if G and AxAxG are elmnntarily equivalent,

then , G and AxG are eleBnntarily equivalent + it follows frail the same

theorem that two atnli an groups G,H are elarentarily equivalent as soon as

GxG and HxH are elementarily equivalent .

We showed in [4] that, if A and G are ordered atnlian groups and if

G and AiAiG are eleanntarily equivalent, then, G and AiG are

elenrentarily equivalent . We also gave an example of two countable ordered

atnlian groups A,G such that G and AiAiG are ismnrphic while G and

A2G are not isalnrphic.

In [2, Corollary 4.7] and [3] , F. Lucas and M, Giraudet prove that two

ordered aknlian groups G,H are elmentarily equiv8lart as soon as G:G and

HiH are elementarijy equivalent. In the present paper, we give an e>temple of

two nonisonrorphic countable ordered atnlian grouln G,H which satisfy G?G =

H=H .

l• Notations ; definition of the OF@nd RFQUN GIll •
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For each prime nwntnr P , Zn is the ordered subgroup of Q which

consists of the elements a/b with naN , baNg and b not divisible by

P e

We consider a sequence (p(n) )nez of prian nunknrs which are all

different and we derIQte kv A the direct s11111 n:Z Zp(I1) eq111pmi "ith the

lexicographical order: (an)na < (bn)na if and only if there exists an

integer n such that an < bn and an = bn for each integer a<n e For each

nez , we consider the elalent in = (am)ma eA with an = 1 and an = 0
for in/n ,

We denote by I the ordered set which consists of the sequence

0+ < 1+ < 2+ < , e , < 2- < 1- < 0- , For each na , we write

un = ( 12n’12n+2’12n+4 ’ ' ' ' ’ ' ' ' ’ 12n+5’ 12n+3 ’ 12n+1 ) and

Vn = (12n’12n+2 ’12n+4 ’• ' ' ’ "•’12n+7 ’t2n+5 ’ 1211+3 ) '

We consider the subgroup M (resFnctivejy N) of 8 A which is
i€1

generated by .:T A and the elanents Un (Fe8Wctively Vn) and we denote by

G (respectively H) the subgroup of o A ranch consists of the elernents
icI

x such that there exists an integer s21 for which sx eM ( respectively

N) . We define an order on G (respectively H) as follows: for two different

elements u = (ai )icl and v = (bi)i€1 MUch knlong to G (respectively

H) , there exists an elarnnt icl such that al + b+ and ai = b1 for each

j<i ( this property is true for G and H though it is false for 8 A) ; we
icI

wlILe u\v 11 WHI cIIlly ILI ui \ t)i '

2. G?G +nd BH gre j$qBQrrinc.

We define an isomorphism f :G2G + Hal by writing , for any sequences

(ai)i,I € G and (ci)i,I ' G , f((ai)i,I,(ci)i,I) = ((bi)i,I,(di)i,I) with

- 2 -
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bn+ = an+ for each nm , bn_ = a(n+1 )_ for each na , do+

dn+ = c(n_1)+ fo' ea'h na* and dn_ = ,n_ f,r ,ach na .
For each na , we have

f[(UnlO)) = (Vn,0) + (O,(l2n+1,0,...,0,...)) ,

f( (OILln) ) = (09Vn_1) - (O,(l2n_2,0, ... ,0, ...)) ,

(Vn,0) = f( (Un,0) - (( ''' ,0, ' ' ' ,O,l2n+1) ,0))

(0,Vn) = f((0,Un+1) + (('..,O,...,O,l2n),0)) .

aO-

3. G and A +re i$an9rPhic as grQqPS .

Let us write E(rn) = {0-} , E(-m) = {0-,1-,,,,,(2m)-} , F(in) = g and

F( -m) = {0-,1-,el#,(2m-1 )-} for each maN . For each nez , let us consider

the following subgroups in G and H :

K(n) = {x = (xi) tel e G 1 for each maN , Xm+ = (h )ka with ak = 0 for

k / 2 (m+n) and Xm_ = (all )ka with al = 0 for k # 2 (m+n) + 1} ,

K’ in) = {x = (xi ) icI c K(n) { xi = 0 for i e ECn) } ,

K"(n) ; {x = (xi )icI e K(n) [ xi = 0 for icI - ECn)} ,

L(n) = {x = {xi) icI c H I for each maN , Xm+ = (ah )k€z with a) = 0 for

k / 2 (m+n) and Xm_ = (ak)ka with at = 0 for k / 2 (m+n) + 3) ,

L1 (n) = {x = (xi )icI c L(n) I xi = 0 for ie F(n) } and

L"(n) = {x = (xi )icI c L(n) I xi = 0 for icI - F(n) } ,

For each nez , we have un e K(n) , Vn€ L(n) , K(n) = K’ (n) O K"(n)
and L(n) = L’ (n) o L"(n) . It follows G = o K(n) = ( o K’ (n) ) o

na na
( o K" (n) ) and H = o L(n) = ( o L) (n) } o ( o L"(n) ) .
n€Z nez nez nez

We define an isomorphism f : o K’ (n) + o L’ (n) by writing
nez na

f ( (ai )icI ) = ( bi )icI with bn+ = &n+ for each na and bn_ = a(n+1 )_ for
each naN ,

For each maN ' we have K"(m) a Zp(2m+1 ) , L"(M) = {0} , K11 (-in) =

3



m m

k:_m zp<2k+li and L (-111> = k==m+1 zp(2k+1 ) ' it f')II'’ws =Z K (n> a

nb L (n) a kh (nb Zp(2n+1) )

4+ G and H are not isomorphic as ordered Hrt?ups ,

Convex subgroups ,

The following subgroups are convex in G (respectivejy H) :

- for each icI , Gi = {x = (aj)j€1 CG 1 aj = 0 for j<i} , (resWctively

Hi = {x = (aj)j€1 e H t aj = 0 for j<i} ) ;

- Go = {x = (aj)j€1 e G 1 an+ = 0 for each na} (respectively

Ho = {x = (aj)j€1 c H I an+ = 0 for each naN} ) ,

If x = (aj ) 361 is an element of Go (respectivejy Ho) , we have

ai = 0 except for a finite nurntnr of values of j , it follows G1\ =

U G = n G , and H = U H = n H
naN n- naN n+ o nan n- naN n+

The set of all convex subgroups of G and the set of all convex

subgroups of H , ordered by inclusion, can be described by the following

diagram :

{0} GO+ = G

Lil I I III

{0) HO+ = H

It follows from the structures of these isomorphic ordered sets that an

isomorphism fiG + H necessarily satisfies f (Gl ) = Hi for each

ie IU {u} .

Arguments of divisibility.
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For each nez , ACn) = {x = (am)ma € Ajam = 0 for n # n) is the
set of all elements of A which are divisible by each integer k which is

not itself divisible by p(n) . Consequently, for each na ,

G(n) = {x = (xi )icI c G 1 xi 6 ACn) for each icI} ( respectively

H(n) = {x = (xi) icI € H 1 xi e ACn) for each icI} ) is the set of all
elements of G (respectively H) which are divisible by each integer k

which is not itself divisible by p(n) . So, any isanorphism f : G + H

satisfies f (G(n) ) = H(n) for each neZ .

Moreover , for each each element

x = ( 1/s) ( Cai ) icI + b1 Ur( 1 ) + + 98 + kh Ur(k) ) eG

( respectively x = ( 1/s ) ( (ai) icI + b1 vr( 1 ) + ' ' ' + bk Vr(k) ) 6 H) ,

with sc IN 8 , a1 c A for each icI , as = 0 except for a finite nuntnr of

values of i , b1, , , , ,t\ CZ and r( 1 ) , . . . ,r(k) elements of Z which are

all different, we have x e G(n) (respectivejy x € H(n) ) if and only if

b1 = , , , = th = 0 and ai e ACn) for each jeI . This implies G(n) = H(n)
O ACn) for each nez and + G(n) = + H(n) = 8 A . So, any

icI nez na icI
isomorphism f : G + H satisfies f ( o A) = o A .icl icI

Ebd of the proof ,

Here, we consider an isomorphism f : G + H and we prove that the

elements v_ cannot knlong to f (G) , whence a contradiction,

For each j€1 and each nez , we write ljln = (ai) icI with ai = 0
for i/ j and as = in , We consider the following subBrouw in G and H :

%_ = {0} ; Gj_ = G(n_1)_ for each na* ; Gj+ = G(n+1 )+ for each na ;

Hj_ = {0} ; Hj_ = H(n_1)_ for each na* ; Hj+ = H(n+1)+ for each naN e

For each j€1 and each na , f ( 1 jIn) tnlongs to H(n) n Hj since lj in

- 5 -



belongs to G(n) n Gj ' Moreover, the image of f(IJln) in Hj/H) is not

divisible by p(n) since the inge of lj n in Gj/6) is not divisible by

p(n) ' So' we have f( 1 j n) = (bi)ici with bi e ACn) for each jeI ,
b1 = 0 for i< j and b1 not divisible by p(n) ,

For each nez and each keN , f (Un) - f ( lk+ 2(n+k) ) is divisible by

(P(2 (n+k)))t for each teN since Un - lh+ 2(n+k) is divisible by

(P(2 (n+k) ) )t for each taN . Similarly, f(Un) - f(lk_ 12(n+k)+1) is

divi,ible by (P(2 (n+k) + 1 ) )t for each tO since Un - lk_ 2(n+k)+1 is
divisible by (p( 2 (n+k) + 1 ) )t for each teN e

It follows f (Un) = (xi)icI with, for each kaN , xk+ not divisible by

P(2 (n+k) ) , xk+ divisible by (P(2 (m+k) ) it for each integer m>n and

each taN , xt_ not divisible by P(2 (n+k) + 1 ) and xk_ divisible by
(p( 2 (m+k) + 1 ) )t for each integer In<n and each taN .

Let us write f(Un) = (xi)jeI = (1/s) [(ai)iet + mE cm Vm I
ai e A for each i€1 , ai = 0 except for a finite numtnr of values of i ,

c CZ for each Inez and c_ = 0 except for a finite n\mknr of values ofm n -

In

with seN

For each kaN such that ak+ = 0 , we have xk+ =

(1/;) m: 'm 12(m,k) ' This i-Wlies c„ / O and Cm = O tOT ">11 ;ina9 xk+

is not divisible by P(2 (n+k) ) and xk+ is divisible by (P(2 (m+k)))t for
each integer m>n and each taN .

For each kaN such that ak_ = 0 , we have xk_ =

(1/s) m:Z Cm 12(m+k)+3 ' This iRWlies cn-1 # 0 and cn = 0 for m < n-1

since xk_ is not divisible by P(2 (n-1+k) + 3) and xk_ is divisible by
(p( 2 (m+k) + 3) )t for each integer m < n-1 and each taN ,

It follows f(Un) = { 1/s) (c Vn_1 + d Vn + y) with SO* , c,d 6 Z’
andy CO A .

icI

- 6 -



F. Oger

NrLV element of G - =1 A can be written u = (1/s) (k= ak uk + x

with s ' N* , m,n ' Z , mSn , ak ez for mS kg n , an / 0 , an f 0
and xc o A , There exists an integer t21 such that t f (uk) c N forle

each integer k which satisfies mS kg n ; we have f (uk) =

( 1/t) (Ck vk_1 + dk vk + yk) with ck, he z+ and yk G . IT A for
m S k ( n , it follows f (u) = ( 1/st) [am Cm Vm_1 +

n

m<k:n_1 (ak+1 ck+r + ak dk} vk + an dn Vn + [t f (x) + k= ak Yk)] with
n

t f (x) + k: ak yk c ill A ' The e Lement fu cannot be equa to aTV vk
since a c and a d are tx)th non trivial .mm nn

On the other hand, for each uc a A , we have f (u) e O A and f (u)
icI icI

cannot tn equal to any vk ' This achieves to prove that the elarnnts vit
cannot tnlong to f (G) , whence a contradiction.

7
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EW]VALHNCE ELDlnVrAIRE & OODIMHNSION
DANS LbS CURIE p–ADJWLS

L. B61air

R6sum6. Notts pr6sentons le r6sult.at d ’une note avec A. Macintyre et L.
van den Dries, On salt qlie tout (;orps al96brjquement. clos de caract6ristique
nulle possade un sous–corps r6el clos d ’ indice 2 . Du point de vue de la
th6orie des corps r6els clos ceci, se trad Ilit, en ce qu ’tin corps 616rrentairement

6quivalent, a une extension finie de R poss&de un sous-corps d’ indice fini
616mentairement 6qtI.ivalent a rR . Nous montrons qu’ il n’en est pas de male

potIr le corps des nombres p-adiques , Q_ ( p un nonlbre premier fix6) . A savoir
que, Nur toute exterlsion finie de Q.x donn6e, il existe un corps
616mentairement 6quivalent qui ne contient pas de soIls-corps d’ indice f ini

616mentairement 6quivalent a Q_ . La th6orie des mod dIes de R et, Q_ diffdre
donc sur ce point. Nous soulignons que les exemples donn6s FX)ss&dent Ie groupe
de valuation le plus simple possible, i .e. Z . On utilise des r6sultats
616mentaires de la g6om6trie alg6brique ( r6duite de Well, dimensioni , Ie

th6ordme de Baire dans Q,x , et le fait que dans une extension finie de QH ,
un sous-corps relativement al96briquement clos est 616mentairement 6quiv&lent
a 1 ’ extension elle–mame. Les d6tails devraient parai t.re dans Manuscript;a

Mathenut ica .

L , B61air
Universit6 de Paris VII- C. N.R.S.
Ec;uil)e de logique math6nutiqtre, U. A. 753
2 , place Jussieu
Paris . 5i6me





AXIOMATISATIONS " A LA ARTIN SCHREIER" DES CORPS

CHAiNABLES ET DES CORPS CHAINE-CLOS

par Danie11e GONDARD

(Universlt6 de Paris 6)

En 1982 Harman Introduit 1a notIon de chaine d'ordres de niveau sup6-

rieur faisant alnsi suIte aux travaux de Becker qui avait formalis6 1a notIon

d 'ordre de niveau sup6rieur et obtenu divers r6sultats sur ce sujet.

La motivation fondamentale pour 1 ' introductIon de ces chaines d'ordre

de niveau sup6rieur par Harman dtIalt en fait que pour un corps K mun1

d ' un ordre de niveau sup6rieur on ne pouva it trouver de notIon de c16ture

rde11 e g6n6ralis6e satlsfaisante car on pouvait obteni r diff6rentes c16tures

non K-lsomorphes.

Au contraire si on considere un corps K muni d ' une chalne d'ordres

de niveau sup6rieur on aura une c16ture de chaT ne unique a K-isomorphlsme

pres. Ceci s'explique par 1e fait qu' un ordre de n jveau sup6r{eur peut appar-

tenir a plusleurs chatnes diff6rentes.

Nous appe11erons corps chalnable un corps K qui peut etre muni d 'une

chaine d'ordres de niveau sup6rieur et corps chaine-clos un corps K admet-

tant une chaine d'ordres (p1 ){ c ]N tel que (K,Pi )ici) n 'admette pas d'ex-

tension alg6brique fidele au sens de Harman. Nous d irons qu ' un corps

(K, (Pi ) I . IN) est un-chain6 lorsqu 'i 1 n 'admet qu ' une seule chaTne d'ordres

de nlveau sup6rieur, a 6change de Po et P1 pres.

Les r6sultats de cet article consistent en des axiomatisations des

diverses notions de corps chalnable, corps pythagor icien un-chaln6 n'admettant
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que deux ordres et corps chalne-clos, parfaltement dans I'esprit des BxlO

mat Isat ions de corps ordonnable et de corps ordonn6 maxima1 dues a Artin-

Schre I er .

Rappelons tout d 'abord les d6f{nitlons d ' un ordre de niveau sup6rieur

et d ' une chalne d'ordres de niveau sup6rieur :

Pc K est un ordre de nlveau sup6rieur si

(a) P ; P - {0} est un sous groupe de K

(b) P + PcP

(c) K/P est un groupe cyclique fini .

{0} .

On dira que P est un ordre de niveau q si 1 K/PI divise q ,
et que P est un ordre de niveau exact q si 1 K/P I = q .

(P{ ) ICH est une chaine d'ordres de niveau sup6rleur si

( 1 ) Po et P1 sont deux ordres (au sens usue1 ) dlstincts

(iI ) Pour tout i : 2 , PI est url ordre de niveau exact 21.

(iii ) Pour tout i = 1 :

Pj U - Pj ; (PI_1 n Po) U - (Pi_1 n Po) .

Dans nos d6monstratlons nous reverrons 1e lecteur a nos articles

[GI ] et [62] pour les r6sultats uti 11565 concernant les th6ories des ordres

de nlveau sup6rieur et des chalnes d'ordres de niveau sup6rieur quoique

ces r6sultats solent 1e plus souvent dus a Becker [Be] ou a Harman [Hal ,

puisque 1 es premiires r6f6rences sont dlrectement ut111sables dans ce m6me

volume du s6mina1 re.

Dans tout:e 1a suite du texte 1a notation E KZ repr6sentera

; ( i x:) et de meme E K2 notera ; ( i x?n)
i:1 p=o P i:1 p=o P
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D. Gondard

I CORPS CHAINABLES

Soit £(0,1,+, . ,- ,= ,a) Ie langage form6 de

0,1 et a comme symboles de constant;e

+ et . comme symboles fonct{onnels a 2 varlables

symbo1 e fonctlonne1 a 1 variablecorrlrne

= comme symbole relationne1

THEIORE:ME 1-1 : Un corps K est cha£nabte si et seuLement si on petIt y trouver

un 6tdrnent d feZ que (K,d) satisfa66e Ze systZrne d lartorres T1 du
£tangage

Ax Ay Az((x*y>*z = x * (y.z)>
A=£omes de

Ax Ay (X+y = y+x)
Groupe

' 1 Ax (x + o = x)
commtat£f

Ax (x + (-x) = 0)
A=iome s de

Ax Ay Az (x.(y.z) = (x.y).z)
X££,I„,, d, { ,„?,

Ax Ay (X.y = y.x)
col?allutatif

Ax (x. 1 ; x)

Ax Ay (x ; 0 v x.y = 1 )

Ax Ay Az (x. (y+z) = x.y + x.z)

V(0 = 1 )

pour cInque n = 1 Z ’an£ome

hx1... A,n 7(-1 = x? +...+ x:)
pour cInque n = 1 t t a= tome

Ax1. . . Axn7(a2 = x t +. . .+ x:) .

corp s

T1 ] a 01n 71Lr711 u t a t i f

ordonnabte

D6monstra tion .

Les premIers ax{omes assurent qu'un modele de T1 est un corps com-

mutatif ordonnable (Artln-Schreier) . Le dernier schema d'axiome montre qu ' 11

existe un 616ment; a du corps K tel que a2 n'est pas une somme de puis

sances quatridmes.



4

Ceci entraTne que E K2 + E K4 et dorIC que le corps K admet des

ordres de niveau sup6rieur non trlviaux, (voir [GI ] , th. 4-4) et done que

pour tout n il existe url ordre de nlveau exact an soit P, (voir [61 ] ,

th. 4-3) . II passe alors par cet ordre Pn une chalne d'ordres CP1 )i € 1N

([G2] , th. IV-3) . Un moddle de T1 est dorIC bien un corps chaTnable.

R6ciproquement : tout corps chalnable est un modele de T1 . En effet sl K

est un corps chalnable 11 admet des ordres de niveau exact 2n pour tout n

et doric E K2 + E K4 ([GI ] , th. 4-4) . Si pour taut aCK on a a2 C E K4

alors toute somne de carr6s d'616ments de K est une somme de puissances

quatri6mes ce qu1 est impossible ; Done 11 existe a te1 que aZ £ E K4.

Un corps chaTnable 6tant n6cessalrement ordonnable ( [GI ] , th. 4-1 ) ,

K est bien un moddle de T, .

CONJECTURE 1-2.

On ne peta; pas trout>er une a=iomat isat ion du premier ordre de Za

thgor ie des corps cha£nabtes dans Ze tangage des corps !" (0 ,1,+, . ,- ,=) ,

c 1 est-a-dire S pr£v6 du syna>ole de const;ante a .

II CORPS UN-CHAINE,PYTHAGORICIEN N'AYANT QUE DEUX ORDRES USUELS.

Soit £' (0, 1,+, . ,- ,= ,a, > ,>) 1e langage form6 a partlr de S en ajou-
01

tant R et ? comme symboles relationnels.

THE:ORi:ME II-'l : U1 coPPS K est un-ctra€n6 , pytturgoD£cien et a seulement deu=

OTa?es VFa£s si et seulement si on petAl; y trout>er an dZZment & taZ que

(K'a) sati6f'''' Z' 'y 'ta'"' d',zi,„„, Ti d, I.„g.g, £

(On peut remarquer que le th6c>reme 11-1. reste vaTable en remplaCant

un-chain6 par chalnable) .
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r Aarborne s de corps cornrnul;att J •

L (cf . th£orame l-IJ
Aniomes de

. 1 Ax Ay(x80)A(yB0) + xwB0)
corps ordonn6

' I Ax Ay(xp)A(yBO)' x. Bo)

po'"P % Ax (XBO)v(-xia)

Ax (+((>%0 )A( -xia )) vx=0)

Les 4 aatoTnes obI; enus en 6ubstituant; ici B
42728 tes 4 au£oTnes c{-dessus

An£orne s de

T , 1 coWS OPdonn6

r; 4 b,,p, chaMZ,'1 po'“ B 't p“" T
LevIne I1-2)

pour chaque n = 1 Z la=iome

AxI .. . Axn +(a2 = xt +. . .+ x:)

(aB 0) A (a T 0)

Ax Vy ((x = y2) v (x = - ya) v (x = ay2) v (x = - ay2))

LE:MME I1-2 : Un corps K est cha'tnabte si et seuLement si on petIt y trota>er

an dtd"tent a tel que (K,a) satisfasse Z, ,y,tirT„ d',,i,„,, Ti d“
tangage !

C'est clair : Un modele de T: est ordonnable dorIC est aussi modele

de T1 et est un corps chainable.

R6ciproquement un corps chainable est un moddle de T1 et cc)mme 11 a

toujours deux ordres vrais au moins 11 est aussi mod61e de Ti .

D6monstratlon du th6or&me : Soit K un moddle de TI . Par 1e lerrrne nous

savons qu ' un modble de Ti est un corps chainable.

Posons Po = K2 u a K2 et p1 = K2 u - a K2 et montrons que _b et

P, sont des ordres :

( 1 ) Po U - Po = K , est clair d'apres 1e dernier axiome.

(2) Po . Poc Po est evident.

(3) Po n - Po = {0 J : En effet soit xC Po n - Po , on a donc

x C (K2 Ua K2) n (- K2 u - a K2) . Alors
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. Sj x ( K2 et x c - KZ , clalrement x = 0 .

. Sj xC K2 alors XB 0 , et si xC - a Ka alors Og x
car a Z 0 . DorIC x = 0 .

. Si xe a K2 a1 ors x >o 0 car a >o 0 , et sI xC
a1 ors 0 <„ x car aR 0 . Donc x = 0 .

. Enfi n si x c a K2 a1 ors x X 0 , et si x C - KZ

a 1 ors x 'X 0 , donc x = 0 .

Dans tous les cas x c Po n - Po ent:raine x = 0 .
P + PcP

0 - 0 - 0

Solt x ( Po = K2 UaK2 et y e Po = K2 UaK2

x : 0 car K2 est form6 d'616ments posIt Ifs pour get ago .
yi 0 de m6me dorIC x + y : 0 .

Ma is x + y e K = K2 U - K2 U a K2 U - aK2

Les 616ments de -K2 et de -aK2 6tant n6gatif pour i on a

X+y C KZ U a KZ = Pn

Les propri6t6s (1) a (4) montrent que Pn est un ordre sur K

On d6montrerait de m6me que P1 est un ordre sur K .

SI Po = K2 u a K2 et P1 = K2 u -aK2 , l1 est cla Ir que Po n Pl = K2

Si on considdre tous les ordres possibles de K on salt que

E K2 ; nPc PO n P1 = K2 dOIIC E K2 = K2 et le corps K est un corps
P ordre de K '

pythagorlcien .

Enf jn PA et P1 sont 6vldemment les seuls ordres de K : en effet Sl

P est un autre ordre de K on a aCP ou aC -P .

SI aCP alors PDKZ U a KZ = Po et donc P = Po

SI -a CP alors PD Ka U - aKZ = P1 et P = P, .

Le corps K n'admet dorIC que deux vrals ordres Po et P1 (correspondant

en fait aux symboles Bet ? finalement) .

a K2

(4)
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Dans un tel corps 11 n 'existe pour tout n = 2 qu'un seuI ordre de

niveau 2n , et ce1 ui-cI est donn6 par

,in an - 1 An
P„ = = K' U .- „' : K‘

(voir [61 ] > th. 5-3) ; Le corps K est dOIIC un-chaln6. Les modeles de Ti
sont donc bIen les corps un-chaT n6, pythagoricien n'admettant que deux ordres

vra { S .

R6cipfoquement, soit K un corpsuhchaln6, pythagoric len n'admettant

que deux ordres. C'est d'abord un corps chafnable qui v6rifie dorIC les axiomes

Ti avec iet { pour ses deux seuls ordres.

11 est PYthagoricien dOIIC E K2 = K2 et les 616ments totalement posltifs

de K sont ceux de K2 . Sj a2 fE K4 alors af K2 et, aF _K2 dont+ a

n 'est ni totalement pos ItIf nj totalement n6gal. If et on a bIen u R 0 eta < 0
11 suffit alors de montrer qu'un B convenant au dernier axiome est

bien tel que B d E K4 . Dans un corps chainable n'ayant que deux ordres

Po et P1 , 11 exlste B te1 que Po = E K2 u 6 E K2 et P1 = = K2 u -B E K2

(rGl] , Ex. 5-3) . K 6tant pythagoric len c'est en fa it Pn = K2 U B K2 et

P1 ; K2 u - B K2 ) et 6 est donc bIen convenable pour le dern jer ax lome.

Montrons que 62 ( E K4

SI 62 CE K4 alors pujsque P2 I'unjque ordre de njveau 22 de K
est donn6 par

P2 = E K4 u -B2 E K4 , alors on a PP = = K4 U -;K4 , donc auss{

P.,> U - PP = E K4 U - E K4

Or d'apfds 1a d6finition d ' une chaine d'ordres de nlveau sup6rleur

Pa U - P2 = (P1 n Po) u -(P1 n Pa) = = K2 u - = K2 = K2 u - K2

En comparant les 616ments totalement positifs et totalement n6gatifs

de P2 u - P2 on auralt E K4 = K2 ce qui est impossible dans un corps

chaTnable. Donc B2 aE K4 . K est bien url modble de TX .
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III. CORPS CHAINE-CLOS

Un corps chalne-clos 6tant en particul§er urbchaln6, pythagoriclen et
ayant seulement deux vrals ordres une axlomatisation de sa th6orie pourra
contenlr line axiomatlsatlon de 1a th6or ie 6tud16e au II •

THEIORE:ME II1-1 : Un corps K est cha{:ne-ctos si et seulement si on pent y
trouuer un dt6rnent d tel que (K,d ) 8at{sfas8e Ze sy st;bme at a££o?nes

du tar_gage ! ' .

Ti

[ A=£ornes de coITS coa7nutat£f

coWS I ] ,,d,,„d p,„, B ,t p,„r {
ch.l€nabte ] [ ('f . th. I1-1 ) .

T: I p„„ tout n = 1 Z’,Biome

Ax1 . . . Axn 7(a2 = x? +.. .+ x:)

(agO) A (aT 0)

Ax Vy(x = it v x = - it v x =u+ 1 x = - a It\

corp commutat£f

un-cha£n6

': I:“:::::=:::::
T:

pour tout n = 0 Z ’aatome

Axa „' Ax2n+1 Vy (xo+x2y +„-+ x2n+1 y n+1 = 0 Y X2n+1 = 0)

Les moddles K de T: sont des corps chalne-'clos. 11 est clair qu'6tant

modbles du T; 115 sontun<hain6, pythagoricien et n'ont que deux ordres vrais.

On salt qulalors Po n PI = K2 (On Po et P1 repr6sentent 1lensemble des

61ements positifs pour chacun des deux ordres) . Le dernler schema dlaxiome

assure a1 ors que tout polyn6me de degr6 impair a une racIne. Par 1a caract6-

r Isat jon des corps chalne-clos coame corps chaln6 te1 que Po n P1 = KZ

et K n 'a pas dlextenslon alg6brique de degr6 lmpair non trlvlale

([G2] , th. V-3) 11 est clair qu' un modele de T; est chaine-clos.

Inversement, tout corps chalne-clos 6tantun<hain6 pythagoriclen avec

deux ordres seulement est modele de Ti et puisqu' 11 n'admet pas d'extension

alg6brlque de degr6 impair 11 est moddle de Ti .

Lors d'un entretien avec Max Dickmann, qui souha lta it lu{ une axiomatl-

sation des corps chaine-clos dans 1e langage des corps, nous avons pu obtenir
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a partir du th6oreme II1-1 I'axiomatisation sulvante oD

est le langage £ priv6 du symbole de constante u .

!" (O .I =

THEOREME 111-2, Dans te tangage t" te sy8tame dtawtomes qui 8uit est une

a=£omatisation T: deLl th6orie des corps cha£ne ct08

] anc,m,, & ,,q>, ,„r„„„t,tif ord,nn„bZ,

Ax Ay Vz(x2+ya = z2)

T : 4 A x A y V z ( x 4 +y 4 = z 4 )

Va Ax(v (a2 = x4) AVy(x ; y2 v x = -ya vx = -ay2 vx = a y2) )
T:

D

Pour tout ni 0 t ' arCane

Axa Ax2 ... Ax2n+1 Vy(xo + x2y +...+ X2n+l y2n+1 = 0 v X2n+1 = 0) .

LEMME III,3. 1\ est line awtowutisation de La ttt6oyte des corps wrcba€n6 ,

pythagovtcien, n'ayant; que dam o?ares.

D6monstrat Ion du lerrrne III .3 : Soit K un modele de T: . Si on pose

P o = K 2 u a B K 2 e t P I = K 2 u M a K 2 o D a v 6 r j f j e 1 e d e r n jer axIom e

de T: alors on peut verifier que Po et P1 sont des ordres sur K .

( 1 ) Po U -Po = K d6coule iarn6diatement du dernler axiome de T:

(2) PO . PO c PO est clair

(3) Po n -Po = {0} . Soit x C Po n -Po , alors

x C K2 U a K2 et x c - (K2 U aK2) .

. x c KZ et x C -KZ ent:raIne x = 0 .

. xC a Kz et x C -a Kz ent:raIne aussi x = 0 imm6dlatement.

. Si x c KZ et x C -a KZ , alors 11 exist:e y et z , non nuls

si xf 0 , te1 s que ya = - az2 , dorIC -a = ({}2 ce qui est impossible,

car a2 g K4 ; dorIC x = 0 .

. De mime si x C -Ka et xC a K2 on obtient sl x / 0 I'existence

de y et z non nuls tels que -y2 = a z2 et a ; - ({)2 ce qui est impossible

Donc x = 0 .
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PO + PO c PO : solent X et y appartenant a PO = KZ U a Kd

. S I x et y sont dans K2 , x + y est aussi car K est PYthagoricien,

dorIC x + y e P,

. SI x et y sont dans a K2 , de meme x .+ yEa KZ

. Sl x ( K2 et y €aK2 , x + y e K2 v -K2 U aK2 U -aK2

a) Sl x + y ( -K2 , en supposant y / 0 (sinon x = 0 aussi )
iI existe x ' , y' et z avec y ' # 0 te1 s que

X'2 + ay'2 = -z2 d' oO -ay'2 = X'2 + z2
et -ay' 2 = T2 car K est pythagorlcien. On en d6dult

ce qui est Impossible

b) Sl x + y e -aKa alors de m6me on peut supposer y / 0
(slnon x = 0) et 11 existerait x' , y' + 0 et z tels que

x'2 + ay' 2 = -a z2 . On en' d6duit

a(y'2+Z2) = - X'2 et puisque K est pythagoricien

aT2 = - x'2 et a = - (4) ce qui est impossible (T est non nuI car
T2 = y'2+zZ et y1 + 0) .

Donc finalement x + y ( K2 U a K2 = Pn et (4) est bien v6rifi6.

Les relat ions (1 ) a (4) montrent que Pn est un ordre de K ; On mon-

trera it de meme que P1 = KZ U -aKZ est un ordre sur K .

Le dern jer axlome de T: assure que a2 g K4 et pulsque K4 + K4 ; K4

on a a2 £ Z K4 . Un modile K de T; 6tant dorIC ordonnable et te1 qu' il

existe aCK avec a2 g E K4 est dorIC un corps chalnable (th. 1-1 ) .

(4)

K est pythagoricien d'apres I'un des axiomes. Par un raisonnement

d6ja effectu6 au II, K n'a que les deux ordres Po et PI , Po n P1 = K2

et toujours de meme 11 existe un unIque ordre P_ de niveau 2n donn6
2n 2n-1 2n

par Pn = = K' U - a' E K' . K est dorIC bien un-chaTn6.

Inversement un corps K wthagoricien un-chaln6 et n'ayant que deux ordres

et automatiquement pythagoriclen a tout nlveau dorIC K4 + K4 = K4 et 11
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possede un 616ment a FE K4 et qui est te1 que K = K2 U - K2 u a K2 u -a K2

(cf . d6monstration a 1a fin du II) . C'est dorIC bIen un modale de T; .

Le th6oreme II1-4 d6coule alors imn6diatement du lenrne et du th6oreme III..I.

Remarque II1-4.

Dans T: on peut supprlmer I'axiome assurant que K2 + K2 = K2

car dans un corps ordonnable K4 + K4 = K4 ent:raine K2 + K2 = K2

(voir [Ha] ) .

En conclusion I'axiomatlsation 1a plus adapt6e pour 1'6tude des corps

chainables et chalne-clos apparait a I'auteur 6tre ce11e 6crite dans 1e

Tangage 1(0, 1,+, . ,-,;,a) et 6nonc6e dans 1e th6orbme ci-dessous :

TRE.OREME. Ill–5 : Un corps K est cha£ne-ctos si et seulement si on petIt Y

troutjer an at£rnent a feZ que (K,a) satisfasse Ze SY statue alaai'cxnes T3

du tangage S .

Aaionies de corps comrmtatif

o?donnabte .{corps

corps I chad?ze 1 __.._ +_. + n b 4 7 ,__. _

un<ha£n£ 1 Tl . I ax+ ..a NK q(J = x4 +0.0+ x4)

2

In) / t IIIIIIIay0 M 1gHE 4 1 A X A y V Z X 2 +y 2 = Z 2

; '’d’'; “-ZI A* vy (* = y2 „ x = - ,2 „ x =a ,2 v x = - a,2)

COIj> s

cha€neutos

T3

pour tout n = 0 Z ' aatoTne

Axa... Ax2n+1 Vy(xo+xX+ ... + y2n+I y2n+1 = 0 v X2n+1 = 0) .

LEWE: 111-6 : Un corp8 K e8tuncha€n6, put}ragoaaien et a 8eutement aau=

o:n&e s wu£8 8£ et seuLement si on petIt y trout?er an 6t6Tnent a feZ que

(Kpa) sati,fa,,, Ie ,y ,tam, d'a,i.,.e, T2 d„ 1„.gag, S .
Le th6ordme II1-5 d6coule alors irrrn6diatement du lermle II1-6.
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Demonstration de lemme II1-6.

Un modble de T2 est un corps chalnable puisque modele de T1' 11 est

pythagorlcien puisque c'est dans les axiornes. 11 suffit de verifIer que

un moddle K de To n 'a que deux ordres.

Posons Po = K2 U , K2 et PI = K2 U -a Ka . Les propr{6t6s (1)

Po u -Po = K et (2) Po.Po c Po sont 6videntes.

Puisque a2 gE K4 alors ag E Ka et les demonstrations faites

dans 1e lenrne II1-3 sont valables et montrent que (3) P, n -P, = {0} et

(4) PO + PO c PO

Donc Po est un ordre sur K . De m6me pour Pl . Pu{sque Po n P1 = KZ,

K n' a que les deux ordres Po et P1 et dorIC un unique ordre Pn donn6 par
an a nHl an

Pn = = K' U - a' E Kd . K est dorIC bien un corpsun-chain6.

R6ciproquement tout corps K url-chaTn6 pythagoricien n'ayant que deux

ordres est modele de T9 : s ' 11 estunchain6 11 est chainable dorIC modele de T1.

11 est pythagoricien dorIC v6rifie I'axiome sulvant, enfin puisqu' 11 n 'a que

deux ordres ces deux ordres sont donn6s par Pn = K2 U $ K2 et P, = K2 U -B K2

et 1e raisonnement falt a 1a fin de II assure que ce 6 est bIen te1 que

Bz f x K4
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I + INTRODUCT10N :

Dans cet article, nous traitons le probl bme de it Elimination de quantiT
ficateurs dans la th€orie 616mentaire des corps r6e1 et alg6briquement clos (de
charact6ristique arbitraire) du paine de vue des complexit6s s6quentielle et pa-
rallble .

Ltint6r8t du cas des corps alg6briquement clos est plus th6orique que

pratique (par exemple la d6termination de la dimension dtune vari6t6 alga)ri-
que) et nous le traitons ici de maniare succinte .

Nous travaillons plus en d6tail le cas des corps rEel cjog pour deux

raisons : la premiare est quten g6n6ra1 la litt6rature sur le sujet est de lee-
ture difficile et nous proposons ici des d6monstrations accessibles a un public
moins familiaris6 avec les notions de complexit6, Dtautre part , dans le domaine

de la Robotique , une tendance moderne essaye de r6duire les probIBmes de mouve-

ment a des problbmes de g6om6trie semi–alg6brique oi apparaissept des formules

tr8s intriqu6es dans le langage de premier ordre du corps r6e1 IR. Une maniBre
d'attaquer ce probl~eme du point de vue calculatoire est dtessayer dt61iminer
effectivement et efficacement les quantificateurs de la for=rule donn6e. Ceci ne
veut pas dire que nous proposons cette attaque du problbme: nous essayons sim-
plement dt examiner les possibilit6s qu1 off rent les bornes obtenues , 11 existe
de s6rieux doutes quant a I'efficacit6 de cette m€thode, vu les bornes inf6rieu-
res doublement exponentielles en s6quentiel, La seule solution que nous voyons

pour r6soudre ce prob1 bme inhErent i lt61imination des quantificateurs est de
consid6rer un modble de complexit6 qui permet de travailler en paralIBle , sans

augmenter plus que n6cessaire le nombre de processeurs. Il f aut aussi tenir
compte du f ait que dans la r6alit6 un processeur physique peut s'utiliser
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Plus d 'une fois alors que notre modale pr6voit un usage unique de chaque processeur.

CeC:i se manifeste par les r6sultats de complexitg s6quentie11e ( nombre de noeuds

du r6seau arithm6tique en jeu . ) C 1 est pour celb que nous serions aussi intdress66
par la possibilit6 de crger un modale qui permettrait dt6conomiser le nombre de
processeurs physiques . Comme nos bornes en parallale sont optimales ,nous laissons
le lecteur juger si le rapprochement de lt61imination de quantificateurs avec le pre
blbme de la Robotique est viable ou non.

Le f ait que la th6orie 616mentaire des corps r6e1 clos admet 1’'61imination
de quantificateurs a ata d6montr€ par Tarski dans les ann6es 30 (volt [42 ] ) . Dans

cet article , Tarski donne un algorithme effectif , mais impraticab le dans la r6alit6
car il £onctionne en temps 22/} , oIl I ,st 1, 1,.g.,„, d, 1, r,,m.1, d',.t,a,, a-
crite sur un ruban de machine de Turing.

La recherche dt algorithmes rapides provient de I'id6e d'appliquer lt61imina-
tion de quantificateurs a des problemes concrets de g6om6trie 61.6mentaire. En 1975 ,
dans [ 14 ] on trouve un algorithme qui fonctionne en temps 22th qt ,oh log dE-

signe le logarithme en base 2 , Le meme genre de bornes est obtenu dans [ 44 ] , ins-
pir€ sur [ 37 ] , [41 ] (algorithmes rapides en s6quentie1 pour la dEcision de la than
rte a16mentaire des corps rgel clos . ) Dans le cas des corps alg6briquement clos , des

r6sultats analogues sont don”Es dans [30 ] 1 [ 29 ] A[11 ]. L's b'rnes Ies Plus int6ressaF
tes pour les corps rEel clos sont obtenues dans [ 28 ] [ 27 ] o-u les rasultats gang-
raux ne sont pas essentiellement modifi6s mais sont plus pr6cis quant aux paramatres

qui mesurent la taille de la formule dlentr6e , ce qui permet dans certains cas des

applications pratiques . (Toutes ces bornes correspondent au temps s6quentie1. )

Les m6thodes utilis6es jusqu1 a pr6sent pour lt61imination des quantificateurs
dans la th6orie des corps r6e1 clos sont toutes fond6es sur des souealgorithmes qui
peuvent 8tre consid6r6s comme des calculs de fonctions de Skolem semi-alg6briques ,
ce qui en sol n'est pas efficacement paral161isable : ct6tait la ltobstacle principal
pour trouver des algorithmes rapides en parallble . Pour le problime de la dEcision ,

il existe par contre un r6sultat pr6curseur [ 6 ] , un algorithme qui £onctionne en
temps parallble simplement exponentiel avec un nod)re doublement exponentie1 de pre
cesseurs ( c'est-a–dire de type doublement exponentie1 en s6quentie1)

Pour pr6ciser un peu les concepts , disons que nous consid6rons le langage de

premier ordre de R, avec les synboles noblogiques suivants : {ap a ( Q } p+1- 3 . ,= , >
et les variables X1 , . . , , Xn , . . . . Les termes de notre langage sont 6crits
sous forme de polyn8mes a coefficients dans Q (repr6$entation dense) . Dans Ie cas d1

un corps alga>riquement clos k , les synboles seront {a, acAS ,+,- , • 1 = al a est
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le corps premier de k.

Pour le modale s6quentie1, il est naturel de repr6senter les nots du langa'-

ge L sur un alphabet fini,convenablement choisi, et de codifier la formule sur un

TUba„ de machine de Turing. La form„1, $ dle„tr6e a alors une longueur I $ 1 qui cor-
respond au nombre de cases du rub an qut elle occupe , et les notions de temps et d 'es-
pace de ltalgorithme qui d6coulent de ce modale sont le nonlbre de pas qu'effectue la
machine de Turing pour r6aliser llalgorithme et la quantit6 de cases occup6e pendant

ce processus .

La prEsentation que nous choisissons dans ce ttavail est plus simple . Nous

utilisons le modele alga)rique oa additionner et multiplier deux 616ments du corps
de base co ate toujours un, ind6pendenunent de la longueur binaire de ces 616ments .
II n 'y a pas de perte de g6n6ralit6 dans le cas s6quentiel car les bornes qui stob-
tiennent sont exactement du mame type que si 1 ton travai11e avec le modale de la ma-
chine de Turing . 11 nous semble que le modBle alga)rique proposE ici est plus en ac-
cora avec le genre de problame que nous traitons : la raison est que la notion de ma–

chine de Turing n'est guare para1161isable .

Nous cherchons done un modale qui est a la f ots d6terministe et ol la no-

tion de paral161isme a un sens . Le modale ad6quat , quant au travai1 qui s’effectue

sur les polyn8mes ( termes de notre langage ) est celui de r6seau arithm6tique , que

nous d6finirons ensuite . En r6sum6 , llalgorithme est d6crit par un graphe oil le now
bre de noeuds repr6sente la complexit6 s6quentielle et la profondeur du graphe ( che-
min le plus long ) la complexit6 parallale .

Une partie du modale qui nt est pas explicit6e est celle de la manipulation

des lettres de la forrnule . Ibis le chemin a suivre est clair et n’ est d'ai11eurs pas
essentie1 pour les bornes sup6rieures et inf6rieures , corinne le lecteur verra.

Avec ce modale , nous obtenons des bornes sup6rieures pour la complexit6 paral-
lale de it Elimination de quantificateurs dans la th6orie des corps rEel et alga)ri-
quement clos , sans augmenter essentiellement la complexit6 s6quentielle . Le lecteur
int6ress6 pourra ais6ment traduire les r6sultats pour la complexit6 s6quentielle au

mod ile de machine de Turing , af in d !aboutir au mame genre de bornes qu' en [ 44 ]

De plus , nous d6montrons que les bornes sont optimales , tant en s6quentiel

qu’en para11ale dans les deux cas ( pour 1,s r6sultats ant6rieurs, voir [29]143] [19] )
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Le problbme des bornes inf6rieures pour la complexit6 parallble des corps r6e1
clos avait 6t6 esquiss6 dans [ 5 ]oil les auteurs pensaient appliquer, apparemment

sans r6sultat (Voir [10 ] ) , les techniques de [35] en cor„binaison avec le thEo-
reme des z6ros de Hilbert; ct est un tout autre chemin que nous suivons ici e

II. LES RESULTATS :

Soit k un corps r6e1 clos ou alg6briquement clos , Comme nous consid6rons la
th6orie 616rnentaire de k, dans le cas r6e1 clos , nous 6crirons simplement k= R.

