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ORDRES DE NiVEAU SUPERIEUR, EXTENSIONS ET CORPS CHAINE-CLOS

par

Danielle GONDARD

(Université de Paris VI)

{ 1 - NOTIONS PRELTMINATRES |

1 - Notion d'ordre de niveau supérieur.

IT s'agit de la notion d'ordre de niveau supérieur définie par E. Becker, en

1978 dans [Be 23 & 1'I.M.P.A., sur un corps commutatif K ,

n
C'est un préordre T de niveau 2" (i.e, T+TcT, T.TcT, K2 cT), propre

{(i.e. -1¢ T ou de maniére équivalente TN-T = {0} ou encore car K = 0

et T # K), maximal.

n-1
L'ordre sera dit de niveau exact 2" si de plus K2 ¢ T.

De tels ordres ne peuvent exister que si car K = 0 .
En fait on a une premiére caractérisation des corps qui admettent des ordres de

niveau supérieur :

Les trots propriétés ci-dessous sont équivalentes

(i) K admet des ordres de niveau 2"
o p n
= U LI xS, (%) hhes, x)€KP))
opslods=l P
(i11) ear K=0 et K2 #K

n n
(i1) -1 K% (on zK2

(iv) ~-1¢ zK°

Par la propriété (iv) on déduit que les corps admét#ant des ordres de niveau 2"

sont emactement les corps ordonnables,




On peut alcrs étudier le niveau d'ordre n > Sp d'un corps non ordonnable :

on appellera Sh le plus petit entier tel que -1 soit somme de Sn puissances
2"-iemes dans Te corps. Les problémes sont alors de déterminer le niveau d'ordre n
d'un‘corps non ordonnable donné et de déterminer en général quels types de nom-
bres peuvent &tre des niveaux d'ordre n de corps non ordonnables (pour n=1

on sait que les S, sont des puissances de 2).

. i . . n
Les ordres de niveau supérieur sont en relation avec les sommes de puissances 2
dans le corps, plus précisément on a :

n .
K% = Np ol p décrit 1'ensemble des ordres de niveau 2"

. {de niveau

3 " m
exact ou non, donc en fait tous les ordres de niveau exact 2™ avec msn).

Théoréme Fondamental -

Les ordres de niveau 2" sont donnée par les parties pCK telles que :

p#K , O€Ep , p+pcCp ;
p=p- {0} estun sous groupe de K et K/p est eyelique avee |K/p|
divise 2" .

L'ordre est de niveau exact 2" si [k/p| = 2" .

DANS TOUTE LA SUITE, K SERA UN CORPS COMMUTATIF, DE CARACTERISTIQUE O ,

n o P n
ORDONNABLE ET ZK2 DESIGNERA L'ENSEMBLE u {: x? / (x1 - xp)e Py .
p=1 =1
2 - Exemples
a) K =R((X))
pour tout i>22 :
P. ={Z% a,t):a>0 et m =0 (Zi) ou a <0 et m= 21-"1 (21)}
i jem 9 m m

est un ordre de niveau 21 de K .
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Théoréme
Sott K un corps ordonnable, alors
ou tout ordre de niveau supérieur est un ordre

. . . n
ou pour tout nE€EN il existe des ordres de niveau exact 2 .

Il s'agit alors de déterminer quels corps rentrent dans 1'un ou 1'autre des cas

ci-dessus.

b) Parmi les corps n'ayant pas d'ordre de niveau supérieur distincts des vrais

ordres on peut citer

- Les corps ordonnables n'ayant qu'un seul ordre
- Les corps ordonnables dont tous les vrais ordres sont archimédiens

- Les extensions algébriques de corps n'ayant pas d'ordre de niveau supérieur.

On a donc par exgmple les corps réels clos, et les corps de nombres algébriques
réels qui ne peuvent admettre d'ordre de niveau supérieur distinct des ordres

usuels.