Pour parler de k, nous consid6rons le langage de premier ordre L, avec
les symboles non logiques : {a, acn } ,+,- , . ,=, O-iI a est le corps premier de ke

Dans le cas r6e1 clos , nous avons en plus un symbole relationne1 > .

Nous consid6rons les variables de L comme ind6termin6es Xl, . . . ,Xn , . ' .
sur k. Les termes de L sont repr6sent6s par des polyn8mes b plusieurs variables ,
\a coefficients dans n (reprEsentation dense) . Par consEquent , un terme typique

a I'a,p,,t Fen [X1, . . . ,Xn] ,t un, £,r„,ul, typiqu, ,,t du g,n,e r=o, et si
k= R, aussi F>0 . Pour la n6gation de ces formules nous 6crivons F#0 ( et F(0 ,
pour k= R) .

Notre langage L est construit b partir des formules atomiques en utili-
sant les connectif s logiques V , A , -l et aussi par convenance + , et les quanti-
ficateurs ], V qui slappliquent aux 616ments de k (pas b des sous-ensembles,

ni ~a des relations ) . Chaque formule } de L contient alors des polyn8mes , di-

,,„, Fl, . . . ,Fs d,nb1,. . . ,XJ , ,t x1, . . . ,Xn ,,„t I,, „,,i,bles de $ .
Nous consid6rons le langage L comme un ensemble de mots sur it alphabet

(infini) des symboles de L (variables , symboles non logiques et connectif s lo-

giques , quantificateurs et parenthbses . ) A toute formule @ de L correspond a-
lors une long,nur nature11e IQ 1 (no,„bre de SWboles utilisgs pour 6crire b )

Les autres parambtres que nous utilisons sont:
a ( 6 ) : = 2 + E deg(Fi )

1<i(s

n := le nombre total de variables qui apparaissent dans la formule + .
Et si 4> est une formule pr6nexe, ctest- I-dire tous les quantificateurs se trou-
vent au d6but de b ) , nous tenons compte aussi dei

„= 1, n,mb,, d',it,,n,ti,„, d, bl,,, d, q„,ntifi,,t,.,, I, V.

( Une f,rmul, + P,ut ,t,, ,a„„nE, ,n temp, s6quentie1 lin6aire O(+) -a une £or-
mule 6quivalente W pr6nexe; ce processus ne modifie gu-ere I + t , a($) et n.
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Nous a11ons maintenant donner les notions de complexit6 n6cessaires

b la compr6hension des r6sultats .

Le noyau de notre algorithme correspond b faire des op6rations a-

rithm6tiques avec des polyn6mes Fefl[X1, . . . ,Xn] ( repr6sent6s par le vec-
teur des coefficients , 6crits de manibre dense ) , et dans certains cas , nous

nous posons la question F=0? (selon si la r6ponse est Vrai ou Faux nous sui-
vons un chemin ou it autre , )

Le modble le plus convenable pour ce genre dtalgorithmes arithm6tiques
est celui de 11raseau arithmatique11 [ 25 ] , qui utilise comme entrEes les

constantes du corps k et qui permet les opErations +,-, . . Pour la question
F=0 ( et F>0, dans Ie cas de R ) , nous admettons aussi les comparaisons . Cette
notion de r6seau arithmgtique peut ’atre d6crite par un graphe , oil chaque noeud

repr6sente une opEration ( entre deux 616ments ) -a r6aliser .

Par exemple, additionner xl,,..,x8 , xi C R peut 6tre repr6$ent6
par llalgorithme (1) suivant :

On peut aussi ex6cuter ce calcul par ltalgorithrne (I1) :

xh X6xl x2 x3 x5 X7 x8
/ \/\ \/./ \

+ +++

+
+

+

la manibre de calculer une fonction nt6tant pas unique en g6n6ra1.

Nous pouvons d6finir, pour un algorithme donn6 d6erit par an graphe,

deux notions de complexit6 :

1) La complexit6 s6quentie11e de ltalgorithme : Ctest le nombre de noeuds du gra–
pIle (dans les exemples (1) et (I1) , 7 ) . Si 11 on suppose que chaque op6ration
de ltalgorithme se rEalise en une unit6 de temps fixe , la complexit6 s6quentie11e
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repr6sente le temps n6cessaire b un processeur pour effectuer ltalgorithme +

2) La complexit6 parallble de ltalgorithrne , ou profondeur du graphe : C'est le
nombre dt"6tages" du graphe, ctest-b-dire le chemin le plus long 'a suivre pour

arriver aux r6sultats ( Dans ltexemple (1) la profondeur est 7, alors que dans

jfexemple (I1) qui d6crit le m8me calcu1, la profondeur est 3 .) Cette notion
de complexit6 para11ble correspond au temps minimum n6cessaire pour r6aliser
I'algorithme , si nous disposons dtune quantit6 arbitraire de processeurs qui
fonctionnent en parallble , ct est-b-dire si tous les processeurs peuvent ef fec-
tuer des op6rations en m6me temps , et les processeurs sont int6gr6s de mani8re
te11e que le r6sultat obtenu par un processeur peut 6tre transmis -a un autre
processeur qui r6alise alors it opEration suivante . Comle la profondeur du gra-
phe d6crit le noTnbre dlop6rations qui doivent attendre les r6sultats d'op6ra-
tions pr6c6dentes , cette notion correspond clairement au temps indispensable

pour effectuer ltalgorithme, m&le si I' on dispose dtun nombre i11imit6 de pro-
cesseuTS +

Si nous observons llexemple (1) , la quantit6 n6cessaire de processeur$

pour effectuer l’algorithrne en temps 7 est 1, alors que dans llexemple (I1) qui
fonctionne plus rapidement en para11ble , il en taut 4 (qui correspondent aux
quatre premibres op6rations b faire . ) Malheureusemenc , comme en gEnEral les Bra

phes ne sont pas aussi r6guliers que ceux de ces exemples , la seule borne dont
nous disposons pour le nombre de processeurs est la quantit6 de noeuds du gta-
phe , ctest-b-dire la complexit6 s6quentielle de ltalgorithme , Ceci veut dire
que nous I'jetonsl' un processeur apr'bs ltavoir utilis6 une seule fois . Bien dvi-
de=ment, dans la r6alit6, un processeur peut 6tre r6utilis6 aprbs avoir ef fee-
tug une opEration; il serait donc int6ressant dtobtenir des bornes sur le noI.I–

bre de processeurs n€cessaires , en fonction du nombre de noeuds et de la pro-
fondeur du graphe , Comme nous nlavons pas ce genre de bornes , nous pr6supposons

ici un usage unique de chaque processeur, et le nombre de processeurs sera re-
pr6sent6 par la complexit6 s6quentielle de ltalgorithme .

G6n6ralement, les algorithmes qui donnent la meilleure complexit6 sa-
quentielle ne sont pas ceux qui fonctionnent le plus rapidement en para11ble , et
un ltbon11 algorithme en para11ble tait augmenter le nombre de processeurs n6ces-
saires (complexit6 s€quentielle . ) On cherche a obtenir des algorithnes rapides
en parallble qui ne font pas 11exploser'1 le nombre de processeurs , ct est--a-dire
qui n 'empirent pas essentiellement la complexit6 s6quentie11e , Ceci signif ie
que les r6sultats qui stobtiennent pour la complexit6 s6quentie11e de ces algo-
rithmes doivent 8tre dans le mame ordre que ceux qui se connaissent d6ja par
dtautres algorithmes repr6sentant le mane calcu1, rapides en s6quentie1. Par
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exemple , si nous savons que les mei11eurs algorithmes s6quentiels pour cal-
euler une fonctidn don„de en n variable, s'ex6c„tent ,n temps 20(n•loU1) , un
autre algorithrne d6crivant le m6me r6sultat qui fonctionne en temps parallb-
le 0(n.logn) avec 20(113 )p,,,,,,,u,, ,,t '’b„,„ ,1,,, que ,'i1 utilise 22ac%ro-

cesseurs , I'ordre de complexit6 s6quentie11e est modif iE et cet algorithme
n ' est pas utile ,

Dans le paragraphe pr6c6dent, nous avons sans le pr6ciser esquiss6

la notion de complexit6 de calcu1 de fonctions . On d6sire calculer une fonc-
tion F. La complexit6 s6quentie11e de F est la plus petite des complexit6s

s6quentielles des algorithmes qui donnent comme r6sultat F. De la m6me ma-
ni bre, la complexit6 parallble de F est la plus petite des complexit6s pa-
ra11bles des algorithmes qui calculent F. Par exemple oni J peut d6montrer que

dans le cas de F= XI+. . . + x8 , x1.e IR, la complexit6 s6quentie11e L(F) est 7
alors que la complexit6 parallble , DCF) , est 3.

La partie du modale que nous ne d6crirons pratiquement pas est ce11e

qui correspond -a la manipulation de la formule d'entr6e pour obtenir la fa–
mille de polyn6mes sur laque11e nous travaillons , ou pour d€crire la for:mule

de sortie (sans quantificateurs) a partir de polyn6mes, Nous admettons le mt–
me genre dlop6rations avec les lettres (symboles) qulavec les 616ments de k :
par exemple, joindre des mots , interchanger ou ins6rer des lettres+ Ces op6–

rations permettent par exemple en temps lin6aire 0( iB 1 ) de construire a par-
tir d1 une formule # une formule 6quivalente V pr6nexe , OU de savoir a quels
polyn8mes il faut appliquer la d6composition cylindrique . Nous laissons le
lecteur cr6er le modale le plus convenable pour repr6senter ce travail.

Nous abordons dans cet article deux problimes diff6rents : le probla–
me des bornes sup6rieures et le probl'bme des bornes inf6rieures pour la com-
plexit6 para11 ile de 1l61imination de quantificateurs dans la th6orie 616men–

taire des corps rEel et alg6briquement clos .

1) Les bornes sup6rieures : Dans ce cas , selon ce qui a dtd dit aupa-
ravant, il suff it d texhiber un algorithme qui fonctionne rapidement en paral–
lble sans faire exploser le nombre de processeurs .

Dans Ie cas de R, pour la complexit6 s6quentielle , les meilleures

b,,.,, ,,„t ,b„..,, d,„, [14 ],L44 ], [37 ], [41 ],, 127 ] ,t ,,.t do.bl,ment
exponentielles : a($ )2 la( ] $ 1 ) , le, Plus pr6cises 6tant celles de [27 ]

(Voir aussi 128 ]) o-u le facteur doublement exponentie1 d6pen\LWiquement du
noT.bre dlalt,,„ati,n, de bloc, d, quantificateur, r : a( $ )n + 0( 1 $ 1 ) .
Dans ce cas , comme le modble ad6quat (pour la complexit6 s6quentielle) est

celui de la Machine de Turing, le terme o( e) controle aussi la longueur
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binaire des coefficients des polyn8mes de la formule B , et n est le nombre de

variables de $ . Le terme O( IB 1 ) provient du fait que la formule dlentr6e $
doit subir un processus de pr6paration, qui la ram8ne b une forrnule pr€nexe,

qui contrale raisonnablement les connectif s et qui donne explicitement les po-
lyn6mes ; en g6n6ra1, les auteurs pr6supposent ce travai1 pr6paratoire d6ja
fai t . et donnent directement leurs r6sultats en fonction de a ( b) , n et r .

Bien 6viderrunent', les maTnes bornes sup6rieures stappliquent aussi pour le pro-
blame de la d6cision de la th6orie 616mentaire des corps r6e1 cjog .

En ce qui concerne la complexit6 para11ble , on trouve dans [ 6 ] un al-

: ai; TT::(:::) ;i( i;':1:TT;T) 1:nd::: i:::tq::;;=gil'=;T;T)t:==:e::::rs' (:om-
plexit6 s6quentielle) .

Dans le cas des corps alg6briquement clos de charact6ristique arbitrai-
re, des bottles sup6rieures pour 1'61imination de quantificateurs et la d6cision
6quivalentes ; celles de R 60nt donn6es dans :[30] [ 29] [11], ce dernier article,

fond6 surj13 ] donnant des r6sultats Plus diff6renci6s quant aux parambtres
(Ie facteur doublement exponentiel dEpend uniquement de r ) mais avec la res-
triction suivante : le corps des constantes nt est pas tout le corps k mais un

certain corps arithm6tique de base .

Nos r6sultats pour les bornes sup6rieures de la complexit6 para11ble

sont les suivants :

Soit k un corps r6e1 ou alg6briquement cjog (de charact6ristique ar-
bitraire) :

Th6oreme I : Pour tout leN , il existe un r6seau Na sur les symboles de L,
langage de premier ordre de k, de profondeur (conplexit6 parallble) &O(1) et

()

de complexit6 s6quentielle lx avec la propri6t6 suivante :

Pour toute formule dlentr6e $ el, avec Idl = E , N£ calcule -une formule sans

quantificateurs Equivalente 'a $ (modulo la th6orie algmentaire de k)

Autrement dil , il exis te un algorithme (la fami11e de r6seaux Nie leN)

T: 1 it BiTe:e:, I=:n=:::::::: is I ; IIt;lgB!)p::a;1;:e :::'::d;::.::,NE I ,,t,6,
arbitraire de longueur I .

Corollaire : Il existe un algorithme qui d’6cide' la th6orie 616ment:aire de k
en temps parall'ele simplement exponentiel et temps s6quentie1 doublement expo-

nentiel, la formule dtentr6e 6tant mesur6e par sa longueur.

(Ceci est le r6sultat principal de [ 6 ], pour les corps r6e1 clos et les corps
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alg6briquement cjog de charact6ristique 0 . )

Pour le th6or'eme I nous avons utilis6 coawre seul parametre la 1 .:-,n6deur

de la formule dlentr6e b . Pour les th6or;mes suivants nous aIlons supposer

que 41 est une £ormule pr6nexe et convenablement Tlpr6par6e11 ( les polyn8mes de
$ soul donn6s explicitement) . Cc)mme Ie mod ale ad6quat est lei in modLlc i=1'

g6brique , les paramitres que nous utilisons sont o ($ ) qui controle Id qu.-HI ri_-
t6 et le degr6 des polyn6mes de B , n -le nombre de variables de a - , el r -la

quanti_t6 dlalternations de blocs de quantificateurs .

Th6orbme 2 : i) 11 existe un algorithme qui 61imine les quantificateurs , modu-

lo la th6orie 616mentaire de k, en :
0(1)

temps parall&le : 2n log a ( $ ) + 0(1og IEI )
O(h)

temps s6quentiel: a (b )n + 0( 1 61 )

ii) Les m6mes bornes stapp].iquent pour le prob1 ame de la ddci-si(in.

Le thEo;bme 2 implique que it Elimination de quantificatcurs ct 1 e prcl-
b]' bme de la d6cision de la th6orie 616mentaire des corps r6el et 31 g6briqrlenlent

clos appartiennent -a la classe NC (complexit6 s6quentie11e po]ynaml a1 e et coIn-
plexit6 paraLl~ele polylogarithmique) si le nombre de variables n de la formule
d 'entr6e d) est fix6 ,

Dans Ie cas des corps alg6briquement clos de charactari» L 1 qt ic

tient iIt,ISSi ] e r6sul tat plus diff6renci6 suivant :

III ob-

Ttl6or ime } : Soit k un corps alg6briquement clos de charactEris Ligue 0 ,

i ) 11 existe un algorithme qui 61imine les quantificateurs (modul n 1' l'lIFI'ri e
616mentaire de k)

en temps parallble : nO(r) 1,g a( e )O(1) + O(logIE I )
.(B )-o(')+ o(iB I)et temps s6quentiel :

ii) Les m8mes bornes stappliquent pour le problbnle de ' la d6ci sion

2) 1,es bornes inf6rieures : Le but de cet:te section est dc ciFll."llll!'I' que
nos aIF,orithmes sont optimaux en tant que mesure g6n6rale de COlIIP lcxi't6 . C’est-
b–dire que le problbme g6n6ra1 de 1 ' Elimination de quantificateurs sur IR ou sur
un corps alg6briquement clos est de complexit6 inh6rente doublement exponen–

tielle en s6quenciel (nombre de processeurs) et simplement exponentielle en pa-
raIl-ele . Cela n'empache pas que les bornes sup6rieures puissent 6tre donn6es

d tune manibre plus pr6cise quant aux param}tres dans le futur . En ce sons
]e ThEo arne 3 est seulement une premiBre approximation aux r6slllt3ts posqjl.les
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en paralfElc , puisque vu [11] on st attend I un r6sultat qui ne dEpend pas dr
la charact6ristique de k, et dans Ie cas de IR on pourrait aussi obtenir en
para11Ble des bornes plus diff6renci6es comine ce11es qui se trouvent pour la
complexit6 s6quentielle dans [ 27 ] . Ceci est une des t£ches que nous nous pro-
posons .

En ce qui concerne les bornes inf6rieures , il existe le r6sultat de
[24 ] pour le prob1ime de la dacision 616mentaire de k . Ces bornes sont don-
n6es pour le modale s6quentie1 et sont simplement exponentielles , alors que
les bornes sup6rieures connues sont doublement exponentielles : ce d€phasage

n ljndique dorIC pas si les bornes sup6rieures obtenues sont optimales ou non.

Pour la complexit6 s6quentie11e de 1l61imination de quantificateurs ,

des bornes inf6rieures doublement exponentielles sont donn6es dans [ 43 ],

[ 19 ] et [29] dans le cas des corps r6el ou alg6briquement clos . La mathode sui -
vie dans ces travaux est la suivante : on exhibe une succession de formu les

V k e L, keN (en 1 au 2 variables libres , de longueur I wk ! = IO(k) et avec
6k quantificateurs) qui a la propri6£6 suivante : wb d6finit 22 points i-
so16s du corps k dans la topologie de Zariski si k est alg6briqTI':nant c-los

(respectivement de R / dans la topologie forte si k= R, ) ; ensui_tn on d£m£in-

tre que nlimporte quelle formule Ok sans quantificateurs £quivp,Lentf.' a + k

'ontient de'kP'ly”am'' F1, . . . ,Fs, t'1' qu' J€sd'g(Fi) = 21 , '' qI'i 'nt'ai-
ne I Ok£ a 22 . Si n,u, supp,,ons que 1,, p,ly„B„„, d, ok sent ,,dil,CJ „.
maniare dense dans le langage de L, n ljmporte quel algorithme pour I'glimi-
nation de quantificateurs doit na cessairemen t utiliser un terups dOutJIC-

ment exponentiel pour produire le r6sultat . Cette d6pendance de la cod.if i-
catIon (dans ce cas , reprEsentation dense des polyn6mes) pour les barnes in-
f6rieurc's est nab i tue llc dans les articles 6crits sur le sujet , elle existe
dussi dans les r6sultats de [24 ] . Les r6su]tats les plus importants jusqu ti
pr6sent, quant aux bornes inf6rieures en 'Calcul Forme1, sant ceux de [ 35 ] ,
(volt aussi [20 ] et [ 4] ) qui sont ind6pendants de la codification choisie
et traitent le probleme de I'appartenance dt un polyn8me 'i un id6a1.

Pour la d6composition cylindrique alggbrique , il existe aussi unc bot–
ne inf6rieure ind6pendante de la codification, doublement exponentie] le , dans

[ 19 ] qui pourrait avoir des consEquences pour la recherche en Robotiquc' ; Janb

[ 39 jet [40] , les auteurs r6duisent le probleme de construire des robots (qui
ltd6m6nagent des pianos'1-Piano Movers Problem-) au probleme de d6composition

dt ensembles semi-alg6briques en composantes semi-algEbriques connexes de di–

melIsion constante + Xotons , en passant , que la dEcomposition cylindrique four_
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nlt une notion de uimension. Cette notion est 6quivalente aussi bien a la no-.
tlon alg6btique ue diraension qu ’ a ce11e obtenue par le biais du spectre r6el
(voir [17] , [ 8 ] , [22]) .

Si la construction dtun robot entralne la n6cessit6 dleffectuer une d6-

composition cylindrique alg6brique , iI est 6vident quI il ne faut pas attaquer ce
problbme par un algorithme gEnEral et s6quentiel, vu sa complexit6 inh6rente,
doublement exponentie11e; ceci est da au fait qutil ntest gu are possible de se res-
treindre ; des espaces ambiants de dimension 'lpetite"

Ltid6e qui apparait alors est celle dtutiliser des machines qui fonc-
Eionnent en parallble (r6seaux) . Dans ce cas , les bornes pour la complexit6 pa-
rall8le obtenues sont simplement exponentie11es , nous a11ons d6montrer qute11es

sont optimales et qu'elles ne d6pendent gu are de la codification,

Nous pouvons aussi consid6rer un point de vue diff6rent: Supposons que
les bornes sup6rieures pour la complexit6 para11ble des probl;mes trait6s sont
des bornes qui slappliquent pour une notion r6aliste de 1lespace (Voir [ 6 ] )
et que ltordre des bornes en parallble est toujours le logarithme des bornes
s6quentie11es , supposons aussi que la complexit6 s6quentie11e intinsbque des
probl;mes tlg6om6triques" est simplement exponentielle([21])tandis que ce11e des
prob18mes ’talg6briques11 et de it Elimination des quantificateurs est doublement

exponentie11e, il existe alors vraiment une possibilit6 d’obtenir pour la Ro-

bo tique des bornes polyn8miales (en fixant le nombre dtalternations de blocs
d’ I , V ) grace aux processeurs qui fonctionnent en paralIBle .

Un mot final sur notre mod8le 1191iminateur de quantificateurs't : Ce mo-
dale consiste en une machine qui fait le 'ltravail intellectuel11 (et dont nous

ne savons pas donner des bornes inf6rieures de camplexit6) et en une T'impri-
mante" (ou bien , dans le cas paralIBle , en une machine qui contient un r6seau
arithm6tique qui 6value les polyn8mes) et nous avons pour lui des bornes inf6-
rieures , soit pour lt61imination de quantificateurs , soit, dans le cas k= IR,
pour la d6composition cylindrique alg6brique . Ce mod ile est raisonnable puis-
que jusquti prEsent, en 61iminant des quantificateurs , I' tljntelligence naturel-

le11 (non–mesurable) a toujours gagn6 contre 1111inte11igence artificiellen([36 ]

L34] , [1 ] , [2 ]). Pour faire faillir 11 intelligence nature11e , il faudrait res-
treindre la m6moire qui permet de r6aliser les calculs , ou la quantit6 de pa-
pier n6cessaire pour 6crire les r6sultats obtenus grace a cette m6moire ,
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Th6or-bme 4 : II existe une succession de formules (avec des quantificateurs

et en 1 ou 2 variables libres) wk e L, k£tN avec les propri6t6s suivantes :
i) I wkl = 0(k)
ii) Pour chaque formule Oc L sans quantificateurs et 6quivalente a Vb , com-

pos6e de fornLules atomiques qui contiennent les polyn8%s Fl, . . . ,Fs , on a:

Iii?eg(Fi)> 2’ et iI ext'te j, Isjq' t'1 q"e deg(Fj)>2' ,a' '>o ''t 'n' ''n'-
tante appropri6e .

k

Ll6nonc6 (ii) implique que IO ! )2 z et que chaque r6seau qui construit
a contient un r6seau arithm6tique de profondeur 2ck parce qu1 il doit 6valuer

un Fi (Isi(s) de degr6 ?2/ (Voir [25] )

Coro11aire : L'61imination de quantificateurs de la th6orie 616mentaire de k
est doublement exponentielle en temps s6quentie1 et simplement exponentie11e

en temps para11Ble .

N 'importe que1 algorithme de d6composition alg6brique cylindrique

sur IR entraine un algorithme dl61imination de quantificateurs pour la th6o-
rie 616mentaire de R. Alors , com=Ie notre algorithme dt Elimination de quanti-

ficateurs de R est bas6 sur la dEcomposition alg6brique cylindrique, les bor-
nes du Coro11aire stappliquent aussi a la dEcomposition alg6brique cylindrique ,

R6visant notre d6monstration, on peut proc6der directement, car la d6composi-

tion alg6brique cylindrique de R6k+2 induite par vb conduit ; au mains 2/+
rEgions de dimension 0. Cela entraine :

Th6orbme 5 : Le temps s6q„entie1 p,ur dE,,mp,,,, ,yli„driqu,m,nt R6k+2 a
partir de 8k+2 polyn8mes de degr6 <4 est au moins 22 + . Le temps para1161e

n6cessaire pour la mame tache est au moins 2k- 3 .

111. DEMONSTRATIONS :

1) Barnes sup6rieures pour 11 Elimination de quantificateurs dans la
th6orie 616mentaire des corps rEels clos :

Nous su ivrons le raisonnement de [ 44 ] , qui se base sur la D6com-
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position cylindrique alg6brique (Voir aussi [ 14 ] ) . Ces algorithmes
sont en partie ais6ment paral161isables , grace 'a ltexistence de calculs ra-
pides de d6Lerminants en para11ble ( [ 7 ] , [18 ] ) . La difficult€ essen-
tielle pour paral161iser complbtement ces processus consiste en la mania-
re de d6terminer le signe que prend un polyn6me sur un vecteur de nombres

a186briques (ce que nous faisons en d6tai1 dans (B) ) .

Nous d6crirons br;vement llalgorithme (r6current) de [ 44 ] :

Si $ (Xl. . . Xr) est une formule , 'a variables libres X1. . .Xr et
variables li8es , du langage de Ler . ordre de IR, on d8compose Bren sous-

ensembles ol $ a une valeur de varit6 fix6e . Pour d6terminer si la for-
mule 6 est vraie sur un sous-ensemble donnE , il suff it alors de 1l6valuer
en un point choisi de ce sous–ensemble (ces points se choissisent algorith-
miquement et d6finissent url systbme de repr6sentants) . Finalement , on dE-
crira par des £ormules sans quantificateurs les sous–ensembles de Rr o-u

& esl vraie ,

Ce chapitre est divis8 en trois parties :

A) La dEcomposition cylindrique de Rr et le choix du syst'eme de
repr6sent ants

B) La d6terrnination du signe dlun polyn6rrle 6valu6 en un vecteur

de nombres alg6briques .

C) Le calcul total des complexiE6s .

A . D6composition cylindrique de Rr et choix du syst8me de repr6
sell t ants

Comme nous suivons l'algorithme proposE dans L 44 ] , nous 6vite-
rons dtentrer dans les dEtails . Le lecteur int6ress6 peut trouver toutes
les dEmonstrations dans 11 article mentionn6 .

Les calculs de complexitd parallble seront r6alis8s dans (C) .

- Soit P g Z [X1, . . .Xn] fini

tH .( P) esc la partition de IRa , oi chaque glalent de la partition



14.

est une composante connexe d tune condition de signe fix6e sur les polyn6mes

de I

- EXt ( P) g Z [Xl, ' ' 'Xn_II fini, est un ensemble construit
de mani-ere telle que si ue U(IP) ) , V eu (Ex ( P) ) et IF (U) n V + g ,

alors V = IT(u)

(T: IR- . k 11--1 e,t la P,,j,,ti,. dEfi.i, P,, TT(y1, . . . ,yn)=

=(y1, ...,y,_1) V(y1,. ..,y,) e IR-)

La dEfinition de Ev ( IP) est la suivante :
n

Soit Cv ( IP) : = 11 ensemble des coefficients des polyn6mes de

IP , consid6r6s comme polyn6mes en Xn

S,i,nt P, Q C Z [X1, . . . , Xn_1 ] [ Xn ]

t

( 'j*i ) '' Q= j& ('j*i )' = ja
Si hS m , I $ t, et 1.< g ( min {h,t} on d6finit:

Ph Ph-1 • ' • Pd'0
0

Ph Ph-1 ' ' ' Po

q{ qC-1 • • • qo
.0

0

<-

t - (g-1)

Mx (P,Q,h,# ,g)n

q{ qt-1 • ' 'qo
––––>

t+h - (g-1)

et SXn (Pp Q' h' e' g) := det (M'Mt) ol M := MX (P, Q, h, L, 8)

h - (g-1)

Alor s :
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EXn ( P) := ex) P) U {SXn (P, Q, h, t, g) : P, QC( IPg at IP);

h $ degX£P) , is degXn(Q)et IS gS"lin {hpa

La propri6t6 prEc6dente est fondamentale pour la r6currence de la

d6composition cylindrique alg6brique . La dEmonstration est une cons6quen-

ce du Saucissonage de Cohen.

- Si $ (X1, . . . , Xp) est une formule en r variables libres et s

variables li6es (de IR) , on travai11e sur la famine de polynames IP© d6finie
P ar

i)
IPP(XI, . . . ,Xr)) 0 := {P(XI’ - ' - ’Xr)}

IP( evv)(xl,...,x,):= lp€ u IPV

IPl-P(x1, . . . ,Xr) := IPV

IP3 V(x1, . . . ,Xr,Y ) := Ey IPV

ii)

iii)

iV)

On a arors ra P''p'iata' yU e U( IPg) , $ ' m' "'I'"' d' v6'it6
constante sur U .

– PDUr des raisons techniques, il ne suffit pas d' calculer U( IPB)
mills iI f aut prendre des nouve11es sous-partitions .

On d6finit , pour IPGa [X1, . . . , Xn] un ensemble fini:
( IP) ) si n = 1

W (DXI

\V ( IP) ,=

(W x R)nU on He \V (EX 1\ IP) , U eu (DX P) et
n –n --n

(W x R) nu + # si n> 2

: pc ip,
o ( j < d e g x i ( p ) }

el on considdre alors \V ( [%).
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Cette partition a, entre autres , 1lavantage suivant: deux composantes

d' une mEme condition de signe pour les polyn8mes de IP£ ant des projections
dans IR11'-1 disjointes .

- Soit W une partition de IRn. Un systbme de repr6sentants de IW

est un „,seI,bl, £i„i SS IR11, d, v,,t,u,s ,lg6briqu,, (i.e a = (a1, . . . , an) ,t
aj alg6brique sur Q ) , tel que V W e \W, 3 a 6 S et a e W.

Dans [ 44 ] , on donne un algorithme qui construit des systbmes de re-

pr6sentants pour Ui ( IPg) et \V ( 1% ) .

- Soient IPg 7[X1, . . .Xr] un ensemble fini, et de If; on dgfinit a
partir de IP une formule:

h sg P = sg PCa)

P'D,1(IP)

si r = 1

V(al,... ,a,_1) (EXr(DX,(PD) A p,AIP)(sg p = sg PCa) ) si r> 1
r

oh a = (a1, . . . ,ar) ,t sg P = sg PCa) signifie P 1 0 selon
P (a) ; 0

La propri6t8 fondamentale de la formule V( tP)est qulelle est sans

quantificateurs et qulelle d6f init exactement la conposante ve \V ( IP) qui
cont lent a .

- Elimination de quantificateurs

Soit $(X1, . . . ,Xr) une formule avce r-variables libres et s li6es .

Soil S un systame de reprEsentants pour \V ( 1% ) .
Alors:©est 6quivalente , modulo les axiomes de la thEorie 616mentaire

de IR, 'a une formule sans quantificateurs

V(X1, . . . ,Xr) d6finie par :
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V (X,,...,Xr) = ay, Y,( 1%)

$ (a) est vraie

- Il f aut par cons6quent savoir 6valuer la valeur de vgrit6
de la formule $ sur un 616=lent a du systame de repr6sentants S :
on procbde de la maniare suivante :

i) Si $ = P > 0 , alors $ (a) est vraie <=> PCa) > 0

ii) Si f = VvV , alors $(a) est vraie A V(a) est vraie ou

OU 'V (a) est vraie .

iii) Si $ = 1V , alors $ (a) est vraie O 'Y(a) est Eau sse .

iv) Si $ = ( 1 Y)(v(X1, . . . ,Xr,Y)) , ,t S ,,t un ,y,thu, d, ,,P,6-

sentants pour U( IPA,1(a,Y) ) , alors $ (a) est vraie @
++ Jb es / V (a,b) est vraie .

Done, d6terminer la valeur de v6rit6 de la formule $ en (a1, . . . ,ar)

se r6duit a 6valuer le signe que prennent certains polyn6mes sur des vec–

teurs (a1, . . . , ar,b 1, . . . ,bs) de nombres alg6briques .
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B . D6termination du signe:

a) Selon ce qui a dtd montr6 auparavant , dEcider de la valeur de v6rit6 d'une

£ormule 6valude en un vecteur ( x+ , . . . ,Xr ) de nombres alg6brique s se r6duit a
d6cider le signe dlun certain poly,18„, en ( xi ,...,Xr,yr£1 , . . . ,yn ) pour des

nombres alg6briqu,, ad6quat,, yrx1 , . . . ,yn. Pour d6crir, ce, no„,bres alg6brique,
on a le lemme suivant:

Lemme (Thom) : Soit P (x) e R [X] , deg(P) =n.

Soit dll la i-'eme d6riv6e de P

Si A; { * eR / P(*)6,O ,t dO(*)6 ,O ,t . . . ,t tCO(x) 6nO , ol 6ie { , , ,,=} }
Alors A= P , ou A= { a / 1 ou A= ( a,b) , a,be R ,

Corollaire: Une racine de P peut 6tre distingu6e par des conditions d6termin6es

de signe sur les d6riv6es .

b) Notre m6thode pour d6terminer le signe dt un polyname sur des nombres algg-

briques est essentiellement dif£6rente de celle utilisae dans [ 44 ] . Les raci.-
nes des polyn8mes ne sont pas ici approch6es par des nombres rationnels . Nous

nous basons principalement sur une gEnEralisation des successions de Sturm [ 6 ] ,

et sur des r6sultats de sous-r6sultantes, pour 8tret'rapidesl'en para11ale .

Notation et DEfinitions :

• Soil aC IR, sg(a) (Ie signe de a) sera notE par +1,-1 ou 0 selon si a est po-
sitif , n6gatif ou nu1.

- Si P ,Q1, . . . ,Qk e R tXJ ,et c=(eq , . . . ,ek) est une succession de signes,appar-
t,nant b {+1,-1,0 J on d6finit:

Ce(P,Ql,...,Qk) :=#{ xeR / P(x)=0 et sg(Qj (x))=ej Vj j
– La succession de Sturm de P et Q est d6finie par:

PA := P

PI:= Q

et sl Pi-1 = Qi•Pi + Ri ’ P id= - Ri

- an not' par Vp9Q(-OO) 't Vp pQ(+oa) 1' nombre de changements de signe ( stricts)
qui apparaissent dans la succession des signes des P{ 6valu6s respectivement en

- CD et + CD ,

Alors, si SCP,Q) := vppQ(-ao) - Vp pQ(+ao) , on a le th6oreme suivant:

Th6orbme (Sturm) : Soil PC IR[X] , un polyn8me libre de carr6s . Alors :
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SCP,P") =#{x eR / P(x)=0} (nombre de racines r6elles de P)

Lernnre ( Tarski ) : Soit P comme auparavant, QC tREX I

SCP,p(1).Q)= CL(P,Q) - C_1(P ,Q)

c) Soil P (x 1 , . . . ,Xn) e Z (XI , . . . ,Xn) . On dEsire calculer le signe de P ( E 1, . , . , en) ,

connaissant Ej par : Bi ( L ) =0 (BiC Z [X ] ) et des conditions de $igne dgtermin6es

sur les d6riv6es de B{ . Lton proc6dera par rEcurrence sur le nombre de variables
n pour effectuer cette Evaluation .

Cas n=1 : Nous suivrons ,sans faire les d6monstrations , le raisonnement par 6tapes
montr6 dans [ 16 }

(El) : Solent P ,BeRtX] , libres de carr6s . Soil PGDC (P ,B) =1.
Alors , S (B ,BIU) = C , (B ,P) + C , (B ,P) (Th6orbme de Sturm)

s(B,Ba).P) = CI (B,P) - C , (B,P) (Lemme de Tarski)
Et ,n calculant S(B,Bn) et S (8 ,B'1’.P) grac, aux succ,ssio„s d, Sturm, il
suffil de rEsoudre un systEme d’6quations pour obtenir les valeurs de
C 1 (B ,P) et C 1 (B ,P)

(E2) Calcul de C1 (B ,P) , C_1 (B ,P) et Co (B ,P) : (Cas oil PGDC (B ,P) # 1)
Si B et P sont premiers entre eux , on applique (E 1) . Sinon ,

Co (B ,P) = nombre de racines r6elles de PGDC (B ,P) , selon le Th . Sturm!
el en remplacant B par S:=B/PGDC(B ,P) , on applique (E 1) :

C]. (B ,P) = C1 (S ,P) et C_1 (B ,P) = C_1 (S ,P) .

(-:3) Soic BeRtX] comme auparavant .

Solent Q1,...,Qk€ 1R(X ] / PGDC (B ,Qi) =1, 1(iik
On cherche a d6terminer Cp (B ,Q 1, . . . ,Qb) , oi c=(E 1, . . . ,ib) fixe les condi-

Lions de signe sur Q1,...,Qlr .
Le cas k=L correspond : (EL) .
Le cas gEn8ral est d6montrg dans [ 6 ] et raduit le probIBme a r6soudre un
sys tame dt Equations non homog&ne: la matrice du systBme stobtient de faire

2k produits de Kronecker de la matrice ri _iI (qui prwient du syst Une de
(EI) ) et la constante est compos6e par des expressins du genre S(B,BCl>.Q) ,

ou Q=iTe\Qi , et IS { 1, . . .k) . Comme ce systame , du point de we des com-
plex itEs est trop " cher11 a r6soudre , [ 6 ] rgduit le problame a travail-
ler par 6tapes sur des syst;mes plus petits (2k systBmes dlordre ka ) .
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Cette m6thode est ici essentielle pour la rapidit6 de notre algorithme•

(84) : Cas oil Q1,...,Qk ne sont pas forc6ment premiers avec B:
Soient B ,Q1, . . . ,Qke IRtX] , B libre de carr6s . LIon d6terminera les vecteurs

e =( E, , . . ' , Ek) d' 'ondition' d' 'ign' 'ur 1'' Qi t'11'' qu' CE (B,qI ,''',Qk)#C>

Si E. , . . . , c. sont les e. non nuls du vecteur e , on construit un $olyn6me
J+ - ' Jt 1 ‘

S , S IB et PGDC(S ,Q, . ) =1 (la6 t) de te11e maniBre que :
L

ct'(s'Qj+ '''' 'Qjl)= Ct(B'QI '''',Qk) , oil E’=(%1 ''''' bt) (et on applique (E3))

La construction de S se fait par rEcurrence sur k (remplacant B par PGDC(B ,QI )

ou B/PGDC (B ,Q1 ) suivant si q =0 au non . )

(ES) : DEtermination du signe dlun polyname 6valu6 en un nombre alg6brique : (donna

par le polyname qui ltannule et les conditions de signe sur les d6rivges)

Soil CCR tel que B ( e) =0 (Be 2 [X] libre de carr6s , deg(B) =s)

Soit PC 2 tX ] . On cherche a d6terminer le signe de P (5) .
On sait que: {E)= {yeR/B (y)=0 et sg(dll(y) )=c+ ) pour un vecteur
c= (El,. . .,cs_1) £ix6. 11 suffit alors dtappliquer (E4) pour la succession de
polynbmes :

B,Bt’>, . . . ,ls-1>,P ,t la succession r,,p,ctiv, d, ,ign,,: (0,c 1, . . . ,Ca_1, v)

oil v e {+1,-1,0) selon si 1lon cherche b savoir si P (E) >0,PCE) <0 ou P(o=0.

Cas 86n6ral (n>1) :

Soient ({ eR ( 1(i(n) des nombres alg6briques d6termin€s par BIc ZtX] et

des conditions de signe fix€es sur les d6riv6es . On cherche 'a 6valuer le signe de

?(f,1, . . . ,tn) , o’U P€Z[X1, . . . ,Xn] La di££icult8 provi,nt ici gu fait que les

racines tl , . . . , En ne sant pas donn6es explicitement : on peut essayer de reprodui-

re le raisonnement fait dans le cas pr6cgdent pour P (E 1, . . . ,En_1,X) mais il f aut

alors construire certaines successions de Sturm, c lest--a-dire donner

R(Er , . . . ,En_1) (X) de telle manibre que :

B> B+(£ll•• . pEn_L) (X)= Q(El, . - . ,En_L) (X) eP(( 1, . . . ,en_1) (X) + R(El, . . . ,en_1) (X)

( Algorithrne de division )



N. Fitchas, A. Galligo, J, Morgenstern 21.

Puisque nous ne connaissons pas C1, . . . ,en_1 , nous cherchons une m6thode qui

PC rnnt de diviser B+ (Xl, , . . ,Xn_1) (X) par P(X1, . . . ,Xn_1) (X) et qui, si nous

remplacons Xl, . . . ,Xn_ 1 par E 1, . . . , en_ 1 repr€sente (+) .

Etant donn6 que Q[X1, . . . , Xn_ J n 1 est pas un corps , il n1 y a pas

d la18oriEhvn de division g6n6ral dans Q[X1, . . . , Xn_ 1] [ X ] . La division est

perlnise seulement dans quelques cas particuliers , par exemple si le coef-
ficient directeur du diviseur v6rif ie certaines conditons (ce que nous u-
ti]iserons dans nos algorithrnes) . Ce problbme de la division n1 a pas dtd

cxplicitement consid6r6 dans [ 6 ] ni dans [ 16 ] et nous ne savons pas com-
ment les auteurs surmontent cet obstacle . Une maniare naturelle de travail-
lcr scrai-t ou de multiplier Bi par un facteur ad6quat ou de diviser le divi-

seur par son coefficient directeur .
Ccs nl6thodes , appliqu6es directement, sont pour nous trop chbres , car nous ne

pouvcJns pas con troler suffisemment ' les degr6s des restes qui apparaissent.
en d tautres termes , conlme la division doit steffectuer r6cursivement au-
tallt de f ots que le degr6 de Bi llindique , si Ie coat dtune division est

aIL’l/6 , le coat total pour obtenir Ia succession de Sturm sera hors des
bornes que nous cherchons i obtenir .

Ltalgorithme que nous proposons ici pour effectuer la division est
p-1 us intriqu6 mais a ltavantage dt6tre plus contro16 du point de vue de la
croissance des degr6s , ce qui pernret dtobtenir les bornes sup6rieures cher–
('lr8cs pour la complcxit6 parallble , sans faire exploser la complexit6 sa-
quentielle . Il exist:e certainement une nl6thode plus 616gante pour effectuer
bOII T'larch6 cette division, mats de toute maniare nous pensons quI il est u-
t.iIL' d’avoir pour une fois 6crit en d6tai1 un algorithme qui permet de sur-
inc.lit'' r les obstacLes (Algorithme STURM) .

Pour en revenir au probl-eme , nous cherchons a analyser les condi-
Lions v de signe consistantes dans la formule :

s w 1

ss(Bn(X) )=0 " i:sg(B=li)= ci A sg(P(€1, . . . ,En_1,X) )= v
q) n I

o(1 {C.)= {y' IR / sg(Bn(y))=0 ", =sg(Bn-(y))= ci ) , s=deg(Bn)

et De {+1 ,-1,0}

Nous suivrons un raisonnement similaire au cas n=1, et (E:41 ) et (E3 t ) no-

terons Ies analogues i (E4) et (E3) .

(E4' ) : 11 fa„t transformer la famille de p,lyn8mes { BJi> , 0 Sj Ss-1 ) U

{ PCe 1, . . . ,En_1,X) } en une famille qui respecte les conditions de (E4) .
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Travai11er avec les Bt J ) , 1(j(s-1 , n 1 est gubre prob16matique car B:J & Z[X ] +
On suit l’algorithme SIMPLE, qui a coTune OUTPUT B:(X) , tel que V j,
PGDC(B:,B£Jb=1.

Pour rendre Bi(X) et P (e 1, . , , , En_1,X) premiers entre eux, nous utilisons des
r6sultats sur les sous-r6sultantes et les algorithmes PSEUDOPGDC et PSEUDODIV.

Ces algorithmes ne calculent pas exactement le PGDC ni le quotient de la divi-

sion (Les r6sultats apparaissent modulo un coefficient en (X1, . . . ,Xn_1) qui
ne s’annule pas en (e 1, . . . , En_1) ) mais it OUTPUT a des propri6t6s €quivalen-
tes au polyn8me S de (E4) .

(E3 1 ) : Il faut savoir calculer exactement les restes ( +) . Notre id6e est de

diviser dans Q[X1, . . . ,Xn_ 1] [ X], en 11inversant" le coefficient principal du di-
viseur, qui correspond a un polyn6me non nuI en (E 1, . . ' , En_1) . Cet£e parti e
apparait dans 1lalgorithme INVERSE . L’algorithme qui d6crit le processus IJOllr

obtenir la succession des testes est 1lalgorithme STURM, qui se base princi-
palement en [26 ] ; cet algorithme comprend la division exacte mentionnfe 811pa--

ravant. Constemment, dans INVERSE et STURM, nous utiliserons ]l6valirot-jr,", d’!

signe de polynames en (( 1, . . . , en_1) , en particulier pour 6valuer le signc dea
coefficients directeurs des restes qui apparaissent dans la sltccession 'I-

STURM. Notre r6sultat final est ltalgorithme SIGNE , qui d6cide si P(€1, - ' ' , Cn)

est positif ou non,

cI) AL,GORITHMES POUR LA DETERMINATION DU SIC;NE :

I) g] $orithnle SIGNE (P,Bl, . . . ,Bn , 11, . . . , in)

INPUT: PeQ[X1, . . . ,Xn]

BiC 7[xI, Bi#O, ISiSn, d,g(Bi)=,i', BT (Vi, is j$si )

( B{ donn6 par 11 OUTPUT de SIMPLE . )

II = s{-uple form6e par 1 et -1 qui repr6sente les conditions de signe

pour ltOUTPUT de SIMPLE (Lt OUTPUT de SIMPLE d6crit un nornbre algibrique

El racine du polyn6me Bl )

0UTPUT: Vrai ou faux, suivant si PCe 1, . . . , en) est positi£ ou non .
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a- Faire:

M: = PSEUDOPGDC(Bn(X) ,P(€1,...,£n_1,X) )

B::= PSEUDODiV(Bn,M)

(B: et P , comine palyn6mes en X, sont premiers entre eux: cela correspond a
(E4').)

b- Soit F= {t), 0<j<deg(Bn) } u { P ) , oh les d6riv6es se prennent seule.

ment s„r res (> qui ,pp,,ai,,ent av,, un ,ign, ,tri,t (#O) dan, r'rNPUT.

Pour les sous-ensembles J de F, ddtermin6s par (B3) ( L 16 ] ) , calculer :

STURM(Bi(El'''''En_1'X)' & B:(CI'''''En_1'X) 'J# )
(Ici , on produit les restes R1 de la succession de Sturm. )

c– Pour d g F fix6 et pour tout Rk , faire (par r6currence) :

SIGNE(CDIR(Rk),B 1, , . . ,Bn_1, 11, , . . ,In_ 1) ,o-b CDIR (Rk) note Ie coefficient

directeur de R1,consid6r€ comrne polyn6me en XL , , , , ,Xn_1 a

Grace aux signes obtenus , on calcule :

3 B+

S(Bl, a n . TT Q ) , qui ,,,,,,p,.d X 1, n,t,ti,„ d, B.b)
'' a x QCa

d- En utilisant le processus rapide de [ ] on d6termine si PCE 1, . . . ,En_ 1)

est positif , en utilisant au Plus 2.degx(Bi) sous-ensembles J . )

ii) Algorithme PSEUDOPGDC (P ,Q,B1, . . . ,Bn_1,I1, . . . , in_1)

INPUT: p,QeQlx1, ' ' ' ,X,_1] [X] , degX(P) = m, d,gx(Q) = t

B ie Z[X] , Isisn-1

11. ( 1 sign-1) comme dans I' OUTPUT de SIMPLE (apparaissent seulement

les d6riv6es avec des conditions de signe non nulles sur en . )

OUTPUT: M(X1, ' ' ' ,Xb1) (X> e Q[X1, . . . ,Xn_1] [x ] t,1 qu„

M(Cl, ... ,En_1) (X) = H(El, ... ,En_1) (X) .PGDC(P(El,.. . ,En_1) (X) ,

Q(ql,... ,En_1) (X)) , o~u Ht Z[XI,... ,Xn_II , H(el,... ,En_1)#O

( PGDC d6signe le Plus Grand Diviseur Cormnun . )
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Soit Pi la i--eme sous-r6$ultante principale entre P(X1, . . . ,Xn_1) (X) et

Q(X1, . . . ,Xn_1) (X) (Voir [9 ] , [15] ,t [26] )

Si k= min {i / Det (Pi) 6valua . en ( q, , , , , q_1) est non nu1 } , alors :

deg(PGDC(P( er ,. . . , e,_1) (X) ,Q( er , . . . , e._1) (X) )) = k.

(Ici, on 6value le signe de Det(Pi) (€1, . , . , q_1) avec l’algorithue SIGNE

appliqu6 a (n-1) variables . )

b- Soient y

'*. (::)

(yt_k_1, . . . ,yo) et z = (Zn_k_l3 ' ' ' zo)

'.'.;=',-'=- (::) ="„''*'.(;)
Faire: Y = yt_k_1+Xt-k-1 +.. .+ yO et Z = Zm_k_1.Xm-k-1 +. . .+ Za

Soit M = P,Y + Q, Z ,

Alors M(el,... ,En_1) (X) = Det(Pk) ({1,..' ,(n_1) .

.PGDC(P (E 1, . . . ,en_1) (X) ,Q(E 1, . . . ,En_1) (X) )

(Pour la d6monstration , voir [ 26 ] )

iii) Algorithme PSEUDODIV: (P,Q)

INPUT: P,QC Qtx1, . . . ,Xn_1] [ X ]

Q(E 1, . . . , En_1) (X) divise exactement P (E 1, , . . ,En_1) (X) ,

degx(F) =m, degx(Q)=t

Si qt(X1, . . . ,Xn_1) est Ie coefficient directeur de Q,

name en X, on 'a qt (e 1, , , . ,En_1) + 0

Si Pm'(X1, . ' ' ,Xn_1) est le coefficient directeur de P , connIe poly-

name en X, on a Pm(C 1, . , . ,en_1) + 0 .

OUTPUT : C(X1, . . . , Xn_1) (X) qui est le quotient de la division entibre de

qtm-t+} P par Q, dans QtXl,. . . ,Xn_ II [XI de mani8re que si:

PCE 1,..., En_1) (X) = Q(El,...,en_1) (X) . C' (El,...,En_1) (X)

poly–
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'1.-; c(€1,. . .,e,_1) (x) = q,(£1, . . .,€„_1>::'-t+1.C’(€1, .. .1e,_1) (x)

a– Soient C et R le qu,ti,nt ,t le rest, de la division entiere de qT-t+1.p

P a r Q ( q u i P e u t s e f a t r e d a n s Z [ X 1 p o + 8 p Xn 1] [ X 1 car to us les coefficients

du dividend, SO„t divi,ibl,s par qT-t+1) :

Le quotient C est d6termin6, de manibre unique , par les conditions :

q:-t+1.P = c.Q + R et degx(qT-t+1.P - c.Q) < degX(Q)

si qT-t+laP = qT-t+1. (Pm.Xm +. . .+ po) et Q = qt.Xt +. . .+ qD ,

il f aut r6soudre le systbme :

't ' ' ' ' ?\ / '.,- J
qt-1 qt

Pm

0

q tJ

m- t+1
qt

qt- (m- t ) b cO LPt

C tes t–b-dire :

Adj

Et par con'Eq„'nt, C = ,m_t .XRl-t +. . .+ cO

Algorithme INVERSE : (P ,B1, . , . ,Bn , 11, , , , , in)

INPUT : Pe Z[X1, . . . , Xn] , B1,...,Bne Z(X ] , 11, . . . , in conditions de signe

d6finies comrne dans 1lOUTPUT de SIMPLE . {Bi , li) 1<i<n ddfinissent

les nombres alg6briques C1, . . . , En tels que P (C 1, . . . , En) + 0 .

OUTPUT: He Qtxl, .. . ,Xn I tel que H(El, .. . ,en) = p(€1, .. . ,En)-1

a- Faire M = PSEUDOPGDC(PCe 1, . ' ' , en_1) (X) ,Bn(X) ) (Noter que MCE 1, . . . ,En)#O)

B: = PSEUDODIV(Bn ,M)

(B: et M sont maintenant premiers entre eux, De Plus , comte Bn = M.Bg. T et

M(El,''',Cn).T(cl,...,en_1) + 0, Bi(Cl,...,(n) = 0 car Bn(en) = 0 )
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b– Soit R(X1, o ' ' ,Xn_1) := R6sultanteX(P(X1, , . . ,Xn_1) (x) ,Bi(x1, . . , ,Xn_1) (x))

(R(€r , .' . ,e,_1) + O car PeDC(P(€r, .. ',en_1)(X),B:(€r,...,€n_1) (X)) = 1 )

R6soudre : R(X1, . . . ,Xn_1) = Q(X1, . . . ,Xn_1) (X) ,P(X1, . . . ,Xn_1) (X) +

+ Q' (Xl, ... ,Xn_1) (X) .B:(Xl,.. . ,Xn_1) (X)

(connie polyn6mes en X, selon ce qui a dtd fait dans PSEUDOPGDC)

Si on Evalue en ( E 1, . . . , En) on a:

R(el,... ,c,_1) = Q(el,...,Cn) .P(el,...,e,)
obtient dorIC :et

Q(CIP...) En) .R(EIS ... ! Cn_1)-1

Par r6currence, on calcule R(CI, . . . ,En_1)-1

alors, si H’(X1, . . . ,Xn_1) est tel que H1(€1, . . . . ,En_1) = R(€1, . . . ,En_1)-1

le r6sultat est: H(X1, i ' ' ,Xn_1) = Q(X1, . . . ,Xn_1).H'(X1, . . . ,Xn_1)

P(e

v) Algorithrne STURM: (P,Q,B 1, , , , ,Bn_1, 11, , , , , in_1)

INPUT: P,Q€ Z[X1, . . . ,Xn_1] [ XI , degX(P) = m , degx(Q)

{ Bi , Ii) 1< i<n_1 comme dans les algorithmes pr6c6dents qui d6termi-
nent des nombres alg6briques C1, ' . ' ,en_1,

OUTPUT: {Rk(Xl, . . . ,Xn)} kG Q[X1, . . . ,Xn] tel que {Rk( El, . . . , En_1,X)} k

correspond -a la succession de Sturm de PCe 1, . . . ,En_1) (X) et

Q(e 1, .. . ,e„_1) (x) .

Faire Ro : = P ; Rl : = Q ,

b- Pour tout OS kt , soit Pj= Det (Pl ) , ou P} est la i-’erne sous-r6sultante

principale entre P(X1, ' ' ' ,Xn_1) (X) et Q(X1, . . . , Xn_1) (X) .

(Par [ 26 ] , on sait que si pi(E 1, . . . ,En_1) + 0 (Utilisation de ltalgorith-

SIGNE en (n-1) variables) il existe un reste R de degr6 i )

Saient y = (yt_i_r,•' ,yo) et z = (Zm_i_1,...,zo)

Pour chaque i tel que Pi (E 1, . . . ,En_1) + 0 , r6soudre :

()(

a

)

y

Pi 0
zt

1

(en inversant Pi(E 1, e . . ,En_1) grace \a INVERSE)
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(Comme y et z sont d6termin6s par la dernibre colonne de Pil, leurs co-
ordonn6es s'obtiennent de sous–d6terminants de P+ , correspondant aux termes
de Adj (Pi) „,ultipli6s par pil.)

t

On a done 4 solutions ( Yr ) correspondant aux I degr6s des restes .
2

d- On ordonne les t d6te,mina„t, Pi n,n n„1, ,n (€1, . . . ,En_1) d, manibre

d6croissante : pt est Ie premier.

Soil Pi le k-bme d6terminant pI non nuI ( 16k( e) et soient :

Y k : = y t i 1 + X t i n 1 + p + B + y 0 e t Z k : = z m A i n 1 BXmi 1 + B + B + z 0

oil y et z sont les solutions du systBme correspondant a P

Ml1 : = Yk.P + Zk. Q ( Ce sont les testes a coefficient directeur I)Faire :

e– Pour 26kg & , r6soudre :

Mk_2 = Mk_1 n Ck_1 + Dk , en prenant Mo = P ,

(Ltalgorithme de division vaut dans Q[X1, . . . ,Xn_1] [ X] car les M1 ont
pour coefficient directeur I )

f– Pour Isks { , si

( dr = qt )

calculer :

dk : = coefficient directeur de DL. conme polw8me en X

~:= {:::::::::::
Rd:= 'k.Mk (1 sks 4 )

si k est pair

si k est impair

et sort

g– Four tout k? 1, faire Rk: = –RI ; alors , {R1 } k est la succession de
Sturm de p et Q ,

(Pour cet algorithme , nous avons pratiquement suivi celui .qui' se trouve ,
pour une vdriable , dans [ 6 ] , ou toutes les’ dEmonstrations sont faites . )

vi) AIF,orithme SIMPLE : (B,{B'B ,$„,eg(,) , 1)

Be ZtX], d'gCB) = ', {#1+ 1<i<s ;

I: un vecteur forrn6 par 0 , 1 et –1 qui repr6sente les conditions de

signe sur les d6riv6es de B . Ces conditions caract6risent une racine
( de B.

INPUT :

OUTPUT: Bic Z [xI

{dll tel que les conditions de signe donnE,s par 1 ,O„t non null,,
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(Clest-'a-dire une nouvelle famille I ’ form6e par 1,-1 et V , oil V
indique que cette d6riv6e ne se considbre plus)

tels que: PGDC(B+,B+t ) = 1
et PGDC(B+,iI = 1 si 1+ + B .

,- „,-,., ,,,= „„(,,,'i'',...,gi.’) ,', #i:'est tel ,ue 1,. = O.

Remplacer I, par V.
L

b- C,1,ul,r A:= PPMC(gk'>,...,£ki>) ol gl(i) est tel que Ik + d.

B3:= B2/ PGDC(B2,B?)c- Faire B2:= BI/ PGDC(Bl,A)
et

d- Remplacer B, par B+: =k.Ba (ke Z) de maniBre que B+ e ZtX]
(k e,t P,, e*e„,pr, 1, Pl„s petit multiple corrunun des d6nominateurs de B3)

(Nous utilisons dans cet algorithme les mEthodes propos6es dans L26 ]
pour les calculs de PGDC et PPMC de plusieurs polyn8mes . )

C. Calcu1 des complexit6s :

Si +> est une formule dlentrae , pr6nexe et convenablement pr6par6e ,

en n variables ( r libres et s li6es ) , oh interviennent les polyq8mes F1, . .
. . . F , nous avons d6f ini dans 11 introduction:

S

a(6):= E (2 + de,(F,))
1(i,<s

Ces deux parambtres , n et a( $ ) , sent ceux que nous consid6rons pour ob te-
ni r nos bornes diff6renci6es pour les complexit6s para11ale et s6quentielle .

Le mod ale que nous utilisons 6tant le modble alg6brique , a ne d6pend

pas de la longueur binaire des coefficients. des polyn8mes F+ + Dans le cas de
la complexit6 saquentie11e , le modale ad6quat est celui de Machine de Turing
(non paral161isable) et a doit controler aussi la longueur binaire des coef-
ficicnts , Tous les r6sultats obtenus pour la complexit6 s6quentie11e dans no-
tre modale peuvent se traduire sans peine au mod61e de Machine de Turing, et
on a des bornes sup6rieures essentie11ement du mane ordre que celles de notre
tlr60 rhIne .

Dans tout ce qui suit, log d6signe le logarithme en base 2 , et c
est une constante universelle , qui ne dEpend ni de n ni de a .
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1- Croissance de a :

La plupart des algorithmes ont une conplexit6 qui d6pend du degr6
des polyn6mes qui interviennent. Nous d6finissons alors , de la name maniare
que pour la formule $ :

a ( e) := ! ( 2 + deg(Pi)) si IP = {P1, . . .PsIg z[x1, . . . ,Xn] fini.1< ic s

(a ( IP) contrble le nolnbre et le degr6 des polyn8mes de IP, )
Si IP ={ P} , nous noterons directement a ({ P} ) = a (P) .

Soit Pg Q[Xl, , . . ,Xr] fini, a ( IP) $ a , on a les r6sultatq suivants :

i) a (E„, ( P)) $ c. a7 et a(D., ( IP)) ( a3
r r

(ll suff it de modifier 16gerement, pour notre a , les dEmonstrations de [ 44 ] )

2c(r-j+1)
ii) a (Ex . . .Ex ( IP) ) ( aAJ r

De la mame manibre :

et 2c(r-1)
' (Eb '-'EX,( P)) $ a4 r

2 c ( r–j+1)
a (DX EX . . . EX DX ( P)) S a-j “j+1 '-r “r

a cr

,t o (nx Ex . . .Ex Dx( ID ) < a‘
1 2 r r

iii) Le systame de repr6sentants de V( 19 est 11 ensemble des z6ros de cet-
tains polWames vi, . . . , Vr (viC Z[xI) tels que:

cra

a(„i) S ,( IP$ )2
et pour 6valuer $ en ce systame de repr6sentants , il faut calculer un nou-
veau syst8me de repr6sentants , donn6 par B1, , , . ,B_ tels que :

cn2

a(Bi) < '( %)‘
(Ceci provient de [ 44 ] , en modifiant Z paine les d6monstrations . )

iv) Croissance de a pour les algorithmes de la d6termination du signe :

Come it algorithme SIGNE d6pend de tous les autres algorithmes , il
est n6cessaire de contra?tre la croissance des degr6s totaux des polynBmes

qui interviennent dans ces algorithmes , quan(a on leur fait subir les chan-

gements propos6s , pour pouvoir calculer les complexit6s. Les r€sultats sont
dans tous Ies cas im6diats et ne seront pas d6montr6s .

Soient P,Q e Q[X1, . . . ,Xn] et B1, . , . ,BnC 2[xI Eels que:
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aCP) $ o, a(Q) .< a, a(bl)$ o, 1(iSr1
Alors :

a(PSEUDOPGDC(P,Q) ) $ 2a2 + 2g = O(a2)

a(PSEUDODIV(P,Q)) 4 a2 + 2g = 0(a2)

a (INVERSE(p) ) = 0(a2cn) (Par induction sur n)

a(STURM(P,Q)) = 0(o2cr1)

o(SIXPLE(b, Ill ) ,< a2 et a(Bt) ,< a

2- Calcul des complexit6s (s6quentielle et parallale)

Les calculs qui apparaissent dEpendent en g6n6ra1 de produits de
polyn fJmes et de d6terminants (pour r6soudre des systames d1 Equations) ,

Nous calculerons dlabord la complexit6 de ces op6rations .

Nous rappelons que nous travaillons avec des polyn&nes de Ql XI , . . . , Xn]
qui sont repr6sent6s de manibre dense , ctest--a-dire , donn6s par les ve
teurs des coefficients de tous- les mon6mes possibles ,

i) Les opErations entre polyn6mes se font par interpolation:

Soit PeQ[X1, . . . ,Xn] tel que deg(P) $ a , alors P est bien dEterminE par
son Evaluation en ( a+1)n points sp6ciaux, par exemple les points entiers

du cube LC), a] n; et on r6cupere sans peine P de ces valeurs en r6solvant
un systime d1 Equations de (a+1)nx (a+1)n.

Par rEcurrence , et grace aux r6sultats de [ 7 ] et L18 ] (le dEterminant d'u-
ne matrice carr6e d'ordre N, -a 616ments dans un anneau A, peut stobtenir
sans divisions en temps parallble O(log2N) et temps s6quentie1 NOCll ) , on

d6mantre que si Pe Q[X1, , . . , Xn 1 , deg (P) sa et si on ne compte pas ici le
temps n6cessaire pour 6valuer P (complexitg de P) , on peut r€cup6rer P ,par
interpolation, en temps parallble cn.log2a et temps s6quentie1 acn

- Soient PL,...,Pme QLxI, . . . ,Xn1 , a(Pi){ a (Isi(m)

Alors : D( IT (P; ) ) .s log(m) + cn21og2 (na) et L( IT (Pl ) ) < nacn
1(iCm ' 1 Sjgn

(0l1 D et L notent respectivement la complexit6 paralIBle et la complexit6

s6quentie11e)
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- Soient (PiPj) Ifi) jSN e QLXI, .. . ,Xn] , a(Pip j) $ o , 1(i,jSN

Alors: D(Det(Pipj)) $ cn.log2(Na) et L(Det(Pipj)) ( (Na)cn

ii) Si IPG Z[XI, .. . ,Xr] fini, et a( P) Ca

- Alors : D(Ev ( P) ) \< cn2log2 (a) et L(Ev ( IP) ) { acn
r r

(On applique directement la d6finition de Ev ( tP) et les r6sultats pr6c6-
dents) r

Par r6currence , on prouve aussi:

D(DXIEX2 '''EX DX ( IP)) s 2crlog2(a)

et

L(DXIEX2 '' 'EX DX ( IP)) S a2cr

- Si nous paral161isons les calculs (directement) pour les syst6mes de

repr6sentants { v1, . . . Vr ! et { B1, . . . ,Bs} effectu6' dans [ 44 ] , nous 'bte-
non S :

D({vl,. . . , Vr) ) $ 2cr21og2a
et

L({vl,... ,Vr}) $ o2cr

et D({Bl, .. . ,BS} ) $ 2cn log2a

et L({Bl,.. . ,BS} ) *< o2c=1

- Pour calculer IPI : partir dtune formule $ , on a:

D ( 1 P I? ) $ 2 c n 1 o g 2 o ( $ ) e t L ( 1[]? B ) $ o ( B ) 2 c n

iii) Pour calculer les complexit6s correspondant a ( B ) nous adopterons

la notation suivante : ALGORITHME (a,b) in clique qu1 on fait appe1 a ALGORITHME

pour des polyn8mes en " a ' variables et oil,a est contro16 par " bt Par exem–

pIe : SIGNE (n- 1,a2) signifie qu1 on applique llalgorithme SIGNE a des polyna-
mes P ,B en (n- 1) variables tels que a (P) (a2 et a (B) (a2

a– Algorithme PSEUDOPGDC:

p,Q€Q[x1, . . . , XJ , a (p) 4 a et a (Q) $ a
Si on suit ltalgorithme en question , on observe que non seulement on
doit effectuer des calculs , mats on doit aussi appliquer SIGNE(n-1,4a2)

(pour calculer le degr6 du PGDC) . Les calculs a r6aliser correspondent
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a r6soudre des sysf'emes dt6quations , On obtient:

D(PSEUDOPGDC(n, a) ) s cn21og2a + D(SIGNE (n-1,4a2)

L(PSEUDOPGDC(n, ,) ) ,< ,C-12 + ,L(SIGNE(n-1,4,2)

b– Algorithme PSEUDODIV:

P,QeQ[x1,...,Xn1 , aCP),< a et

D(PSEUDODIV(n, a) ) ,< cn. log2a

a(Q)$ a

L(PSEUDODIV(n, a)) ( acn

car I'algorithmq PSEUDODiV r6soud un systline dtEquations dt or:dre aKa .

c– Algorithme INVERSE :

Pe Q[x,,...,xJ , aCP) 6 a.

Selon les coats des algorithmes PSEUDOPGDC et PSEUDODIV, et comne

INVERSE(n, a) dEpend d’ INVERSE(n-1, cac) , on obtient par rEcurrence :

D(INVERSE(n,a)) S 2cnlog2a + E D(SIGNE(n-k,4k+!a2k) )
l$kgn– 1

L(INVERSE(n , a) ) ,< a2cn + E 4k++a2k L(SIGNE (n-k,4k+!a2k) )
1(k(n– 1

d- Algorithme STURM;

P,Q' Q[XI,...Xn] , aCP)~< a et a(Q)-< a
Four d6terminer les degr6s des restes Rk il f aut appliquer llalgorithme
SIGNE (n–1,4 a2) . Une f ots d6termin6s les degr6s des testes , pour chaque

degr6 on r6soud un syst'bme d'6quations en utili sant INVERSE(n-1,4 aq) .
Ayant obtenu les testes a coefficient directeur I, ltalgorithme PSEUDO-

DIV permet d'exhiber les restes RI : on applique PSEUDODIV(n,a2m) +
ConnIe les calculs proprement dit sont tous contro16s en para11ale par
2cn log2a et en s6quentie1 par a2cn, on obtient finalement:

D(STURM(n , a) ) $ 2cnlog2a + D(INVERSE(n-L,4a2) ) + D(SIGNE(n-1,4a2) )

L(STURM(n, a) ) ,< a2cn + aCL(INVERSE(n-1,4a2) ) + L(SIGNE(n-1,4a2) ) )

e- Algorithme SIGNE :

P€Q[X1, . . . ,Xn] , Bit Z[X] (Isin) , aCP) S a , a(Bi) ( a (l€i gn)
En suivant pas a pas ltalgorithme SIGNE et les complexit€s obtenues pour
les algorithmes pr6c6dents , on a:
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( S T U m ( B : p + B Q 6 g ) ) 6 : c : : : : : : :: : 1 : a : : : 1)T :I ):: : ) + S

,< 2cnlog2a + D(INVERSE(n-1, a2)) + D(SIGNE(n-1, a2)) + D(SIGNE(n-1,4a2)) 6

$ 2cnlog2a + E D(SIGNE(n-k,a2cn)) + 2D(SIGNE(n-1,4a2))
2gksn-a

Et de la name uni are:
+

L(STURM(B:, B? iI;)) ' a''- +2'-2d£_}(SIGNE(n-k,a='-)) +
+ 2L(SIGNE(n-1,4a2) )

Pour comp16ter I'algorithme SIGNE, il f8ut appliquer les rEsultats de [ 6 ]
Dans ce travail les auteurs r€duisent it problame de r€soudre des sys-

times dtEquations dlordre 2g ( qui est pour nous trop cher) a la r€so-
lution de systbmes non-homogbnes d'ordre a2 en log(a) €tape8 cons€cuti-
ves , Dans la premiBre 6tape, on a a systime8, dans la seconde a/2 et
ainsi s„ccessivement j„sq„'a la derniere €tape de a/2tloga]sy6tames.
De plus, il faut ajouter le travail qutimplique calculer le signe des

coefficients directeurs des restes Rk , pour obtenir le nanbre de varia-
tions de signe mentionn6 en B-b)

lk cette maniare , on obtient:

D(SIGNE(n, a) ) $ 2cnlog2a + E D(SIGNE (n-k,a2cn) ) + 2D(SIGNE(n-1,4o2) ) +
2 sk(n- 1

+ D(SIGNE(n-l,a2cn) ) + log(a) ,log3a

et par une borne grossiire:

D(SIGNE (n ,a) ) s 2cnlog3a + 3 E D(sleNE(n-k,a2cn) )
I $k€n- 1

f 2cnlog3a + 3.2c(n-1)log3(a2cn) + 3.4.2c(P-2)log3(a22cn) + . . .

. .. + 3.a-2.2cIQg3(o2cn2) + 3.4n-2"D(slaNE(I,a2cn ))

C 1 est-i-dire :

D(SIGNE(n,a)) { 2cn log3a

Analoguenent, on prouve :

L(slaIE(n,a)) S a2cn
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Observation: Nous n'avons pas conpt6 dans ces r6sultats le coat de I'algo-
rithme SIMPLE, qui est totalement n6gligeable face aux coats de8 autres al-
gorithmes (sachant que calculer des PGDC et des PPMC de famiIIes de N poly-
names , de degr6 $ N , coate O£log2N) en paralIEle et NOm en s€quentie1 [26 ] )

iv) Calcul final des complexit€s :

Pour comp16ter I'algorithme 1191inination de quantificateurs'1 il faut ava-

luer le $igne que prennent les polw6mes de IPo sur le $ystene de reprE-
sentants ( donnE par I(v1) x , . , y 1 (Vr) x 1(B1) 8 , , , El(Bs) , oil r+sun et
1 (P) d6signe I' ensemble des racines r6e11es de Pc IR[X] , qui est consti-
t.6 d’,u pl„, ( a(g)2cn )11 points, ,',st- a-dir, a($ ) 2cn point, .

Comme o( 1%) ,< a($)2cn , et les names barnes valent aussi pour a(vi) ,
(1(isr) , et a(B+) , 1(iss, on applique ces donn6es a I'algorithue SIGNE

(pour les au Plus a(©)2c11 p,IDa„es qui apparaissent dans IPg )

On obtient par cons6quent:

D(11Elimination de quanti£icateurs't) S D( %) + D(BS) + D(SIGNE(n,a(©)2cn )) a

$ 2c:=11,g2a(6) + 2G11 1,g2a(6) + 2c1121og3a($)2cn2 $

,' 2'"’1og30(E)

Et similairement:

L("Elimination de quantificateurs11) < L( IP£) + L({v1, . . , ,vs ,B1, . , . ,Bs) ) +

+a(©)2cn L(SIGNE(n,a($)2cn ) <
f a ( aB ) 2 1c][]I

2) Bornes sup6rieures pour it Elimination de quantificateuts dans

la th6orie 616mentaire des corps aIH6braiquement cIos:

La d6monstration suit les lignes g€n€rales des processus dl6:Li-

mination de quantificateur8 [ 29 ] et L 11 ] ; mais canme ces algorith-
mes ne donnent pas les r€sultats d€sir6s en parallble , on egt obli8€ d'en
changer des points essentiels . Cowne r6sultat imm6diat, on obtient un
nouvel algorithme rapide en s6quentie1 pour les cotPS alg6btiquement cIos
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de charact6ristique arbitraire .

Soil @ e L une forrnule arbitraire , pr6nexe , contenant les varia-

bles XI, . . . ,Xn oil Xl, . . . ,Xn_m sont libres et Xn_m+1, ' ' ' ,Xn sont li6es.
+ est de la f orme:

(Q„-,„+1 Xn-„,+1) ' ' ' (Q,IXn) P(Xl ’ ' ' ' ’ Xn)

ol Qn_m+1, . . . ,Qu e tV, I) et 'Y(x1, . . . ,Xn) est une £ormule libre de quan-
tificateurs , qui est une conrbinaison boo16enne des formtrIes atomiques con

t,.,.t d,, p,ly„Gm,,, di,,., F1, . . . ,Fsa kLx1, . . . ,Xn] avec a:= a(B) =
1<E(2 + d,g(Fi))

Comme dans [ 29 ], nous dirons que Z S kn est une F1,...,Fs-cellule
sI Z est non-vide et s lil existe ag { 1, . . . ,s) tel que

z = tx eel I Fj (x)= 0 + ie/6,t F1(x) + 0 vj, € {1, . . . , s}Jb}

C,n,idE,,nt qu, 1, q„„,ti£icat,ur V p,ut atr, r,6crit commell1

nous pouvons supposer que le dernier bloc de quantificateurs (qui est le
premier -a 61iminer) est existentiel.

Le premier pas de notre algorithme consiste b regcrire la formule

V(X1, . . . , Xn) de la maniare suivante:v AF; = o A N T , + q
/Cc { 1, . . . ,s} icAl je {1, . . . ,s} -a J

dEf init une

F. . . . . .F -cellule.
S

Ceci est possible parce que les F1,.,.,Fs-ce11ules sont les atomes
ae llalgbbre de Boole des sous-ensembles de kn d6finis par des formules sans

quantificateurs c„mpos6es des polyn6mes F1, . . . ,FS C k[X1, . . . ,Xn:1 .

A ,_ette fin, nous construisons un r6seau de profondeur 0(nO(n)log3a)

,„,, O( on ' C=+) n,,uds , q.i an„mb,, I,, F1, . . . ,FS-,,ll„1,, . C,ci ,St PO,-
sible en utilisant [29 ] et [31 J . Dans Ie cas de char(k) = 0 , on peut remp13

,er [31 ] par [ 10 ] , et on obtient un r6seau de profondeur 0(n21og3a) avec
0(aO(nz) ) noeuds . La construction du r6seau suit les lignes g6n6rales del 6 ].
La diff6rence la plus importante est que nous travai11ons ici avec des poly-
n8mes en plusieurs variables , et non avec des polyn6mes en une seule variable .
Nous utilisons la strat8gie de 11diviser et r6gner11 del 6 ], en v€rifiant b
chaque 6tape si les sous-ensembles de kn qui v6rifient les conjonctions con£
truites sont vides ou non.
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Nous formons un arbre binaire de profondeur log s : dans 1'6tape
0 nous d6terminons lesquels des sous-ensembles de kn, qui correspondent b

F1 = 0 au Fj + 0 (1 gjgs) sont non-vides; dans 1'6tape suivante nous
construisons Ies s/2 ensembles de conjonctions consistantes du type:

{Fl=0 4F2=0 , Fl=0 AF2#0 , F1#0 AF2=0 , F1#O”,F2#0) , . . , ,

{Fs_1=O AFs=O , Fs_1=O A Fs#O , Fs_1#a "Fs=O , Fs_1+O " F$# O) ;

dans 1'6tape j , 0 ( jg log s , nous construisons Ies s/21 ensembles adj a
cents de lt6tape j-1.

De cette manibre, nous obtenons un arbre du type suivant:

6tape 0: {FI=O , Fl+O)

{Fl=0 A F2=0:>,- a::LU “”6tape 1 :

6tape 2:

gtape log s: { AFi=o , /\FI #0; d6finit une F1, . , , ,Fs-cellule}
ieJC1 jb{ 1 . q ,s) -,A 1 s

Dans 1l6tape j , on constluil €$/2Jensembles ; chacun dleux consis-

te en diff6rentes conjonctions qui sont compose6s de $ 23 polynames dont la
somme des degr6s est contro16e par a.

Ces conjonctions sont consistantes et , comrne nous avons dEja mentio
nn6, form6es a partir de conjonctions consistantes adjacentes de 1'6tape j-1,
Cela implique qu1 on a affaire -a seulement an conjonctions b 1l6tape j (voir
L29 ], Corollary 1) , ce qui conduit -a (s/21 ) . a2n tests de consistance b 1l6
tape j . Au total, on a cr€6 un arbre de profondeur log s avec 2, s noeuds , en
utilisant -a chaque 6tape 0 S j .< log S , (s/2J).a2n tests de consistance qulon
petIt exdcut:er simultan6ment (cela nous raMne en somme a 2 .s jn tests) 11 al-

gorithme est complet si nous expliquons maintenant coBment on effectue un test
de consistance pour une conjonction , disons F1 =o A , . . A Fr=0 A Fr+1 #O /\ . . . A

. . .AF_ #O .

Nous utilisons le 11 true de Rabinowitsch11, qui est bien connu: posons

F: = Fr+1'Fr+2 . . .Fs e Soit T une nouvelle variable; selon le Th6orame des ZE-
ros de Hilbert, Fl=0 N . . . - Fr=0 /\Fr+1#0 b . , . AFs#0 est inconsistant si et
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seulement si 1lidEal engendr6 par F1, . . . ,Fr, 1-T.F. dans k [X1, . . . >Xn9Tj est
trivial, clest ; dire si 1 ( (F1, . . , ,Fr, I-T.F) ,

Dans le cas a-u char(k) est arbitraire , nous nous servons de la ver
sion effective du Th€oreme des 26rosL31 ] ! dans le c.as ob char(k) =0 1 nous
avons des meilleures barnes [ 10 ] . Consid6rons par exemple ce dernier cas1

on a

r€(F1, ' . . ,Fr, I-T.r) + IP1, . . . ,Pr, P e k[X1, . . . ,Xn, T] /

deg (pi) 3n /(ISI g r) , d,g(P)$ 3„ f"+Lt 1 = PIFl+. . .+ PrFr+ P(1_T..F)

Le prc)blame se r6duit done a_r6soudre un systame lin6aire non-homo

g;ne dl6quatiQns, dlordre /n2 x in (c > 0, constante) -dont les coeffici:nts
proviennent des coefficients de Fl, . . . ,F et 1-T. F.

C 'est2a dire on a a comparer le rang de deux matrices d tordre con-
tro16 par acn sur k : cela nous ramane au problame de calculer Ie rang
d lune matrice avec un algorithIne rapide en parallble et en s6quentiel, nous

suivons le traitement de [ 38 ] , on pourrait aussi suivre [ 12 ] ,

En introduisant une nouvelle variable Z , on transforme la mat..rice

donn6e en une matrice carr6e , et nous calculons son polyn6me charact6risti-
que (les coefficients du polyn8me charact6ristique dans k [Z] slobtiennent_

en t.„PS pa-allble O(n2 log% ) et en temps shu,ntt,1 o(ao("2)) g,a,, ~,
L 71 ) . La multiplicit6 de la racine 0 dans le polyn3me charact6ristique
donne Ie rang de la matrice du dEpart . On 61imine la variable Z artif i-

clellement introduite en €valuant les coe£ficients du golyn8me charact6ri£
tique qui sont des polyn£;mes de degr6 acn en Z en acn points de k ( ce qui
est possible car k est infini) .

11 est 6vident qUe la profondeur de ltalgorithme donn6 ne d6pend

e$sentiellement que de log(s) et de la profondeur des algorithmes qui calcu-
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lent le rang d lune matrice ( si char(k) = 0 , dlordre in 'x acn ') ,

Le nombre de processeurs utilisE est essentiellement contro16 par

le nombre de F1, . . . ,Fs-cellules ($ an) , indEp,nd,B,neat d,s co,fficients de

Par consEquent , une fois les F1,...,Fs-cellules 6num6r6es ,’V(X1, . . .Xn)
peut atre rez6crit de la manibre d6sir6e .

Puisque les quantificateurs existentiels et les disjonctions peuvent
stinterchanger , nous sommes ramen6s a caract6riser des ensembles du type:

(]XZ) . . . ( IXn) (Fl=0 A . . . A Fr=0 A Fr+1#0 A . . . /\ Fs#0)

(oil I>+ n-m+1 indique la longueur du dernier bloc de quantificateurs , qui peut

at:re supposE existentiel, par 11 observation faite prgc6deBanent) .

Nous cherchons dorIC -a d6terminer , par des formu]26 sans quantificateurs ,

des projections d 1 ensembles localement ferm6s, dans la topologie de Zariski de
kn

Soit D:= {*e ke-1; kb( 3 Xt)...(3Xn) F1(*, XI, . . . ,Xn)=0 A . . .

Xe , . . . ,Xn) =0 A Fr+1(x, XI, . . . ,Xn)#O A . . . AFs(x, Xl, . . . ,Xn)#O)

On a a trouver des polynames G1, . . . ,GtC k[X1, . . . ,xe_1] qui d6crivent
par une formule sans quantificateurs .

(X.AFr

e-1
Soit E : = k D

on a:

D

F: = Fr+1.Fr+2 . . .Fs et T une nouvelle variable .
Par le Th6oreme des ZEros ,

R = {* , bt-1/1 C (F1(X,Xb, . . . ,Xn) , . . . ,Fr(x,Xe , . . . ,Xn) , 1-T .rCx,xe , . . . ,Xn))}

Consid6rons F1, . . , ,Fr , 1-T ,F comme polyn&nes en XI , , . o ,Xn,T , I coef fl

cients dans k [X1,...,X£_1] , et supposons comme avant que char(k) =0 afin de
pouvoir utiliser les bornes de [10 1. Pour un instant , remplagons (X1, . . . ,xe_1)
par xc kt-1, on a alors:

I e (Fl(}=9Xt p . . . )Xn) , . . . ,Fr(x,X+, . . . ,Xn) , 1-T.F(x,XC, ... ,Xn) ) +

IPI, . . . ,Pr,P e k LXt, .. . ,Xn,TI / deg(Pi)$ 3(n- t+2)aCn-e+2)+1(1{iSr) ,

deg P< 3(n-e+2)Jn-e+2)+1 et 1 = PIFl(x,XI , . . . ,Xn)+. . .+ PrFr(x,XI, . . . ,Xn)+

+ P (1-T ,F(x ,xe , . . . ,Xn) )
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Comparons Ies coefficients en Xt , Be . ,Xn, T en tenant cornpte des bor-

nes des degr6s de P1,...,P1.,P et aussi du fait que F1, ' ' ' ,Fr, 1-T 'F sont col
,idg'6, ,'mm, p'lynam'' '' Xt, . . . ,Xn,T h coef£icients dans k[X1, . . . ,Xt_ll:
on est ramen6 ; r6soudre un certain syst ame lin6aire non-hornog'ene dt6qua-
tions , ctest -a dire a d6crire un ensemble du type:

{x€k€-1; 1si Fkj(x) Tt= Fkpp+1(x) (l$k€q) a une solution dans kP}

P,, .n, ,*p,,,,i,n ,,n, q„„,ti£i,,t,ur, ,n poryn6mes G1, . . . ,GtC k [Xl, . . . ,\_ll
(oa les T1, . . . , To sant des nouvelles variables d6crivant les inconnues .du- \ ?
syst8me, et, tou;ours en supposant char(k)=0 et grace 'a [10], q,PS ac(n-t+2)2
(c > 0 , constante) ) .

Dans [29J, Lemma 9 , un nomE>re suffisemrnent grand d lalgorithmes de

Gauss (dans le sens de [ 3 ] ou [23 ] ) est 6num6r6 afin dl6puiser toutes les
possibilit6s ind6pendantes de r6soudre ce systbme non-homogane dl6quations
lin6aires , apras substitution de points 11typiques11 de k-t--1 par des variables

dans les polyn6mes Fk1 . Ce processus , intrinsequement s6quentie1, ne peut
acre appliqu6 ici . Nbus utilisons -a nouveau llalgorithme de [ 38 ] , essentiel-
lement de la mame manibre qut avant, qui permet d'exhiber des conditions po-

lyn8miales n6cessaires et suffisantes sur xc kX-1 pour 1'6galit6 des rangs

de (Fkj (x))is kG q et de (Fkj (x))1 S k sq
1< j s p 16 j s p+1

Dans ce but , nous considgrons les matrices (g6n6riques) ;

(Fkj (Xl ’ ' ' '’*e-r))16k Sct 't (Fkj (XI ’ - ' ' ’X€-1)) 1 Sk Sq
Icjsp 16jsp+1

et couune avant , iI f aut obtenir la multiplicit6 de la racine 0 dans les polyn8-
mes charact6ristlques des matrices ohCenues par le processus de [ 38 ] (en aj ou-
tant i nouveau une variable auxiliaire Z qu ' on '61imine ensuite) . Les coef fi-

cients des polyn8hles obtenus sont Ies Gi cherch6s . D6crire les conditions pour
la multiplicit6 de 0 (c test-b-dire les conditions pour la r6solubilit6 du sys–
tBme en question) se f ait simultan6ment en iuposant des conditions boo16ennes

sur les G . .
1

dn t'n'nt ''mE}' du r'it qu' I>n-m+1 , 'al'ul'' G1, ' ' ' ,Gt ''Qt' o(m2r'g2')
,n parall ale ,t 0(acm (n-m)) en ,6quentiel. De plus, on a:

E deg(G . )$ acm.
1 gjSt
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Conlale il f aut 6num6rer toutes les conditions sur les G. . la com-
12

plexit6 s6quentielle de ce processus est O(ab"1 ) . Cela vent dire qulon
peut 61iminer un bloc de quantificateurs existentiels devant une conjonc-
tion en temps para11bl, O(„,21,g2a) ,t ,n t,mps ,Eq„e„ti,1 0(ac:n (n-m)) ,n
charact6ristique 0; si char(k) est arbitraire , on obtient les bornes:

0(ncmlog2a) en para11ble et 0(an ) en s6quentie1 ( E deg(C, ) ( a2cm)
1(ist

Les bornes g6n6rales annonc6es dans les th6or8mes 2 et 3 pour ltd-
limination de quantificateurs dans la th6orie g16mentaire des corps alg6-
briquement clos suivent en r6p6tant ce processu s bloc de quantificateurs
par bloc de quantificateurs ( r au total ) .

3) Bornes inf6rieures pour lt61imination des quantificateurs dans

la th6orie 616mentaire des corps rEel et alg6briquement clos .

La d6monstration du Th6orBme 4 dif fare selon le cas k = R 'oll

k alg6briquement .clos de charact6ristic,ue arbitraire'a . Elle est bas6e

sur les formules donn6e s en [ 19] et [29] qui inpliquent d1 une manibre assez

directe les bornes inf6rieures mentionn6es pour le cas de la complexit6
s6quentie11e . Nous traitons ici seulement les bornes inf6rieures pour la
complexit6 para11ble ,

Commengons par' le cas k = IR.

Dans [ 19 ] , Proposition 2 on construit une succession de formules

'wk (X,Y) EL, k = 0, 1, , . . dans les variables libres X,Y avec les propri6-
tas suivantes :

i) Wk ne contient que des polW8mes -a coefficients dans
ii) ItI = 0(k)

iii) V k contient 6k quantificateurs

iv) wk dEf init ltensemble fini Mk:= {(cos 2TkiI, sin
.k+1 2

j=o , . . . ,2' -1)

Q.

Noton s que Mk est un sous-ensemble semialg€brique de R2 composE

de 22KTI points iso16s a coordonn6es r6elles et alg6briques ,
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Soit Oe L une formule sans quantificateurs 6quivalente a Vb . Par

(i) ,e ,,t ,,mp,,6, d, p,IW6m,, F1,. . . ,FS , QL X,Y]. E„ p,,ti,.Ii,,Odg
finit Mk (comparer (iv) ) . Nous verrons qu 1 il existe j , Isjss tel que
d,g F,b 22k+1-3. C,la impliqu, qu, „'i„p,rte qu,Ile imprimante qui tra-
vai11L au para11'ele et qui 6crit Ocontient un resgau arithm6tique de pro

£,nd,u, 2k+1-3 p,r,, q„',11, doit Ev,lu,, Fi [ 25 ]

En appliquant ae des transformations boo16ennes sans changer F1 , . , ,

. . . ,Fe nous pouV,ns suppo,,r qU, e ,,t un, disjonction d'expr,,si,n, con-
sistantes du type

(+)F. = O A .. .
11 Fim= 0 AFin+1 > O A ' ' ' Fi, > OAFir+1 OA• ' ' AFi, O

oh, en principe , m = 0 n1 est pas exclu (voir [ 19 ] ) .

S'it (*,,y,):= (''' 2;„, , ;i- :=,)' “m' (*0,yO)'Mk, =1 '*Q

te une conjonction (+) qui est satisfaite par (XO ,YO) . Puisque (XO ,yO) est

-- p'’i"t i='’la de Mk an a m > 1 et en partic'l11er Fil (xO’YO) = ' ' ' =Fi„l(xO’YO)=
= 0.