Les résultats ci-dessus découlent en fait du théoréme suivant :

Théoréme :

Soit K wun corps ordonnable.
Les propriétés ci-dessous sont équivalentes :
(1) Tout ordre de niveau supérieur est un ordre
(1) Tout semi-ordre normé de niveau supérieur est un ordre
(111) Tout anneau de valuation réel a un groupe des valeurs 2-divisible
. 2 ik
{iv) £K" = LK° pour tout n

2” 2n+1
(v) zKe = EK pour un n

On peut donc dans les corps n'admettant pas d'ordre de niveau supérieur non
trivial s'intéresser & la décomposition des &léments totalement positifs en

. n . . LY eas
sommes de puissances 2 (nombres de puissances intervenant, constructibiliteé,...



¢) Corps admettant des ordres de niveau supérieur non triviaux

~ Tous les corps non de Pasch (ou non S.A.P.) par exemple Q(X}

- Mais

certains corps de Pasch peuvent admettre des ordres de niveau supérieur

non triviaux par exemple R{(X))

- Q((x}) .

Enfin si un corps K admet exactement deux ordres (vrais) et des ordres de niveau

supérieur non triviaux, alors il existe a € K tel que

(i) p" = K uax K
p = ZK2 U-oact K2 sont les deux ordres de K .
(i1) p, = EKZn U - azn—l ZKZn est pour n>2 1'unique ordre de niveau
exact 2" .
(i) EKzn-l = ZKzn U a2n~1 ZKZn pour tout n>2
(iv) Zkzn est un préordre de n%veau supérieur tel quelpour tout sous

SN
groupe maximal U , sur ZKZ » UV {0} est un ordre.

3 - Relations avec la théorie des valuations.

Soit K un corps ordonnabie, P un ordre de niveay n .

Remarquons que Q<K , NCp et donc Q*cp .

On pose :

Ap) = A
1p) = 1

{aek : 3beq’ , braep)

(Q,p)

(0.p) = (a€K : ¥begq® , bracp}

On a alors le théoréme dii & Becker suivant.

Théoréme

1) A(p)

est un amneau de valuation de K d'idéal maximal I{p) .

2) P induit sur le corps résiduel k = A(p)/I1(p) wn ordre (vrai) P archimédien.
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A(p) est done réel puisque % est ordomnable

(p=1{a+ I(p) avec a€A(p)np)) .

On dira qu'un anneau de valuation A est compatible avec p et on notera A~p
st 1+lcCp .

Alors p est un ordre de niveau supérieur de k = A/l et le niveau de p est
inférieur ou égal au niveau de p .

{Donc A est réel car k ayant un ordre de niveau supérieur est ordonnable).

Un théoréme relie alors A(p) et les anneaux de valuation compatibles avec p :

Théoréme :
e

Un anneau de valuation A est compatible avee P si et seulement si A(p)CA .

4 - Une autre présentation des ordres de niveau supérieur

Dans le cas des ordres vrais, si p est un ordre donné sur un corps K on peut
définir un homomarphisme ap du groupe K dans le groupe {+1} par op(x) =1

si X€p est cp(x) = -1 si XxX€-p .

On remarque que le noyau de cet homomorphisme est additivement fermé, i.e.

si cp(xl) =1 et Up(XZ) =1 alors cp(x1+x2) =1.

Inversement si o est un homomorphisme de K - By = {+1, -1} , avec Ker o

additivement fermé alors

p = Ker ogU {0} est un ordre sur K .

On peut effectuer une présentation analogue pour les ordres de niveau 2" .

Définition
On appelle signature de niveau 2" un homomorphisme du groupe K dans

n
yn = {2€0 / 22" = 1} , dont le noyau est additivement ferms.

La signature x sera de niveau exact 2" si 2" est 1'ordre de Im x



Théoréme [B - Ha - R] .
Un sous-ensemble pCK est un ordre de niveau (Resp. de niveau exact) 2" si

et seulement si p est le noyau d'une signature de niveau (Resp. de niveau exact)

2n

Remarquons que x n'est unique que dans le cas des ordres vrais ; dans les
autres cas X; et X, déterminent Te méme ordre de niveau supérieur si et seule-

ment si il existe 1T , automorphisme de uzn . tel que 1o Xy = Xop -

Notations - On pose alors pour toute signature x de K :
A(x) = A(Ker x U{0}) = A(p)

I{x) = {a€ K| ¥neEN :

Sl

ta€ Ker y 1}

(i) Alors A(x) est un anneau de valuation d'idéal maximal I(x). Le
corps résiduel A(x)/I(x) est ordonnable.