Pour le moment soit Fe Q[X, Y] n limporte quel polyname avec F(xo ,yo)=0 .
Nous a11ons d6montrer que F slannulle sur le cercle unita S 1 ( IR) : = { ( x,y) e RI ;
x2+y2–1 = 0} ou, sinon, deg (F) a 22.k+t -3. Cela impliquera quIll existe

u n j IE { i 1 ) + B + ! i m ) t e 1 q 1L1 e d e g ( F j ) b 2 2 = 3 + Aut re ment FjFe Be IF i stan null ent

t,., ,U, Sl( IR) ,, q„i ,„,t,,dit Ie r,it q., (*) est consistant et que (xO,yO)

est un point iso16 de Ph ,
Nous 6crivons F

s o u $ 1 a f o 1]:1r1:1 e F = i : j G i j X 1 Y 2 j + \ : t 6 k LXkY 2 ave c

a 1 j ) B k C e Q o S 0 i t ? : = 1 : j a i j X i Y 2 j Y k : t 8 k & X kY 2

O n a F i = ( i : j A i j X i Y 2 j ) 2 = Y 2 ( k : C B k L Xk Y 2 ) 2 B

Substituant dans cette expression pour F F , le mon6me Y2 par 1–X2 nous
obtenons le polyn6me

G:=( i:j a,j xi(1-x2)i)2 - (1-x2)( y,f„to-x2+ )2 e Qtx]
Nous avons G = 0 ou G + 0.
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Supposons G = 0. Alors on a F(x,y) f (x,y) = 0 pour tout (x,y) e
81(C) := {(x,y)eC2; x2+ y2 - 1 = 0} .

Conan Sl(G) est une hypersurface alg6brique irr6ductible de C2

avec polyn6me minimal X2 + Y2- 1, X2 + Y2- 1 divise F ou F , Dans le

premier cas F s'annu11e sur tout S1( IR)gS1(C) , Dans le second cas on

a 0 = F(x,y) = F(x,-y) pour tout (x,y)eSl(C) . Cela iuplique aussi que
F slannu11e sur tout S1( IR) .

Supposons maintenant G + 0. Nous allons prouver deg (F) > 22k+1-3

ce qui conclut notre d6monstratione

Rappelons: (xO,yO) = (cos 2T/22][+1, sin 2T/22k+1) .

E n P a r t i c u 1 i e r e 2 1 i / 2 2 + = c o s 2 T / 2 2 k+ 1 ]F 1 s in 2 T / 22 k+ 1 = x 0 + i yO eC

,t co, 2„/22k+1= e2„i/22. :1+ ,-2„i/22 +

2

Par hypotha se 0 = F(xn,yn) = F(cos 2T/22k+1, sin 27/22k+1) , donc

G(cos 2T/22k+1) = F(cos 2T/22k+1, sin 21/22k+1) . F(cos 2r/22k+1, sin 21/22k+1)

= 0.

Consid6rons les extensions de corps:

eg Q(cos 2T/22k+1) g Q(e2Ti/22 c+ )

T2 + (e2Ti/22k+1+ e-2ni/22k+1) T + e2Ti/22k+1 + e -2Ti/22k+1

T2 + 2 cos 2T/22k+1 T + 1 e Q(cos 2T/22k+1) [ TJ , (ob . T est une

nouvelle ind6termin6e) est le polyn6me uiniMa1 de e2Ti/22 + sur Q(cos2Ti/22 c+ )

On a d.nc 22k+1-1 = [Q(e2"i/22 + ) : QJ = [Q(e2"i/22k+1) : Q(cos 2„/22k+1)]

. [Q(c.s 2„/22k+1) : Q] = 2[Q(cos 2„/22k+1):Q] , ce qui implique :

[Q(c.s 2„/22k+1) : Q I= 22k+1-2

Comme par hypothbse G # 0 et G(cos 2T/22k+1) = 0 on obtient deg(G))22k+1- 2
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Finalement on a 22k+1-26 deg GS deg F + deg F = 2 deg F, ce qui

implique : deg F a 22k+1-3

Maintenant soit k alg6briquement clos. Soit Q le corps premier
de k,

Dans[29]on construit une suce ssion de formules Bk (X,Y)el,k=0, 1. . .
dans les deux variables libres X et Y avec les propri6tgs suivantes:

(i) 1 B*l = 0(k)
(ii) fk d6finit le graphe de 11 application k+k

„k
sur x2£ , c'est.-a-dire ltensemble:

Mk:= {X22 - Y = 0} '= {(x,y)e k2/x22 = y }

qui applique xe k

Soit Oe Lune formule sans quantificateurs contenant les polyn8-

mes F1, . . . ,Fs c n [ X,Y] . , et soient Gl, . . . ,Gt les facteurs premiers de

Fl, . . . ,Fs dans k [ X,Y ] : on a max {deg F1 ; 1 S j ,< s) >/ max {deg Gi; - 1 ,<
is t) . Il suffiC alors de d6montrer qu1 il existe un i , Ici st tel
que deg Gia 22k. Ensuite, on conclut comme dans le cas r6el GIos, en
uCilisa„t [25 }

On transforme D c L en une formule O du langage L avec les symboles

non logiques {a; ack ) u {+, - , . , = } , en remplagant chaque formule a-

t o ][][1L i q u e F j = 0 ) oL F j = G i ! p 8 p G : 111 9 ( i IS a + + 9 ime { 1 FeB 8 pt }

par Itexpression Gil= 0 v . . . vel = 0
n

Par cons6quent , D est co„pos6e de polyn8„es premiers. sur k: G1, . . . ,

PVI

De plus , nous supposons que 8 est une disjonction dt'expressions con-
sis tan tes :

Gt .

(+) GI = 0 A . . . AG, = 0 AG, + 0 A . . . AG, # 0
1 1 U lt+1 it

(oIl apparaissent tous les Gi (1 S i( t) . (En principe , on ne peat pas exclure
t= 0) .

O est une formule sans quantificateurs dans les deux variables libres,
X,Y , 6quivalente \a 0 , et , par consEquent , a $ b ,
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+ a 2K q 2

Al'rs a d6fi”it 1' ''us-'n',„,bl' M) = {X2 - Y = 0} de k', £erm€
dans la topologie de Zariski,

Mk est une union d 1 ensembles d€finis par des conjanctions (+) ,
Comme Rk= Mk + k': et les ouverts sont denses dans kt on a t ) 1 dans
chacune des conjonctions con$istantes (+) .

En tenant compte du fait que dans (+) , Gl , . . . , GiA sant des poly-

names premiers et diff€rents, on a, par le th6orbme de la dimension ( [32] ,
11, 7, Th. 11) , que (+) d6finit un ensemble fiat daIS le cas th 2 , A-

lors Ml sl6crit comme urion d1 ensembles d6finis par des conjonctions
(+) , avec t = 1 et des ensembles finis ,

Con$id6rons une conjonction (+) avec C= 1, qui apparait dans e

Comre GI est premier et (+) est consistant, la fermeture de I'el

semble daf ini par (+) est {Gil= 0} . Pui8que dtautre part af Mk, Mk

peut sl6crire coram union dledsemble s de la lorne {G: = 0 }et d lensembles
finis ,

pk

k

k

Mats Mk est le graphe de (X'– - Y = 0}, dorIC un ensemble irrdduc-

tible, et X2£ - Y est un polyn8me premier dans k[X,Y] . Clest -~a.dire que

x2 - Y e,t 1'6q„ati,n minim,1, d, 1lhyper,u,la,, ir,6du,tibl, Mk d, kz.

Nous savons donc que Mk est irr6ductible et infini , et que les
ensembles {G+= 0) et les ensembles finis apparaissant dans la d6composi-

tian de Mb sant ferm6s. 11 existe alors un ile {1,.. . ,t} tel que
2k 2k

{xa - Y = 0} = ME = {Gil= 0) , Come xa - Y est 11€quation uinimale de
2k 1 2k

Mk, X2 - Y divise Gil, par consEquent deg Gi? 22

11 £aut dire encore un not sur la d6monstration du th6orame 5: en

principe, ce th6orbme stobtient des bornes inf6rieures pour 1'61imination
de quantificateurs sur fR, car it Elimination de quantificateurs est une
consgquence facile (sans croissance de complexit€) de la d€composition al-

g6brique cylindrique (voir[ 19 ] ) , On peut aussi procgder directement :

la d6composition alg6brique cylindriqu, de IR61'+2 i„dl,it, pa, wk cl c,„tie„t
au moins 22k+1 rEgions de dimension agro dans IR2 et en particulier la rd

gion form6e par Ie point iso16 (cos 21/22k+1 , sin 21/22k+1) e IR2 , Un
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algorithme s6quentiel pour la d6composition alg6brique cylindrique de

de R6tk+2, oi sant donn6s les 8 k + 2 PEITn8mes de degr6 ,< 4 (qui aE
paraissent dans %) doit imprimer les 22'' ' rEgions de dimension zEro

de IR2 du r6,ultat. 11 utilis, dOIIC un temps 221'+1 pour ce processus,

ce qui correspond a un temps 22(n+4/ /6 , en termes de la dimension n:=

6 k + 2 de I'espace ambiant. Un algorithme qui fonctionne en paralla
le doit imprimer une dEfinition alg6brique sur Q de la rEgion de [R2

form6e par Ie point iso16 (cos 2T/22k+1, sin 21/22k+1) qui apparait
dans la dEcomposition. Comme nous avons d6ja vu, cela implique n6ces

sairement tm polyn6„e de degre > 22k+1-3 sur Q, qui s'6value avec un
r6seau arithm6tique de profondeur au moin$ 2k+1- 3, ou bien 2(n+4) /6- 3,
en termes de la dimension n de 1lespace ambiant ( C 25] ) :
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CORPS ORDONNES DIFFERENTIELS

C. MICHAUX

A, Robinson fut le premier a introduire la notion de
corps ordonn6 diff6rentiel dans [ 1 ] , en liaison avec
1'6tude des corps de Hardy. La th6orie des moddles des
corps ordonn6s diff6rentiels , qui sera le su jet de cet
expos6 , a 6t6 d6velopp6e par M. F. Singer (voir [ 2 ] et 13 ] ) .

On corps ordonn6 diff6rentie1 est un corps ordonn6
muni d lune' d6rivation, Dans le langage
L = < +,.,-,"'1, 0 , 1, < , ' > ., la th6orie des corps ordonn6s
diff6rentiels (not6e ODP) est universelle .

THEOREME (voir [ 2 ] , p. 85 } . ODF a une modale comp16tion .
La preuve est semblable a celles de B'lun et Wood pour les
corps diff6rentiels diff6rentiellement parfaits (vo'ir [ 4 ] )e

Plus pr6cis6ment , M. Singer montre que la moddle comp16tion
de ODF est axiomatis6e dans L par ODF + RCF (= th6orie des
corps r6els clos) + le sch6ma dlaxiomes Af a suivants :
pour touB f (x, . . .x (n)1 gl (x, . . . ,X(n) ) , . . . .’ bk (x, . . . ,x (n) )
des DOjyn6mes diff6rentiels tels que ordre de f > :ordre de q

k1j

d1pL f 1 q : 1 ( (1 x o r e o + f x n H) ( f ( x o r e T + r x n ) = o Aa : ( n ) ( x o1 + + + r x n ) # o

A j : 1 g ]( 1}( o r e v T r d);Ii n ) > 0 ) ) > (C3 gq}iI: ) ( f ( x rOB of x ( n ) ) = o
k

A -R g(x, . . . ,x“'’ ) > o) ) ]
] ]

OIl g (Xo , . . . , Xn) est Ie @!@aaLa_iJE obtenu en rempla-
cant X, . . . ,X 1111 par des ind6termin6es Xn, , . , ,Xn e

I

La moddle comp16tion de ODP est appe16e la th6orie des
corps ordonn6s diff6rentie11ement clos et not6e CODE+
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COROLLAIRE l– CODF admet 1l6jimination des quantificateurs
dans L et cette 61imination est effective ,

PRBUVE : CODE a 1l6jimination des quantificateurs puisque
CODF est la moddle comp16tion d1 une th6orie universe11e ,

Cette 61imination est effective car CODF U 00 (oa 00 est
le diagramme du corps des rationnels ) est compldte et
admet une axiomatisation r6cursive ,

COROLLAIRE 2 – CODF est compldte ,

RE:MARQUE – En f alt , llaxiomatisation de CODF montre que
la proc6dure dl6jimination des quantificateurs pour CODF

dans L se ramdne a celle de RCF dans < + , . , - , 0 , 1, < > .

THEOREME 2 – CODF n 1 a pas de moddle premier au-dessus 'de Q,

PREUVE : Voir [ 2 ] , p . 87 ,

THEOREME 3 – Si K est un moddle de CODF , alors K ( i) (oCr

i2 = -1 ) est un corps diff6rentiellement clos ,

PREUVE , Voir [ 3 ]_.

THEOREME 4 – a) 11 existe un algorithme qui 6tant donn6

Pl (Xl, , , . , Xn) , , , , , Pm (Xl, . , . , Xn) , h (X1, . , , , Xn) des poly-
names diff6rentiels en n variables et a coefficients dans

Q, d6cide st il existe un voisinage de 0 et des fonctions
r6elles analytiques u1, . . . , Un d6finies dans ce voisinage
te11es que :

Pl (ul, . . . ,Un) = O. . . . , Pm(ul, . . . ,Un) = 0 et h(ul, . . . ,Um) + 0.

b) Il existe un algorithme qui 6tant donn6

P1(X1, . , . , Xn) , . . , , Pm (Xl, , , , , Xn) , h (X , , , , ,Xn) des polyn6-
mes diff6rentiels en n variables et a coefficients dans
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C. Michaux

Q (X) ( le corps des fonctions rationnelles sur Q) , d6cide
s 111 existe un voisinage dans IR et des fonctions r6elles
analytiques u1 , , , , , Un d6finies dans ce voisinage telles' que
Pl (ul, . . . ,Un) = 0, . . . , Pm(ul, . . . ,Un) = 0 et h(ul, . . . ,Um) # 0.

PREUVE : Voir [ 2 ] , p . 90 .

THEOREME 5 – II n lexiste pas d lalgorithme qui 6tant donn6

Pl (Xl, . . . ,Xn) . . . . , Pm(Xl, . . . ,Xn) , h(Xl, . . . ,Xm) des poly-
names diff6rentiels en n variables et a coefficients dans

Q (X) d6cide s 1 il existe un voisinage de 0 et des fonctions
r6elles analytiques ul , , , , , Un d6finies dans ce voisiange
te11es que

P(ul, . . . ,Un) = 0, . . . ,Pm(ul.. . . ,Un) = 0 et h(ul,. .. ,Un) + 0.

PREUVE : Voir [ 2 ] , p . 90 , 91.

Les preuves des th6or6mes 3 , 4 , 5 sont en fait bas6es sur
le r6sultat suivant :

THEOREME 6 – Solt K = Q <u, , . . . , u_ > une extension diff 6-
rentielle de O, forme11ement r6elle . Alors K est isomorphe

(en tant que corps diff6rentiel ) a Q < =1, . . . , Un > oa cha-
que ui est une fonction de ]R dans IR analytique dans un
voisinage de 0 et oa la d6rivation sur Q <=1 , . . . , Un > est
a

dx

PREUVE : Voir [ 2 ] , n . 88-89
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Quelquea cm8truction8 sur Iaa £naruploa ab61ima orxIauan (8.a,o,)

Frnn<,oi3e Delon

Francois Lucas

Depuis les tr8v8ux de Peter Schmitt [SI,S2] , on contr61e bien 6quivalence

et inclusion 616nentaire8 entre g.a.o. . Lea propri6t68 logique8 d’un g.a.o. G

80nt ranen6es a celles d’une infinit6 de "chaine8 color6e8", c’est-a-dire

d’ordres totaux portant des pr6dic8t8 unaire8 en noalbre infini. Ces chaine8

80nt appe16es les 8pectre8 de G et 80nt index6e8 par H. Blle8 80nt

interpr6t8ble8 dana G. P. Schnitt a nontr6 que deux 8.8,o. 80nt

616ment&irement 6quiv8lent8 88i, pour tout n e H, leur8 spectre8 d’ordre

d’ ordre n Ie sent, et il a dong un critare d’ inclusion 616aentaire (pour tout

n il y & un plongment n&turel 61hentaire du spectre d’ordre n, plus d’ autres

conditions) .

Quelques notations

SPn(G) d6si ne Ie spectre d’ordre n;

H < G exprime que H est un serra–groupe convexe de G (G/H est alor3 ordonn6 par

l’ordre quotient de celui de G) ;

Y (G) = { H; H 4/ G J•

C16ture convexe et quotient

Cheque spectre de a eat un sous en8arble de v(G) , l’ordre eat

1’ inclusion. On 8ait que pour H 4 G, v(H) 8’identifie a un 8egnent initial de

– I –



Y(G) , et V(G/H) a un 8e8nent final. Cela re8te pre8que vrai pour lea 9pectre8

de Schmitt: pour chaque n e N, SPn(H) 8lidentifie a { C e SPn(G) ; C 4/ B ) et

8Pn(G/H) – {0} a { C e SPn(G) ; H 4/ C } (selon les cas , {0} eat an n’ eat pas

dans SPn(G/H) ) ,

Ces propri6t6s nous per,bettent de tran8f6rer dans lea g.a.o. des

r6sultats de Rubin sur les chaine8 color6e8, a 8&voir: ai C, et On 80nt dea

chaine8 color6es et a la clature convexe initiale { x e 09 ; 3y€C1 , y>x } , ou

finale { x e 02 ; 3y€C1, y<x } de C1 dang 02, alor8 C1 < 02 inplique

01 < C < 02, On obtient ain8i Ies deux t16or6ne8 8uiv ants.

Thaor6me I.

Soient des g.a. a. H < G et B la c16ture convexe de H dana G. Alar8 H < E < G.

T16or6ne 2 .

Soient des g. a. o. H < G et Ha Ie Plus gr08 aous groupe–convexe de G caupant H

en {0} (done H se plonge dans G/HA) . Si on suppose que, pour chaque entier n,

ni (0} ni Ho n’eat dana SPn(G) , &lars H( G/Ha (leg hypot16ses sur {0) et Ha

80nt r6ce83aire8 et in<Bpendantes) .

Le Th6or6ne 1 est aar68ble en ce qu’ iI pernet de faire 8vec un g. a.o.

8rbitraire ce qui est devenu cla88ique avec lea entier8, c’est–a–dire utili8er

les modiles non standard. Donnon8 un exenple dans lea corps valt6s.

Van den Dries a nontr6 que le t16or6ne de Greenberg se g6n6rali8e a des

anneaux de valuation quelconques. Enon<.'on8 ce r68ultat 80u8 la forne (faible)

8uivante: soit un anneau de valuation hen8elien D de c8ract6ri8tique 0 et un

syst6ne 6quationnel fini f & coefficients dana D; 81 pour tout gevD i1 exi8te

xeD v6rifiant v(f(x) )28, alor8 f adruet un z6ro dans D. Lor8que la

c&ract6ri8tique de D/v est nulle, donnon8 de ce r68ult8t une preuve dans un

esprit non–standard.
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La propri6t6 a prouver est du prmier ordre, c’est la conjonction sur n,

d et n, des 6nono68 gujvant8

pour tout sy8t6ne f de a polyrr6ne8 de degr69d en n variables

[Ya 3x v( i)20 A v(f(i) )28] –+ 31 [f(x)=0] .

Grace au principe d’Ax–Kochen–BrXov, il 8uffit de prouver qu’elle est vraie

dans les nnne8ux naxin8ux, c’ eat–a-dire les nnneaux de 86ries fornelle8

k[ [G] ] . Consi(Brons une extension G+ o-8aturee de G et la c16ture convexe C de

G dans G+ ; d’ apre8 ce qui pr6odde et Ax-Kochen-ErXov, on a

k( (G) ) < k( (C) ) <: k( (G+) ) ; consicBrons sur k((G8) ) la valuation naturelle v a

valeurs dans G+ et la valuation w conp086e de v avec Ia projection G –H C+/C;

on 8 k( (G 8) )/w a k( (C) ) et sur ce corpa est c6finie Ia valuation quotient v/w

induite par v; wR( (C) ) eat 1 a valuation triviale et (k( (G+))/w,v/w) est

isanorphe a (k( (C) ) ,v) . Soit naintenant un sy8tane f a coefficients dana

k[ [G] ] adnettant deg z6ros approc168 a n’inporte quel ordre, g€G8 v6rifiant

g>G et ;ek[ [C+] ] tel que v(f(i) )28; on a doric w(f( i))>0 et

f(i)/w = f/w(;/w) = 0; done k[ [C] ] satisfait la fornule 3x f(x)=0, et k[ [G] ]

Produit8 de a. a. o.

Pour des g. a. o. H et G, GxH est 1e produit lexicogr8phique; H s’identifie

au sous groupe convexe axlI de Gx Ii, et G au quotient (ixH/H; d’a'r

Y(GxH) = Y(H)+Y(G) , La situation peut ne pas 6tre tout-a-fait aussi staple

pour les 9pectre8 de Schnitt: pour chaque entier n,

- ou bien SPn(GxH) = SPa(H) + SPa(G) ,

- ou bien SPn(H) a un 616nent naxinal et SPn(a) un 616nent ninin81 qui se

confondent , c’est a dire (g et h sent dea chaines color6e8) SPn (E) = h + 8 ,

SPn(G) = + + 8 et SPn(OcR) = h + + + 8 , avec une r6gle de coloration du 8
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re8tant .

Cel8 peut se g6n6rali8er. Si I e8t un ordre total et al le produit de

Hahn de I copies de G, Spn(GI) eat a peu pM @1 a SPn(G) . I (il peut y &voir

contraction came dans Ie caa a<H) et en tout 6tat de cause parfaitment

c16ternin6 par SPm(G) et I. la encore on tran8porte alora un r68ultat sur les

ordres (si I = J sont dea ordres totaux et C une chaine color6e, alors

C. I = C. J) en un r6gujtat sur lee 8,a.o. :

T16or6ne 3.

Pour des ordres tot aux 616nentairment 6quivalent8 1 et J, et un g.&.o'. G, on

a GI = GJ.

11 est int6re88ant de rapprocher ce r68ultat dea tray aux de Fefern an et

Vaught. Ces dernier8 ont <Bfini une notion tr68 86r6rale de produit, qui

inclut les produit8 de Hahn de structures ordonn6e8. Leur analyse de ces

produits g6n6r8li868 leur & pernis de rmener les for„,ule8 d’un produit aux

formules de la structure comune des co©p088nte8 et a ce11e8 de l’en8erible

d' indices. Bn p&rticulier, pour ce qui est dea g.a,o. iIs obtiennent les

r6sultat8 8uivant8:

pour I fia, si pour cInque hI, Gl = HI , alorB (Gi )I = (Hi )1;

,i Gi = G e,t fiM, < 1, r(1) ,e,< > a < J,+(J) ,e,< > = GI a aJ (d +(1)

est l’ensmble dea parties de I et < 1’ordre entre 616nent8 de I) .

Ce deuxi6ne r68ultat est 8trictenent plus faible que le t16or§ne 3 car

< 1, < > = < J, < > ++ < 1,9(1) ,e, < > • < J,P(J) ,e, < > . Le t16or6ne 3 ne

pourrait pas 6tre obtenu par une 6tude g6r6rale dea produit8 car iI eat faux

lorgque Ies C1 80nt 8eulment dee emi-g.a.o. (i,e. nocBle8 de la t16arie

univer8e11e des g.a.o. ) . De la Bae facon, Ie t16or6ne 8uivant est faux pour

les 3eni g.a.o. .
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T16or6me 4.

Si 6 est un g. aoa. et I un ordre total, on a GI > a(1) , a) G(1) eat 18 some

lexicographique .

On a vu que lea r68ultats de Fefernan et Vau8ht inpjjquent que, pour dea

g.a.o. G et H, G = H w (P = IP. Notre 6tude des spectres d’un produit (i.e.

Spn(Gm) a peu pra Hal a SPn(G) .n ) pernet de montrer une r6ciproque:

T16or6ne 5 .

Si G et H sant des 8.8.o. , (P = P inpjjque G 8 A.

D6nonstration. si Gm = IP alora, pour tout n, SPn(d) = SPn(IP) , d’al (avec un

peu de travail) SPn(G) .m = SPn(H) .n; dorIC (d’apr6s un r68ultat d6ja connu sur

les chaine9 color6es) SPn(G) = SPn(H) et G = H. a

Le t16or6ne 5 a 6t6 prouv6 8inultar6nent par d’autre8 techniques par

M. Giraudet (voir son exp086 dans ce volume) ; il eat d’autant plus int6re88ant

que 1’6nono6 obtenu en rmpl8x,ant 6quivalence 616nentaire par isonorphisne est

faux, ainsi que le nontrent les contre–exearple8 de F. Oger (ce volune) .
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SPECIRE FhADIaJE:
ASPECTS TDPOLDGIWES & GmEiRiQUES

L, B61air

S .0. Pr61imirLaires,
S , i , Spectre p-adjque ?
S . 2. Propri6t6s 616mentaires .
S .3. Fonctions continues d6finissables .

S.O. PRmIMINAIRB

Soit p un nombre premier fix6 . Cet expos6 a con8ne toile de fohd le

corps des nombres Fhadiques (voir [ Am] ) . Ax-Kochen et Ershov ont rnontr6 que,

en tant que corps muni de la valuation p-adi clue , Vm , la th6orie 616mentaire

de QI_1 est axionntis6e wr les propri6t6s de corps valu6 hens61ien , dont le

groupe de valuation est un Z–groupe oa Ie plus petit 616rnent positif est donn6

mr la valuation de p , et dont Ie corps des restes est canoniquement

isomorphe au corps premier Fn . Ils cnt aussi anntr6 que cette th6orie est,

mo(Idle-compldtIe. In structure valu6e de (Qn,Vn) est d6finissable

alg6briquement: Vn(x) S Vn(y) = 3z(x€+py€=ze ) , oa 6=3 si F2 , et c=2

sinon. La th6orie Th(QH) est aussi axxi61e-canpl&te dans le langage des

anneaux, L . Pour chaque entier nZ2 , soit Pn,P= des pr6dicats urraires

interpr6t6s colnne suit: Th(QH) b Pn(x) A, 3y(x=yn) et

Th{Qp) b Pjf x) H+ x/0 A Pnf x) ' Macintyre a nnntr6 que Th tOp) 61imine les
quantificateurs dans le langage des anneaux munj des pr6dicats Pn , que nous

noterons L(PO) . Notons qu’on a VP(X) S VP(y) A, P€(/+pyE ) ; la topologie



p–adique est dorIC d6crite dans L(P1\ ) mr des formules atomiques .

Le spectre p-adique a 6t6 intraduit par E. Robinson tRoll , motiv6 par le

spectre r6el de Coste et Coste-Ray [CR] . Carnme on Ie verra ci-dessous , cet

objet est davantage li6 a Th( On) qu’a On en soi . Cette construction a 6t6

g6n6ralis6e aux extensions finies de On par Brbcker-Schinke [BSI , et

ind6pendamrRent dans [B61 ] . Les d6monstrations ci-dessous s’ad8ptent

naturellement a ce contexte .

Dans cet expos6, on qualif ie un espace topologique de CQmnact si iI

Wssdde la PFQPF ieli de S Qu$-rQQQuyremenTr fin 1 4 \In e3PRQe QQmPa£t ne sePa ciQn£

pas n6cessairement s6par6. On note CAC la th6orie 616mentaires des corps

alg6briquement clos , et Xc le comp16mentaire du sous-ensemble X d’un

ensemble donn6. Soit K un corps , on note K' son groupe multiplicatif et

PI le sous-grouw multiplicatif des puissances n–times+ Une formule

rt„1 , . . .Xn) d, L d6,ign,,, t,ut ,U,,i bi,n 1, ,,u,-ensemble de Kl= qu’elle
d6finit. Soit A un anneau et L( A) le langage L muni de nouvelles

constantes pour les 616ments de A , on note d+( A) Ie diagramme positif de
A dans L , i .e, l’ensanble des 6nonc6s atomiques de L( A) vrais dans A .

On note x le n-uplet (x1, . . . ,Xn) . Soit f1, . , . , fm c K[XI , I l’id6al

engendr6 wr les fi dans KtX] , et V la vari6t6 affine d6finie w les

f1 , alors on mse V(K) = {X e KP: fi (X)=0 ,i=1, . . . ,In} , et K tV] ; KIX]/I .

L’arrneau KEV] est appe16 anneau des coordonn6es de V &uqjessus K , Soit

XS Kn et f une fonction de X dans K alors on pose Z( f > = {x e X:

f (x)=0 } . Nous utiliserons le fait suivant, cons6quence du Idwre de Hensel :

si xc Q; est tel que vP(x-1 ) > vp(n2) , alors xe Pi . Soit BC Q: ,

aG Up on pose Bt=,a) = {+ e Q:: vp(xi-yi) : v(a) , 1£i<n } .

g.1. SPEGIRE FADIW ?

Le rapport entre Ie spectre r6el et la g6om6trie 8l96brique r6elle est
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nnintenant bien connu. Le spectre p–adique relive un peu du m6me genre de

proc6d6 . Pla<,ons nous momentan6ment dans un context;e g6n6ral Ex>ur situer ce

type de construction. Soit (K, 7 ) un corps topoLogique de bse. Ch

s’ int6resse aux vari6t6s al96briques af fines munies de la top>logie induite

par celle de K . Il s’ agit d’introduire un ob.jet qui jouer8it un r61e

analogue a celui du spectre premier d’un anneau en g6om6trie alg6brique.

Exemple (1) Les nornbres r6els avec la topolagie de l’ordre (R,< ) : les

vari6t6s h6ritent alors de la topologie euclidienne.

( 2) Les nombres p-adiques avec la topologie de la valuation p-adique

(Ian,Vn) : les vari6t6s h6ritent de la tomlogie Fadique.

NotIons que , dans cette optique , si on consid dre les nombres complexes

avec la topologie de Zariski (c, 7) , la topologie induite n’est ms la

topologie de Zariski puisque cette derniare est plus fine que la t;opologie

produtt de ( C ,7 ) . Rappelons briivement le rapport entIre le spectre premier

et la g6om6trie alg6brique (voir [IX;] , Introduction) . Soit fl, + + . , fm e c[X] ,

I=( fl , . , ,fm) , V la vari6t6 affine d6finie par les fi . Alors il y a

correspondance biunivoque entre Spec C[V] et les Hints de V dans les

extensions al96briquement closes de C , au sens suivant: V(C) (les Hints

de V dans c ) se plonge dans Spec c[V] en envoyant x sur 1’ id6al

anximal Mx= (Xl-x1 , ' ' ' ,Xn-xn)+I , qui correswnd au noyau de l’homomorphisrne

de C-algdbre 6v(E) : C[V] –, C qui envoie g+I sur g( E) . Soit FyC une

extension alg6briquement close de C,Consid6rons Ies Hints de V

rationnels sra K , i . e. V(K) , qui correspondent dorIC aux K-homomorphismes

K[V] –+ K . Par rapport a l’anneau des coordonn6es de V au-dessus de C ,



C[ V]

on n’obtient plus en g6n6ral des id6aux nnximatL\ luis des id&u\ premiers:

ker P c Smc C[V] . R6ciproquement, si Pc Spec C[V] alors P correspond a

un point de V rationnel sur la c16ture alg6brique du corps des fractions de

c[V]/P .

[[V] I C[V 1/P 1 Q(C[V]/p)a

/"
Q(c[V] /p)a[V]

D6finissons Ia relation - sur les C-homomorphismes c[V] –, K , atl K

est une extension alg6briquement close de C . Soit Pi : c[VI –, K1 , i=1,2

deux tels morphismes , alors P1 - P9 ssi il existe Ka/C alg6brjquement clos

et des C-homomorphismes KI –P Kn tel que le carr6 ci-dessous corwnute ,

>’
C [V]

;r\,Pl - P2 ssi

La relation - est une relation d’6quivalence: elle est clairement r6flexive

et sym6trique, et la transitivit6 d6coule de la propri6t6 d’amalganution des

corps alg6briquegrent clos , Ihnnrquorrs que cette derni bre propri6t6 peut 6tre

d6duite de la moddle-comp16tude de CAC . D’autre part on v6rif ie sans peine

que P1 - P2 ssi ker P1 = ker P2 ' Cette discussion se transwse

directement : EX)ur tout anneau A , il y a correspondance biunivoque entre
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Smc A et les classes dt6qujvalence d’hownrnrphismes A –pK , oil K h CAC ,

pour la relation - . Nous laissons le soin au lecteur de fai.re ttne disctlssion

analogtle pour Ie spectre r6el . Rappelons que la topologie de Spec A est

dorur6e par la hse {D( a) : a c A} , oil Dla) = {P : a # F} =

( P : A/P + ( a + 0 ) } , ce qui correspond a {A –P K/- : K P( a + 01 } . Si

A = C[\’] frIars la tol)ologie induite par Spec C[V] a travers le plongement

\, ( ti –. Spec cl \'] n’ est nulle autre que la topologie de Zariski sur ve cl .

Urle faqoll d : introduire Ie spectre p-adiqtle est, donc carne suit . Soit A

un dnneau , et consid6rons Les homomorphismes de A dans les moddles de

lb(On) . I)uisttue lb(tIn) est' mod&le-complate, la relation analo ne - est

aussi urle relation d’6quivalence et Ie spectre rbadique de A est alors

I ’ ensemble des classes d’6quivalences pour cette relation. R8ppelons que la

toIX)logie p-adique petIt 6tre d6finie directeaent avec le pr6dicat Pl

Daf init.ion . Le spectre p-adique de A , SpecnA , est l’espace toK>logique

suivant : SmclIA = { A –+ K : Kb Th(On) } / - , et la towlogie est celle

engendr4e pdr Id hse {Dn( a) : n+ c o , a1 € A , ISiSk , kn) , oa

bn (3 ) = ( A –+ K/- : K A A PI (a: ) } . Get ensanble est bien d6f ini grace a
i

I ’ E'Q' de 'lb(ap) dans le langage L(Po ) .

He = . PROPnIEFES ELE>IF,VFAIRES ,

1 Je spectre p-adique possdde des propri6t6s analogues a celles du spectre

premier . Nous v6rifierons d’atx)rd ces propri6t6s Nur Ie spectre premier et

llOtIS \'errons qtre les d6monstrati ons se transposent au spectre p–adique

{ cf . [ CR] ) . Dans ce qui suit, soit A un anne8u.
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Prqpnsjti QT) . L’espace Spec A est compact ,

D6monstration. Notons d’aIx>rd que pour a,b c A , on a:

D( 1 ) = Spec A

D(O I = p

DCa) n D( b) = D( ab)

D(a+b) c DCa) U D( b) .

Introduisons la th6orie propositionne11e T , dont les variables

propositionnelles sont {D(a) ; a e A} , et les a\iomes sant:

1 ) D( 1 ) = T

2) D(0) = 1

3) DCa) A D(b) ++ D(ab)

4 ) D(a+b) –+ DCa) V D( b) ,

11 y a correspondance biunivoque entre Spec A et les rnoddles de cette

th6orie: a M bT on associe PM = {a c A : M(DCa) ) = 1} , et a .P e Smc A

on associe Mp oil Mp(DCa) ) = T ssi a # P ' Il est clair que Mp h T , et

PM c SBC A d6coule des axiomes : 1 ) , 2) , 3 )+ et 4) impliquent que c’est un

id6a1 propre , et 3)+ qu’ il est premier. On est rarnen6 au lennIe suivant .

Lenlne. Pour tout ac A, DCa) est un sous-ensernble compact de Spec A.

D6monstration . Montrons que tout;e famille de fenr6s de base ayant la proF.r1 '"' '’

d’ intersection finie Nss6de une intersection non vide. Soit {D( ai ) : aI e /1}

t,1 qu, W„r t,ut a1, . . . ,an e a on ait D(81)': n. . .n D(an)': n DCa) + g . En
termes de notre langage projDsitionnel ceci nous dtt que tout sous-ensemble

fini de { nD(a, ) , DCa) : ai € A} a un mod ale. Par compacit6 cet ensemble

d’6nonc6s a aussi un mod ile, i ,e. n D( a, )c n D( a) + g . a
i

Aut,re d6mQnst,rat,lorI de la Propr>nit,ion (voiP [vdDI, Definition 5.5) .

Consid6rons la topologie plus fine en8endr6e par les DCa) , DCa)c , dite
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topologie constructible, et .remplac,ons T par a+( A) + CAC . Alors il ya

correspondance biunivoque entIre Spec A et les comp16tions de a+( A) + CAC

dans L( A) , et corrrne ci-dessus on montre que tout DCa) est compact dans

cette topologie et dorIC, a fortiori , dans la top)logie de d6part qui est aDins

fine. a

Proposition. Pour tout BeAk , Bak Dn(B) est compact et en p&rticulier

SpecnA = Dn ( 1 ) est compact .

D6monstration. On peut utiliser la topologie plus fine (constructible ) coawne

ci-dessus et la correspondance entre SHonA et les comp16tions de

a+( A) + Th(tIn) dans L( A) . Ou encore on But proc6der coHwne dans 18 prwlidre

preuve en axianatisant la th6orie universelle (Th(np) )v dans L(Po) et en
notant qu ’ iI y a une corresNndance entIre SpecnA et 1 ’ ensemble des couples

(P, (P; n)nm) , oa P e Spec A , et (A/P, P& n;neo) b (Th(Op) )v ' A la

classe de P: A –pK on fait corresK)ndre (ker P, (P; n)nw) , on

P; n = {a c A : K h Pi(f (a) ) } , qui est bien d6fini par E'Q' ; et a (P,(P£,in) )

on fait correswndre la classe de A –+ K ' oil (A/P'(P;In) ) –+ K ' K b Th(Qp)

, qui est aussi bien d6finie par E.Q. . Une telle axioantisation a 6t6 donn6e

dans [Rc>2] et (ind6pendarnrnnt) [B62] + a

Proposition, Tout ferm6 irr6ductible de Spec A,SBcnA est l’adh6rence d’un

seul et unique point .

D6monstration. Par exemple Nur Spec A , Soit F un ferM irr6ductible non

vide ( i .e. F = Fl U F2 , Fi ferm6s, = F = F1 ou F = F2 ) . D6finissons un
mxIdle de T :posons M(DCa) ) = T ssi il existe A –+ K/- eF tel que

K hCa + 0) . Alors Mb T et F = TV & Pour montrer que Mb T , seul
1 ’ a\lorne 3 )+ a6rite qu’on s’y arr6te. Si M(D(ab) ) = 1 , alors nur tout

A –, V,I - € F on a K b(ab = 0) , et done K bCa = 0) ou K A( b = 0) e Ainsi
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Fc D( a)c u D(b)c , d’oa FS D(8)c ou FS D(b)c , i .e. M(DCa) ) = 1 ou

M(D( b) ) = 1 , Que F = n=F et l’unicit6 de ce mint g6n6rique sont irwn6diats

puisqu’un point x aplnrti.ent a l’adh6rence d’un point y ssi tous les

ouverts qui contiennent x contiennent aussi y . Pour une d6rrnnstr8tion

analogue dans 1 ’esprit de la topologie constructible et un contexte 16gdrement

diff6rent voir [Pi] , a

PrQP>$jtjqn' Soit K = C'Op ' Swc, = Swc,Swcp , fl' ' ' ' ,fm € KEX] ,
I = ( f 1 , . . . , fm ) , V la vari6t6 affine d6finie wr les fi , V( K) muni de la

topologie de Zariski ,p-adique respectivement . Alors l’ injection

c : V(K) –+ Smc+K[V] est un plongement towlogique dense.

. Pour Smc c[V] , On a c (x) = (Xl-x1, , . . ,Xn-xn) + I et

Smc c[V] = {P e SBC c[X] : I S P} 1 et donc Nur g e ctX] I

D( g+I ) = {P e Spec c[X] : g + P} . Voyons que c et c -1 sant continues:

I-ID(g+I) = {X : g(X) / g} est ouvert et '{X : g(=) / g} = im(' ) n D(g+l)

est ouvert . Pour la densit6 de im( c ) dans Spec C[V] iI faut montrer que si

D(g+1) + O alors il existe xe V(C ) tel que g( B) + 0 . Soit pe D(g+1)

et E la c16ture al96brique du corps des fractions de c[v]/p , alors CSE

et E b 3 s(E e VCE) A g(3) + 0) , et par rnodale-comp16tude il existe x e V(C)

tel que g(x) + 0 , Un arMent similaire s’applique a SHen en ayant; a

1 ’ esprit que les (B : P=( f (x) ) } , f e gn[X] } , engendrent la toR)logie

Epadique sur la vari6t6, a

g.3. FDNCFIONS OONrINUB DHFINISSABLB.

Un esp8ce topologique est dtt spectral si iI est compact, Ex>ss&de une

base d’ouverts comrncts close par intersection finie, et si tout fenr6

irr6ductible est l’adh6rence d’un unique point (voir [Ho] ) . Hochster ( ibid. ) a

montr6 que les esrnces spectraux sont exactement les espaces hom6omorphes au
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swctre premier d’un ann%u. Ch a vu que SpecnQn[V] est un eswce swctral.

On peut se demander si iI y a un anneau ayant un rapport significatif avec la

vari6t6 V dont Ie spectre premier est hom6omorphe a SpecnQn[V] , On conrnit

une r6ponse dans Ie cas du spectre r6el .

Prowsition ( [CC] ) . Sett f 1, . . . , fm e R[X] , V la vari6t6 affine d6finie par
les f, , et f ( VCR ) ) 1’ensemble des fonctions continues d6finissables (avec

paramdtres) de VCR) dans R . Alars le spectre r6el de IRIVI est

hom6omorphe au spectre premier de C( V(IR) ) par un isomorphisme naturel au

niveau de leur treillis d’ ouverts compacts .

Nous allons montrer un r6sultat analogue dans le cas jhadique . Dans ce

qui suit, d6finissable sera synonyme de d6finissable &vec param6tres , et la

topologie p-adique sera sous-entendue .

D6finition. Soit neo , et SS Q: un sous-ensemble d6finissabje, on note

T( S ) 1 ’ ensemble des fonctions S –, On continues et d6finissables .

In proposition suivante fournit la c16 du r6sultat.

Proposition 1. Soit nco , S s Q: d6finissable et localeaent fenn6 (en

particulier Nur S = V(On) ) , f e tCS) et g e VCS-Z(f ) ) . Alars il existe un

entier NZ 1 tel que pour tout b€£-7TTF il existe c(b) , d( b) 6 Qp

t,1 q., (+) vp(fNg) ) vp(,(XO)) , ,ur 1’,n,a.br, F(xO,d(xO)) n S-Z(f ) .

n, t,,m,, d, n,,„„ rdiqu, ,n , jfNglp $ 1,( gO) ip , ,?,,t d,n, di,, q.e
fN g est localement kx>rn6e sur £-7TTT . Il s’agit dlanalyser la croissance de

g sur la fronti dre de Z( f ) : 8, f sont localernent les z6ros d’une 6quation

polynomiale et a fortiori de croissance polynomiale; d’aut,re part par E+Q.

leur comportement est d6crit par les restes de polyn6mes a deux variables

h( g( s ) , f ( s) ) modulo des P= , et le fait que cetlx-ci soient "relativement
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explicitement ouverts" nous dtt qu’on peut pr6dire le comportement de h(y, z )

a partir de celui de h( 0,z) , dans un voisinage relatif de ( 0,0 ) . Nous

allons d’8tx>rd voir conxnent le r'6sultat principal d6coule de cette

proposition .

Corollaire 2. Sait f ,g e VCS ) tel que Z( g) <- Z( f ) , alors il existe un

entier Nil tel que g divise fN dans ?(S) , i.e. fe a) .

DetBc?n$trati9n. On a alors g-1 e VCS-Z( f ) ) . 11 existe N tel que fNg-1 est

localement born& sur T-7TH . Ainsi ffNg- 1 prolon96e par 0 sur Z( f )

appartient a 'e(S) et gfN+lg-1 = fN+1 . a

Voici un aut:re fait-clef .

Pramsit,jgn : ( IRc>2] ) . Soit nco , U S Q: un ouvert d6finissable, alors il

existe des polyn6mes fi j c Qp[X] et des entiers ni j tel que
u = un p: (f, ,(x)) .

ij ij

Corollaire 4 ' Soit Li V{qp> –+ SwcpOp[VI le plongement canonique' Alors la
correspondance P( B) H, {1In[V] –, K/- : K P PCE) } entre Ies sous-ensembles

d6finissables de VCUp) et les sous-ensembles constructibles de SpecpUplVI

(mr E.Q. ) induit une bijection entre les ouverts d6finissables de V(On) et

les ouverts comwts de SBcDQD[V] .

Ch v6rifie que la bi jection en question induit un isomorphisrne de

treillis entre le treillis des ouverts d6finissables de V(01) et le treillis

des ouverts compacts de SweptIp[V] , qui est engendr6 wr les Dn( g+I ) ,
g € tI_[X] .
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ProWsitioQ $ . 11 y a un hom6omorphisme entre SpecnQn[V] et SBC t(V(On) )

induit par un isomorphlsme naturel au niveau des treillis d’ouverts compacts.

D6rnonstration . ( 1 ) Ces decL\ espaces 6tant spectratL\, il suff it de montrer que

leurs treillis d1 ouverts compacts sont isonnrphes : cet isomorphisme induit

alors une bi jection entre les ultrafiltres de ces treillis qui s’ identifient

avec Ies points de chacwr des espaces (dualit6 eslnces spectrau\ H+ treillis

distributifs ) . Cetlte bi jection est alors clairement un hom6omorphisme.