(11) x induit la signature d'un ordre archimédien p de A(x)/I(x) via

e+ I{x) -~ x(e) , e €A(y) (unités de A(x))
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Il - Ordres de Niveau Supérieur et Extensions

Soit L/K une extension du corps K .
3oit p un ordre de niveau supérieur de L ;
Ators pNK est un ordre sur K et le niveau exact de Knp est inférieur ou

égal au niveau exact de p .

En effet on a k/kr\ﬁ “ i/é donc k/kf\ﬁ ext cyclique.

Le niveau des ordres ne peut donc que croftre lors des extensions de (Ksp).

Définition II-1

On dit que P est une extension fiddle de KNp i les miveaux exacts de p
T

et KNp sont égaux done si [L : 5] = [k : kf\b]

31 on adopte la présentation avec les signatures on obtient : Soit K un corps
muni de 1'ordre de niveau supérieur Pk - Soit x une signature telle que

Py = Ker x , alors pour toute extension fidéle (Lop) de (Kspy) 11 existe

une signature X de L telle que :

It

x (b) = x(K) , Ker x, =p et

Xi_,- X

K

Toutes les extensions ne sont pas fidéles :

Exemple TI-2 - K = §{X) est non de Pasch et a donc des ordres de niveau exact 2'

pour tout n . Notons pzn un tel ordre alors tous les pzﬁrwm sont 1'ordre
usuel de @ donc de niveau 21 s puisque @ n'a que 1'ordre usuel comme ordre

de niveau supérieur. .



Exemple 11-3 - Soit K =R((X)) et L = K¢/F) (ou L =R((x/2))).

Sur K 1) existe deux ordres usuels Po et Py tels que Xezpo et ~X€|o1 et

Py et Pq étendent 1'ordre de R .

Py s'étend en deux ordres vrais sur L » Mais p; ne s'étend pas en un ordre

sur L . ‘
P; s'étend au seul ordre de niveau 2° de L qui est explicitement :
P; ={ & a X)) : a>0 et m=0 (4) ou
IR m
J=m
a <0 et m=2 (4)} .- ;

Ici de manigre générale 1'ordre P de niveau 2M » m=1 s'étend & 1'unique

2m+1

ordre de niveau de L § Te niveau ne peut que croitre.

La théorie des extensions des ordres de niveau supérieur a &té développée par

Becker [ Be 2] puis simplifiée et améliorae par Harman et Rosenberg [H-R)

Théoréme I1-4 -

Soit p un ordre de niveau exact 2" sur le corps K .
Soit L une extension queleonque de K .

Les conditions suivantes sont équivalentes :

(1) p admet une extension fidéle p a L

n
(1) T={ & a X? |la.ep x; €L} est un préordre propre
fintes
v n
(1) -1¢( 5 a, % Jaep , x;€L)
finies

Démonstration

(11)  (ii1) est évident car T est toujours un préordre.

(1) = (i) car T est le préordre de niveay 2" engendré par p et donc
TCp . Si T n'était pas propre alors T = K et aussi pP=K ce

qui est impossible.
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(i1) = (i) Si T préordre de niveau 2" est propre alors tout ordre 3 tel

que TCp est une extension fidéle & cause du plongement

Kip = L/p

Remarque sur (iii)

n
On a donc -1 ¢ Ex? » donc i1 existe bien un ordre de niveau (non forcément
exact) 2" sur t y mais c'est en fait beaucoup plus car les a; ne sont pas
oh

n
forcément dans EK2 (ZK est seulement contenu dans p) et p est un ordre

de niveau exact 2" .

Dans 1a suite de ce § nous allons chercher quand i1 peut exister des extensions

fidéles de (K,p) pour une extension algébrique L de K .