( 2 ) Comme on 1 ’a \u, le treillis des ouverts compacts de SwcnQn[V]

But 6tre identifi6 au treillis des ouverts d6finissables de V( On) .

Notons-le 7 (V) .

(3 ) Soit r( 'e) Ie treillis des ouverts compacts de Spec V(V(On) ) ;

alors rtf ) coIncide avec {D( f ) : f e Y(V(Qn) ) } . En effet , 7 (V ) est le

treillis engendr6 par les D( f ) , f e e(V(Qn) , an sait d6ja que

D( f ) n D(g) = D( fg) . Soit t(x,y) = xB + py2 , on v6rifie ais6ment que

On bCP(x,y)=0 H+ (x=0 A y=0) ) et alors D( f ) U D(g) = Dd( f ,g) ) : 1 ’ inclusion

2 est claire, d’autre part Z(P( f ,g) ) s Z( f ) n Z(B) et par le corollaire 2

on a f ,g c aaf ,g) ) et 1 ’inclusion s s’ensuit aussit6t,

( 4) Soit + : 7(t ) –+ 7 (V) 1 ’ application qui envoie D( f)

{x e V(On) : f (B) + 0} . L’application + est bien d6finie puisque si
DCf ) = D(g) alors G) =%\ et Z(f) = Z(g) , et dOIIC +(DCf)> = +(D(g) ) .

On v6rifie iBwn6diaternent que + est WI hornorDorphisrne de treillis , Si

+(D( f) ) = +(D(g) ) al,r, Z(f) = Z(g) , ,t par 1, ,,,,rrai,, 2 m) = Vjg)

d’oil D( f ) = D( g) et + est injective. In surjectivit6 de + d6coule du
lemme suivant .

Le11111e 6. Pour tout ferv6 d6finissable F S Q= , il existe une fonction

continue d6finissable qui s’a,nnule exactlament sur F .

D6monstration. Notons que dans le cas r6el on petIt utiliser
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dIst(s,F) = Int- tIS - II : Y e F) , IUIS dans notre cas on ne dispose pas de
-V_ ( X )

la section p p HIm d6finir la norme Faclique . Pour tout m iI existe

ei e N tel que ' Qp = {0) U P;1 U elPi U ' ' 'U ek(m)Pi ' Alors par la
proposition 3 iI existe m( i , j ) eN et fi i e On[X] tel que

q r(i)

F = i 1: 1 j : 1 Plr1[]1 ( i ) j ) ( f i j b ) ) + P 1C) L1 r nnI fix de tHur xc Qp NswIS

Pm(x) = ei ssi xe eiPi ' Ainsi xe Pi ssi Pm(x) = 1 ' Notons que Pm

est continue sur Qi wisque les eiPi sont ouverts ' Soit Pm : op –' Qp

d6f ini par

si x = 0

si x # 0

Ch v6rif ie ais6ment que Pm est continue sur Qp et que Pm(x) = 0
x 6 P + Soi t

In

0V (x) =
m

xC Pm(x)-1 }

pi(xl, . . . ,Xr(i) ) = x:(i) + px;(i) + . . . + pr(i)-Ix:fi i

alors comin pr6c6derment Qn h(t1 (x) = 0 b, A x1 = 0) , et

PF(X) = .:1 Pi(Pm(iII)(fil(=)),'''',Pm(ipr(i))(fir(i)(X)))

est la fonction cherch6e . a

q

Notons coaxne corollaire que la dimension de Krull de v(V(Q_) ) est 69ale

a la dimension canbinatoire de SHcnQn[V] carrne espace spectral , qui

coIncide avec Ia dimension Ehadique au sens de [SvdD] , qui elle-marne coIncide

avec Ia dimension au sens de la g6om6trie al96brique .

P6rnQnstrat,ion de la Prowlnit,iQn I (cf . [CC] et la preuve de l’in69alit6 de

Lajasiewicz Fhadique ( thIn, 2.5 ) dans [BSI )

Sett v = vp e Si Bee S-Z( f ) alors wr continuit6 de fg l’in6galit6
( + ) est v6rif ide avec N= 1 , On Nut done supwser que % e Z( f ) n =-HT .
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Consid6rons la formule
L. B61air

H(X, t ,y, z ) 3y(HeS A HeB(E,t) A [(}H0 A z=0) V

(f(y)#O A gCB)#O A z=f(B) A Pg(y)-1 )] .

Par E.Q. cette fonnule est 6quivalente dans Th(Qn) a une fonnule de la forge

Y e pnrIL i i ( b1 i j ( B I t• I qr 1 z ) ) I p][1 1 i 1{b• ij xj tty ) z ) ) : hi jI ki je Qp IIT IY ) z

Soit to tel que F(80,to) ns est fenn6, et soit So := H(80, to,y,z) .

Notons que So n OZ = {O} , aa OZ = { (y, z ) : y=0} et O = (0,0) , Pour

& # 0 quelconque , g est tDrn6e sur Ie compact

B(En,tn) n S n { E e S : v( f(E) ) $ v(a) } et ( + ) est v6rifi6e sur Get ensanble

pour N=1 . II suff it dorIC de consid6rer

B(in ,tn) n S n { 5 CS : v( f (B) ) ? v(a) } pour un a/0 appropri6, i ,e, montrer

que dans un voisinage Fnint6 de O on a v(zNy-1 ) ! v(c) pour tout

(y,z) c Sn et des c,N appropri6s. Dans 1’expression de So sans

quantificateur, il suff it de consid6rer chacune des intersections ni , et on

petIt supposer que O appartient a cetlte intersection sinon zy-1 est

sQrement tnrn6 sur un voisinage Fnint6 de O . On petIt dorIC supposer

Oc so = 9 Pi. (hi(y,z) ) n Pn. (ki(y, z) )I I 1

et en outre hi ,ki e Zp[Y,Z] ' Rapwlons que So n OZ = {0) , et donc I ’un au

mains des hi (0,z),k1 {0, z) ne s’annule pas partout sur OZ . Soit r(Y,Z)

1 ’un de ces wlw6mes et Pm le pr6dicat correswndant. Pour ac On soi t

U(a) = { (y,z) ; v(y) ,v(z) ? v(a) } . Soit e 1 tel que r( 0,Z) n’a pas de z6ro

diff6,,nt d, O ,ur U(£1 ) n OZ . D’autre W,t ,,it ,(O,Z) = ZN,(Z) ,

s( 0) /0 . Pour un 69 8ppropri6 on a
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vCr(0,z) ) < v(azN) , Nur v( z) > v( e 9 ) , zia

aD a = max (vCs(z))+v(P) : v(z)}v(£2) , z#0} et vIa) 1 0 ' Soit & e n;

tel que v( 6 ) > iin\ {v(€1),v(€2 ) ,0) , et e\Trimons r comme polyn6me en Y :

r(Y,Z) = Z 7 ,( Z) YJ + r( 0,Z)
jzl

Alors EX)ur z /0 tel que v( z ) : v( e ) , on a r( 0,z)/0 et donc

r(Y,z)r(0,z)-1 = = vi(z)r(0,z)-1 Yj + 1

Si v( y) ! v(m2azN) > v(m2r( 0, z) ) , alors Nur j)1 ,
r _, I _ \ _in _. \ '-1..i \ \ _ nI _. I_ \_.2 \ \ ,,/ _,.2 \ I __I ,. / _ \ \ \ n \ __ _. .: : __1 : _, ._ _, ,_

r(y,z)r( 0,z)-1 c PI . Nous pouvons choisir 6 ,a,N tel que pour chacun des

r(Y,Z) et Pm connie ci–dessus on ait r(y,z)r(0,z)-1 c Pi pour y,z e Q; tel
2 N. _ 2

que v( z) ? v( c ) et v(y) : v(m''az'' ) . Posons Cn = q''a , oil q est le

produit de tous Ies m n6cessaires . Alars ( y, z ) + Sn pour (y, z ) tel que

z#0 , v(,) ! vCE ) et v(y) > v(cn,N) , si„on, W ce qui pr6cade, on a„rait

aussi (0,z) e Sn , ce qui est impossible. Ainsi v(y) S v(CnzN) Four

(y,z) c U( e ) n Sn , et on obtient l’in6galit6 voulue Nur le voisinage mint.6

UCc )–O . Il est clair que ce N ne d6pend que du degr6 en Z des polyn6nles'

r( 0,Z) et donc a fortiori que de la description sans qllantificateur de

H(E,t,y,z) , On en conclut l’existence d’un N unifonrre Nur tous Ies To . u

Notons que cette d6monstration fonctionne dans tout axxldle de Th(QH) et

dans les corps Ehadiquarnnt clos de rang sup6rieur a 1 , en ajoutaInt les

tantes
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XVIIene PROBLEME DE HILBERT AU NIVEAU n

DANS LES CORPS CHAINE-CLOS

Frangoise Delon, C.N.R.S. , Universit6 Paris 7

Dan{e11e Gondard, Universit6 Paris 6

Le XVIlene prob16me de H11 bert classique concerne 1a caract6rlsation des

polyn6mes feRal qui ne prennent sur Rn que des valeurs positives ou nulles .

Artin a rrnntr6 que, si K est ree1 clos et feK(7) , alors

(Vic K f(1) > 0) o f(TIc : K(X)2

6qu{valence qu' on peut aussl 6crire, pour souligner I'analogie ent:re ses deux

memE)res ,

(VIc K f(1) c [ Ka) o f(X) c [ K(7)2

11 ne peut y avoir une 6quivalence de mame nature pour les puissances 2n car,

dans un COrpS r6e1 CIOS K , £K2 = K2 = K2r = £K2n . Par contre, sur un COrpS ii

verjfiant EK2n+1 E £K2n pour tout entjer n , on peut esperer une 6qu{valence

n n

(Vle K f(7)e t K' )+ f(7)e = K(Y)‘

.n+1 .r
Becker tBI a Knntr6 que les corps ordonnables K verifiant EK' } [ Ka

sont ceux quI portent un ordre de niveau sup6rieur non trivia1. Ce sont aussi le:

corps chainables de Harman [H] . A I'int6rleur de cette fami11e, les corps chaTne-clo

sont I'analogue des reels clos parm{ les ordonnables ; on peut Ici les defini r par 18
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cdracterisation algebrique suivante : K e8t cha£ne-aloe 88{ CZ porto une ua b,+,

tiarl V herb8gt£e71ne, avec K/v r6et ct08 , vK impa Cr-divisible et jvk/2vkl ‘

Pour pr6ciser 1 a description, consid6rons sur K chaTne-clos 1 ' ensembte V(K)

des valuations ayant les propr{6t6s c{-dessus, et choislssons un ordt"e de K .

Les valuations de V(K) sont convexes ( par definition une valuation v est

convexe lorsque son anneau de valuation Au 1 ' est, au sens hab{tuel ; une valua-

tion hens611enne sur un corps ordonn6 est necessairement convexe) et done compara-

bles pour I'ordre habitue1 sur 1 es valuations : v>w ( v p1 us fine que w)

lorsque Avc Aw , 11 est facile de verifier que V( K) admet un element minilndl .p ,

d6fini par Avn = u {Av ; ve V(K)} , et pour leque1 2vo K est dense dans vo K .

et un 616ment max{ma1 vl , d6fln1 par AvI ; n {Av ; vc V(K)} et pour leque] +. I" L
est archim6dien. Autrement dit on a les 6quivalences p1 us fines que 1a caracteYlf,'' '

tion donn6e pr6c6demment :

K chaTne-clos ssi 11 exlste ve V(K) avec 2 vK dense dans wK

ssi i 1 existe ve V( K) avec K/v archirredlen.

Cela n' est 6vldemment pas equivalent en genera1 a la propriet6 "i1 exl3 tc 7-

avec 2vK dense dans vK et K/v archimed len" , mais 1e sera lorsque vo - -.' I
c'est-a-dIre lorsque V(K) est r6duit a un unique e16ment

On peut malntenant 6noncer 1 e r6sultat

D4finl tion - feK( K) a Za proprt6 t4 (+ ) am Ze corp8 K tor8qu lon a :

Vje K f(i) eE K2n

Theoreme - So it un corp8 K cha£ne-cLeo tel que V( K) npa qu lun dtclment et

fc K(X ) , 4Zor8 f €EK(X)2n 88 i f a Za proprid te (+) mr tabIte e=fen8£on

atg6br£que ordort7tabt e de K

(Rappelons que dans un corps chalne-clos K2 , E K2 et soul ignons le

fait que, dans cet enonc6, f est une fraction ratlonnelle a une seule vattablv)
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n

11 est clair que pour tout corps K et feK(7) , feE K(Y)z ssl f satisfait (+)

sur toute extension L de K . Le th6oreae dit que, sous certaines hypotheses , 11

suffit de considerer les cas oa L est alg6brique sur K et ordonnable, dorIC

bien sar, les cas oa L est de degre fini sur K et ordonnable (en f3it les
cas [L : K 1 au plus egal au degr6 de f suffisent) . an verra qul11 y a peu de

te11es extensions (2n extensions de degre 2n pour tout n) et qule11es ressem-

blent beaucoup a K : e11es sont chafne-closes.

Les faits suivants nDntrent que, sauf une extensIon possible au cas oil f a p1 u-

sieurs variables, 1lenonce du theorem ne peut etre radicalernnt amel lord (K est

maintenant chaine-clos) :

1) f satlsfait (+) sur Kf, feE K(X)2
rl

2) pour n = 1 le th6oreme est vrai sans autre hypothese sur K que le fait
d'6tre ordonnable, c'est ce que dit 1a propositIon 15 ; par contre, pour tout

entier n> 2 et K avec plus d1 un 616ment dans V(K) , il ya des contre-exemples .

Pour une aut:re g6n6ralisation du 17enE probldne de Hilbert sur les corps

chaine-clos , consulter [ 8-J I .



-4-

I - DESCRIPTION DES EXTENSIONS ALGEBRIQUES D1 UN CORPS CHAINE-CLOS

Lemme I - Sett tm corp8 vaIId (K,v) hen6a tien, de earact€yt8tique !V8£ctreZZe

nuZZe et v6rtfiant K/v = (K/v)2 U[-(K/v)2 ] .

Suppos ons de pLus K ordon7tab te . On a at or 8 it &q,IivaLence

Vx€ K x€K2 .2nE vCx) et X>0

(DemonstratIon sans prob1 Bme) .

Ce lemme slapplique en particulier lorsque K est chalne-clos avec ve V(K) .

P1 us pr6cis6ment :

Lemme 2 K e8t chat:na-el08 et xc KSt

2n 2na) Vv€ V( K) , xc K' u(-K' ) 88£ 2''lv(x)

88£ lvc V(K) , 2nl vCx)xc Ka u(-K2 )b)

Coro11ai re 3 - SDlt K cha£ne-,t08 ; aZora pour tout kC K - (! K2) , on a

K ; K2 u(-K2)ukK2 u(-kK2) .

D6monstration - Pour ve V( K) , on a vK ' (2vK) (ga) pour tout g, $ 2vK , au

encore vK = 2vKU {2g + gn ; g€vK} ; dorIC pour xc K , ou b19n 21 vCx) et

xc ! K2 , ou bien 2 Iv(k-lx) si v(k) = go , et xc t kK2 . O

Lemme 4 - Le8 eat e7r8£on8 atg6bwtq,le8 de degr€ 2 de K cha£ne-et08 80nt :

Kll 1 non ordormabte (oa i 2 = -1)

KImt et KtaT ] pour an k fine ft K2

Ce8 2 dern£are8 e=ten8ion8 80nt cha£ne-et08e8 ,
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DemonstratIon - Soit ve V(K) . Si M est une extensIon algebr{que de K ,

v se prolonge de fagon unique a M et reste henselienne, 1lextension K/vc M/v

est alg6brique et vKC vM rationne11e (clest-a-dire que vM se plonge dans 1a

c16ture divisible de vK) . Le theorame d'0strowski nous cIit, pour [M : K] fini ,

[ M : K I = [M/v : K/v] (vM ; vK) . Sl [M : K] = 2 , ou bien [M/v : K/v] = 2 et M/v

est algebrlquement clos, dOIIC M non ordonnable, et vM = vK ; ou bien M/v = Ws

et (vM ; vK) = 2 ; Dans ce cas 18, M reste chaTne-clos car v est henselienne

sur M , M/v = K/v et vM conserve les proprietes demandees a vK a cause de

la relation (vM ; vK) = 2 . De p1 us M B K[k] pour un kc K - (! K2) ; en effet
M ; K[m 1 avec v(m)€vK/2 ; 11 existe k et k1 CK v6rlfiant v(m2k) A 0 et

m2k/v ; (k'/v)2 ; done M = K[ Al . A cause du coro11aire 3 i1 n'y a que deux

te11es extensions distinctles , et e11es sont de 1a forme indlqu6e. o

Proposition 5 - Ee tre£ZZ£8 dea e=ten8 iona algebytque8 d lun eorp8 K cha£he-aloe

e8t Ze 6utvatt : c16tures r6e11es de K 1 4c16ture aloebrique
.- - - . . e . . . . - - -A-.---___.\l_.--„'/- i de K

U n M n n O n W n + + + n n = > W W W W W

degre 8

degr6 4

K [;eki k[Tht -72 = K Ii ]

degre 2

Extensions ordonnab1 es • ExtensIons non ordonnab1 es
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Demonstration - Une extensIon finie de K engendre une extensIon galolslenne M

qui doit etre de degre 2n d'apr6s 1e th6oreme d'0strowski , donc resoluble ;

en cons6quence 11 exlste L' , KCL' CM , de degr6 2 sur K . Le resultat s'obtient

alors par inductIon en remarquant que :

- aucun corps ordonnable ne contient simultanement a et M , dorIC tous les

corps d6crits dans 1a partle gauche de I'arbre sont bien distInct:s ;

- 1e corps L2 IWt = Lz [ m 1 est 1 ' unique extensIon de degre 2 de L2 . D

Coro11ai re 6 '- Le8 e8te7L8£on8 atg6br£que8 ordonnabte8 d'u71 corp8 cha€ne'et08 80nt

de dean type8 :

• les e£ten8ian8 finie8 qui 60nt cP&a£ne-cZ08e8 ;

• Les e=te7b8£on8 {nfinie8 qui sant rdeZZe8 ct08e8 ,

D6monstration - Une extension Inflnle est de 1a fonne M = u K, pour une suite

croissante de Kn , avec Ko = K ; si M est ordonnable, les Kn verlfient

Kn/v = K/v et, par exemple, (VKn+1 ; VKn) ; 2 ; VKn+1 est 1 a' seule extensioe

de dimension 2 de VKn , dorIC vM = U vK„ est 2-'divlsible. D
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Il - 'GROUPES ABELIENS 0RDONNES rt-REGULIERS

Les groupes abel lens ordonn6s (ou "g.a.o.") n-r6guller ant ete introdults

par Robinson et Zakon IR-Z 1 . Les equivalences des lemmes 7 et 8 sont fac11es a

v6rlfier (sauf petIt-etre 1 + 7 dans 1e learne 7 ; on en trouvera 1a preuve dans

ISI pages 8 et 9) . Le lemme 9 a ete montre, dans un contexte beaucoup plus general,

par Robinson et Zakon ; 11 a motiv6 1a d6finition des n-r6guliers .

D6flnlt;lon -' Un g.a,o, G tel cpe 2G 80 it dense da7t8 G e8t ait den8e

2-?dguZ£er

Lermle 7 - Sont; 6qu£vatent; 8

1. G est dense 2-?6gut£er

2 . 2n G est dense &ms G . pour tout ent;der n > 0 ;

3 . " an

4. GbVgl<92 Vg Ih thE g (2n)A91<h<92] pour take

5 O II II II pOW Un
A

6 . G est de7b8e da7b8 8a cIal;ure 2-divi8ibt e G ;

7. vgl<92EE Vg€G Ihc G

gl<h<92 Ag : h (2n) dana G .

n > 0 ;

n > 0 ;

Lenlne 8 - Si G e8t de7b8e , G e8t den8e 2-?ZguZ£e? 88£ pow tout 80t4s'-grotoe

convene A deG (ce qulon note A <1 G) , A # 0 entra£7e G/H eat 2xi£u£8£b ia,

Lemme 9 '' So ient HC G dew g.a.o, de7r8e8 2-?ZguZ£er8 £mpa£rqj€v£sibte8 et veri--

fiant (H ; 2H) = (G ; 26) . Ator6 H < G 88{ H aot pw' (i .e. div£8ibtern8nt oZ08)

dans G .
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Lenxne' IO - Sett G &in g.a.o. derL8e 2vZguZ£e? et H<3G . AZ<2r8 H = 0 au

(H ; 2H) = (G ; 26).

D6monstration - D6coule du lemme 8 . D
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III - INCLUSIONS DE CORPS CHAINE-CLOS

St v>w sant deux valuatIons sur un corps K on en dedult une valuatlon

v/w sur K/w : si P„ : A„ ' K/v est le passage au quotient modulo v , v/w est

d6finie par Av/w =. Pw(Av) ; (v/w) (K/w) s'identifie alors a un sous-groupe con-

vexe de vK , par 1l6gal ite (si w(x) ; 0) (v/w) (x/w) = vCx) , et les corps de

restes (K/w)/(v/w) et K/v sont canoniquement isomorphes . Cette construction

admet un genre de r6clproque : si w est une valuation sur K et V une

valuation sur K/w , on d6finlt 1a valuat ion "compos6e de w et V " , qu'on

notera wxT , definie par AwxV = P;1( AT) . Pour toutes ces constructIons, nous

renvoyons a [Rib ] partie C . an a w x T>w , w xV/w = 7 et w x(v/w) = v ;

enfin w x7 est hensglienne ssi w et V 1e sont.

L' ensemble W(K) des valuations convexes sur un corps K ordonne est

totalement ordonn6 ; 11 admet un premier 616ment, 1a valuatjon tr{vlale, et un

dernler 616ment, 1a valuation archim6dienne v1 , dont I'anneau est 1a c16ture

convexe de Q dans K . Pour des valuations v >w sur K ordonne, v est convexe

ssi w et v/w le sont.

• Si K est chalne-clos , i 1 porte exactement deux ordres quI sont echangea-

bles dans un automorphisme de K laissant v1 invarIant:e. En consequence, iI'.‘

valuation est convexe pour un ordre de K ssi e11e I'est pour I'autre ; cela

pernot de parler de W( K) sans pr6ciser I'ordre sur K . On notera d6sormai s

vR. = min V(K) (c'est-a-dire 1a Plus grossiere notee vo dans I'lntruductlon) .

Proposition 11 - Sett K cha£ne-cZ08 J ator8 V( K) e8t Ze segment final de #{ K)

de ler 4t6merrt wK et on a Ze8 a cp{vatence8 , pour vc W(K) :

• ve V( K) sai K/v est reel el08 ssi (vK ; 2v K) = 2

• v $ V(K) ssi K/v e6t cha£7re-cl06 ssi vK e8t divi8ibte .
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D6lnonst ration

I. SI v> wK , v est la composee de wK et v/vK ; K/vK etant reel clos ,

(v/vK}(K/vK) est djvjsib1 e et vK est une extension de (v/vK)(K/vK) , qui est

divlsible, par vK K , qui verifie (vKK ; 2vK K) = 2 ; dOIIC (wK ; 2vK) = 2 .

2 . Sj v < wK , (vK/v) (K/v) est un sous-groupe convexe non nu1 de vK K , dorIC

( (wK/v)(K/v) ; 2(vK/v)(K/v) ) = 2 d'apres le lemne 10' Par ai11eurs

(K/v)/(vK/v) = K/vK est reel clos et vK/v reste hensglienne, donc wK/ve V(K/\;)

ce qui prouve que K/v est chalne-clos . Enfin (vK;2v K) = 2 parce que VK K eLL

une extension de (wK/v) (K/v) par wK . o

Proposition 12 - So£ent debt= corps cha£ne–ales KCL
V( K) . AZors sent 6qwtuatents :

1. Kn LZ = Kz

2 . K ret at{vement; atg£br£q,rement ctos dans L

3. K<L

avec t,in seut e ternent danE

Demons tra tion

1 o 2 - Clai r d'aprds 1a proposition 5 .

2 + 3 - Solt kc K - (K2 u - K2) ; dlapres 2, k $ Lau - L2 dane v. (Pl

divisible par 2 dans vl L , a fortiori dans vl K ; alors,d'aprds 18 pw;nasl -In

K/vl est r6e1 clos , done vLFK= vK d'apres I'hypothese sur VCE) , c'es L--u- d: '

(K, vK) c (L, vl) . On a K/vK< L/vl puisque ces 2 corps sant reels cia- '‘

Ax - Kochen - Ergov il suffit de vK K < vl L pour avolr (Kp vK) +(LB vl) ; d'apres

1 e lemw 9 , 11 suffit de ITnntrer que VK K est pur dans VL L ; ors pOll' k

,t g = „K(k) , ,„ , 2jg d,„, vK K ssl (le„,„, 2) k et Ka ssi (hyROthBf,.

kcl L2 ssI 2jg dans vl L . D

Le rrDddle comp16tude de 1a theorie des corps chaT ne-clos ne peI it et"

obtenue que dans un langage enrichi . On trouvera deux r6sultats de cette nAl.., .

dans IDI 1 et [ J ] .
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Nous a11ons ut+1 lser une autre caracterlsation des corps chafne-clos

(VOi r [ G]) .

Proposl tIon 13 - Un corp8 oz\lortnabte K got cha£ne-cIao 881 £Z a les propntgtd8

8uivante8 ;

1.

2.

3.

4.

K n’ adrnet at&cane entension finie de degr€ impair

(K- ; K-4) = 4

K2 = K2 + K2

K4 = K4 + K4

Proposition 14 - So it K retativetne7rt atg6brtqxement alas dans L cha£rLe-ctos .

Ato rs K est ou cha€ne-ctos ou reel ctos .

D6rnonstrat lorI - Les propr16t6s 1, 3 et 4 de 1a caract6rlsatlon pr6c6dente passent

de La K ; selon que (Kt; K+4) = 4 ou 1 , K est chaine-clos ou r6el cjog . a



-12.-

IV - QUELQUES CONSEQUENCES DE LA PROPRIETE (+)

D6fi nItion - On appette (++) Za propri4t4 (+) au nil>eau I a ’e8t-aqj£rB, fe K(Y)

a (n) sur K oi : Vie K f(7) e EK2

Proposition 15 - So£t un corps erdonnZ K et feK(X) . Si f a la prepridt4 (++)

sur toute entension atg4brt que ordonnabte de K , alo r8 fe EK(T)2

D6monstration - 11 faut rnontrer que f est positlf pour tout ordre sur K(X) ,

au encore poslti f dans toute c16ture ree11e L de K(i) . Si K' est 1 a c16ture

alg6brique relatlve de K dans L , on a Kl4 L . Par hypothese f conserve ( k- ,
sur K1 , done aus si sur L ; mais alors on trouve feE La en fai sant T = Y

dans (t+) , dOIIC f posltlf ou nu1 dans L . n

Dans 1a suite K est 6hafne-clos , vR est notlee v , et x -y est le

relatIon d'6quivalence vCx) = v(y) < vCx-y) ; si x -y on a , pour tout ent jo

n >0 , xe Km ssi ye Xm (lemme I) .

Lerrrne 16 - Sait K cha£ne-ct08 et fc KIX 1 8at£8fai8ant (+) mtr K - x ’.r: ’-
t errrle de ptu8 ba8 degr6 de f e8t; une pu£88ance 2n

D6monstration - an peut ecri re f(X) = aXm(1 + g(X) ) avec ae K- , ge Kt :

vy(g) > 0 . Si on prend xe K de (vK)-valuation assez grande pour' absorber ' ‘

valuatlons eventue11ement negatlves des coefficients de g , on a v(g(x) ) :

donc 1+g(x)€K2n pour tout n . En cons6quence (+) impllque
rl

(E) Vx eK avec vCx) assez grand, axm€ K2

SI on prend xl€ K de valuatjon grande et d{v{s{ble par 2n , on a axT€K2 ,

dorIC 2nlv(axT) , donc 2nl v(a) . an prend maintenant x2€ K avec v(xa) grand mais

non 2-divisible ; alors 2nlv(axT) implique 2nl m . Enfln (E) permet mainter'3n'
n

de conc1 ure ac Kd . a
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Lemne' 17 - Merne8 hypoth28e8 . Alor8 taute racine de f dane K e8t d 1 orare

divIsIbLe par 2n

D6monstratlon - Le lenme precedent donne 1e resultat pour 1a racine nu11e. Par

ailleurs si f satlsfait (+) , f(X-a) aussi pour tout acK , d'o0 1e resultat. D

Lemme 18 '- Mame8 hypotha8e8 . Ator8 Ze t errne de ;>Z&18 hart degr€ de f e8t une
n

pu£86ance 2

DemQnstratlon - SI f sat{sfait (+) {1 en va de meRE de f(X-1). S j f = E aIX I
avec a_ # 0 , alors u

sn-. I
X2

2sn m
f(X-1) = X Ea

0

g(x)

Pour s assez grand g(X) est un polyn6me, et 11 satisfalt (+) . Son tenre de

p1 us bas degr6 est dorIC une pulssance 2n , c'est-a-dire

am X2sn-m€K(X)2n+2njm et amEK2 . D

Femme 19 - MErne8 hypotha8e8 , 4Zor8 Za nombre cb racine 8 de f (darla Ia a tattoo

atgebrique de K) ayant a7be vaLuation d07m£e e8t d£u£8£bZe par 2n

D6monst:ration - D6composons

f(X) = n(x-bI) ]:1 (X-al) oO v(aI) = v(aj)> v(bi)

A

et prenons g€vK , verlflant v(bj ) < g < v(aI ) et

• si v(aI ) c wK , alors gZ v(a1 ) (mod. 2) ;

• sinon (alors al€vK/25 pour un certaIn s < n) , 2 Ig

au lenrne 7) .

; (cela se fait grace
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Alors; sI xc K avec vCx) = 9 ,

2nl v(f(x) ) = E v(bl ) + Ag . Par a111eurs

2ni v(f(0)) = = v(bi ) + Av(a1 ) . Donc

2njA(g- v(aI)> s et 2r'jA .

Puls on ralsonne par induction ; sl on salt que

f(x) = E (x-gI> F (x-fI) E (x-el) ''' X(x-ai) avec

v(gj) < v(fi) = v(f j)' v(ei) = v(ej) < .''< v(aI)

et 2n IE , . . . , A , on choisit x1 et x2€ K verlflant

v(fi ) ' v(x1) ' v(ej) I v(gI> ' v(x2) ' v(fj )

et v(x2) i v(fl ) (and 2vK) ; alors

2nlv(f(xID = E v(gl ) + Fv(fl )' + 2n.A1

2nlv(f(x2)) = E v(g1 ) + Fv(x2) + 2n.A2

dorIC 2nl F . a

v(aj )
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V - DEI©NSTRATION DU TH£OREME

L'implication + est claire. Supposons done que feK(X) a 1a pn>pri6te (+)

sur toute extension alg6brique ordonnable de K , 11 nous faut nDntrer fe EK(X)2

Nous a11ons ut{liser la caract6risatlon suivante :

rl

Proposition tB] et 1 HI - Mt un corp8 arda7vtabte C at ace . 4Zor8 ae E C2

88£ ' abE CZ et a e8t darn Mt o?dee de nit>eau e£a£; 2n btu C .

n

Nous allons appliquer ce th6oreme a f dans 1e corps C = K(X ) . 11 est clair

qu'on peut se r6duire a feK III . Nous savons deja grace a 1a proposition 15

que f est dans E K(X)2 , 11 reste a montrer qu' il est dans tout ordre de

niveau exact 2n sur K(X) . Solt P un tel ordre, par leque1 on fait passer

une chalne [vo jr [ HI, cor. 1.4] de K(X) , so it L la c16ture pour cette chafne,

soit F le prolongement de Pal et K' 1 a c16ture algebrique relative de

K dans L ; K' est ordonnabl'e et f conserve dorIC la propr16te (+) sur K1 . Grace

a 1a proposItIon 14, K' est r6e1 clos ou chafne-clos .

1. Si K1 est chaine-clos , alors K' < L dorIC f a la propri6t6 (t) sur L

et f(X)eL2 cT done feTn K(X) = P .

2. Supposons K' r6e1 clos . Soit v = vR et w = v1 ; wK' est divisIble ; par
contre wK' (X) ne 11 est pas , sinon wl 1e serait (car L est une extension

alg6brique de K(X) ) ; dorIC wK1 $wK' (X) . Puisque K' (X) est ordonnable, i 1

est plongeable dans une extension 616mentai re de K' , et new 11 existe

(M,w)>(K' ,w) avec XC M (prendre pour M 1a c16ture ree11e de L pour un de

ses ordres et 11 unIque prolongenent de w de L a M) . La situation est alors

bien connue ( ID ] , th. 2.20 p. 54) : il existe cc K1 te1 que w(X-c) + wK' et
meme w(X-c) irrationne1 sur wK' . Par ailleurs K[c 1 est chaine-clos et f y

satisfai t (+) , dOIIC (lermle 19) se decompose

f = n (X-c + a, ) . H (X-c + b, )
A ' B '
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avec v(aI ) = v(aj) < v(bl ) = v(bj) < . . . et 2nl A, B, . . .

Pulsque w est convexe sur L , w FK I'est sur K et done est plus grosslere

qm 1 a valuatlon archimedlenne sur K , dont on a suppose qule11e coTncidalt

avec v = vK ; done wFK<vK et w(ai ) = w(aj) <w(bl ) = w(bj) < ., . . an salt

que w(X-c) est distinct de w(aI ) , w(bl ) , . . . et done se place entre deux

dlentre eux, c1 est-a-dire w(ai ) , w(b{ ) , . . . , w(eI ) < w(X-c) < w(ff )

Mais alors f(X) est equIvalent pour w a

I n a { T n b { + g p n e I I n ( X = C ) + 6

or 2nl A,B,...,F,G,...+2n Iw(f(X) ) . Donc f(X) eT puisque f(X) est poslt jf
pour tout ordre. o
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MAXIMALITY PROPERTIES OF VALUED FIELDS: SOME NEW RESULTS

Franz–Viktor Kuhlmaqn, Heidelberg

In this paper we want to present the (partial) solution of a problem stated in [5]. We
called it the problem of separating immediate from anti.irrurrediate extensions. We considered
that problem mainly for model theoretical reasons, but the solution involves some valuation
theoretical results that might be of independent interest. On the other hand, in the following
presentation we want to examplify our general approach by proving a result of ERSHOV and
ZIEGLER about finitely ramified 6eld8 in a different and somewhat more algebraic way.

For the general framework of our investigations, we refer to the article [5]. Let us explicitly
recall here the two properties (M5) and (M6). A 6eld (K, v) is said to have the property (M5)
if it is existentially closed in every immediate extension. (K, v) has property (M6) if it is an AX
- KOCHEN - ERSHOV - field, i.e. for any extension (L, v) I (K, u) with u(K) <3 uCL) and
R <1 Z it follows that (K, u) <3 (1, u) (“<3” denotes “existentiaUy closed in”). The central
question of our work is whether every algebraically complete valued field has property (M6)
Many elementary classes of valued fields are known for which this is true, but the general
problem is 8till unsolved. A 6r8t step towards a general solution might be the following
theorem

Theorem 1: Let (K, v) be algcbtaicaltv complete and (L, u) F (K, v) an anti-immediate
e=ten8ion. If v(K) <3 uCE) and 1 <3 t, then (X, tI) <3 (E, tI)

Here (L, v) I (K, u) is called antj-immediate, if for every subexten8ion (lo, v) I (K, u) such
that to is 6nitely generated over K , the following equality holds:

trdeg(Lo 1 K) = trdeg(a 1 X) + n(v(Lo)/o(K))

where rr(F) denotes the rational rank of the ordered abelian group F (= the Wimengjon of
the vector space Q®z F)
For this definition and a description of the proof of Theorem 1, see [5]

Clearly, the question arises whether Theorem I can serve us to reduce our general problem

to the problem whether any algebraically complete field has property (M5). Indeed, suppose
that for a given extension (I, u) I (K,u) with (K, o) algebr&ically complete, u(K) <3 v(L)
and 1 <3 Z, we would find a subextengjon (Kl, v) I (K, v) 8uch tha&

1) (xI,o) 1 (K, u) is anti-immediate,
2) (L, u) 1 (Kl, o) is immediate,
3) (Kl, v) is algebraically complete,
then we could conclude (K, o) <3 (xI, u) by Theorem 1, and if we would know that every
algebraically complete Held is exi8tentially closed in every immediate extension then we would
get (Kl,u) <3 (L,v) and thu8 (K,v) <3 (L,u). This shows that the exi8tence of such
intermediate fields would iuunediately yield the desired reduction of our general problem.
Unfortunately, we can’t expect the existence of such fields for any exten8ion (L,o) 1 (K, v)
with the above properties. We have to introduce additional conditions for the extension

(II v) 1 (XI u)•



Firstly, it is natural to work in an elementary class X of algebraically complete 6elds.
Now our general problem, relative to K, is whether every (K, v) C K has property (M6)
restricted to extensions (E, v) I (K, o) with (L, o) C K (we call this property (M6)r). We
want to reduce this to the problem, whether every (K, o) C K has property (M5) restricted
to immediate extensions (L, u) 1 (K, v) with (E, o) C K (i.e. (M5)r). Every class K which
contains an intermediate field with the described properties for every extension (I, u) 1 (K, u)
where both fields are in K is immediately seen to satisfy the equivalence (M5)x ++ (M6)r ,

Secondly, since not every class will have these intermediate 6elds for every extension, we
should make use of saturation. We want to show that it is enough to find these intermediate
fields for extensions with nice saturation properties. But before doing this, we want to draw
the reader’s attention to the meaning of the property (M6)K

If an elementary class of algebraically complete fields satisfies (M6)K , it will follow from
general model theory that K is model complete if u(K) := {v(K) 1 (K, u) C C} and K :=
{X 1 (K, o) e <} are model complete elementary classes. Take for instance the class Kl given
by the axioms

1) (K, o) is an algebraically complete valued ReId
2) char(X) = p > 0
3) u(K) is a Z-group with smallest positive element u(r)
4) X = Fg with q = pF
where r is a constant that we add to the language of valued fields. If in KI every 6eld has the
property (M6) x'1 , then K1 is model complete. Now Kl has the prime model (Pgd) , o)-h which
is the henselization of the field (Pgd), v) with vd) = 1 and residue field aq. Hence model
completeness of (1 implies completeness of K1 and this in turn implies the decidability of Kr
because the given axiom system is expressable by a recursive scheme of elementary sentences
(cf. e.g. [2] for “algebraically complete” and [9] for “Z-group”). Since the power series field
Pq ((t)) with its natural valuation is a member of K 1 we conclude that it will have a decidable

theory if every field in £1 has the property (M6)r

The restriction of the properties (M5) and (M6) to elementary classes is no severe re-
strict;ion, since for wellbehaving classes they are equivalent to their restrictions:

Lemma 1: if K is aziomatized only by the a=ioms

a) “(K, v) is a valued fIeld ”
b) “chat(K) = On or 'chat(K) = p > O’
c; “( if, tI) is henselianP or “(K, u) is algebtaical ly maz anal” or

'(K, u) is algebraically complete-
d) a=ioms about the ualue grasp s and resid qe fIelds

then for ellery (K, v) e K we have the equiualence8.

(M5) ++r (M5) K (M6) + (M6}K ,

and tI( f) and T are elementary classes

Proof: Assume (L, v) 1 (K, v) is an extension with (K, u) C X and u(K) <3 v(L), K <3 L.
Then uCI) is embeddable over o(K) into a lo(L)j–8aturated elementary extension v(Ky of
u(K) and i is embeddable over T into a IiI-saturated elementary extension K- of X. Take
(L" I v) to be an extension of (I, v) with P = Z' and v(L") = v(K)-; (L", u) can be found by
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a straightforward construction. Take (11, u) to be a maximal immediate extension of (Lm, u)
Then (I’, u) is algebraically complete (cf. [8], Theorem 1, p. 230), hence algebraically maximal
and henselian. Moreover, it satisfies the axioms of d) since its residue field is an elementary
extension of X and its value group is an elementary extension of u(K). Consequently, (11, o) c
K with X <3 D and u(K) <3 v(1/). If (K, v) satisfies (M6)x' then (K, u) <3 (L/, v) and, a
fortedori, (K, v) <3 (L, u). Thi8 shows that (X, u) satisfies (M6) if it satisfies (M6)r .
If the extension (E, v) I (K, u) is immediate, take (II, o) to be a maximal immediate extension
of (L, v) so that the extension (L’, o) I (K, v) will be immediate too and (11, o) C K. If (K, v)
satisfies (M5)r then (K, v) <3 (L/, v) and thus (K, v) <3 (E, o) showing that (K, o) satisfies

(M5) if it satisfies (M5)x,
Given a field k and an ordered abelian group F satisfying the axioms of d), choose any
valued field (N, v) of characteristic indicated by b) with & a k and u(N) = F. Take a
maximal immediate extension (M, u) of (N, v). Then (M, o) is algebraica]ly complete and
thus satisfies all axioms of c). Consequently, (M, u) e f. This shows that F and o(K) are
exactly the elementary classes given by the axioms of d)

Now we want to examine which elementary classes K of algebraically complete fields have
the following reduction property:

(R) if every field in ( has the property (M5)r, then every Held in ( has property (M6)r .

We have seen already that if a class C contains an intermediate field as described. in the
beginning for every extension of fields in f, then K has the reduction property (R). This
helps us to find a name for those intermediate fields, and we use the occasion to replace the
condition “anti-immediate” by a condition that is slightly stronger but equivalent to “anti-
immediate” in case of extensions of finite transcendence degree.

De6nition: An intermediate field (A1, v) of the extension (L, v) 1 (K, u) is caTjcd a
reduction field, if

1) (/f1, v) ; (K, v) admits a valuation transcendence basis,
2) (L, u) I (Kl, v) is immediate,
3) (xI, o) is algebraically complete.

A valuation transcendence basis of (Xl, v) 1 (K, v) is a transcendence basis (=i , gl 1 f e I
J e J) such that (R I I C /) forms a transcendence basis of the extension n 1 X and
(o(b) I J e J) forms a maximal system of elements in u(A1) that are rationally independent
OVer o(K),

It can be shown that every extension admitting a valuation transcendence basis is anti-
immediate. – Some elementary classes of algebraically complete fields contain reduction
fields for every extension
a) henselian fields with residue fields of characteristic 0,
b) henselian p-adie fields,
c) algebraically maximal perfect fields of characteristic p > 0

The proof for a) is straightforward and just uses Hensel’s Lemma. For b) see [7], Lemma 3.4
and Lemma 3.5 . The proof for c) uses the following lemma (cf. [q):

Lemma 2: Let (L, u) be an atgebtaicatly maMmal perfect fIeld of characteristic p > 0 and
(K1, u) a telatiuely algcbraically cl08ed 8ubjrcld 8uch that i I n is algebraic. Then (K1, tI) is
algebraicalty ma=imal and perfect with E = K and u(xI) pure in vCE).



In all these three cases the reduction fields can be found by choosing elements zi e L, i C 1
such that (# 1 f e /) is a transcendence basis of E I X, and elements yI, J C J 8uch that
(u( b) I j C J) is a maximal system of elements in uCL) rationally independent over v(K).
The relative algebraic closure (X1, o) of (K(a, b 1 { c I, J c J), v) in (L, u) is a reduction
field; By construction (Xl, u) I (K, v) is anti-immediate and by Hensel’s Lemma resp. Lemma
2 we know that i = n and o(E) = o(Kl). Being a relatively algebraicdly closed subfield of
a henselian field, (K1, o) is itself henselian and this is equivalent to “algebraically complete”
in cases a) and b); in case c) we know by Lemma 2 that (Kl, o) is algebr&ically maximal, and
for perfect 6elds of characteristic p > 0 this is equivalent to “algebraically complete” (cf. [5])

To find reduction fields in more general cases, we need saturation properties. This is
comparable to the use that model theorists made of saturated models to and cross–sections,
and indeed the notion of a reduction field is in some way a generalization covering the value
group extension as well as the residue field extension. Note that in all cases described above,
if (L, v) i (K, v) is an extension with Z = i , from a cross–section r of (L, v) whose restriction
to o(K) is a cross–section of (K, u) we get a reduction field by taking the relative algebraic
closure of (K(r o o(E) ), v) in (L, v) .

The saturation properties that we need are properties of a field extension rather than
properties of one single field. So we will pass from one extension to a nicer one which is an
elementary extension of the first one in the following sense; Given an extension (L, u) 1 (K, u)
of fields in the elementary class C we will add a new predicate to the language of valued
fields whose range on L is just the sub6eld K. In this new language, we take an elementary
extension (L', u) of (L, o) with the required saturation properties. Taking X ’ to be the range
of the new predicate on 1/, (1/, o) I (A1, u) is again an extension of fields in K, (11, v) and
(K', u) are elementary extensions of (E, u) and (K, u) resp,, and (11, v) and (K’, u) will have
corresponding saturation properties. The proof of the next lemma shows that w.1.o.g. we
may replace the old extension by the new one:

Lemma 31 Let K be an elementary class of algebtaical ly complete fIelds. If every special

model in K of cwdinahtu n a limit cardinal 8ah8 Aes (M6 JK [or (MS) Kf then £oerv AcId in
K satisfIes (M6) K [or (M5) K resp, I.