Théoréme 1I-5

Soit K un corps muni d'un ordre de niveau 2" , P .
Soit L une extension algébrique de K .
Les propriétés suivantes sont équivalentes :
(1) {1 existe une extension fidéle (L,p) de (K,p)
(11) pour toute sous extemsion finie F , KCFCL , il existe une extension
fidéte (F, pF)db (K,p) -
: s e e 2"
(i) = (i1) est évident (s'ilexiste F tel que -le€¢ a; Xy s a,€p et x;€ F

alors c'est aussi vrai dans L).
n

(11) = (i} En effet d'aprés le Théoréme I1-4 si —lezf.z‘ a; x? avec a.,ep
inie
o
et xieL alors -~le h) a; X5 avec a;€p et x1.EFI s

iel fini

extension finie de K telle que les {x;}

F soient dans FI .

I iel

ce qui est impossible.
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Théoréme 11-6
Soit P un ordre de nivequ 2" du corps K .
Soit L wune extension algébrique de K .

Alors (K,p) admet une extension fidéle (L,p) dans les cas suivants
(1) [L: K] est impair
(2) L est contenu dans la eldture pythagoricienne de K

(eldture pythagoricienne K de K est définie par
si aetb sont dans K, \/a2+b2 est dans K)
De plus dans ces deux cas on a clairvement :

n n
gL K= 5K
La démonstration utilise dans les deux cas

te lemme donné ci-aprés et dont la preuve trés technique peut étre trouvée

dans [Be 2] .

Lemme II-7
Soit p un ordre de niveau supérieur de K , compatible avec la valuation v 3

soit p 1'ordre induit sur le corp résiduel k .

Soit (L,v) une extension de (Ksv) avec corps résiduel g .
Si (i)  e(v/v) est impair

(1) p' est une extension fidele a g de P s

Alors p admet une extension fidéle paLl et p = p

Démonstration

Par Te théoréme 1I-5 i1 suffit de faire la démonstration pour L/K algébrique

finie,
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Cas 1., Soit v 1la valuation associée 3 A(p}.
On sait déja que p est un ordre de k .

Les extension ;i de v alL satisfont

fL : K] donc

1

m

-
1]

1 modulo 2

[ng]
14
-+
(111

On peut donc trouver une extension v avec e et f impairs.
Alors (L, V) satisfait les conditions du Temme 11.7 et donc P peut

étre étendue & un ordre de 1'extension impaire ¢ ,

Las 2 . D'aprés la construction de Ta cléture pythagoricienne i1 est suffisant
de considérer le cas L = L(\/IIQE).
On prend v la valuation associée a A(p) et k 1le corps résiduel
correspondant,
Soit (K, v) 1la cléture hensélienne de (K,v) .

ZGEFZ » v est totalement décomposée dans L c'est-a-dire

Alors si 1l+a
que e=1,f=1,¢g=2.

Autrement a doit &tre une unité de K , et 1+3% & K2 .

Dans ce cas L est une extension non ramifige et g = k&/1 + 52). On a

alars les conditions du lemme I1.7 qui sont vérifiées.

Pour terminer ce paragraphe donnons 1'énoncé ci-dessous qui montre une limitation

dans le nombre possible des extensions fidéles.

Théoréme I1.8

Soit L une extension algébrique finie de K avee p ordre de niveau supérieur

donné sur K .

Alors le nombre d'extensions fidéles de (K,p) ¢ L est inférieur ou égal 4
[L: K} .

La démonstration trés longue et technique peut étre trouvée dans [Be 2] .
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IIT - CORPS REELS CLOS GENERALISES

Par le Temme de Zorn il existe une extension algébrique réelle maximale
admettant une extension fidéle de 1'ordre de niveau supérieur p, soit
(R,B) cloture réelle généralisée de (K,p).

Bien slr si p est un ordre habituel, on retrouve la cldture réelle

usuelle et B = R2.

Théoréme III-1 (énoncé de Lam [L]).

Soit (R,B) la cléture réelle généralisée de (K,p) avee p ordre de niveau
exact supérieur ou dgal 4 22. Alors on a les propriétés suivantes :

@ R a exactement deux (vrais) ordres Q et Q' et pour tout m=2
un ordre unique de niveau exact 2.

C) S R1 et R2 sont des cldtures réelles (des vrates) de (R,Q)

et (R,Q') respectivement alors
= e
R R1 R2 .
() R a une valuation hensélienne avec corps résiduel réel clos.

Zm 2m 2m
(@ R est pythagoricien pour tout m (R +RS = R® )

C) R n'a pas d'extension de degré impair.

Donnons quelques indications sur la démonstration des propriétés (:) et (:) 5
le reste pouvant &tre trouvé dans [Be 2].
pour ()
Soit 3 une extension fidéle de p & R ,.et soit v 1la valuation sur R
associé a A(g). D'aprés Tes maximalité de (R,B), v est henselienne et

le corps résiduel correspondant est réel clos.

pour ()
. 2" 2" . 5 n
Soit X~ + y  €R. Pour montrer que ceci est une puissance 2  on peut
supposer x =1 et yEEA(ﬁ). Si ye€ I(B), ¢'est terminé puisque

1+ 1(3) est 2-divisible. Supposons donc y¢€ I(B). Le corps résiduel
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oN n
étant réel clos il existe une unité z telle que 1+y~ = i+z
n n n n n
avec 1€ 1(§). Alors 1+y% = 2% (14272 1)e 2% (1+1(P))CR® et

ceci termine la démonstration.

Remarque : on aurait pu tenter de déduire (@ de (@) mais (@ n'entratne
pas (:) . Si R1 et R2 sont des sous corps réels clos de {§ induisant
des ordres différents sur erlR2 » Rosenberg a pu montrer que er\R2

n'est pas pythagoricien pour tout m=>2.

La question naturelle qui se pose alors est de regarder s'il y a une certaine
unicité de ces cldtures réelles. Malheureusement en général deux cldtures
réelles généralisées de (K,p) ne sont pas K-isomorphes. Aux paragraphes
suivant nous introduisons d'autres notions pour essayer d'obtenir une sorte
d'unicite,

Pour terminer cette partie nous allons citer quelques caractérisations qui

permettent d'obtenir des cldtures réelles K-isomorphes.

Théoréme I1I-2

Sott K wun eorps muni d'un ordre de niveau supérieur p, Soit R1 et

R, deux clotures réelles généralisées de  (K,p).

Alors R1 et R2 sont K-isomorphes si et seulement si pour tout nEN ,
2" 2"

Ry NK = R2 K.

Remarquons que si P est un ordre usuel {niveau 21) alors les clotures
n 2 2" 2
Rl et R2 = R2 , pour tout n=1.

R§F1K = p ce qui montre bien 1'unicité

réelies R1 et R2 vérifient Rf
n n
Donc Rf Nk =RiNK = p et RS Nk

des cldtures réelles dans la théorie classique d'Artin-Schreier.

Théoréme 111-3

Soit K wun corps, p un ordre de niveau 2" aqvec n>? donné, alors

deux clétures réelles géndralisdes de (K,p) sont K-isomorphes si et
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seulement si IB/82f=2 ou B  désigne le groupe des valeurs de ia

valuation v associde @ A(p).

Théoréme I11-4

Sott K un corps. Un ordre p de miveau arbitraire a une cldture
réelle généralisée unique a K-isomorphisme prés si et seulement si pour

toute valwtion réelle sur K de groupe des valeurs 8 on g |B/82|€2.

Un corps de Pasch vérifiant entre autres conditions celle du théoréme I11-4,

on en déduit que tout corps de Pasch, admet pour tout ordre de niveau

Supérieur une cldture réeile généralisée unique -

(on rappelle que d'aprés 10-11 de (L] un corps ordonnable K es£ de
Pasch si et seulement si les deux conditions suivantes sont réaiisées
(1) pour toute valuation réelle sur K de groupe des valeurs &,
ona |[B/8%|<
(2) si ]B/BZI=2 alors le corps résiduel correspondant doit avoir un seul
ordre ;

et m rappelle que pour un corps ordonnable &tre de Pasch équivaut & &tre sap).