For the definition, existence and properties of special models see [1], chapter 5. The employ-
Inc’nt of special models was suggested to the author by M. ZIEGLER.

Proof: Let (L, v) 1 (K, v) be an extension of fields in K with i <3 i and u(K) <3 .1(£)
The properties “X <3 t” and “u(K) <3 o(L)” can be expressed by a scheme of element.,
sentences in the language of valued fields together with the predicate for the sljtilrcl J A
which are true in (L, v). This shows that for every elementary extension (II, u) I (K;, p) t-i
(L, t,) : ( K, tI) we will have K’ <1 L’ and v(K ’) <3 u(1/). Assume (K’, u) <3 (11, v). Civ„n
an existential formula with parameters from K that holds in (L, v) , it holds in (L1, v) too since
(L’, v) is an overfield of (L, o), and it holds in (K1, u) because of (X’, u) < 1 (L1 , o). In view of
(K, u) < (K1 , u), it holds in (X, v) too, showing that (K, o) <3 (L, v) if (K1,u) < 1 (L1 , r) Nor
choose (I/, v) I (K1, v) to be a special elementary extension of (L,o) 1 (K, v) of cardinality x d
limit cardinal > no. Then (K1, o) will be a special elementary extension of (K, u) of cardin&lit,y
n, if it satisfies (M6)x' then (K’, v) <3 (E’, u) and thus (K,u) <3 (1,o). This shows our
proposition for (M6)r , Now if (L, u) 1 (K, u) is immediate this is an elementary property of
the extension (I, v) I (X, v) which will be inherited by the extension (b1, v) I (K1, v) . Hence
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if (K/, u) satisfies (M5)x' then again (A1, u) <3 (11, u), which yields (K, v) <3 (L, u). This
proves the proposition for (MS) (

If we want to show that a given valued field (K, o) in a given elementary class K satisfies
(M5)K or (M6)K , we may replace it in view of the preceeding lemma by a special model of
cardinality rc a limit cardinal. In addition, given an extension field (I, o) for which we want to
prove (K, o) <1 (L,o), we may assume by the following lemma that (L, o) is a special model
of cardinality A a limit cardinal with cofinality bigger than N.

Lemma 4: Let (L, u) I (K, v) be an ezten8ion ulith X <3 i and o(K) <3 uCE) and (L1, tI)
an elementary entension of (L, tI). Then X <1 a tI(K) <3 u(1/), and if (K, u) <3 (1/, v)
then (K, v) <3 (E, tI)
The proof of this lemma is straightforward. – Putting Lemma 3 and Lemma 4 together we
get

Reduction Lemma: Let K be an elementary class of algebraical ly complete fIeLds. If K
admits a reduction fIeld jot cuety c=tension (L, tI) I (K, tI) with (L, tI), (X, tI) C f, 1 < 1 Z,
u(K) <3 v(L), (K, u) a special model of cardinalay n a limit cardinal and (L, v) a special
model of cardinatity X a knit cardinalkg of co Anang bigger than n, then K has the tedqction
property (R).

Proof: Assume that (M5)r holds for every field in K. Given an arbitrary field (K, o) e K,
we have to prove that (K, v) satisfies (M6)K• . By Lemma 3, we may assume w.I.o.g. that (K, o)
is a special model of cardinality n a limit cardinal. Given an arbitrary extension field (L, u)
of (K, o) such that X <3 i and v(K) <3 vCE), we have to show that (K, u) <3 (E, a). By
Lemma 4 we may assume w.1.o.g. that (E, o) is a special model of cardinality A a limit cardinal
of cofinality bigger than tc (since we can replace every such extension field by an elementary
extension of it having the required properties). By hypothesis, the extension (L, v) 1 (X, v)
will now admit a reduction field (/f1, u) e K. From Theorem 1 we infer (X, o) <1 (Xl, u)
Since by hypothesis every field in K has property (MS)K we know that (K1, v) <3 (L, o)
From this we conclude (K, v) <3 (E, u), as desired

The next elementary class we will investigate is the class of henselian finitely ramified
fields

De6nition: (K, v) is called finitely ramiHed, if there exist only 6nitely many elements in
the value group between 0 and u(p . Ix), where p = char(K) and lx is the 1 of the field K

Consequently, a finitely rami6ed field is of characteristic 0 with residue field of chaIrac-
teristic p > 0 since otherwise between 0 and u(p . Ix) = o(0) = oo there are infinitely many
elements

Lemma 5: Any ertension (L, o) 1 (K, v) of hen3elian jrnitely ramifred fIelds with if <3 L,
v(K) < 1 vCE) and (L, o) a special model of cardinahty X a limit cardinal with co$naHty bigger
than the cardinahty of K admits a fInite Ly tamifted reduction held.

For the proof we need the following embedding lemma which at the same time represents the
valuation theoretical basis for Theorem 1

Embedding Lemma 1: Let (k, o) be algebraicallv complete, (kl, ul) 1 (k, o) an anti-&nme-
diate eztension and (k2, tb) a !kll+ – saturated e=tcn9ion of (k, o) . Assume
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(t) ul(k1)/o(k) has no torsion element of order p and R I i is separaBle.

If a-- kl/ul A k2/u2 is an embedding ouer k/u and r: tIl(k1) –> t/2(ka) is all embedding over
o(k) then there exists an analytic emBedding l: (k1, ul) –> (k2,u2) over (k, tI) that rc8pcct8 a
and r, i.e. &(a)/u2 = a(a/ul) and tu(rCa)) = r(ul(a)) for all ae kl. Here Blu- , a lu\- , '/u2 -
denote the residue maps of (k, o), (kl1 ul) and (k21 u2).

Note that (f) & always satisfIed iS kl v <3 A1/tIl and v(k) < 1 tIl(hl).
The proof is given in [6] . Furthermore, we need the following lemma:

Lemma 6: A&y hen3elian ftnitclv tamifred AcId is algebra£cally complete,

Proof: (Short sketch.) The valuation u of a finitely ramified field (K, u) admits a decom-
position v = %V with char(K/vo) = 0 and T(K/ua) = Z. If (K, u) is hen8elian, both (K, %)
and (K/oo,P) are henselian too. Since the residue characteristic of (K, vo) is 0, “henselian”
and “algebraically complete” are equivalent for this field. The game is true for (K/ua, T)
since it is of charu:teristic O and its value group is Z. The composition of two algebraically
complete valuation8 is algebraically complete, thus every henselian finitely rami6ed field is
algebraically complete. The details of the proof are given in [6).

Proof of Lemma 5: The idea of the proof is to construct a henselian extension (K’, w)
of (K, u) admitting a valuation transcendence basis over (K, v) such that K1/w = L/v and
w(K1) = o(b), and to show with the help of Embedding Lemma 1 and the saturation proF

uty of (L, y) that (K',tv) allows an embedding & into (L, o) over (K, o) that respects both
id: K1 /w –' L/u and id: w(/f1) –b v(L). Then we are done since 1(X1, w) is henselian like
(/f1, w), hence algebraically complete by Lemma 6 and consequently a reduction field since
by construction it admits like (K1, a) a valuation transcendence basis over (K, v) and it has
the same value group and residue field as (L, v).

The special model (I, v) is the union of an elementary chain of p+–saturated submodels
(Lp, u) of power $ 2# < A, Po < p < A (for large enough po < A). Since the co6nahty of
A is bigger than the car:dinality of if we can choose po so large that Lp, and hence every
L 1„ Po < P will contain K. Now we choose henselian extension 6eld9 (XI, w) of (K, o) for
po < p < A in the following way

1) Choose (Kg,,tv) to be an extension of (K, o) admitting a valuation transcendence basis

over (K, v) with K#o/w = L#,/v and w(KID) = o(I#,); let (KIn , w) be a henselizati.m of
(KILI „)
2) if (Kb, w) is already constructed, choose (XI+ , w) to be an extension of (Kb, tv) admitting
a valuation transcendence basis over (XI, w), having the same residue field and value group
as (Lk+ , u). By induction hypothesis (Kb, m) has a valuation transcendence basis over (K, o)
The union of both bases is a valuation transcendence basis of (K=+ , w) over (K, v). Let
(XI+ , w) be a henselization of (K=+ , w)
3) if for a limit cardinal p < A all (Ki, w) with P < v are constructed, then take (KI, w) to
be an extension of the field (U#<p KI, w) having the same residue field and value group as
(Lp, o) such that (K;, w) admits a valuation transcendence basis over (Up<, XI, w) (whose
valuation transcendence basis over (K, v) is the union of all the valuation transcendence bases
constructed earlier); the union of both bases is a valuation transcendence basis of (K:’, w)
over (K, o). Take (KI, w) to be a henselization of (K=, w).

Now we observe that
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1) K Fu <1 Lw, Iv = Klm Iu> and v(K) <3 v(L#,) = w(Kh) since, by assumption, KI u <3
L/o and u(K) <1 v(L);
2) Ki/w = L v,Iv <3 L#+ Iv = Kj+/w and w(XI) = u(I#) <3 v(Lp+) = w(XI+) since
(Lp, u) < (Lp+ , v) and thus ip/v < I#+ Iv, o(Ew) < u(Lp+ ) for all p, po g p < A;
3) (U#<pK£b)/W = Up<p(XI/w) = U#<p(L#/t/) <3 Lp/u = Kl„ I w and w(Up<,pKi) =
Up<, w(XI) = Up<„ o(Z#) <3 v(L„) = w(K:) since for every p < w we know that (Lp, o) <
(E D)

Using 1), we are able to embed (KID , tv) over (K, u) into (La,, , o) by Embedding Lemma I

since (12+', , u) is (2#Q)+–saturated and hence I Kh 1 +–saturated (an easy argument shows that
IK;,,I+ $ jl;1,, I+ $ (2#')+). At every step of the induction, we will identify the embedded
field with its image in (E, u). Assume that (XI, w) is already embedded and identified with its
image in (L, v). Then using 2) we can embed (K:+ , w) over the algebraically complete 6eld

(Kb, w) into (12,+ , o). If all fields (KI, w), P < u are already embedded into (L, u), then the
henselian and thus algebraically complete 6eld (U#<p Kl, w) is embedded over (X, u) into
(L, v) . Using 3), we can embed (KI, w) over this field into (£2u, v). All the constructed
embeddings are understood as to respect the corresponding restrictions of the identity maps
id: K I w –+ Z/v and id: w(K ) –+ v(L). Hence by induction we get the desired embedding
of (K1, m) over (K, u) into (L, o)

From the Reduction Lemma and Lemma 5 we get

Coronary 1: The elementary class K 2 of hen3eHan fInite tV taniAed fretd8 has the reduction
property (R)

In the next step we want to prove that every field in (2 has property (M5)Ka which in
view of Corollary 1 and Lemma I will yield

Theorem 2: Euety hen8ehan ftnitely tamijred fIeld is an AX - KOCHEN – ERSHOV –
held

This result is an immediate consequence of ERSHOV’s and ZIEGLER’s results on henselian

finitely ramified fields (without cross-section), but in turn the model–completeness results
can be directly derived from it by purely model–theoretical means. The completeness results
can also be proved using our approach. We leave it as an exercise to the reader to change
the construction of the reduction field such as to show that Theorem 2 remains true in the

language of valued fields enriched by a cross–section

To 8how that every henseli an 6nitely ramified field has property (M5)ra we use the
following

Embedding Lemma 2: Let (k, o) be an algebraically maz anal AcId and (k(z), tI) I (k, v) a
nontrivial immediate czten8ion. Then = & transcendent oucr k and (k(z), tI) can be embedded

analytically over (k, u) into every jkj+-8at8rated cztcn8ion (k, uy of (k, v) .

Proof: Clearly, z is transcendent over A. Since (k(z), v) 1 (k, v) is immediate, 3 is a limit of
a pseudo Cauchy sequence {r?} in (k, u). Thi8 pseudo C8uchy 8equence can’t be of algebraic
type in (k, v) since by [4], Theorem 3, for any pseudo Cauchy gequence of algebraic type there
exists an immediate algebraic extension of (k, o) contradicting our assumption that (k, v) is
algebraically maximal. It is an easy exercise to 8how that if k(r) 1 k were immediate and
algebraic, then { r?} had to be of algebraic type. Since (I, vy is jkj+–8atur&ted, {=?} has a

-7



limit 11 in (k, u)* . By [4], Theorem 2, the homomorphism induced by r F} z1 is an analytic
embedding of (k( z), v) over (k, u) into (k, v)* since {zr} is of transcendent type

Coronary 2: Every hensehan $nitety tamiBed AeId has property (MS) K 2

Proof: Let (L, u) I (K, u) be an immediate extension, (X, u), (L, o) C K 2. We have to show
that any finitely generated subextension (11, u) of (L, u) ! (K, v) is analytically embeddable
over (K, o) into a fixed ILj+–saturated elementary extension (K, v)- of (K, u). (K, u) is
algebraically complete by Lemma 6, hence algebraically maximal. By Embedding Lemma 2,
given n e L1 \ X , z is transcendent over ff and we can embed (K (g), u) analytically over
(K, u) into (K, u)*. We choose a henselization (I’, u)h within the henselian field (I, u) and
a henselization (K(z),v)h within (L’, o)h. Then the embedding of (K(z), v) into (K, v)-
can be prolongated to an embedding of (K (z), v)h into the henselian Held (K, u)’ due to
the minimality property of a henselization. We may identify (K (z), V)h with its isomorphic
image in (K, uy ; by Lemma 6, it is algebraically complete and hence algebraically maximd. If
(X(z), u)h is a proper 8ubneld af (L', u)h there exists z/ c 1/h\X(r)h, hence =1 is transcendent
over K(r)h, and we can repeat the above described procedure. Since (11, u)h is an algebraic
extension of the finitely generated extension field (L1, v) of (K, u), its transcendence degree
over K is finite. This shows that after a finite repetition of the embedding procedure we
will arrive at an analytic embedding of (11, o)h and a forteriori at the desired embedding of
( 111 t/)

This completes the proof of Theorem 2,

Now we turn to algebraically complete fields in equal characteristic

Theorem 3: The class C3 of all algebtaically complete fIelds (K, u) with char(K) = char(k)
has the reduction property (R)

Since every extension (L, o) 1 (K, o) of henselian fields with residue fields of characteristiv 0
admits a reduction field ( as we pointed out already), we only have to consider algebraically
complete fields of characteristic p > 0 for the proof of Theorem 3.

Lemma 7: Let (E, u) I (K, o) be an crten sion al algcbtaically complete fIelds al characteristic
p > 0 6uch that (K, u) is a special model of cardinalitV ic a limit cardinal and (I, v) is a special
model of cardinalitV X a hwlit cardinal of coAnaldy bigger than n. AsstIme that X <= t and
u(K) <3 v(b) . Then (L, u) I (K, u) admits a reduction fIeLd

Theorem 3 now follows from Lemma 7 and the reduction lemma.

The proof of Lemma 7 follows the same idea as the proof of Lemma 5, but in this case
something like Lemma 6 is not available. In the construction of the fields (XI, w) we will not
be done by just taking henselizations, because these may not be algebraically complete. We
will replace “taking a henselization” by “taking a maximal immediate algebraic extension”
such that the fields (KI, w) will be algebraically maximal, but even this doesn’t guarantee
without any further argument that they are also algebraically complete. The consequence is
to ask for a further property which may be realized by construction and which in union with
“algebraically maximal” will imply “algebraically complete” . For fields of finite priegree one
may choose the property “excellent” in the sense of l2], but this would only be a special case
of the following more general fact:

- 8 -



F . V. Kuhlmann

Lemma 8: An algebraically maMmal held (K, tI) of chatactcti8tic p > 0 is algebraicallv
complete aT every jade purely inseparable c=tension (E, tl) 1 (K, v) & defcctlc88, i.c. [E : /f] =
li : Z] . (,(L) : ,(K)) .

The proof jg given in [6]. Using Lemma 8, one can show

Lemma 9: Let (K, u) be an algcbraically complete fIeld oi characteti8tic p > 0 and (N, u)
an algebtaically maMmal eztension of (K, v) . Let ei, i C 1, nj , je J be a sy8tem of elements
in N such that (E 1 { e I) jorne a basis of R 1 m and (u(II1) I j e J) jorne a system of
reptc8entatiue8 for u(N)/v(NP .K) . If the 8v8tcrrI (a . qj I f e 1, J e J) fotm8 a ba8i8 of the
algebraic eztengjon N I NP .K , then (N,tI) is dgebtaically complete

The realization of the hypothesis of Lemma 9 in the course of the construction of the fields
(XI, w) is not very difficult if one uses in addition the fact that (X, v), being a special model
of limit cardinality, admits an embedding of its residue field such that the residue map is
inverse to this embedding. The details are given in [61, as well as the proof of Lemma 9.

The undecidability results for valued fields of characteristic p > 0 with cross-section are
here reflected by the fact that it is not possible in general to find reduction fields that respect
the cross–section. To make this more precise, let us consider an extension (L, u) 1 (K, o)
such that (L, o) has a cross–section r whose restriction to u(K ) is a cross–section of (X, v).
For a reduction field (Xl, u) in the language of valued fields enriched with a crosgTgection

it would be required that the cross–section of (L,u) is at the same time a cross–section of
(Xl, u). If we assume in addition that i = Z, then this would imply that Kl is algebraic
over the field X (r o uCI)) generated over if by the image elements of the cross–section of
L (this is an immediate consequence of the condition that (KI, v) should admit a valuation
transcendence basis over (X, o)). Furthermore, this would imply that the relative algebraic
closure of (K(zr o o(E)), u) in (L, o) is an algebraically complete field. But on the other hand
it is possible to construct examples for which this is not true.

Unfortunately we don’t know a criterion for “algebraically complete” similar to Lemma 8
for valued fields of mixed characteristic.

Problem: Does the class of an algebraically complete fields (K, o) of characteristic 0 with
char(K) = p > 0 have the reduction property (R)? is there an analogue to Lemma 8 or
Lemma 9 for these fields? Which extensions of these fields play the role of the purely insepa-
rable extension of valued fields of characteristic p > 0? is there an analogue to “excellent” in
mixed characteristic?
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On the absolute Galois group of formally real fields
by

Eberhard Becker

1, Generalities

Let K be a field and K its separable closure . We set G (K) : = G (K/K)

for the absolute Galois group of K. One is interested in the following

questions (among others) .

i) Which profinite groups occur as G (K) , K a field?

ii) is there a relation between field theoretic properties of K and

properties of G (K) as a topological group?

The class of formally real fields ( f . r . - for short) is a

distinguished one , in view of the second question . This already

follows from the following fundamental result of Artin and Schreier

[A-S], cf . also [L ],

Theorem 1 : i) K is f , r , <+ G (K) contains an element a # 1 of finite

order ,

ii ) if K is f , r . and a ( G (K) , a + i , a of finite order

then az = 1.

In the sequel we concentrate on f. r. fields . We set

1 (K) = { a ( G (K) 1 a2 = 1 + a } , X (K) = { Pc K 1 P ordering} ,

N ,= G (K ( M) ) . 6

In the Krull topology of G (K) , I (K) turns out to be a compact

Hausdorff space . G (K) , and hence N , operates on I (K) by con jugation ,

By Artin-Schreier theory , cf. [ P ] one has a surjective map

KK) , X(K) . a F- (ta)2 n K =: Par

where la denotes the fix field under a. ta is real closed , thus

(Ra) 2 and Pa are orderings of ko and K respectively . We Impose on
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X (K) the quotient topology. Again by Artin-Schreier theory

one sees that the fibers of the map

KK) + X(K)

are isarnorphic +ttl the compact space N, i . e . fixing a C I (K) then the

assignment

constitutes a homeomorphism between N and the fiber over PaB The

quotient topology on X (K) coincides wIth the Harrison topology on
x (K) as defined in [ Pr ] e . g.

The map I (K) + x (K) is a trivial N-fibration as was fIrst observed

by Ershov [ E ], cf . also [ F-3].

Theorem 2 : The above map I (K) + X (K) admits a continuous section ,

i, e . there is a homeomorphism

1 (K) ; X(K) X N.

From what has been said so far it seems clear that a study of G€K) ,

K a formally real field, should give special attention to the
following two questions :

i) structure of the involutions in G (K) , influence of the 2-Sylow

group of G (K) , 6

ii ) importance of X (K) , N for the structure of G (K) ,

Note that. G (K) = <a> > N, a any involution , operating on the normal

subgroup N by con jugation .
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2 , Sovable groups

In this section, sovable means solvable as an abstract group, not

to be mixed up with the notion pro-solvable . A field K is called

solvable if G (K) is solvable in the above sense . Solvable number

fields were first studied by Neukirch, subsequently by Geyer [G ],

The basic examples are the following ones , pick a , T C I (D) , set

Fn , = Ba n 6T.

Then G (Fn T ) = <a , T> = <a> N <at> where N = <aT> is pro-cyclic ,

torsionfree and a ( aT) o = (aT) -1. Hence Fa T is solvable . Geyer

proved that every f . r. solvable number field is of type Fn 7 , in
the case of general f . r, solvable fields on has the following

Theorem 3 ([ B2,r B3 ]) : Let K be f . r. Then the following statement

are equivalent

i) K solvable, ii) G (K ( A) ) abelian,

iiI ) a 2-Sylowgroup of G (K) is solvable ,
iv) al u C I (K) for all a , T , u ( I (K) ,

v) (L , Br6cker) the Haar-measure of I (K) is > 0 (= + if measure

is normalized) ,

vi) every f , r , algebraic extension of K is pythagorean (i . e ,
a

}\2 + K2 = ),2)

If K is solvable then , given a ( I (K) , I ( N, one has :

ala = t-1, G (K) ; <a> X 11 Z:P, a operates by taking the inverse ,
P

and ap = –d2lp + dimE Kx/Kxp.
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A tYpical example is the following one : 1 a well-ordered set,

F = Z tI i the lexicographically ordered direct sum, K = ]R ( (F) ) ,

then K is solvable and G (K) = <a> # F ZI. A solvable f . r . field

is also called hereditarily-pythagorean (h. p. - for short) , in

view of 3 , vi) .

The examples of Engler/Viswanathan [E_V]

TheY studied the following situation : RIk , R real closure of K,
a C R\k, let k c K c R be maximal with a / K; denote thIs’ by

K = kaI R = ka+ By F2 (1) , we denote the free pro-2-'group with 1 as
a set of free generators ; G/ is the (topological ) commutator subgroup.

Theorem 4 : There are 3 possibilities for G (K) for such K = kai they

all occur; a field K is of type ka if f G (K) is one of the following
groups :

1 ) G = <a> X Zn, aua = u-1 (=> K h. p. )

2) G = <a> n r2 (1 , 'b) , ala = $, aOa = 1 (q' = r2 (xo) )
3) G = <a> N (Zp X F2 (Xo ) ) , action only depends on P, G 1 = F2 (Io ) ,

P > 2 ,
Remarks :

i) There are algebraic characterizations of such fields , cf , [ E-V] .

ii) Examples ' 2) k = Q, a = /7 + Q/7 of type 2)
a

3) h = Q, Q (a) /Q Galois-ext . of degree p > 2 + ON

of type 3 )

iii) in cases 2 ) 3 ) consider f
Fl = RT = Kab (= max. abelian extension)

K

pick a € 1 (K) , then F = F: is f . r. and G(F) = <a> X F2 (RO) .

Corollary : k h. P. o all ka R are of type 1 ) .

The above results lead to the following consequences :
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i) Let K be not h. p, , then the 2-Sylow-field k is not h, p, by

theorem 3 , hence there is ka R of type 2 ) or 3) , so by the above

remark there is K c ka R c F with G(F(M) ) = F2 (XO) .

ii) The structure of N = G(K(A) ) shows big jumps in complexity:

N finite ON = 1,

N not finite , but no free pro-2 subgroups of rank = 2
ON abelian,

N 3 F2(XO) o N = F2 (XO) .

4 . The maximal 2-extension and quadratic form theory

In this section we study the extension K2 /K, K still a f , r, field,

where K2 is the maximal 2-extension of K, Being the union of

iterated quadratic extensions , K2/K is a Galois extension with

Galois group a pro-2-group, Here , we set

G = G (K) : = G (K,/K) , I (K) = { a C G (K) } a2 = 1 # d} .

Using [Bl] and Ershov 1 s proof one still has

KK) = X(K) x G(K9/K(+H) ) . -

Because of this fact and many other observations the extension K2 /K

can be thought of as the relative versjon of K/ B.

In the sequel we summarize several facts about pro-2-groups and

Galois cohomology , cf . [S] ,

i) Facts from the theory of pro-2-group

G a pro-2-groupr Hk (G) := Hk(G,Z/2Z)

a) Hl (G) = (G/G2 [GIG]} *; dim Hl (G) = # generators o£ G

B) di% H2 (G) = # r.elations of G
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ii) Interpretation in Galois theory

Kummer-theory : _ G/G2 [G G ] = Galoisgroup of K (/F)
Hl (G) = Kx/ _,

R\

Hl (G) (U cup product)

K /Kx2

where ( , ) is the usual quaternion pairing.

Now, by Satz 7 of Witt [WI ] , the Witt ring W (K) of K has the

following presentations :

W(K) = Z[K /Kx2]/ (T + (- T) ,T + B - 7 - T where m = T and
( ar B ) : ( yr 6 ) ) a

Hence , W (K) is determined by H1 (G (K) ) and Hl x Hl Y H2,

In particular

Theorem 5 (Delzant , Scharlau , R. Ware [ Sch , Wa ]. Let K-, F be formally
real, then

W(K) : w(r) o G(K) = G(F) .

We have the following decomposition of KO/K , cf . [Bl]
a

n

a€ 1 (K)

where Kp7th is the smallest pythagorean extension of K in 7 = the
pythagorean closure of K+
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One has i) G(K2/KP.r,th) = <!(K)> /
ii) G (Kpyth/K) torsionfree .

E. Becker

Therefore the study of G(K2/K) SPlits into two parts :
i) the special case where K is pythagorean ,

ii) in the general case one has to consider the exact sequence

1 * G(K2/KpVth) ' G(K2/K) ' G(KPYth/K) ' 1.

In the case of K being pythagorean and having finite square cLass

number gk := [Kx , Kx2] ' m th, 'tru'tu'' o£ G(K) is CQ“lpleteIY

solved by Bo Jacob [ J ] in the following waY

Theorem 6 : The G (K) for K as above are just those pro-2-groups

which can be obtained from Z/2Z by taking finiteIY often the

following two operations :

i) finite free products in the categorY of pro-2-groups ,

ii) semi_direCt products with Z§r k < m and a certain action

The proof depends on the Merkurjev-Suslin result that

(+) k2K, IK2/IK3 and Br (K) 2

are naturally isomorphic where IK denotes the fundqmental ideal of

W (K) , cf . [M] . The paper [J ] was writXen before [M]

appeared . However , Jacob pointed out in [ J ] that the completion

of his cLassification only depends on ( + ) , a result now available ,

In a quite recent paper , Jacob and Ware [ J-W] dropped the hypothesis

"K pythagorean" and succeeded in a recursive construction of all

possible Galois groups G(K2/K) with gk < m
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GENERALISATION DU THEOREHE DE HOLLAND

AUX GROUPES A HOITIE RETICULES

M. Glraudet

Ce text;e f ait suite a [ G] dans le volurm pr6cddent de ce
s6minaire et reprend dorIC les m6mes notatIons et (idf intl;ions.

Nous consid6rons icI les 8roupes r6tlcu16s et a moiti6
rdt icu Ids comme des moddles d ’ un lan8a8e L constitu6 du
langage des 8roupes et de celu i des trei ll is <L= < . , sup, Inf >
par exemple ) , les notIons de sous–structure et d ’homomorphisme
se r6fdrent dorIC a ce langage .

Rappelons d ' at)ord le c61dbre th6ordIm de plongement , dl:abI i
par W. C . Holland dans [ H] , que nous nous proposons de
gQn6raliser :

Le tht:are me de HQ 11 and i
Sol t G un groupe r6ticu Id . Il exist;e une chai ne T tel:Le . que G
s,oi t isomorphe a une sous structure de Aut;T

Proposition ;

Si G est un groupe & moi tld r6ticuld teI que G& sol t non vi de ,
alorq ECG) est non vide .

D6monst;ration : Si xc(3+ , oG G est un groupe a moltie r6tlcu IQ ,
d ’apres la PropositIon 3–b–iI :

Csup <x, x ' ) ;> ' ' =sup <x, x '- ' ) , donc sup (x, x-- 1 ) cE.

llraureme ; Th4nrene de Holland general isi
Soi t. G un groupe a mott;id r6ticuld . Il existe une chai ne S
tell e que G soi t isomorphe a une sous–structure de RCT)

DQmonstratlion : Nous supposerons GI non v:Ide , l’autre cas
n ’ dt;ant qu ’ une application du Th6ordrae de Holland. D’aprds la
propositIon , nous pouvons consld6rer un aeE=E <G> fix6



D’aprds le Th6ordme de Holland, il existe une chai ne T te11e
que Gt soit lsomorphe a une sous–structure de AutiT . Nous
Lonslddrerons sans Inconv6nlents que G est 68a1 a ce lite sous–
structure de Aut;T

NotIons T''' la chai ne duale de T et s un anti– isomorphisme de T
sur T * . La concat6nation tr=s" s- 1 de s et s' 1 est un anti–
autornorphlsme d’ordre de la chai ne T+T-' , notlee S
De:f tnissons une application F de Au IIT dans A (S) par
F<f)=safas" ' " f , concat6natlion de safas" 1 et f , pour tOUt
fe- Aut T

Il est facile de v6rifler que F in(lu it un isomorphisme
<&galement note F ) de Gt sur une sous–structure de M (S) T .
Verifier que cet automorphisme s’6tend en un automorphisrne de
G sur une sous–structure de NCT ) en posant
F <a > =tr

est 6galernent de pure routine ; a tit;re d’exemple , v'$rif Ions
ci–dessous que F <fg) =F <f > F <8) pour f€GI et gc G&

La daf ini tion de F impose , en noI;ant g’=ag€G T
Fc g > =F <a ) F <8 ' > =r <sag’ as ' " g ’ =ag ’ as 1 " sg
et

F(fg)=F<a(afagt > ) =aF (afag ’ > , oa af ag ’ cGt , done :

F (f g) =e (saa:fag ' as- ' ' -afag’ > =fag ’ as ' '' saf as
FCf => F <g)=(safas - ' " I > <ag ’ as - ' "sg ’ ) =F <f > F (8)

Le reste de la d6rnonstratlon est laiss6 au lecteur
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1. Partially ordered groups wIth strong unIt [ 1 ] , EIO ]

A p. o. abelian group is an abeIIan group G equIpped with
a translatIon Invariant partial order relatIon g , We let Gt=
{xeG I x 2D } be the posItive cone of G. An element ua) is a
strong unit in G Iff for each x cG there is an integer n> O
such that x gnu . We wrIte W: (G,u) + (G ' ,u 1 ) to mean that Q

is a morphism in the category of p.o. abelian groups with strong
unit , i . e. , p is an order preservIng group homomorphism, and
p is unltal, viz . , O (u) =u 1. G is dIrected iff any two ele-
ments of G have a common rna jorant; thIs is always the case
if G has a strong unIt. G is unperforated (aIIas isolated ,
alias semiclosed) Iff for every xcG the exIstence of n>O

such that nx ao impIIes x n . Weinberg 's theorem [ 1 , AppendIx

2.6 ] states that unperforatedness is a (necessary and) suff i-
cient condItIon for the existence of the free' t-group over the
p. o, abeIIan group G, G has the Rlesz property iff whenever

XllX2(ylry2 cG satIsfy xlgyj for all II j there iS Z cG

such that x+gzgy+ for all I, j , Of course, every lattice-
ordered group (for short , I-group) has the Rlesz property.
Given a dIrected set I and a dIrect system of abeIIan groups

{(G ; O n ) iasB, a, Be I } let G be the dIrect IImIt group,
and for each ucI let p M:GN+G be the dIrect IImIt homomor-

phlsm' If each Ga is a P' o' abeIIan group, and the Wag are
order preserving, G is naturally equIpped wIth the partIal
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order gIven by x sy iff y-x ( u @ajG:) , for all x,VeG.
Then G is a p+o+ abelian group, if in addItIon each Ga has

a dIstinguished strong unit Ua and the Wag are unital, then
the element u = O u (does not depend on a , and) is aan a '

strong unit of G. Unless otherwIse specified, an will denote
the P. o. abeIIan group an wIth product order : (z1, . . . , Zn ) 2 O
iff z1 X) for all i. A countable dimensIon group is a P.o.
abelian group G whIch is IsomorphIc to the dIrect limIt of a
sequence

an1 +1 p a112 :Pi

where each @1 is an order preservIng group homomorphism.

1.1 Theorem. (Effros , Handelman , Shen) G is a countable

dimension group if f G is a countable directed unperforated

p. o. abelian group wIth the Riesz property.

Proof , The +'-'direction is an easy exercIse. The converse direc-
tion is the main result of [lO] . []

2 . Ko of rings [ 23 S 1 ] , [12 ] , [ 14 ]

All rIngs consIdered in thIs paper have a unit , and all
ring homomorphism s are unIt-preserving, For any ring R we let
PCR) be the family of flnltely generated projective rIght
R-modules . Equivalently , P c PCR) Iff P is a direct summand

of a free R-module wIth a finite base [ 19 , 11,p. 152 ] . Two modules

P ,Q c PCR) are stably isomorphic , in symbols P-Q , iff POSgQOS

for some S cP(R) . SInce the equIvalence relatIon - is preserv-
ed under a , lettIng + be the induced operatIon on P (R) /- ,
we obtaIn a cancellative abeIIan monold, By formally adding

Inverses, we finally obtaIn an abelian group, called the Grc>then-

dieck group of R, and denoted Ko (R) .
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Thus , lettIng P ,Q , S , T range over elements of PCR) , and
denoting by [P] the stable Isomorphism class of P, we can
write :

Ko (R) = {[P] - [Q] 1 P,Q EP(R) } ;

[P] - [Q] = [ S] - [T] iff PeT-ms Iff p©TORr=Q+s eRr for some rca ;

(EP] - [Q] ) +([S] - [T]) = [P@S] - [Q$Tt ;

[O] - [O] is the zero element in Ko (R) ;

- ([PI - [Q] ) = [Q] - [P] .

Identifying PCR)/- with a subset e of Ko(R) , for all P,q
in Ko (R) we can wrIte psg Iff q-p c e . Then s is reflex-
ive (O e e) and transitive ( C + C ' E ) . Further, g is

translation Invariant: psg ImpIIes p+ssq+s for all s€Ko (R) .
The image [ R] of the R-module R c ? (R) is a strong unit in
Ko (R) , because for all peKo (R) we have P = [S ] - [T] s [ S] s
[ SeQ] = [ Rn] = nER] , for suitable Q cp(R) and nca

Let R, R 1 be rIngs , and f : R+R1 be a homomorphism, The maps

(a , z) n f (a) z , acR, Z€R 1 , and

(z ,b) > zb , z ,b e R '

naturally make R' Into an (R,R' ) -bimodule , also denoted R 1.
Hence every P e P (R) is mapped into P eD R ' c P (R 1 ) . Since
this mapping preserves stable Isomorphism and dIrect

sums , we can defIne the function Ko (f ) :Ko (R) + Ko (R ' ) by
Ko (f)

- [Q] t - a [P©DR' ] - [QeDR' ] ,[P ]

thus obtaining a $-preservIng group homomorphlsm sendIng [R]
into [R 1 ] . Since Ko (-) preserves Identities and composItIons

of ring homomorphlsms , we have
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2.1 Proposition. Ko is a functor from rings into abelian
groups . For every ring homomorphism f :IPR’ , Ko (f ) also pre-
serves the pre-order relation g , and maps the strong unIt

[ R] of Ko (R) into the strong unit [R' ] of Ko (R1 ) . a

2.2 Examples . (i) For F a fixed field , let R = Mn (F) be the
F-algebra of nxn matrices over F . The F-vector space Fn
can be considered as a right R-module V (lettIng vectors be
acted by matrices by right multiplication) , which is flnitely
generated, projective (Vn = R) , and has no proper subrnodules .
Hence every submodule of Rm (; Vnm) is Isomorphic to some Vk .

Since R111 : R111 implies m=m 1, it follows that Ko (R) can be
identified with a with the natural order , [V] = 1, [R]
[Vn] = n. For short,

(Ko(R) ,[R]) = (2,n) .

(Ii) if R is a direct product Mnd (F) X . . . X MnD (F) , then
sInce R-modules are in 1-1 correspondence with k---tuplas

(P1'' ' ' 'Pk) where each 1 Pi is an Mni(F) module' we can
identify Ko (R) with an (with product order) , and [R] wIth
the strong unit (n1 , . . . , nk) . For short

( *} (Ko (R) ,[R]) = (ak, (n1 , . . . ,nk).) .

( iii) An F-algebra R is called ultramatricia1 iff R is

the union of a sequence R1 c R2 c . . . of F-algebras , where

each Ri is an F-subalgebra of Ri+1 (with the same unit> ,
and Ri is a finite direct product of ki matrix algebras
as in Example (iI) . By ( +) together with Proposition 2.1,
Ko yields a dIrect system

( **) (zki, (n1 ,....nki} ) J+ (akI+1 , (m1 , . . . Fr%i+1 ) ) r
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where each \b, is the order preservIng unital group homomorphism

given by Vi = Ko (fi) , fi the inclusion function of Ri Into
Ri+1 ' In general, Ol is not 1-1 , and is not an ! -homomorphism.

2.3 Theorem. (Elliott) (i) For every ultramatricial F-algebra
R, (Ko (R) ,[ R] ) is the direct limit of the associated dIrect
system (++ ) , whence by Theorem 1, 1, it is a countable unperfor-
ated p. o+ abelian group with strong unIt and with the .Riesz
property .

(ii) if R 1 is another ultramatricial F-algebra , then (Ko(R') , [R1 ] >

is isomorphic to (Ko (R) , [R] ) as a p. o . abelian group wIth strong
unit, iff R' and R are isomorphic as F-algebras.

(iii) Every countable unperforated p. o. abelian group G
with strong unit u and with the Riesz property is isomorphic to
(Ko (R) , [ R] ) for some ultramatricial F-algebra R.

Proof . ThIs follows from the classificatIon of [12 ] . SImilar
proofs are given in [ 17 ] and [ 9] . a

3 . Kn of AF Ct-algebras [ 17]

As all algebras in this paper have a unit , sul>algebras will
always be unital subalgebras , and algebra homomorphisms will be
unit preserving .

A complex *-algebra is an algebra A over the field C
of complex numbers , equipped with a map * of A into itself
such that

xt*=x , (x+y) * =x* +y* , (ux)+ =Tx , (xy) =y+x+ for all x,y€A, UcC .

The adjective "complex" shall be omItted whenever possible+
+

A C -algebra is a +algebra A equIpped with a norm making it
, B,.,,h ,p,,,, ,.,h th,t 111 = 1, II „yH£Hxr . ly1 ,.d Hxx*l=HxH2

for all x,yeA.
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Examples of C *-algebras . (a) For every compact Hausdorf f space

X, let C (X) be the set of complex-valued contInuous functIons
+

on X with pointwise operations and sup norm. Then C (X) is a C -
algebra .

(b) Let B (H) be the set of bounded linear operators on a Hilbert
space H, equipped with additIon, subtraction, multiplication,
scalar multiplication, ad joint and norm, Then every norm closed
+-subalgebra of B (H) is a C+-algebra.

(c) Let Mn (C) be the *-algebra of nxn complex matrices ,
where t is conjugate transpose , and II ' II is the operator norm

obtained by identifying Mn (C) with B (Cn) . Then every product

M (e) X . . . XM_ (C)
n 1 nk +

with componentwise operations and sup norm, is a C -algebrao

+

3.1 Theorem. (i) {Gelfand) Every commutative C -algebra is
isomorphic to C (X) for some compact Hausdorf f space X. Further ,
C (X) is isomorphic to C (Y) iff X is homeomorphic to Y .

+
(ii) (Gelfand , Naimark) Every C -algebra is isomorphic to a
norm closed +-subalgebra of some B (H) .

(iiI) Every finite dimensional C +-algebra is isomorphic to a
C*-algebra of the form

M,, (C) X
1

Proof . [ 17 ] , or any other textbook on C +-algebras . D

Definition [ 3] . An Arc *-algebra U is the norm closure of a

union of a sequence R1 c R2 c . . . of fInite dimensIonal C *-algebras ,
each Ri a +subalgebra of Ri+1 . In SWbols, U = u Ri

Thus , every AF C*-algebra U has at least one *-subalgebra
u R . which is norm dense in 21 , and which is the union of an
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ascending sequence of finite dimensional C+-.algebras , all with
the same unit. By Theorem 3.1 (ilt) , u R4 can be identIfied wIth
a ultramatricial ( +) algebra R over C. We call R a dense

ultramatriclal *-subalgebra of 21 .
The following lemma shows that KA is invariant under the

completion process U RIg uR i

3.2 Lemma . Let j : R+ n be the inclusion map of a dense ultra-
matricial *-gut>algebra R i„b' an Ar C*-algebra A . Let O =

Kn ( j ) . Then @ is a group isomorphism of Kn (R) onto Kn ( I1 ) ,
and both p and O-1 preserve the pre-order relation s on

Kn defined in $ 2 . Thus in particular , by 2.3 (i) , (Kn ( 21 ) , [ A ] )
Is a p. oo abelian group with strong unit.

Proof . The preservation properties of W are ensured by Pro-

position 2.1. As for the remaining properties of + and p-l
see , e . g. , [ 17 , 19.10] . a

3.3 Theorem. For each i=1, 2 let 11 be an AF C+-algebra ,
1

and Ri a dense ultramatriclal t-subalgebra of Ui . Then
the following are equivalent :

(1) U1 ; II, as C*-algebras ;

( qi i ) 11 1 = 1 1!p1[11r 2 a s[ ][ Hi ][1L g 11s1 ;

(iii) (Ko ( 211 ) , [ tl1 ] ) g (Ko(Q[2),[lU2 ] ) as P. o. abelian
groups with strong unit ;

(Ko(R1),[R1 ] ) E (Ko(R2),[R2 ] ) as P. o . abelian groups
with strong unit ;

(v) R1 g R2 as algebras over
(vi) R1 g R2 as *-algebras ;
(vii) Rl : R2 as rings .

Proof . (i) + (Ii) + (Iii) are trivIal. (v) + (vII) + (iv) are trIvial.
There remaIns to be proved (iii) + (iv) + (v) + (vI) + (1)

( iv )
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(iii)+ (iv) follows from Lemma 3.2 . (iv)+ (v) follows from The-
orem 2.3 (ii) . (v)+ (vi)+ (i) follows from the analysIs of
[ 12 , Appendix ] , and [ 3 , 2 , 7] . See Goodear1 's book for a

self -contained proof of this theorem, culminating in [ 17 , 20 . 7] .
a

3.4 Corollary. The map 21 r+ (Ko (I1) , [n] ) is a 1-1 +
correspondence, in the sense of isomorphism, between AFC -
algebras and count:able unperforated p. o . abelian groups with
strong unIt and with the Riesz property. D

3.5 Examples . We present some examples of AF C+-algebras by
specifying theIr associated complete invarIant , in conformity
with Corollary 3.4 . We let Q be the p.o. group of rationals
with the natural order, Q 1 an arbitrary subgroup of O with
the induced order, Z[ 1/2 ] the subgroup of O generated by

{ 2-1 1 IEa} , a the group of real algebraic numbers , ZlgxZ
the group az equipped with the lexicographic order from the
left: (a,b) 2 (a 1,b 1 ) Iff a> a 1 , or (a=a 1 and b 2b 1 ) .

the complete invarIant the corresponding AF C -algebra

(Q , 1 ) . . . . . . . . . . . . . . . . . . . Glimm 1 s universal UHF algebra [ 8 ]

(a[ 1/2 ] , 1 ) . . . . . . . . . . . . . . the CAR algebra [4 ] , [ 13] of the FermI gas

(Q 1, 1 ) . . . . . , . . , . . . . . . . . . every UHF algebra [ 16] , [ 91, [ 14 ]

(2+2p, 1 ) , o, [0, 1 ]\Q. . . . . . the Effros-Shen in, [11 ] , [32]
( d , 1 ) . . . . . . . . . . . . . . , . . . Blackadar 1 s algebra B [ 2 ,p.504 ]

(ZtgxZ, ( 1 ,O) ) . . . . . . . . . . . the AF C *-algebra of [26 , 6.5 ] .

Remarks . An equivalent approach to Ko of AF C ’-algebras
In terms of self -ad joint idempotents is given, e . g . , in [ 14 ] 1
[9 ] , [17] . For the role of C *-algebras , IncludIng AF C*-algebras,
in quantum mathematIcal physics , see , e . g. , [ 14 ] and [13]•

For further informatIon on C *-algebras see, e.g. , [20] +
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4. MV t r [ 5] ,[6] ,[26]

Let us equip the unIt real interval [0, 1 ] wIth the operatIons
ze=1-z , y&z=min (1,y+z) , y• z=max (O,y+z-1 ) . Algebras in the variety
generated by ([0 , 1 ] , O,1,+,+,• ) are precisely (Chang 1 s) MV

algebras [ 6 , Lemma 8] . A boolean algebra is an MV algebra A
such that x+x=x for all xc A [ 5 , 1.16 and 1.17 ] .