On obtient donc ainsi que R{(X)) par exemple qui est ordonnable et de
Pasch admet pour tout ses ordres de tout niveau une cldture réelle

généralisée ynique & R{(X))-isomorphisme prés.

Théoréme I11-5

St le corps K muni de 1l'ordre de niveau 2" » N=22, admet plus d'une
classe d'isomorphisme de clétures réelles généralisées alors il en admet une

infinité.

C'est par exemple le cas de R(X,Y) qui admet donc une infinité de cldtures

- . - . . n
réelies généralisées pour chaque ordre de niveau supérieur 2 avec n>2.
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Iv - CHAINES D'ORDRES DE NIVEAU SUPERIEUR ET EXTENSIONS DE CHAINES

Les notions et résultats de cette partie sont essentiellement dus & Harman et

peuvent &tre trouvés dans [Ha].

Définition IV-1

o

Soit K un corps ordonnable. On définit une chaine de K, notée (p.)

1°0
(1} p

(2) pour tout i=2, P, est un ordre de niveau exact 2'.

par :
o et p; sont des ordres (vrais) distincts.

(3) pour tout i>1, p,U-p, = (py_1 NP IV-= (p, 1 Np)

Exemple IV-2
Seit K =R((t))

- J
p.={Z a,t'|a >0}
0 jem J m
pp={Z a, t'{a >0 si m=0 (2)
- J m
j=m
ou a_<0 si m=z1 (2)}
Vi, i=2
p, = {2 a,tV|a >0 si m=0 (2")
i P m

ou a <0 si msz 2t (2"}

Viz? P; est un ordre de niveau exact 2'.

i N M
Il est clair que po:DpO pT._le0 Pi-
Vérifions 1a condition (3).

Soit x € pi_lf\po. Alors le premier terme non nul de 1a série a un coefficient

i-1

a >0 et m=0 (277), donc m = a2t

2p alors m = 2p2i'1 =0 (2') et xe€ P -

2p+l alors m = (2p+l) 2171 2,0l (2") et -xe p; donc x€&-p,..

1

Si A

Si A

On a donc bien xE€ pi—lr‘po = X € P; ou x& -P;-

De méme si x€-(p, .Np ), -x€(p, ;Np ) et -x€(p,U-p.) par le raisonnement
i-1 Yo i-1 i i

0
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précédent et finalement x€-p. ou xE€p

j i’

Donnons pour commencer quelques théorémes montrant des cas ol 1'on peut avoir

1'existence d'une chafne d'ordres de niveau supérieur.

Théoréme IV-3

- ’ n - - o~
51 p est un ordre de niveau exact 2 aquee n=22 aqlors il existe une chatne
o

) avee P, = P.

(pi)g

i

Il existe donc des chaines d'ordres de niveau supérieur dés qu'il existe de

vrais ordres de niveau supérieur.

Théoréme IvV-4

Soit K wun corps muni Ze deux vrais ordres Po et Py tous dewx compatibles
avec une valuation v et tels que 50 = 51 dans le corps résiduel k.

<«
Alors il existe une chaine (pi)0 d'ordres de niveau supérieur commengant

par pO et pl.

Ces deux théorémes sont obtenus comme corollaires du théoréme IV-5
suivant et dont les démonstrations se trouvent dans un preprint [Ha-R]

apparemment impossible & obtenir...

Théorédme IV-5

Soit K un corps, v une valuation réelle sur K et n un entier supérieur
ou égal a 1.

Alors il existe un isomorphisme :

0 :x n(k/(lﬂ)) = % (k) x x_(B).

2 2 2
tel que si ©(x) = {T,u) alors ker X = Ker T

n

De plus X détermine un ordre de K s8i et seulement si n détermine un

ordre de k.
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(La notation ¥ n(G) désigne le groupe des caractéres de G dans ¢ 0
2 2
c'est-&-dire Hom(G,C n) ou € n st le groupe cyclique multiplicatif
2 2
d'ordre 2" ; Rappelons que compte tenu de 1la présentation des ordres de

niveau supérieur & 1'aide des signatures, PCK sera un ordre de niveau 2"

si et seulement si P est Te noyau additivement fermé d'un X de ¥ n(K).)
2

Théoréme Fondamental IV-6

[+ ]
Soit (p,). wune chatne du corps K. Alors il existe une valuation v

i'0
compatible avee chaque P; telle que les E; cotneident tous et sont un

ordre archimédien de k.