Following [ 25 ] , for every abelian !-group G with strong
unit 1 we let r (G, 1) be the unit interval {g€G ! Oggg1 }
equipped with the operations gt=1-9, g$h=1 A (g+h) , g• h=OV (g+h-1 ) .
Further , for every £-homomorphism W : G + G ' such that + (1 ) =(1 1)
we let F (W ) be the restriction of O to the unit interval of G.

4.1 Theorem [ 26 , 3 , 9] , r is a categorical equivalence between

abelian Z-groups with strong unit ,and MV algebras . D

Recalling Corollary 3 , 4 we then have
r

4.2 Corollary . The map F given by A h+ F (Ko ( U) , [ 91 ] )
is a 1-1 correspondence , in the sense of isomorphism, between

AF C *-algebras with lattice-ordered Ko, and co IrrItable MV algebras .D

4.3 Theorem.

equiva lent :

(i) n is cornrnutative

(ii) Ko ( I1 ) is lattice-ordered and

ror every AF C *-algebra U the following are

r ( B) is a boolean algebra,

Proof . (i) + (ii) By Gelf and 's theorem 3.1 (1) we can identify
tI with C (X) for a (unique ) compact Hausdorf f space X . The

basic properties of AF Ct-algebras ensure that X has a countable
base of clopens [ 17 , 16A] . By direct computation, we have that

(Ko ( A ) , [B] ) is the l-group C (X , Z) of contInuous Integer
valued functions on X (2 wIth the dIscrete topology) wIth
pointwise operations and with the constant function 1 as the
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strong unit [ 17 , 19F] . Then f ( I1) is the boolean algebra
of { O, l} -valued continuous functions on X,
(iI) + (i) Using Stone 1 s duality , and recalling that I F ( I1 )1 Sa ,
we can identIfy F ( U) wIth the boolean algebra B of { O,1} -
valued continuous functions over some compact Hausdorf f space Y
with a countable base of clopens . Arguing as in the fIrst part,
we have that the AF C*-algebra g = C (Y) satisfies F (e );B,
whence by Corollary 4.2 , HiS , and 21 is commutatIve. D

Given an AF C+-algebra II , since by Corollary 3.4 Kn (B ) is

unperforated, there exists the free t-group KoCH)t over KoCH) .
Let n :Ko (al ) + Ko (tl) I be the natural embedding, and tBIt=ntWt .
Then in n is a strong unit in the countable abeIIan I-group

KatE) I

4.4 Theorem [ 26, 1.3] . Define the AF C*-algebra ©o by

(Ko(%) ,tULt) = (KoCH)I ,[@] I) .

Then II is embeddable into nt , and Ill has lattice-ordered Ko.[]

Identifying M with a subalgebra af an we are then able to
completely classify arbitrary AF C *-algebras in terms of MV

algebras , as follows

4.5 Theorem [26, 3.14] . For any two m C *-algebras U and D

we have al & B iff there is an MV IsomorphIsm of F (all)
onto r ( q) a ) carrying the image of the unIt interval of
KoCH ) in 7 ( ap ) onto the image of the unIt interval of
K,(B ) in F( 61) . a

Remark. Since boolean algebras are to 2-valued logic as MV

algebras are to Infinite-valued logic , the results of thIs
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section suggest that each stable isomorphIsm class [P] , wIth
P c ? (StI ) and [ P] s[ 21 ] is faIthfully transformed by F Into
an equivalence class of sentences in infInIte-valued logIc, the
two-valued case occurring precisely when M is conlnutatlve.
This suggestIon is taken seriously in the next section , where

for simplicity we restrict attention to AF C*-algebras wIth
lattice-ordered Kn. By Theorem 4.4 , thIs class is universal,
in a strong sense, for the class of all AF C+-algebraso

Further, the class of AF C*-algebras with lattice-ordered

Ko encompasses all conunutative AF C+-algebras ( Theorem 4.3) ,
all finite dimensional C+ -algebras (Theorem 3.1 (iii) together
with Example 2.2 (iii) ) , as well as all AF C*-algebras with
comparability in the sense of Murray , von Neumann (this is

equivalent to their Kn being totally ordered) , Including all
the examples of 3 , 5 . Other examples wIll also be presented
in the next section.
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5. Projective U -modules as sentences in Z,ukasiewlcz logIc [ 33] , [ 22]

The set S of sentences in the InfInite-valued calculus
of Zukasiewicz is the smallest set of words over the alphabet
E = { X,I ,N ,C} containing all the varIables x,xI ,Xt 1 , . . . , and
containing the words Nq and CgI , whenever q,r e S . Every point
E = (En, e 1, . . . ) in the Hilbert cube [ O , 1 ]a assIgns to each peS

the (truth) value p (E ) c [0 , 1 ] via the following definItion

P (C ) = E , if p is XI . . .1 (i strokes)
Pce) = 1-q(e) if P is Nq
p (E ) = min (1 , 1-q (E ) +r (E ) ) if p is Cqr .

Accordingly, N is called the negatIon connective, and C the
implicatIon connective. The McNaughton function f_: [0 , 1 ] a +[O , 1 ]
is defined by fn (E ) =p (E ) for all Ec [0, 1 ]“ . A sentence P is
a tautology, P(TAUTm , Iff fn=1. A theory 0 iS a subset of S.
The set acS of syntactIc consequences of 0 is given by

b = TAUTm u {pest cq1...CqnPETAUTm , for some q1, . . . ,gn cOI .

O is deductively closed iff 0 = 0 . The family L = { Ent p€Sl
is closed under pointwlse MV operations on [0, 1 ] , contains
the constant functions O and 1 , as well as the canonical

projections TA, TI , . . . , where Tl (E ) =E I. A basIc construction
of unIversal algebra shows that L = (L,O,1,+,o,• ) is the free
MV algebra over the free generating set {T . 1 lca } . Corollary 4.2

+
then states that F is a 1-1 correspondence between AFC --algebras

with lattIce-ordered Ko, and <Notient MV algebras L/I , where I
ranges over Ideals (=kernels of MV homomorphisms) in L. On the
other hand, the map

pcO}

is a 1-1 correspondence between deductively closed theorIes and
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ideals in L, Thus every such theory O unIquely determInes ,

UP to isomorphism, an AP C*-algebra Zn such that

r ( 210 = L/ID the Llndenbaum algebra of 0 ,

Ko ( % ) is lattice-ordered. Conversely, every AF C*-algebra
with lattice-ordered Ko is IsomorphIc to an Un ,for some

deductively closed theory O . Since 0 is a set of words over
the alphabet E , the Turing complexIty of 0 is a well 'defined
mathematical notion [ 15] .

5 . 1 Theorem [ 26] . If O = 0 is undecidable and recursIvely

enumerable , then SUn has some nontrlvlal ideal. n

5.2 Theorem [ 26] , [ 28] . The AF C *-algebra m defined by F ( IR):
L has the following properties :

(1) Every AF C*-algebra is embeddable in a quotient of az ;

(ii) An AP Ct-algebra ll has comparability in the sense of Murray,

von Neumann iff fU = Jm /3 for some primitive ideal JoE m ;
(iii) at = Be for some coNP-canplete deductively closed theory $

(namely, a =TAUT ) . n

5.3 Theorem [ 31 ] ,[ 28] . The W C*-algebra m1 -defIned by

r ( ml ) ; the MV algebra of one-variable McNaughton functIons ,

has the following propertIes :

(1) Every Effros-Shen algebra (3.5) is a sImple quotient of

W, 1, whence [ 32] every Irratlonal rotation C* -algebra is
embeddable in a sImple wotlent of m 1 ;

(ii) CK,(XJt) , [m ) = (K,( al1) ,[.'M 1] )a (K,{3111) ,[im 1] )a . ..
( a times) , where I is coproduct in the category of abeIIan I-
groups wIth strong unIt;
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(iii) m 1 = Un for some 0 = 6 which is recognIzed in
determInistic polynomial tIme. O

5.4 Theorem [ 28] + The following AF C* -algebras are Isomorphic

to nnfor some 0 = d which is recognIzed in determInistIc poly-
nomial time :

(i> Glimm1 s universal UHF algebra (3.5) ;
(iI) Every finite dimensIonal C+-algebra ;

(iii) The E£fros-Shen algebra Jp r'' '''h qu'd''ti' i;'atio.al
p c [ O , 1 ] , or for p = 1/e , (3.5 ) n

5.5 Theorem [ 26] , [ 28] , Let 0 be the following set of sentences :

CNXX

CXCNXI xl
cxE CNX[ 1 xl

CCNX xl x
CCNXE I XI I N

c)aIX

CNd cxxI
CNXE I cxI xl

ccxxI NX1

ccxl xl 1 NX 1
Then we have :

(1) Z = is the CAR algebra (3.5) ;
(Ii) Theor-y O is recognized in determInistic polynomial time. a

Remarks . Since 0 characterizes tEa and F maps stable isomor-

phism classes of finltely generated projectIve nO-modules S tHe]
one-one onto logical equivalence classes of sentences in the LInden-
baum algebra of 0 , Theorems 5 , 4 and 5.5 are a contrIbution to
a general problem [24 , 5.4 (iv) ] on the complexity of (the under-
lying combinatorial structure of ) actual examples of AF C*-algebras

existing in the literature .
Theorems 5.1-5 , 3 , too , are meant as a contribution to a general

problem [ 18 , p. 852 ] , [ 21,p. 468 ] , [ 7 , p. 85 ] on the role of nonslmple
lb

C -algebras in mathematical physics . See also [26 , 6.4 ] .

For further appIIcatIons , see [27FBI ] ,
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Model theoretic versions of Weil’a theoru on pre8roup8

Elisabeth Bou8caren

In 1955, A. Weil published a paper ["On algebraic groups of

transformations" , Am. J.of Math. , vol.77 (1955) , p: 355–391] where, 'starting

from a variety V over sone algebr&ically closed field K, together with a

binary operation on V which has "good" properties (asgociativity, rationality)

on a large piece of V ( generic points) , he constructs an algebraic group G

over K, whose multiplication is an extension of the given one on generic

points and which is biration&ly equivalent to V.

More precisely :

Let K be an algebraically closed field and let V be an irreducible

variety over K such that there is a mapping f : VxV –+ V with the following

properties :

(i) if a,b are independent generic points of V over K and c = fCa,b) , then

K ( 8 lb ) = K ( BIC ) = K(bIc)

(ii) if a,b, c are independent generic points of V over K, then

f( f( a lb ) fC) = f(alf(blc>)•

Then there is an algebraic group G over K which is birationaly equivalent

to V, such that this birational equivalence takes fCa,b) , for a,b independent

generics of V, to the product of the images of a and b.

Model–theorists working on stable groups got interested in this theorem

in the following context: first, recall that, by a stable (u–stable) group, we
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mean a group (G, . ) definable in Mn for M 8 model of a stable (o-stable) theory

or interpretable, i.e. definable on some quotient of Mn by some definable

equivalence relation.

Araon8st the first natural exanples of o–stable groups are the algebraic groups

over some algebraicaljy closed field K (they are definable in the theory of K

in the language of fields) .

Some years ago arose the conjecture that in fact all siraple o–stable groups

with finite Morley Rank "were" algebraic groups. Now, if one hopes to be able

to define a topology and a variety structure on any such abstract group, one

should certainjy first try to do it (and the construction should hopefulIY be

rather canonical) in the particular case of a group interpretable in some

&lgebraically closed field but which has a priori no varietY struture which

makes it into an algebraic group.

This question was asked by B.Poizat and a first positive answer was given at

the time by L.van den Dries (unpublished notes, characteristic O case) : in

order to simplify, let us say that the idea is to find a good VEG with a
variety structure satisfying the a8sumptions of Weil’s theorem and then, to

get the algebraic group by applying the theorm.

This was unsatisfying, even in the characteristic O case, on two aspects:

first, if one does not know the proof of Weil’s theorem, then one does not

really know nuch about this structure of algebraic group and the waY it

relates to the original group; secondly, using the fact that we start with a

real group, there should be a more direct proof , avoIding some of the

difficulties encountered when 8tarting with an operation defined only on

generic points.

This indeed turned out to be the case: a direct proof was given bY

E.Hru9havski (1986) , in all characteristic.

This is the proof we want to present here.
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:I:heoru I :

Let K be an algebraically closed field, let (G, . ) be a group

interpretable in K, then G is definably i8morphic to an algebraic group

over K.

More precisely this is decomposed in two parts:

Theorn l-A : Let (G,.,inv) (inv denotes the inverse on G) S Kn be a group

definable with par&neters in some count:able kA < K, such that for a,b generic

independent ,

a.b e kA(a,b)

in\rCa) e kA(a) .

Then there is a structure of variety on G (over K) which nakes(G,.,inv) into

an algebraic group.

Theoru l–B : Let H be interpretable in K, then there is G S Kn satisfying the

assunptions of 1-A, such that H and G are definably i80norphic.

The theorem above certainly qualifies as model–theoretic ofa verB ion

Weil’s theorem, but it does not deal with the part of the theorm which

constructs a group fron an operation on the generic points. Now, the following

result can certainly be considered as the model–theoretic version of this

aspect of Weil’s theorem. It was in fact proved by B.Hrushbvski prior to the

other one, and is purely nodel–theoretic.

Ithearn 2 (Hrushovski, Ph.D. ,Berkeley, 1986) :

Let T be an o–stable theory, let p 6 S(g) be a stationary type and let

+ be a partial defin8ble operation such that:

(i) for a,b realizing p, independent,

a'b realizes PI, and Pjb (where PI, denotes the unique non forking
extension of p over a)
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(ii) for a,b,c realizing p, independent,

(a+b)+c = a+ (b+c) .

Then there is a definable set G, a definable operation . on G and a definable

embedding g of p into G, such that

(G, . ) is a group

for a,b h p, independent, g(a+b)

8(p) is the generic of G,

(in fact this thearm with the weaker conclusion that G be infinitejy

definable is proved for all stable theories) .

g(a> . gCb)

We will not say more about this aspect, but one should note that, from

these two theorms, one recovers the full statement of Weil’s theorem: let V

be an irreducible variety satisfying the assumptions in Weil’s theorem and

consider p the generic type of V. Then p satisfies the assunptions in

Theorem 2, and by applying first Theorm 2 and then Theoren I, one gets the

algebraic group.

Ranark: The sane kind of result was also more recently proved in a different

(and unstable) setting by A.Pillay ["On groups and fields definable in

O–minimal structures" , preprint] . In particular he shows that if a group G is

definable in the reaIs, then G is a Lie group,

Before we begin the proof of Theorem 1, we need to recall, as briefly as

possible, a few basic facts we will be using all the tille and also, to clarify

some definitions.

O – Preliainarie8

0.1 – u-stable group8

Let T be an bHstable theory and let (G, . ) be a definable group in T, with
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pararHeters a. We recall sone basic definitions and facts; we will state thm

in the context of an o-stable theory but nost of thu are valid in the nore

general context of a group definable in a stable theory.

Definition: A type p e SCi) , p F G, is said to be generic if , for 811 model M

of T, a s M, for 811 b realizing over M & non forkin8 extension of p, and for

aII g e G n M, t(g.b/M) does not fork over a.

If T is u–stable, then the generic types of G are exactly the (finitely nany)

types of maximal Morley Rank in G.

The following are direct consequences of the above definition:

Facts : – for 811 g c G, there are b1 and b9 , realizing generic types of G

such that g = b1 .b,,,

– if X g G is definable, X containing one generic type of G, then there

are 81, . ' ' , an e G such that G = alX U ' ' ' U &nX.

Definition: we say that G is connected if G has no proper definable subgroup

of finite index.

Fact: G is connected if and only if G has only one generic type; in this case,

this generic is stationary, i. e. has a unique non forking extension over any

B 2 8.

O.2 – Algebraically closed fields and varieties

Let K be an algebraically closed field. Recall that, by elinination of

quantifiers, there is a one–to–one correspondance between the 8p8ce of n-types

over K and the prine ideals of K[X1, . . . , Xn] , the Krull dimension of the ideal

b,i.g ,q„,1 t, th, M,,1,y Ra„k ,f th, typ,. If X is , definable subset of K11,

then X = U (O. n F. ) , where the F, ’s are Zari8ki closed subsets of Kn and the
i<m

Q1 ’s are Zariski open subsets of Kn (the Q1 ’s can be chosen to be principal

open sets) .
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Let f be a definable map from Xn to K. If X has characteristic O, then f

is 1,carly ,,ti,.,1, by ,,np,,t.,,,, th,,, ,,, Ol, . . . ,Ok, ,P,. i. K11, such

that Kn = U Oi and fjO i is a rational function. If K has characteristic P>O,
j(

then Kn = U Oi, where flO i is a pm–th root of a rational function.
jg

The following theorm will enable us to consider only definable groups instead

of interpretable ones :

1:heora [B.Poizat, "Une th6orie de Galois imaginaire", J. S. L. vol.48 (1983) ] :

The theory of algebraically closed fields adraits elimination of inagin8ries,

i.e. , every definable equivalence relation B(i, i) on Kn is of the fora

f (i) = f (}) , where f is a definable map from Kn in IP for some m.

Let A,B be two Zariski closed sets and let f be a map from A to B. We say

that f is a norphi8n if there is a finite covering of A by open sets Ol ’s such

that f IOi is rational.
We will use the following definition of a prevariety

V is a prevariety if V = V1 U . . .u Vn, and there are bi jective maps fi froar Vi

into Ui , where each U1 is an open subset of a Zari8ki closed set, such that

– if Uij is the image by fi of Vi n Vj' then Uij is open in Ui

–the map f ij = f jo fil fron Ui j into Uji is a norphisn.

The topology on V is given by the following: X sV is open if , for all i,

fI (X n Vi ) is open in Ui .

A prevariety V is a variety if the diagonal is closed in VxV (for the

prevariety structure on VxV given by the Uix Ui ’s) .

We will consider a prevariety as living on a definable set, by

identifying V with the union of the Ui ’s, modulo the relation that identifies
U. . and U . . .
IJ Jl

In order to simplify definitions, we will con8ider only irreducible

varieties, i.e. varieties which are not the union of two proper closed

– 6 –



E. Bouscaren

subsets .

If V is irreducible, there is a unique prine ideal contained in every

open subset of V, which is called the generic point of V. The corresponding

type is the unique type of naxim a1 Morley Rank in V.

Note that if V is irreducible, with generic type p, then VxV is

irreducible, with generic type pxp, that is the type of any pair (8,b) , a and

b realizing p, and independent.

It now renains onjy to recall the definition of an a18d)rate Map :

(G,.,inv) is an algebraic group if G is a prevariety and nultiplication and

inverse are norphisns. Note that it follows that G is a variety. It is clear

from the above rmarks that an algebraic group is connected (as defined above)

if and only if , as a variety, it is irreducible.

1– Proof of 1:heoru I

We are going to assune that the group G is connected but this is no loss

of generality as the general case follows from the connected case.

Theora l–A:

Let (G,.,inv) s Kn be a connected definable group with parameters in

kA < K such that, for a,b generic independent

a.b c kn(a,b)

inv(a) e kn(a) ,

then there is a structure of variety on G which make8 (G,.,inv) into an

algebraic group.

We are going to need the following easy lena:

Lena 0:

a) - Let V be an irreducible variety and let X s V be a definable set, X
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containing the generic of V. Then X contains an open subset O of V (and of

course O contains the generic) .

b) – Let V and V’ be two irreducible varieties, and let f be a definable

nap from V to V’ such that, on the generic of V, f is rational. Then there

O S V, open, such that flO is a morphism.

Proof :

a) – The set X is definable, therefore it is a finite union of sets of

the form O n F, where O is open in V and F is closed in V.

Choose one such on F that contains the generic, so F contains the generic,

but the complement of F in V is open and, as V is irreducible, nust also

contain the generic, so F ; V.

b) – Choose a definable X s V, containing the generic, such that f (a) is

a given rational function of a, for all & in X. By a) X contains an open

set of V.

Proof of Theoren l–A:

The group G is definable, so G ; U (O, n F, ) , where we can assume the
i<

Ol ’s to be principal open sets in Kn and where the Fi ’s are closed in Kn. Let

vA be one of these intersections, containing the generic of G, P.

Then on vA we have the structure of an irreducible prevariety, with generic P;

we also have the usual structure of prevariety on VAx VA, with generic pxP.

Let X be a definable subset of Vax Vo containing pxP, such that if (x,y) e X,

then x.y is rational over x,y.

Let X’ = { (x,y) e X ; x.y e VA} , X’ ia definable, By the Irmma above, there

is Mo s X’ , open in VoxVo, such that multiplication, from Mo in Vo, is a
morphism. For the same reasons, there is V1 s Vo, open such that inv is a
morphism fron V, in V_.
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Now let

Y ; {x e V1 ; for all y generic independent from x, (y,x) e Mo and

(inv(Y)IY• x) e MA }•

By defin ability of the type p, Y is a definable set, and Y contains the

generlc P.

By the lem a again, there is q9 sY s V1 , open, and of course, inv is still a

morphism from V2 in Vo, Now let V = V2 n inv(V2) , then V is open, because V is

the inverse image (in V9) by a morphisn, of an open set, and V = inv(V) .

Let M = {(x,y) e Mn n VxV ; x+y e V} , again, because nultiplicatiop is a

morphism, M is open.

So, by taking sna11er and smaller open sets we have come to the following

situation :

we have V, open in vA, therefore with the induced variety structure, and M,

open in VxV, such that:

(i) multiplication is a norphism fron M into V

( ii) hIV is a morphism from V into V and inv(V) = V

(iii) for all x in V, for all y generic independent from x, (y,x) and

(inv(y) ,y.x) are both in M.

The structure of variety on G is obtained by covering G by translates of V

(i . e. of the form a. V) . As G is an u-stable group and V contains the generIc

of G, we know that a finite nurnber of translates of V will be sufficient to

cover G.

In order to see that this indeed gives G the structure of a variety and

fact of an algebraic group, we need the following Ima:

Lma:

Let a,b e G, let H = { (x,y) e VxV; a,x.b, y e V} . Then

– H is open

– the nap fab from H into V, which takes (x,y) to a.x'b+y is a
norphisn .
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Proof of the lemmn

Let (xo, yo) c H, we want to find Ho, (xo,yo) e Ho s H, open, ouch that

fab restricted to Ho is a morphism.

We know that b = c. d, where c and d both realize the generic p; let e also

realize P, independent from { 8, c,d,xo,yo}

Let Ho ; { (x,y) e VxV ; (e. a,x) e M , (e. a.x, c) e M , (e.a.x.c,d) e M

(e. a.x. c.d,y) e M , (in\rCe) ,e.a.x. c.d.y) e M} .

First, by the choice of e, and by appjyjng condition (iii) on V each time,

(x,,y,) ' H,.
We see that HA is open in VxV by applying successively the following classical

facts: if 0 is open in VxV, if h is a morphisn fron O in V, if z e V, then the

set

{ (XI y) ; (XI z) e O 'and (h(xI z) I y) e O I

is open, and also,

On = { x e V; (z, x) e O )

is open and hz, from Or in V, is a morphism.

Now a'x.b'y = in\rCe) . e. a.x. c. d.y ; so Ho s H, and over Ho, fab becomes a

composition of norphisms because at each step the elements one wants to

multiply are in M, and hence it is a norphism

We can now go back to the proof of the theorem. Choose 81 , . . . ,an in G

such that G = a1 VU . . . U anV ( where aV denotes the set { 8,x; x e V )) .

In order to check that this, together with the left translations f + from V

into a1 V, is a prevariety on G, we need that for all i, j

– Vij = {x e V; ai'x c &jV} = {x e V; inv(aj) 'ai'x e V) is open

– the map f . , from V, . into V which takes x to hIV(a ,) . a, .x is a' –ij –- -– ’ ij –---- - ’---––-- ––-–– -- -- ––- -–J' - –I
morphism .

But, it is a direct consequence of the lma that, for all a in G, the set

Va = {x c V; a.x e V} i8 open and the left trangjation by a is a norphism,
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It rmains to check that nultiplication and inverse are norphi8n8.

Multiplication :

GxG, as a variety is covered by products of the fora 8VxbV, which get their

variety structure from VxV. To say that nultiplication is a norphisn ne8ns

exactly that the set

Aabc = {(x,y) e VxV; a,x.b.y 6 cV} = {(x,y) e VxV; inv(c) ,a.x,b,y e V}

is open in VxV and that the map fron A into V which takes (x,y) to

in\rCc) . a. x.b. y is a morphisn. This is exactly the lena.

Inverse :

it is a morphism if the set

Aab = {x e V; hIV(a.x) e bV} = {x e V; inv(a.x.b) e V}

is open and the map from Aab into V which takes x to inv(a.x.b) is a narphism

But (condition (ii) ) , hIV(V) = V so Aab = {x e V; a.x.b e V) , and again it is

open, as a direct consequence of the Ima, and the map taking x to a.x.b is a

morphism. We also have that, on V, in\r is a morphism, so inv(a.x.b) is the

conposition of two norphisms. a

Theorem 1–B:

Let (H, . , in Ir) be a connected group interpretable in K. Then there is a

definable group (G, + , hIV1 ) g Kn and some countable kA g K, kn containing the

defining parameters of H and G, such that H and G are definably isonorphic

and, for a,b generic independent in G, a+b e ka(8,b) and inv’ (a) 6 kn(a) .
Proof :

Note first that, by elimination of inaginaries in algebraic ally closed fields,

any interpretable group is definably isomorphic to some definable group in

some Kn, so we can a8sune that (H,.,inv) S KT.

Without loss of generality, 8s8tme K is very saturated.

Now if K has characteristic O, then there is nothing left to prove, as any
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definable function is locally rational

P>0 .

Let ks K be an uncountable &lgebraically closed field,containing all the

defining parameters of H. There is some q = 1/pm such that, for all i,B e H,

i.S e k(iq,Eq)n and inv(a) e k(aq)n (where if i = (81 , . . . , an) , k(aq) denotes

k(af, . . . la:) ) .

Let i realize the generic of H over k. We define:

k+( i) = k(iq, inv(i)q, il. i.82, 81. in Ir(i) .82; 81,82 e H n kn)+

We have that k+(i) s k(aq ) , with q’ = q2 .

Now k( aq ) is a finite extension of k( i) hence so is k+( i) , so there are

cl, . . . ,Ck in k(aq ), such that k+(;) = k( i,cl,. . .,ck), and of course, each ci
is definable over k U a.

Consider f : H _, Kn+k, definable injection such that for a generic,

f(;) = ( i,cl,...,ck).
Trivialjy, k+( i) ; k#(inv(i) ) , so k(f( i) ) = k(f(inv(i) ) , so if G is the image

of H by f , with the obvious group law, it is true that, on a generic of G, the

inverse is rational.

Now it is also trivial that, if Be kn n H, then

k+ ( i.B) = k+( i) , so k(f( i.S) ) = k(f( i) )

so we &ssune that K has characteristic

(+)

k+ (i. i) = k+ ( i) , so k(f(i, i) ) = k(f( i) ) .

We also have that, as f is a definable bijection, for a,b generic,

f( a.s) e k(f( i)r, f(B)r)n+k for r = 1/p1, for some 1.

Let kn, countable , kA < k, contain all the necessary parameters.

Let S c H n kn realize the generic of H over k_, and let i realize the generic

of H over k. By (+), f(i.B) e k(f( i))n+k, and we also have that

f(i.S) c kA(f( i)IF,f(8)r)In+k.

But, k(f( i) ) n ko(f(i)r, f(B)r) = ko(f(i) , f(B)r) : because f(i)r remains over

k(f ( i) ) of the same degree as over kA(f (i) , f (B)r) , since i is independent from
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k, which contains f(B)r, over kA,

Symetric8lly, because a-S and i-a have the sane type over kA, we have that

f( i.S) ' ( k,(f( i),f(E)r) n k,(f( i)r,f(B)) )n+k,

But these two fields are linearly disJoint over kA(fCa) , f(b) ) : more generally,

it is classical algebra that if K1, K2 are linearly disjoint over ko, if

x c Kl, y e K2, then Kl(y) and K2(x) are linearly disjoint over ko(x,y). As a

and i are independent over ko, ko(f (i)r) = K1 and ko(f(B)r) = Ka are linearly

disjoint over k_, then we get the result by letting f (i) = x and f (b) = y. It

follows that f(i.S) e kn(f(i),f(B))n+k, that is, that in G, the multiplication
of two independent generics is rational .a
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Sjrrpllftcatjon pour les prcx]ults lexlmgraFHiques d’ordres tntaux

Gauthier Henr1

I Fk>tatiwls et rarxnls

En ce qui culcerne les ordres tot;aux, leurs scxmres et leurs prcxiults

lexlmgraphiques, nous utilisons les notatlw6 de [1 ] .

. Q ,{ ,r7 repr6sentent respectlvarent les types d’ordres cb iN, Z et Q.

. A et B d6s{gnent deux ensavt)les totalarent orckyln6s

.Ch rappe11e certalns r6sultats concernant les ordinaux: dlstritnttvitA a

droitn du pr(xiuit lexla)graphique par rapport a 1a same; rmi distrltntivit6 a

gaLIChe (21,>=( 1+1 )wa.> ) ; dIvision euclidienne.

.6 d6sigre un ordinal sucoesseur Inf6rieur a oo ,et ncxls 1’6crlvcxrs uws 1a

foRDe Hq/....+o2a2+waI +k aa k,al , . . . . ,an smt des entjers; k#0.

.6’ d&jgne un ensart)1e totalarent orckyln6 61drentairurent &]uivalult; a 6.

. 11 r6sultn InrlxkjiatHrent de [ 1 ] , p 258, tILe 1 ’ut peut 6crlre 6’ scns 1a

fOOTIe ,E ,(Q+{7 , )+k oa J et 7 , sont des ensaTt)les tntalarent orckxrn6s.J£J' ' J’ – – – – J
.al d6f init par r6curence 1a notIon d’ordlnayx rrllmitns:

les ordinaux l–limit,es SUIt les ordlnaux limitzs;

les ordinatD< rrrllm Ites salt les ord{naux llm{tns d’ordinaux

(nhl )–limltes.

.S1 W est un txxhordre, X£W est un FX)int rhlimitn sl et seularent si

1’jsaTDrphlare entre W et saI ordlna1 envole x sur un ordlna1 nrllmltz.

.On rrmtrQ par exaTple que les points l-limjtes de unan+. . .+o2%+ual+k mt

pour type d’ordre wnFlan+. . .+Da2+al+1 , et que les poInts FFlimites de

Qv.. .+o%2+ual+k mt pour type dlordre up\+.. .+HamfI+am+1 .

.c[A] d6s]gne 1a ccxxjursatIIon finle de A, c’est a dire l’ensarble totalurnnt

ordonn6 obtenu en qLnt+entant A par 18 relatlul d’6qulvalenoe: x-y si et
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$eularent sl chacun des interva11es [x,y] , [y,x] est fini .

Fkxir x 6 A, c(x)={y£Ajx-y} . LorscN’i I y & ad>ialft6, al 18 rote cA(x)

.si A est url ordina1, ula6flnit par irxluctial c1(x) at cA[A] caIne dans [1] ,

P 80.

Le raul do A,rotA rg( A) ,est 18 plus petit ordinal A taI CW cA[A] est dune ou

69al a 1.

.A est d19pqrs6 s’11 exist8 A tn1 quo cA[A]=1.

.(h ckxvn alors des prwri6tBs 6vld8ntns des ccxxiensatluls:

a cA(x) est un intnrvallo cb A.

b Les cA(x) forrrult un partltlul cb A; (cA(x)ncA(y)# a cA(x) J(y> ) .

c sl A est Ln lnterva11e cb B: {(x) = 4(x) n A. ([1] ,p 82)
d Si A est un intnrva11e cb B: rg(A) SrB(B) .

e rg( Ao ) Srg(A)+1.

2 R6sultats pr61 iminair06;

LOWE 1:

(i ) Sl A est dlspers6 et a WI rang limitn A, alors rB(A+A)=rB(M)=A+1

( ii ) Sl A est di sperM Bt si 1e rang A de A n 1 est pas ltmi tDI alors

AN+1 , et

(a) Si cf [A] est fini , alors rg(AtA)=rg(A)=rg(A), et c#t4n3a..

( B) Sl cF[A 1 wt IrdinI, alors rg(nA)=ru(b)=rg(A)+1.

LA=T}Jlst;rat i CD :

Ch rrurtrn tcxrt; d’aIx>rd 16 larrre 0:

Si A a tri rang llmite A , alors txlrt 9egrnnt lnltla1 ou &IIt segTent flru1 cb A

a 16 nato rang A.

Slrwl, Il exlste IO, seWt inltia1 do A, et 11, 6eWnnt; fina1 cb A t8l8

an A=lO+A’+11 et rg(IO)q30<A ; rg(11)q31<A .

On rutH nsw(an tP 1 ) .
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Ch ut:11 lse 1a propr16t6 ulsarblistn b wlr amIt:rar an si x6IA, y6Ir et /3<A,

altars /(x)nc/(y)q.

Sirwl, /(x)=cP(y). si #2,, cP(x)310 ot cP(y)211. WIre /(x) mt m
Inter,,a11e: / (x)=A, et ckxx;, rg(A)gp. Curtradictim.

D’autre part, sip<r, cr(x)=cr(y). Idm.

Al„st, mr tart b'.x , /(xh/(y)4, at nIC, pvx/(xDpvrfhI=b.
[Emc, cA(xncA(y)#, ot ctrlc rB(A)>A . Ccxltralct;iul. CXIFD

( i ) Ch &;rit alors A me 1a fonrn A=IO+11=18+Ii , dt IO a un Plus grarH

616n:nt et I1 un Plus petIt.

Alors rg( A+A)=rg(l8+lj+IO+11)2rg(lj+lO)2Srp( rB( Ii ), rg( 10) )=A .

Ccxmn lj+lo a WI premIer at Ln dernier 616rnnt, son rang no petIt pas etre

1]mlte (lumn 0). [Xxx: rg(A+A)>A. AirB1, rB(A+A)=A+1

(iI)(a) c#[A] est fin+ (ch nnI InaI k).

M=AO+Al+A2+. . . dI Al=A Wlr tx:nt i20.

S+ X,y e Ao, et si y 6 < . (x), alors y & c&(x) (clatr) .

Lu q.(x) partitiwFWlt Aj HI k enwTb1%, CiTY; les c&(x) ®rtitiulnH£ hl

el al pltB bun ensarb1 n.

WrITe rg(A)v+1, si x 6 Aj , c&(x) re remNre auan cbs Aj ; et miTre c’ nt tn

lntervalre, ch(x) Intersect8 au PILB cbux cbs A1.

mc, lu ch(x) partitiurwlt nUI WUtHIUIt u UIwrbles.
Air,si , c#[,&p] a), et rg(hl)=F+1=ru(A) .

(P) S1 cf[A] wt lrTfln+ , c#[A]ap al w' at e . a16uxx3se par exarOre

CUe cF[A]al.

Ch 6crit umr8 A sow 18 fonrn A=i{eAl, dr Al=A p(nr txlrt 120.

Salt HAi, 'L(x) i'te'wto au pr'B &H Aj et 'B w'tIn't &un Aj.

st cl(x) tntorwt8 Ai et Al+1, HI prwd y6Ai+1 te1 qH 4(x)al(y).
/ tAj] no, Mn AIMbid+. .., d AT=<1 (Xn) avec h=x.

<l (x)<1 (h )=A:b<i(xhAi .
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ch(x) mniern x€ATO et y€ Aj+1. UrIne c’est WI intervallo, c&(x)WniH£
tcxls Ios AT mIr n>nn.

Par QxarpIQ, A:O+ls4(,)nAI<.(,)=ATO. @,t,aj,tlw,.

mE, cl(x) interwtQ Ln wu1 Aj.
ch(x)SATO, Wu, les c&(x) partitiwrwn Aa an on u19alb1%. Ainsl,

rg(M);A+1. mFD

PNEWllIQn t = (Th&>nbrn de Lindentnun)

Si A est un segrent Inltla1 d8 B, et B to segrent flna1 do A, alors k=B.

tXSIxx\strat ial :

B b, bA

Ch se plam dans les caTp16t6s de DuiekinI do A et B. La su Itn d6flnle par

aD#2(bO); alfP2(Pt(aO)); . . . ; ah+1=f2(P1(ah)); . . . ut d6crolssante ot

ccyrverge vers a. La suite (bn) oorrespcxrdantn converge vers b.

P1 (a)4 at Pa(b)=a.

On menu it alors 1’jWIDrWlaIB Pulposant: P=P 1 wr Aga, et PaP;I ulr A>a

OQFD.

Pr9P9$1tl9n Z:

Si A nt tn segnent initla1 et flna1 d6 B, et sI 8 %t tn intzrva11e ck3

A, alors A=8.



H. Gauthier

AD&lmlst;ration :

VP
2

8 bA

CD mstruit; cb la ITerrn faWn Ln +sarDrThl urn Pa an fait d8 B tn segrnnt

Initia1 d8 A.

Or ut311 ise alors 16 th&>nbVB cb LlrxlurtnrJn. mD.

CcnfonTr&yent aux IDtatiuls pr$c6dentns, run a1 lals d&rxxrtrer 16 th&>rare

sui vant: :

THBJIBqE:SI 46’=B6 ’ , et si A est disFnrs6, alors A,B.

Fkxrs d6rxntrerws oe th&>nbre par 1’absurde. Lu PRxxsltlaB I at 2

penret;tent alors de se plamr us 1’hypot?lise &llvantn:

As’=B6’ ; rd6s+gne 1’isarnrTrhiare de bb' dans B6’ .

A est bn segrent initial et fina1 cb B.

PdB, et ckxx;, B n’est pas ul +nterva11e cb A,

(H)

U+E 2: (sow l’hyFntiem (H))

Aa e6t; tri int,erva11e d8 B.

D&rxxrstratlion :

B n’est pas tri Int8rva11e cb A, ctxx; a< n’est pas tn interva11e de Ak.

Or so plaoo dans 1u cxxrp16t6s de Duieklrxl do AS’ et 86’ .

L’i&uurThi=rn r plCXBO Ak (seylult fina1 d8 A6’ ) dans Bk (SHIn\t flna1

do B6 ’ ) ' cn ua 1 iso alors 1’6crltur9 cb 6 ’ sotn 1a forma j{J(o++vj )+k.
a1 appolle b 1e pran+er 61 arent de ac (seglnnt: fInal cb B6’ ) , et a+-1 (b)

- 5 -



1 ' cas: J n’a pas de plus grand 61aTnnt;.

S k fols 11 exlste jA te1 qu,
/ #ah \ V

pour t£nt xe A(w+er , ) dans A6 ’ ,
J 0

a< X .

Alors, A(w+€v . )est un interva11e de Bk.
JO

Ckxlc, AD est un interva11e de B.

j:JCb)+ eTj) foi: k fols

2' cas: J a un PIUS grand 616Tent jn.

Si a est Plus petit que 1a portial AeIi , wi est raren6 au cas pr6c6dent.

SlrDn, sl 7 , n’a pas de chrnier 616Tent, WI peut:pla\ger A{ dans Bk, et dc)nc

A> dans B.

{ fols k foIs

aa

A

P

A A Si a un cbrnler 61dTentI.

foI s Aa est un Interva11e cb Bk,

CiVIC AD est un Interva11e de B.

k fols mFD.

B gr B B

LME_3; (sws l’hypothdse (H))

A et B n’alt pas de pranler 616rent.

[X:rrxyrst;ration :

th nI)ntlre que, wlr lgmgn, les points limltes de 6 WIt pour type d’ordr’e

„rbm,n+. . .+Q%1+ h+r , et qu, it., e„,cml>k est J6fIAi$sable

Ch [nut alnsi d6finlr Lm(6: ) , 1’8nsarbla des points "qhlimltes" cb 6 ’ , Nur

aIIt 6 ’=8 . Ch salt alors que Lm(6 ’ )=Lm(6 ) .
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Ch suppose an A et B WIt des praniers 616Tents, rnt66 re6pectlverrwn ab et

bO, et ul rota, Hur ISmSn, Alm={(8b,x)jx4Lh(6’ )) et Bm={(bO,x)jx6Lh(6' )) ,

k#b6' , BmSB6’ et AnfBmaLa(6 ’ ) .

On darxxnro par reurrvl@ We ?-1(BmWin, at an Ie dornier 616Tnnt cb Bm

n’ast pas 1 ’inge par P du dornier 61 arent cb 4\n. La mltrndictim prwiult ctr

falt qa An et Bn antI exmtarnnt; an+1 61arnntis.

I' P-1(81 b(AI ):

Salt (bO,y)€Bl et (a,x)+-1((bO,y)). On veLrt nw£rer que a=aD et quo >aLl(6’).

Si a>aO: P((aO,x))=(b,z)<(bO,y) a z<y. CRIme (bO,y)6B1, y n’a pas d’ant6c6dent

dans 6’ , et ckxx3, 11 exlstn z166’ tn1 are Z<Z1 <y.

Alors, mIr tout aB, (b,z)<(q,z1)<(bO,y) a vc+B, (q),x)<?-1((q,z1 ))<(a,x).

[hnc, B est WI intnrva11e d6 A, m CNi mltredit 1’hypottese (H) , CXxx;, a=aO.

SI x/L1(6’ ), alors x a Wb ant6c&bnt x’ . &>it (b,z)+(aO,x’ ),

(aO,x’ )<(aD,x) 9 (b,z)<(bO,y) + z<y, Ch CtDISlt, oarrne pr6o6cbrment z1 te1 qe

Z<ZI <y . . . CCxrtradlct;laI.

tkrIC, x£L1 (6 ’ ) .

2' Ln dornIer 616rent de B1 n’ut pas 1’innge par P du dornier 616rnnt

deA, :
k fols

A

k fols

B

Ces dOIn points salt lu poInts (aD,yo) at (bo,yo) cIr dassin.

Le r6sultatI @t clair, car 81 (bO,yO)+(q),yO), AnD<.
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3• ar suppose que f-1(BmbAm et qu le cbrnier 61 arent b111 de Bm n’est pas

l’lnnW par P du chrnler 61alwltI am cb Ah.

BmPIS%, darK P-1 (BmPI bAm. Si (bO,y)6%1 , P-1 ((bO,y))=(aD,x), dl )ULm(6’ ).

Sl x#AMI, xa tn anU:abrIt x’ ants Ah, ckxrc P( (ab,x’ ))=(b,z)<(bo,y).

[Xxx z<y, et oarrm8 y6Lm+1(6’ ) , iI exist;a Zl6Lm(6’ ) tn1 qu z<zl<y.

ArQrs (b,z)<(%,z1)<(bO,y) darn Bm. OQrn (aO,x’)<r-1((%,z1))<(aO,x) dHIS Am,

ae qui mnnullt: le felt an x’ est 1’ant6c&bnt cb x dans Lm(6’ ).

DarE P-1 (Bmt1 )SAm+1 .

Le type d’ordre cb Am et Bm est 61arentairarWIt 6qulvalult a

omB/. . . w%1+%+1. 11 st#fit de remrnitre bm et gn+ I dans Bm, ;lnsl qu
m , rr+l '   .

a"' et a"" ' dans Ah:

an+1 fais

\n = annan + ... + o%+1 + fl + 1 + ... + i
amFI \ am Oulub P-1( bm)<am:

r-1 ( bm+1 )<amt1

OQFD.
Bm = o rm& n + + B o + H an+ 1 + ; + 1 + R e B + +

bIr+1 p

3 Darxxrstrut;laI ChI th&x+In:

THECRB4E: A, B, ot 6’ WIt des ensarbles tDtalarult onkxx%. 6’s6 onlirn1

alemur, 6<eD. Si A est di%nrU, alors
A6’=86’ a PuB.

D&Tcxrstratiul:CII se place UB 1’hypath6se (H), et I’m st4Xx>sO de pILS que A

e8t; dianrs6.

Si cm( A) [B]#1 , alors cN(A)[B]#crB( A) [A] .
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[Xxx;, pour tXXIt A<rg(A) , cA[A] dcA[B]

On rrwItre par Irxhx:tim, et VI utilisant 16 lamn 3, ate mIr tCIIt A<rg(A):

( i ) CA[A]6’=/[B]6’

(Ii ) cA[A6' ]=cA[A]6’

(iiI ) cA[B6’ ]=cA[B]6’

D’aprbs 16 lamB 3, A et B n’alt pas de pranlor 61arnnt;, ckxx=,

c[A6’ ]=c[A]6’ at c[B6’ ]=[B]6’ (clalr) .

Corrrre A6 ’=B6 ’ , ulocxxbnsant wn fois, i1 viwlt ic[A]6’=c[B]6’ .

Si on a ( i ), (ii ) et (iii ) pour A<rB(A) , oulne cAEB] dcA[A]:

cA[A] et cA[B] v6rifient 1’hyFntlese (H)

D’al>rbs 18 lame 3, {ls n’wIt pas de pranlor 616rnnt, et ayn, ul ccxxlu\sant

we fois de plus, l1 viutt::

c[cA [A]6 ’ ]=c[cA [B]8’ ] a CA+1 [A]6 ’nA+1 [B]61 .

Si on a ( i ) , ( Ii ) at(lli ) Hur trIIt #<A limitn:

46 ’=B6 ’ a cA[M’ ]=cA[B6’ ] .