La démonstration est longue et technique (2 lemmes et 3 &tapes...) et
utilise signatures et valuations,
Remarquons gue si (p0 Py p2...) est une chatne du corps K alors

(pl,Po,pZ,...) en est une également.

Un des intéréts des chafnes sera de pouvoir obtenir au §.V une notion de
cloture unique & K-isomorphisme prés ; Mais on a aussi des résultats pius
raffinés, par exemple sur les sommes de puissances comme le montre le

théoréme c¢ci-dessous -

Théoréme IV-7

Sott K um corps ordonnable et n>1.

n
Alors K =n ({ordres de K} U{ordres de niveau exact 2" de K}.

Rappetons que pour un entier m quelconque Becker avait obtenu que

2m

2 K™% =0 ({ ordres de niveau 2m de K})

mais ici de niveau exact ou nan ce qui donne beaucoup d'ordres possibles.
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Démonstration de IV-7

n
@ L'inclusion ik cn ({ordres de K}U {ordres de niveau exact 2" de K})

est évidente.

C) Soit aEEZK2 {donc & tout ordre de K)mais tel que a & ZKzn.
On va montrer qu'il existe un ordre de niveau exact 2" qui ne contient pas a.
D'aprés le résultat de Becker il y a un ordre p de niveau exact 2"
avec l1<m<n tel que a ¥ p et par le théoréme IV-3 il existe une
chaine (pi): avec p. = p. Donc a€ Py et ag Py - Par la condition
sur les chaTnes Pos1 Y " Prep = (pmfﬁpo)LJ~ (pmf\po) on déduit a¢p_ ;.
En itérant a¢ P, - On a donc 1'inclusion

ZKZnD N ({ordres de K}V {ordres de niveau exact 2" de K})

On peut alors définir une notion d'extension de chaine comme suit.

Définition IV-8

o0
Soit K wun corps muni d'une chatne (pi)0° Soit L wune extension de K.

On dira que (L,(p%):) est une extension de chatne fidéle de (K,(pi)z)

8l on a

1) (pli“)°° est une chaine de L.

o
2) Vien , p%nk = p;

(Notons que chaque (L,p%) sera une extension fidéle de (K’pi) au sens

donné par Becker).

Pour terminer cette partie donnons deux énoncés sur les extensions algébriques

de chafnes.

Théoréme IV-9

Soit L une extension de degré impair du corpe K. Alors pour toute
o0

chatne (p_])0

(K (ps)o).

1i°0

. . X ) Lo
de K, il existe une extension fidéle (L’(pi)o) de
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Théoréme IV-10

Soit L = K(Va) avee a€ w\KZ. Alors une chatne (pi): de K peut
s 'étendre fidelement ¢ | si et seulement st aEEpOfipl. De plus 11 y a

alors exactement deux extensions fideles.

Remargue ; on a volontairement omis la notion d’extension non fidéle et

les théorémes techniques permettant d'obtenir les résultats donnés ci-dessus.
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V - CORPS CHAINE—CL?EJ

L'intérét des cldtures de chatne est d'obtenir une unicité & K-isomorphisme

prés de cette cldture.

En fait les corps chatne-clos seront les mémes que les corps réels clos
généralisés mais le manque d'isomorphisme vient du fait qu'un ordre de

niveau sup€rieur peut appartenir a plusieurs chaines différentes,

Les théorémes de Becker qui caractérisent quand des cldtures réelles
généralisées sont isomorphes, reviendront en fait d dire que ces corps sont

des cldtures de chaTne d'une méme chatne.

Définition V-1

Soit K un corps et (pi): une chatne de K. (R,(p%):) est une cléture

de chatne de (K,(p )w) 81 R est une extension algébrique de K

i‘o

mazimale pour les propriétés d'étre une extension fidéle de (K,(pi):).