MIr tan #<A , pour totrb (x,y),A6 ’ , cf ((x,y) ) apparttult toujalrs au naTe A

J( (x,y))=#?/F( (x,y) ) ,' &x=, cA [A6 ’]d [A]6 ’ . cnD.
Alns1 , pc11r A=rg(A), 11 v lent: org(A)[A]6 ’ BCN(A)[B]6 ’ et org(A)[A]#cry(A)[B]

[Xxx3, cm( A) [A] et crg(A) [B] v6rlflent 1’hyFDuese (H) .

D’apr§s le lewm8 3, 116 n’cnt; pas de premier 61alnnt, or cN(A)[A]=1.

CcntrM{ctiul. [Xxx:, crB(A)[B]=1 ; B %t di8p8rs6, et rB(B)SrB(A)n

Al nsl y rB( B>=rB(A) .

D’aprbs le lerrm 2, Aa est Ln {ntewa116 cb 8, thru: rB(A)$rg(Ao)SrB(B)=rB(A)

D’aprB 1e lamB 1 , rg(A) wt trI ordina1 &messeur rI+1 , et c#[A] %t finl.

si /[A]##[B] , alors dtA] at c#[B] v&Inert 1’hynattese (H), et WE,
c#[A] et c#[B] n’vrt pas de prunier 61arWTt, oe all wltrulit la finlttxb cb
,#[A] ,

mc, c#[Abc#[81. Or, c#{+,]a,€c#[B], ee all wltrulit ra flnitub cb

'FE8] . WD.
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4 FlaTwIRn8:

Dos oxarp1% stnples aultrvlt qu’ l1 n’y a pas d’av611oratlat grws16ln cir

tF6orarD :

(1)1orsqtn 6 est trI orrlina1 limitn:

2&16 et al 1.

(it)lorwTre 6 e8t un ordinal suo08sseur st4#rieur a ou:

6aBw6,+an ; 16=(oo+69)6. Unc, II axiste Ln ensarble I, at qui ultraftltre

sur I tels que: sl A=II/v=1, sI B=(ou+62)1/v, at sI 6’HI/%, aIQrs A6’=Ba’ ,

A est dispers6, at A#B.

(lit )sup{x>scxrs A at B Iun dlspers6s.

En surxx>sant 1’hypotllbse cir wltlru, al aultre que si % est ul ultraf11tre

rDn prlncipa1 sur N, on/V+1=n+{an/V+1. (11 est clair qu’11 existn v te1 que

um/wHO++7 , et CNe T est satur6. SCX£S 1’hypOtheSe du mntlnu, il n’y a qu’Lrl

mIl ensurble satur6 dB cardlnal Rl, dorn Td/v; volr [2])
Ch note 7=IN/,,.

CII aunt:re sucoassivarwtt que:(a) (1+q)(o+1 )=1+q

(b) (1+ )(oH?+1 )=1+r

(c) rI( 1+T+1 b=7(1+T >Q

(d) /7(1++1 )£=7(rPI ){

(e) to( 1+7+1 )] (MT+1 )=[4] (U+fT+1 )=1( 1+T+1 )

(a): Inns e,
[1,1+1/2[ + [1+1/2,1+1/2+1/4[ + [1+1/2+1/4,1+1/2+1/4+1/8[ + . . . + [2,3[ ut

i6arxx#n a 1+a, airni an ctwitII das intnrva11% mlsld6res.

(b) s’cilt;iult ul passant aw ultratnlssnm.
(c>: aCl++1 b=(a+n+rIb=(a+n+a)+(a 'III+a)+ .. .

=(a+aT )+(ata+frI >+(a+7+aT )+ . . .

=(rI+rn )+</7+IT )+(rI+aT )+ . . . =(rI+fIT b=7(1+IN

(d) so d&vxxltr8 de 18 m&rn fa,m.
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(e) : a('.+€T+1 )no+(ai >,+a=r+nT+rIaI(1+t+1 )

a( 1+r+1 ) (U+eV+1 )=( 1++1 )u+q(It1+1 ){?+7( 1+y+ 1 )

=7(IHb+fI(1+r)eT+a(IH+1 ) (d’apres (c) et (d)>

vtE( 1+1)(U+£T+1 )1+nHt(IH )+a (d’aprSS (b) )

a7(1+1+1 )

Ains1, sI 1 ’on notn AuT( 1+q+1 ) ; &?7 et 6’a+{7+1 :

A6 ’=B6’ et #B car Card( A)>Card(B) .

bkx2s wcltws par Lrn qrestial:

(XJtJECTUiE: SI A et B WIt dos ensarbles tntalarwlt ordaIn&, et st 6 est WI

ordlna1 sucassair Inf6ri&lr a QQ, alors A6=86 9 MB.

En passant aLU ultra[wlssarm, l1 sufflralt cb aultrer gtn si

A8’=B6’ o A=B.

thrrs l’exarplo (IiI) , AfB, mais AB.

R6f6rulces bl b1 iographiques :

[1 ] J.G.Rosurstnln, Llrmr onlerlngs, Ac:ad PIWS, 1982

[2] C.C,Chang at H.J.Keisler, }kxb1 Thu)ry, bbrttr+b11and, 1973
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BETWEEN GROUPS AND RINGS*
ABSTRACT

Anand Pillay, University of Notre Dame
Philip Scowcroft, Stanford University
Charles Steinhorn, Vassar College++

In [1], van den Dries asked if new operations or relations could be added to the
ordered group (it, +, 0, <) so that the collection of definable sets in the resulting structure
lies strIctly between the semilinear and senlialgebraic sets. \Ve show that an obvious
candidate serves as such an example.

Theorem 1. Let B g R be the restriction of the graph of multiplication to [–1, 1].
Then multiplication cannot be defined in the proper o-minimal expansion (R, +, 0, <, B)
of (RI +l 01 <)•

Our original proof of Theorem 1 actually proceeds through a more general “two-
cardinal” result for a-minimal structures:

Theorem 2. Suppose that M is an u-saturated, a-minimal L-structure, P(3) is a formula
over ,M, and yU > M is an u-saturated L-structure satisfying y(/U) = p(X). If I? g
p(/U )n is a ne\r relation, then ( M, n) < (V, R).

We remark that we also prove a stable version of Theorem 2,
After proving Theorem 1, we found the following refinement of that result:

Theorem 3. Let g: R –' R be given by

g(,) = { h. .jg„ ,fa if:1 : 1
and let ,i':R2 –, R be given by r * y = gCr)g(y). Then, Th(R, +, 4', 0, 1, <) admits elimi-
nation of quantifiers.

\Ve finally note that although for simplicity, we have stated our results for (R, +, 0, <),
they hold for (R, +, 0, <, /,),eR, where A: it –, R is multiplication by a. This last
struct ilrc ii, properly speakrng, the structure about which van den Dries raised his question

REFERENCE

[D] L. van den Dries, ,4 generalization of thc Tarski-Stidcnberg theorem, and sornc non-
tltFnubiliLy rtsult3, Bull. Amer. Math. Soc. 15( 1986), 189-193.

* To appear in the Rocky Mountain Journal of Mathematics as part of the proceedings
of the 1986 Corvallis Conference on Quadratic Forms and Real Algebraic Geometry
** Authors partially supported by the N.S.F,





TOPOI AND (MULTISORTED) HIGHER ORDER INTUITIONISTIC LOGIC

Eduardo J. Dubuc
Universidad de Buenos Aire8
Matmaticas – 1428 BS. AS

I will present here a 8umary of so®e constructions and ideas due to

F. W. Lawvere, and which are, by now, we11 known anong category theorycists.

Il L(nIC IN A CATEGORY

Given an object R in a category C , and two nononorphisn9 A+p R ,

B ) IR , we say that A cB if there is a f8ctoriz&tion

(A +, B ,+HR) = (A >-+ R) . If A cB and Be A , A + R and B ,b–+ R

define the same subobject, and A and B are isonorphic in C . We shall

very often write A c R instead of A )-+ R , and say (by abuse of language)

that A is a subobject of R .

1.1 Propositional Logic.

The relation "c" in the set of subobjects of R is reflexive and

transitive (Cl and C2 below) , and we can define by the usual universal

properties the notions of infimun, suprenun, implication, negation, zero and

one. (C3 to C7 below) .

Cl ) Ac A

C2) A cB , BeD = A cD

C3) On e X

04) X c IR

05) Ac X ’ Be X
AV Be X

– I -



06)

if

X cA . X cB

Xc AAB
X AA cB xn A = OR

X cA –IB X CIA

thus, I A is the sane that A –, oD .
Here, A, B, C are arbritrary (but fixed) suboject8 of R , and X

ranges over all the 8ubobjects of R . The horizontal lines mean "if and only

07)

1.2 First order loRie.

Given any two arrows in a category, R f , S , H g 1 S , the pull back

of f and 8

P

1 RR

i f
is defined by the following universal propert

nH

X r , R , X h , H I gh = fr
X ul P I xHu = h , xRu = r

Here X ranges over all the objects in 6 , and the horizontal line

means that there is a bi jection, natural in X , between pairs of arrows

(r,h) and arrows u as indicated. Given an arrow R f , .S , and a

suI)object Ab–+ S , the inverse in age of A along f is defined as a

pull–back :

A

I
S

f
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It follows that inver8e image preserves the relation "c" (08 below) . We

can define existential and universal quantification by means of the universal

properties of the left and the right ad,joints to inverse image (C9 and cla

below)

08)

09)

010)

A cB . :, f–IA ( f–IB

D c f-lX

3fD e X

f–lX ( D

x c VfD

Here, f is an arrow R f , S in C , A , B and D are arbritr&ry (but

fixed) subobjects, A cS , BcS and Dc R , and X ranges over all the

subobjects of S .

The subobject 3fD c S ia the (direct) image by f of the subobject

D c R . In order to have an adequate interpretation of intuitionistic logic,

it is necessary that in e , (direct) images be stable under pull–back. This

means that given any subobject DeR and any pull–back diagram :

p n 1 H

l' _ l‘
R 1 1 S

the following equation holds

g-1(ap) = 3h(&-ID)

The corresponding equation for universal quantification follows :

g-l(VfD) = vh(£-ID> .

These equations are known as "Beck conditions"

Remark in any category e such that it hw an structure such as Cl ) to

010) , and the Beck condition holds, all of the intuitioniatic first order

- 3 -



jogjc '-an be interpreted in an adequate way. As we shall do in section 83.

The terninal object, denoted 1, is defined by the universal property :
sin91eton
X –+ 1

This means that for all objects X in C , there exists a unique arrow

into 1 .

Given two objects R , H in e , their product and the projections are

defined as a pull–back

H

I
1

Given two arrows X r , R , X h , H , the arrow into Rx H determined

by the universal property is usually denoted X (r’ h) 1 Rx H . When R = H

there is a 4jg£gD9] dH ; (idH , idH) : H'+ H x H .
It is clear how to define finite products. The aapty product turns out

to be the terminal object 1.

Quantification along the projections correspond to the usual

quantification of variables . The reader can verify the following :

Remark Assume R , H are sets, and let AcH , DeR xH be any subsets.

Write Xu = n . Then :

x-IA = {(r,h) I h e A) ,

WaD = {h 1 Yr (r, h) e D) ,

3aD = {h 1 3r (r,h) e D) .

1.3 Hixer order LoRie.

Given an arbritrary (but fixed) object R in C , the generic (or

,nnmber3hip) relation in R is an object nCR) together with a aubobject Cn

- 4 -
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as indicated below

eR ) ' R x aCR)

characterized by the following universal property :

all) Z > IR xX

X Pin(R)
such that the following diagram is pull-back

Z 1 eR

T __ T
RxX RfP IRbd2(R)

where X range8 over all the objects of c , Z over all the sul)objects of

R x X , and the horizontal line means that there is a bijection natural in X .

We say that P "cla88ifie8" the 8ubobject Z

The reader can verify the following :

Remark Assume C is the category of sets. Then nCR) is the power set of

R , eR the usual mmbership relation, and for x in X :

P : x 1 1 {r I (r,x) c Z}

Usually, the generic relation for every object R in e is constructed

in two stepts.

First . A subobject classifier.

Second. Exponential8.

Subobject classifier : it is the generic relation in 1 . That is

an object n in e together with 1 t 1 n such that :
it is

where X an Z are as above 011. Thus, subobjectg of X are "claa8ified"

by "characteristic functions" X –bn .

Exponentials : given any two objects R , S in e , the exponential RS

– 5 -



is defined by the following turiversal property :

X ,R$
SxX –p R

where X ranges over all the objects in C , and the horizonta1 line, as

usuall means that there is a bijection natural in X . It follows that there

is an arrow "evaluation" Sx RS ev IR such that every S xX f 1 R is

Af tha fArm fra \ = A,,in }\ +,.,. '. .._.g _..._ a f nS /L___ _ _A__ J_ a__ __

arbritfarY afrow Z -L S , and the parenthesis indicate coa4loaition)

Thenl the generic relation is defined as pull–back :

1en

L __. T‘
SZxf2 ev I n

Th&t is, nCR) = nR , and eN is the 8ubobj,,t ,ra,,ifi,d by ,„ .

1.4 Elementary Topai ,

Definition (Lawvere-Tierney) . An elment&w top08 is a category such that :

1) it has pull–backs and a terninal object.

2) it has exponentials.

3) it has a subobject classifier.

Theorem 1 (LawverrTierney) ,

An elementary tapas has all the (logical) structure cl to all described

above (and the Beck condition holds) .

For a beautiful and intuitive but rigorous proof of this Theorem see [2] .

As we have seen above, any top08 has generic relations. The idea that

"functions" are "functional relation8" leads to a proof that generic relations

can be used to construct exponenti8l8,

– 6 -
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Proposition 1 ( A. Kock) .

A categorie is an elementary topos if and only if :

I) it has pull–backs and a terninal object.

2) it has generic (or nenber8hip) relations.

12 MULTISORTED HIGER ORD8R INfUITIONISTIC LOGIC.

We will define the language and the axions and rules.

2.1 Data.

Basic Data :

LI) i) There are syrabols called types. In order to siwlify the notation,

we shall denote a finite sequence of types with a single letter, and call it

an stvpe. There is an special syzrbol n . The basic (and only) construction

is

if R is an 3type, then nCR) is a type.

The empty sequence is an stype. In this case, the type nCR) is denoted

n . Types are identified with stypes af length 1. But stype8 in general are

not types.

ii) There are (a dennumerable set of) variables associated to each type.

A finite sequence of variables associated to the types (of an st)rpe) will be

denoted with a single letter and refered to as an svari able.

L2) For each stype R there are predicate sylabols of domain R .

L:3) For each stype R and each type S , there are functional symbols of

domain R and _tJ2£ S .

As usual, the terns and the formulae of the language are defined

inductively. There are special 8yubol8 t'TRUE't, "FALSE", "=", "c11 and "{ I )"

Terms will have an associated type. A finite sequence of terns associated to

– 7 –



the types (of an stype) will be denoted with a single letter, and refered to

as an st:erm.

Terms :

Ut) For each type S , each variable of type S is a term of type S ,

L5) if t is an sterm of stype R , and f is a functional syrabol of

domain R and type S , then f (t) is a term of type S ,

L6) if + is a formula, and x is an avariable af stype R , 'then

{x 1 +)R is a term of type nCR) (we asstme that all the variables in x
different ) .

Formulae

L7) if t is an sterm of stype R , and A a predicate symbol of

domainn R , then Ad) is a formula.

L8) if t and e are terms of the sane type, then t = e is a formula.

L9) if t is an stern of stype R , and P is a term of type nCR) ,

then tcP is a formula.

L10) TRUE and FALSE are formulae. If + and Y are formulae, then

+ VP , + Ay , and + –bP are formulae. q + is shorthand for + -+ FALSE.

LII ) if x is a variable of type R , and + is a formula, then (3x)n+

and (Vx)n+ are formulae,

Of course the recursion to construct terms and formulae is carried

simultaneously. The stept L6 binds 811 the variables in the 8vari able x , and

the stept LII binds the variable x . A variable in a term or formula is free

– 8 –
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if it is not bounded.

Definition 2.1. A domain of a term t is an stype R which contains a

distinmished copy of the type of each different free variable in t . In

particular, distinct variables of the sane type correspond to different copies

of that type in R . R may contain other types or more (non distinguished)

copies of the same types.

A domain of a fornula + is defined in the same way.

2.2 Deduction Rules .

A 8equent is a pair of fornul ae + , P

simultaneousjy a domain for both formulae.

We write :

and an stype R which is

+ =R P

The axioms and deduction rules of intuitioni8tic logic are obtained

directly fran the universal properties Cl to ell described in section Bl.

We shall write then now explicitely. Each Al to All corresponding to the

respective 01 to GII

Al ) + =n +

A2 )

A3 )

A4)

+ =R Y , Y =R F , then + =R F

FALSE =R +

+ =R TRUE



A5)

f H iiarrow R

+ =R F , P =R F

+ V V =R F

A6)

A7 )

f =R + , F =R P

F =R + A ?

fA + =R ? FA + =R FALSE

F =R + –' ? F =R 1 +

A8) + =s P , then +(t Ix) =R Pd Ix) .

Where : x is a variable and t & tern of the same type, and +(t Ix) ,

Pd Ix) indicate the substitution of t in all the free occurrences of x (we

assume that t does not have any free variable that beconea bounded after

substitution) ,

Notice that usually R will have the types of a donain of t in place

of the type of the variable x

Notice that this rule has as a particular case the following :

+ ws P , then + =R ?
each time that R contains all the types in S .

A9)
+ -=(R,H) r
(3x)R + =H F

r -A(R,H) +

F =H (VX)R +

Where x is not free in F and R is the type of x .

Notice that this corresponds to the particular case in C9 and (;10 where the

the projection Rx H LH of the product.

AIO)
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All) + $ x e {x I +}R
Where x is a svariable of stype R .

Fina11y, there are three rules atached to the

variables .

Ala) TRUE =R

sy=lbol between

A13) + A (x = y) HR +(yI*)

A14) (VX)RCx c P +' x e e) =s P = Q
Here x is a variable of type R , P and Q are vari8bles of type

nCR) (and, of course, S contains nCR) ) .

13 INTERPRETATIONS IN :FOPOI.

3.1 Let f be an elenentary topos (cf . tI ) and Z be a language (cf . 12) +

The notion of an interpretation of g dans C follows the same stepts that

the concept of a language g . Each II to Ill below corresponding to the

respective Ll to Lll

Basic Data :

11 ) i) To each type R it is a8aociated an object R in C . Notice

that we abuse the notation and write the same letter for a type and its

associated object. In order to siarplify the notation, we make the following

convention :

if R = (R1, B2, . . . , Rn) is an stype, then we write R for the

productR1 x R2 x , ' , Rn in C ,
In this way, we have also an object of the top08 associated to each

8type. Notice that the terninal object 1 ia associated to the earpty 8type.

ii) The aasignraent in i) is 8uch that for any atype R , the object
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associated to the type R(R) is the exponential nCR) = an in e . (see all

in 11.3) .

12) To each predicate syrnbol A of domain R , it is associated a

subobject A >-+ R of R in c ,

13) To each functional symbol f of donain R and type S , it is

associated an arrow R f 1 S in C .

Terms : To the terns of Z they will correspond arrows in C . More

precisely, to each term t of type S , and each donain H of t (cf .

D6finition 2, 1) , it is associated an arrow H t , S in 6 , denoted with the

sane letter. Recursively :

14) if t 18 a variable of type S , we associate the corresponding

projection (notice that a domain of a variable is any stype that contains a

distinguished copy of ite type) ,

15) If f is a functional symbol of domain

an stern of stype R, we associate the coarp08ite :

and type andR S e

H fd) 1 s
\ t t /

\ R /

(notice that since H is a donain of t , it is gjnultaneously a donain of

each term in the stern e . Then, the arrow e in the diagram is deternined

by the universal property of the product and the arrows associated to each

term in C)

16) if + is a formula and x is an svariable of atype R , we
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8sociate the arrow that classifies the extension of + associated to the

stype (R,H) (cf. all in 11.3)

F(*,y) I +](RIH) ' R xH
{x 1+)R : H ' nCR)

Here y is any appropriate sv&riable of stype H , for the neaning of

[ 1 ] see below. (notice that since H is a domain of {x 1+}R , (R,H) is a
domain of +) .

Fornulae To the formulae of E they will correspond objects in C .. More

precisely, to each formula + and each domain H of + (cf . Definition 2.1) ,

it is associated a subobject of H , denoted [xI+]H , (here x is any

svariable of stype H such that all its variables are different) . This

subobject is called the t'extension" of + associated to A . Recursively :

17) if t is an stern of stype R and A is a predicate symbol of

domain R , we associate the pull–back ( inverse image) (cf . 11.2)

[xIA(t) ]H I A

T , T
a t 1 R

(notice that since H is a domain of Ad) , it is a domain of t) .

( inverse image) :

[x It= C) ]H ' S

T Yds

H (t’e) I SxS

Where dS indicates the diagonal of SxS (notice that 8ince H is a

domain of + , it is simultaneously a domain of t and of e) +

- 13 -



19) if P is a term of type nCR) and t is an stern of stype R , we

associate the pull-back (inverse inage) :

[x jt€P]H 1 eR

T ,,_. T
H (t’P) I ba(R)

Where eR is the generic (or nearber8hip relation in R (cf . CII in
11.3) . (notice that since H is a domain of + , it is simultaneously a

domain of t and of P) .

110) This is clear. See LIC) in t2. 1 and 03 to 07 in 11, 1. We associate

[xjFALSE]H = OH

[xITRUE]H = IH

[x 1+ V P] H = [x 1+ IH V [x p] H .

[x 1+ A ?]H = [x 1+]H A [xjP]H .

[xI+ –' P]H = [x 1+]H –' [x IP]H .

[xI +]H= [xI+]H .

(notice that H is simultaneousjy a domain of + and of Y) .

III) See C9, 010 and the definition of product in 11.1. If x is a

variable of type R and + is a formula, we associate :

[yI (Ix>R +]H = gn[(x,y) I+] (RIH)

[yI (vx>R +]H = VT[(x,y) l+](RIH)

Where y is any appropirate 8v&riable of st),pe R , and r is the

projection Rx H n , H in C . (notice that since H ia a domain of the

quantified formula, (R,H) is a domain of the unquantified formula) .

This finishes the description of the semantics of the language E in a

topos C .

- 14 -
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Theorem 2. A sequent + b y of the lanWage z follows froal the axioa18

and rules Al to A14 if and only if given any interpretation in any toPos C ,

[xI+ IN c [xI tIR as subobjects of R in e .

The adequacy of the axions and rules Al to A14 is not a big surprise. As

for the completness, a logician wi11 notice that the methods of section 13

will provide a construction of the free topos on the language 2 ,

automatically furnished with an interpretation. (notice Proposition 1 in

II.4) . For a proof of all this see [1] .

Conclusion. We see that Lawvere solved the contradiction between syntax and

semurtics. Conceptualizin8 the first, he made out of the two only one.

As a fina1 cormlent, we mention that Lawvere also defined a natural numbb.

ob,ject IN by means of a universal propety C) . This property governs the

beahavior of an intuitionistic type for natural number varjables, which can

then be added to the language g , together whith the corresponding L) stepts

in the formation of terms and the corresponding A) rules or axiom. A

language g enriched in this way corresponds to the mathematical concept of

"Elementary Topos with Natural Nunber Object" .

Also, it is clear that my Topos c has an associated language Z which

interprets in itself . In this way we do "internal mathematics" in c as if C

where the category of Sets. But using naive intuitionistic reasoning.

A word about Kripky–Joy al Semantics. Given an object R in a toPO s C , a

subobject A ) IR is characterized if we know which "8ection8" X –l R
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factorize (X –, A)__+ R) ; (X _, R) , where X ranges over the objects

of C . The rules that char&terize the extensions :

G i v e n X r 1 ][][ e X 1 [ 11H:IF 1 siF ] 11t

such and such happens

for the eight fornul8e in ilo and Ill are called "Kripky–Joyal Smantic8.

This was discovered by A. Joyal , which generalized Kripky Smantic8 to general

Topoi .

Je veux remercier Mine Orieux, de 1’UA 753, CNRS, avec qui ce fut un grand

plaisir de travailler pour la raise en page de ce m&nu8crit.
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On trace forms of algebraIc functIon fIelds

*)
Alexander Prestel

1. IntroductIon and results

Let L/K be a fInIte separable fIeld extensIon . The trace form

of L/K is the followIng symmetric bilinear form over K

Lxl + K I (x,y) - Trl/K(x-y)

This form wIll be denoted by Tx (L, 1 ) . If P is an ordering
of K , it is well-'known that

sgnpTK (L , I ) = # { extensIons of P to L) .

Thus every trace form has totally posItIve sIgnature over K ,
1 ,e

sgnpTK (L , 1 ) : O for all P C XK ,

As usual Xx denotes the set of all orderings of K . Therefore

every (regular) quadratIc form p over K whIch is WItt

equIvalent to some trace form over K has totally posItIve

signature .

In 1 C-PJ the question has been raIsed whether for algebraIc

number fIelds K the converse also holds , I. e . whether in thIs

case every regular quadratIc form p which has totally posItIve

signature over K is WItt equIvalent to a trace form TK (L, 1 )
for some finIte extensIon L/K . Conner and PerIls succeeded in

pravingthls in case X = O . In a recent paper W. Scharlau ISch1 1

') The result of thIs paper has been announced at the Conference

SId QJ?Prrjt:r RRrTFoc7;dMJ:Ri!{fIJ%E?i5 LT Geometry ’ Corvallls’ July 1986’
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gave a positive answer for all number fIelds , reducIng the

general case to the 1-dlmenslona1 case already solved in [ E-H-P] •

In the 1-dImensional case p = <B> , the condItIon of totally
positIve sIgnature just means that B is a sum of squares in KB

The maIn result of thIs paper is

MAIN THEOREM Let X be an algebraIc functIon field in one

variable over a real closed fIeld R . Then every regular

quadratIc form P whIch has totally positive sIgnature over K

is Witt euqivalent to some trace form TK (L , 1 ) .

The strategy of the proof is the same as in tScht] : reducing first
the general case to the 1-dImensional case , and then proving the

1-dimensional case .

Scharlau 's reductIon step used the two facts that algebraic

number fields are hilbertlan (1.e . satIsfy HIlbert 1 s Irreduclblllty
Theorem) and have only a finite number of orderlngs . WhIle the

first fact is stIll true for algebraIc functIon fIelds , the

second no longer holds (except for the case Xx = g) + A substItute
for this second fact will be that every algebraIc functIon fIeld

in one variable over a real closed fIeld R (as well as every

algebraic number fIeld) allows EffectIve Dlagonallzatlon tED)

of quadratic forms (see [W] and [ P-W] ) , 1,e . for every quadratIc

form p over K there is a dlagonallzatIIon

such that for each P E X., we have
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dI+1 C P + dl ( P .

ThIs means that - Independent of P - the posItIve elements

d1 always are on toP of the negatIve ones ,

The fist theorem we prove corresponds to Scharlau 's reduction

step .

+
THEOREM 1 Let K be a hilbertlan field of characteristic:' zero ’

satIsfyIng ED , Then every regular quadratIc form n having
totally posItIve signature over K is IsometrIc to a scaled

trace form TK (L, B) for some fInIte extension L/K with B
being a sum of squares in LX.

A scaled trace form TK (L, B) is given by the smetrlc bilinear
form over K

LXL + K , (x,y) - Trl/K(Bxy)

where L/K is a fInIte (separable) extension and B C L .

It is easy to prove (see e .g . [Sch2 ] ,Ch . 3 , Theorem 4.5) that
for every P C Xx

sgnpTK (L,B) = (extensions P ' of P to L s . t . B C P 1 >

{extensIons P ' of P to L s . t. -B C P ' )

Thus as a consequence we have

PROPOSITION Let T,, (L , B) be a scaled trace form wIth B C L .

Then B is a sum of squares in L if and only if for all P C XK

sgnpTx CL , B) =/ ( extensions of P to L) .

) SInce the fIelds in the MaIn Theorem are of characterIstIc
zero , we wIll restrIct ourselves to thIs case .

4
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The second theorem we prove wIll correspond to Corollary 1 of

[ E-H-P] . We wIll say that a fIeld L satIsfies the Norm Theorem

(NT) of [ E-H-p] if for every sum of squares B C L whIch is not

a square in L , there is a natural nuBU3er m such that '-m is
a Norm of L (y/B) over L , I. e . the form <1, '- B,m> is lsc>tropIc

over L . By a theorem of witt (see [wI] and IE-L-P] > every totally
indefinite quadratic form of dimensIon >3 over an algebraIc

functIon fIeld L in one varIable over a real closed fIeld is

isotropic . Thus by takIng e .g . m = 1 , every such function field L
satisfies the Norm Theorem.

THEOREM 2 Let L be a hllbertlan fleld of characterIstIc O

satisfyIng NT . Then for every sum of squares B C LX the

1-dimensional form <B> is Witt equivalent to a trace form

TL (F , 1 ) over L for some extensIon F/L obtaIned by an
irreducible IInear trlnomlal Xm+1+aX + b C L[ X] of odd degree .

From these two theorems the Main Theorem follows at once :

Let K be an algebraIc functIon fIeld in one varIable over a

real closed field R and let p be a regular quadratIc form

which has totally p©sltlve sIgnature over K . SInce K is

hilbertian and satIsfIes ED , by Theorem 1 we fInd a fInIte
extension L/K and a sum of squares B C LX such that

PH TK(L.B) .

Since L is again an algebraIc functIon field in one variable

over R , it is hllbertlan and satIsfIes NT + Thus applyIng

Theorem 2 to L and B , we obtaIn a fInIte extensIon F/L such that
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D=

<B> T, (F, 1 ) in W (L) ,

UsIng the transltlvlty of the trace and Corollary VII. 1, 5 of IL] ,

we fInally get

P - TK (r, 1 ) in W (1<) .

At the end of the paper we will investigate the property NT

for functIon fIelds a little closer ,

ConcernIng notatIons and basic results about quadratIc forms we

refer the reader to IL] .

2 , Proof of Theorem 1

Since the case XK = g is already covered by Scharlau 's paper ,
we concentrate on the case Xv + g .

Let K be hilbertlan and satIsfy ED . GIven a regular quadratIc

form p of dImensIon n over K , we can then assume that p

is represented by a diagonal matrIx

d1.

0
. \\

:.) wIth dl ( Kx

such that for all P C XK

dI+1 ( P o dl ( P .

If we assume sgnp p : O for all P C XK , we know that each

dI wIth 1 S [y] I, , ,.m ,r ,q,,,,, 1. X . A, u,ual [ ; ]
denotes the Integral part of g . Thus after rearrangIng the
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elements of the dIagonal, we can assume that all a{ wIth cHd

index

d1 ,d3,d5, . . . . .

are sums of squares in K , MultIplyIng by suItable square8 , we

may in addition assume that

d2i-1 d21 + d2 j-1 bd2j

for all 151 < j :[y] . We require this condItIon also for

the case j = [9] and n odd after settIng dn+1 := dn

Using now Scharlau 's argument (see [Schl ] ) it sufflces to fInd

a symmetric matrix B C K tn ’n) such that

( i ) the characterIstIc polynomIal f (X) of DB is IrreducIble
over K ,

( Ii) f (X) has exactly sgnpp roots in the real closure (m) of K
with respect to P .

As it is explained in [Sch1 ] , by (i) there exIsts a B in

L = K[X]/(f)

such that

it L,B)TP

By ( ii) the number of extensions of P to L Is

L e

sgnpI I< (L ’ B)

Thus by ProposItion , B is a sum of squares in

In order to find such a matrIx B , let us start wIth the

symmetric matrIx
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The last square in the diagonal of Bn is the 2-by-2 matrix
If n is even , and the 1-by-1 matrix ( 1 ) if n is odd .

Forming the characterIstIc polynomIal

fo(x) = detn (DBo-xIn)

we find that

n (d21_ld21-X2) . 1 (X)
lsl£ [ ;J

where I (X) = 1 if n is even and 1 (X) = dH-X if n is odd .

By our choice of the di C K we see immedIately that

fo(X) =

sgnpr> =}\zelos of fo in (n) }

for each P ( Xv . Thus fn satisfies (ii) .

SInce for a fixed orderIng P all the zeros of fn in (in)

are simple , any matrIx Bp whIch has its elements very close
to that of Bn in (XII) yields a polynomIal

fp = detn (DBp-XIn)

which has the same number of zeros in (n) as fn . Actually ,

for a fIxed P C Xv we fInd some aD C Px such that for all

e j I C (m) wIth
1

a gp elj sPI:–
and elj = ejl
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the symmetric matrIx

Bp,c = Bo + e = (blj +elj )

yields a polynomIal

fp pc' = detn(DBp e- XIn)

having the same number of zeros in cm) as fn . Thus in
particular

sgnpp = 4(zeros or fpre in (m) ) .

As we wIll see there are always choIces of el 1 C K whIch make

fp c Irreducible over K ' ThIs gives a posItIve solutIon to (i) .
But now ( ii) can be guaranteed only for the orderIng P which we

fixed . Thus our problem is to fInd some el 1 C K whIch do the

job simultaneously for all P e Xx . This can be achieved in the
following way ,

For every P C Xx we choose aD C Kx as above and consIder the

subset Up of XK consistIng of those Q ( XK such that

sgnQp = # {zeros o£ fQre in (m) )

for all el j C (m) satIsfying

and elj = e 51 .

Clearly P C Up . As it is well-known Xx is a compact space

with respect to the topology generated by the subsets

H (c) = {P C Xv I & C P} c C K e
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The sets Up are open in thIs topology, ThIs is a consequence

of Tarskl 's Theorem on the EIImInatIon of Quantlflers over real
closed fIelds , in fact , it is not dIffIcult to wrIte down a

formula P (x1, . , . ,Xn , y) in the lanwage of ordered fIelds such
that

up = {Q C xK 1 (m) satisfies Q(d1, . . . ,dn,ap) ) .

By Tarskl 's Theorem there are polynomials

Pij.qI c z[x1,' '' ,XD,Y]

such that CP(d1, . . . ,dn ,ap) is equIvalent to
r S

X 1 ( c][ i ( (3 r Ia ]? ) = C) A j& 1P I j ( I(I r a ]? ) > 0 )
In all real closures (m) . AssumIng w. 1. o .g . that

for all I , we thus have

r S

1] ]P = y 1 591 E! ( ]P I j ( (i r Ia ]? ) )

qI (a ,ap) 0

Hence Up is open in XK . By compactness we can therefore find
a fInite cover

UP1 J' ' ' U UPm

of XK , if we now let

111aL = a P 1 + • • • + a g m

then the choIce

I j = a j w 1 t h y 1 j = y j I E K
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obvIously satIsfIes
1

(1 ) ! () e 1 j g () a
V

for all Q C Up and all 1 s v g m + Thus , if we set

BY = Bo + (a+:2 .) wIth Ylj = Yjllj

and

fy = detn (DBy-XIn) ,

by the definItIon of Up we obtaIn

sgnQ, = # \zeros or rv in (m) I

for all substItutions yI j C K and all Q C XK ' Thus fy
satIsfies (iI) . In addItIon we can choose ylj C K such that
f \r is also IrreducIble , thus also satIsfying (1) . In fact ,

g (x.1lj)

f : s : 1 P j )
with ge K[X,1lj]

As we will show in the next sectIon , g is IrreducIble over K •

Thus by the assumptIon on K beIng h11bertlan we fInd YI j e K
such that g (x , i11 ) ( KIX ] is IrreducIble . ThIs fInIshes the
proof of Theorem 1
LookIng carefully at the proof of Theorem 1 we can see that

after havIng used ED the rest of the proof actually yIelds
the following
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ADDITION LEMMA Let K be a hllbertlan fIeld of characteristIc

zero o U P 1 N TK (LI, Bl) for some extensIons Ll/K and some

sums of squares BI of Lj (for 1=1, 2) , then P 1 1 P2 N TK (L, B)

for some extensIon L/K and some sum of squares B of L .

In fact , by Scharlau 's argument we fInd swetrlc matrices Bi

such that (i) and (I1) holds for D1 B+ where D1 are syEtmetrJ c

matrices representIng Pi (for 1=1 , 2) . ConsIderIng now the
matrix

(:' ==)
we can follow the proof of Theorem 1 in order to obtain the
Addition Lemma .

Bo =

As a consequence we get

COROLLARY Every closed and open subset of the order space XK

of a hilbertlan field K is the imaSTe under the restriction

map of some finIte extension L/K .

Proof : Let A c XK be open and closed . Then
n Tni

1pIL L = y = H
(alj)

Clearly , the sets BI = /3 H (a1 j ) are the Images under thea +=1 AJ

restrictIon map for the fIelds

Tri

LI = K(/T3'''',y“G1 )

for 1 : 1 S n . SInce the trace forms PI = TK(L1, 1 ) have

non-vanIshing sIgnature exactly on B{ , the corollary follows
from the AddItIon Lemma ,

{}ED

ThIs corollary generallzes the correspondIng result of Andradas
and Gamboa for real functIon fIelds ( [ A-G] , Theorem 4.1 ) .
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3 . An Irreduclbllity result

The aIm of this sectIon is to prove the followIng

LEFDIA Assume that K is a formally real fIeld , For

1 St , jS n B ali ( K @ cIJ C Xx .
squares a C K- the characterIstIc polynomIal fn of the matrIx

An Yij = Yj I

is a quotient of an IrreducIble polynomIal gn C
n (a+Y?, ) .

1£i,jSn IJ

K[x,1lj ]
and

This lemma applied to the case

al j = diPlj and cij = dI

yields the result used in the proof of Theorem 1 .

Proof : We proceed by inductIon on n + For the use n

one obtains

91 = a11(a+Y11) + c11

As a polynomial in ' X this is clearly IrreducIble over Kt Y111

since c , , + O .

No\? let us assume by inductIon that n : 2 and for all m

the polynomial gm is IrreducIble and of degree m in X

n

Writing for moment ZI j for (a+Yij) -1 , we obtaIn

a12 +c12Z12,Xc11Z11a11

Z+Ca 21 1221fn det n

( a 1 1 + c 1 1 Z 1 1 M X ) f n + 1 + 1 + i I j ( a 1 1 + c 1 1 Z 1 1 ) ( aj 1 + c 3 lz 15 ) fn m ; ]
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fn_1 =

gn_1

TT ( a + 1r ei j )

I < II ign

f = f ) = = { n )
1l5+1 IN

1 in X I

ThUS we obtaIn

with
6 = g + 1 ( a + Y 1 2 ) 2 + p o + + ( a + Y I n j

1 n 1) :1 r t 1 C U 1 aL r 1bI1 13 f 1 1rI (I 2 ) . n (a+

A 5 a B P 0 1 y n 01t\ 1 a 1 1 D Y I I V11 e a V

g II = a q11r I I + B +11 1 1EI11p rI

A = X 6 a n d B = a T + C 1 1 6 + a a 1 1 6 + a X
a = T+al16
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If a and B would have a common dIvIsor, also 6 and T
would have one . If (a+Y?1 ) for some 1 < 1 would dIvIde T ,

then it would also divIde h(1'1) and hence cll or c11 whIch

is Impossible . SInce gn_1 is :IrreducIble and

degXgn-1
=

n-2

n-1 > degXY

there could only be a common divisor of 6 and T

But this would yIeld

if Y Oe

0=
1 + i r j ( a 1 1 + c 1 1 Z 1 1 ) ( a j 1 + c j 1 Z 1 j ) f n } ; I

Observing that

degXf£ Iit) <degXf£ liv)

for i + j one easIly sees that the hIghest coeffIcIents of X
cannot cancel,

If gn would be reducible in Y11 , then the highest coefficIents
of a and B in X would dIffer by a negatIve square from the
field

Quot(KItl5] (if j)+(Ir 1)) .

This is impossIble sInce they dIffer by a whIch 'ls a non-zero .

sum of squares in K , Thus gn is lrreduclble .
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4 o Proof of Theorem 2

Let f C LI X] be an IrreducIble IInear trlnomla1

f (X) = Xm+1 + aX + b

of odd degree . The trace form TT (F, I ) of the extensIon

F = LtX3 / (f) turns out to be (for a computatIon see [c-P] or Is] ) :

TT (F, 1 ) A'< 1,m, -md> in W (L)

where

d , mmam+1+ (In+1 ) m+lbm mod L2

If we would know in addItion that

d z B mod L2

and that -m is a norm from L ( a) over L (assuming that B is
not a square in L) , then the form <1, -B ,m> would be lsotroplc .

Hence the 2'-fold Pfister form <1, -B ,m , '-Bm > would be zero in W (L) .

Thus we would get

T, (F , 1 )N<B> in W (L) ,

We are therefore lookIng for such a trlnomial.

Let us fIrst assume that B is not a square in L , sInce other'.

wIse we may take F = L . Next let us assume w.1..o .g . that

is a norm from L ( /B) and m is even . Now let

B1 = mt



The polynomIal

f (X, Y) = Xm+1 + (BIY2-r)X + (BIY2-r)

Is IrreducIble in K[ X, YI . ThIs follows at once by EisensteIn 's
Criterion if we consIder f as a polynomIal in X over Lt YI ,

Since L is hilbertlan , we fInd y e Lx such that

f (X) = Xm+1 + (Bly2-r)X + (Bly2-r)

is Irreducible in K[ X] .

If we now set

a = b = Bly2 -r

we have found the desIred linear trinomial of odd degree .
In fact , we have (observing that m is even) mod 1,2 :

d = mmam+1 + (m+1 ) m+1 bm

= mma + (m+1 )m+1
2

= By

=B

This fInIshes the proof of Theorem 2 ,

It may be interestIng to observe that the converse of Theorem 2

also holds , I. e o assumIng that in L every sum of squares B is

\\’itt equivalent to a trace form TT (F, 1 ) for some F obtained by
, linear trlnomial Xnl+1+ ,X +b wIth m ,v,„, th,„ L ,,ti,fl,,
NT

In fact , by thIs assumptIon we have

<B> - <1 ,m, -rna> in W (L)
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wIth d as above .. From thIs WItt equIvalence we obtain the
lsometry

< B , 1, -'1> A <1,m, -Ind>

whIch clearly Implies

B e d mod LZ

In particular we obtaIn that the 2-fold Pflster form <1,m ; -mB , -B >

is zero in W (L) . But thIs ImpIIes that <1,m , -D > is i6otroplc .
Thus in case B is not a square in L , thIs tells us that -m
is a norm from L ( a) .

5 , More about NT

The remark at the end of the last section shows that NT is in

some sense essentIal for the result of the MaIn Theorem . It wIll

be thus InterestIng to ask in general which functIon fIelds are

satIsfyIng thIs property , For ratIonal functIon fields we can

gIve a complete answer ,

THEOREM Let k be a formally real field . Then the ratIonal

functIon field k (t) satisfies NT if and only if k is

hereditarlly pythagorean , 1. e . k and all Its fInIte formally

real extensIons are pythagorean ,

Proof : in [ B] ,Ch . III, Theorem 4 , it is shown that if k is

heredltarlly pythagorean , in k (t) every sum of squares B is

equal to a sum of 2 squares. Thus the form <1, -B , 1 > is

isotropic over k (t) .



Conversely, let us assume that there is a fInIte forMally real

extensIon k1 of k whIch is not pythagorean , Then there is some

a C kl such that

y = 1 + az

is not a square in k1. We consIder the extensions

k2 = k1 (G) and k3 = 1,2 cM ) .

ObservIng that

(a-V ) (-It-y ) = 12-.1 = X(V-.1 ) = ya2

we see that k3/k1 is cycIIc with the automorphlsm

a (#7:; ) =HI

generating the Galols group. The unIque extension of k1 of

degree 2 in k3 is k2 o SInce k2 is formally real, we fInd that
for every m C II

On the other hand k3 is not formally real, in fact, T > 1
implies X > a . DenotIng by f (t) the irreducIble polynomIal

of some generator of k3 over k , we thus fInd polynomIals
f 1 , . . . ,fr C kIt] such that

-1 = ff +. . .+ f: mod f

and

deg f I < deg f ,

If we now assume that k (t) satisfIes NT , we could fInd some

m e IN and 91, 92 , h C k[ t ] such that
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1Hr1]E1 2 = g f = ( 1 + 1 1 1 f i ) 9 :

SInce £ dIvIdes 1+££12, w, may a,,um, (,rt,, ,ance11rng)

that f does not divIde h or 91 . Thus computIng mod f we

would get that -m is a square in k3 , ThIs contradiction
proves the theorem,

This theorem in partIcular shows that the fIeld Q (t) does not

satIsfy Theorem 2 . More precIsely , considerIng the fIelds

k = k1 = Q , k2 (a) , k3 = Q( Pm) we see that f = t4 +4t2 + 2
and

-1 = (t2) 2 + (2t) 2 + 12 mod f .

Thus we find that the sum of squares

B= t4 +4t2 + 1 C od)

Is not witt equIvalent to any trace form of a fInite extension

of Q (t) given by some IInear trinomial of odd degree .

According to [E-L-p] and [W] a formally real function field in
I

one variable over a fIeld k satisfIes ED if and only if k
is hereditarily euclidean , I.e . k and all Its finIte formally

real extensIons are pythagorean and have just one ordering.

Thus the maIn theorem already holds for algebraIc functIon fIelds

in one varIable over a heredltarlly eucIIdean fIeld , sInce also

WItt' s Theorem on totally IndefInIte quadratIc forms of dImensIon

23 holds for such functIon fIelds (see [ E-L-p] )
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