Définition V-2

Un corps R sera dit chatne-clos, s'il existe une chatne de R qui ne

s'étend fidélement & aucune extension algébrique de R,

L'existence de cl@ture de chafne de (K,(pi):) est assurée par le lemme

de Zorn,

On peut alors obtenir un premier théoréme caractérisant les corps chaTne-clos.

Théorédme V-3

o
Soit R wun corps et (pi)0 une chatne de R. Alors R est chatne-clos
si et seulement si les deux conditions suivantes sont vérifides :
2
8] =
(1) Po Py R™.

(2) R n'a pas d'extension impaire dans sa eléture algébrique.
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Lemme V-4
Soit K un corps n'ayant pas d'extension impaire dans sa cldture algébrique.
Alors toute extension finie non triviale de K contient une extension

quadratique.

Démonstration du lemme V-4

So0it L une extension finie de K. Soit N 1la cléture normale de L

sur K de groupe de Galois G. Soit H un 2-sous-groupe de Sylow de G.

Si H#6G alors K aurait une extension impaire. Donc G est un 2-groupe.
Soit alors V 1le groupe de Galois de N sur L ; V est contenu dans un
sous-groupe d'indice 2 dans G. Ainsi on obtient une extension quadratique

de K contenue dans L.

Démon;tration du théoréme V-3

- Supposons R chafne-clos. I1 existe donc une chaine (p%): de R qui ne
s'étend fidélement & aucune extension algébrique de R.

D'aprés le théoréme IV-9 R n'a pas d'extension algébrique de degré impair.

- D'aprés le théoréme IV-10, si a€ pc'}n pi alors aé€ R-R2 donc a€ R2. Comme

pépri:>R2 toujours, on a exactement p6f1pi = R2. On en déduit évidemment

que pé et pi sont les seuls vrais ordres de R donc que pof1p1 = Rz.

- Réciproquement :
Supposons pOFWpI = R2 et R n'a pas d'extension algébrique de degré
impair.
Daprés le lemme V-4 toute extension finie de R contient une extension
quadratique. Mais si aER-R2 alors a¢ H)Fipl donc (R,(pi)) n'a pas

d'extension fidéle 3 une extension quadratique de R. Donc R est chaine-clos.

Théoréme V-5

Soit (pi): une chatne de K.

Sott R0 une cldture réelle de (K,po).

Alors Ro contient une unique cléture de chatne de (K,(pi):).
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Coroliaire V-6

o0
) une chatne de K. Alors deux clétures de chatne

Soit K un corps et (pi 0

de (K,(pi):) sont K-isomorphes.

Soient (E,(Pg)z) et (F,(p?)z) Tes deux clBtures de chaines de

(K’(pi)o) choisies.

Soit EO une cldture réelle de (E,pg) et Fo une cldture réelle de
F

(Fap,).

IT vy a un K isomorphisme ¢ : E0 - FO et par le théoréme V-5 on a @(E) = F.

(puisque une cldture réelle de (K,po) ne contient qu'une unique cldture

(=]

de chatne de (K,{p.)_)).

i

Théoréme V-7

Un corps réel clos généralisé (au sens de Becker et pour un ordre de niveau

exact 2m) est chatne clos (au sens de Harman) et réeiproquement..

Soit K wun corps et p un ordre de niveau exact 2M sur K avec m=2.
Soit (R,pR) une cl8ture réelle de (K,p).
Donc R est une extension algébrique de K, pR est de niveau exact 2" ,
pr1K =p et pR ne s'étend fidélement 3 aucune extension algébrique.
Par le théoréme IV-3 , R a une chafne (pi): avec pR = Py Donc R est
chaTne-clos cette chaine ne pouvant s'@tendre fid&lement & aucune extension
algébrique.
Réciproquement :
Soit K wun corps et (pi): une chaine de K. Soit p = P Soit
(R,(p?):) une cléture de chaine de (K,(pi}:).
Nous allons montrer que (R,pﬁ) est une cldture réelle généralisée de
(K,p). En effet soit L une extension finie de R. Supposons que pﬁ

L L

s'étende fidélement en pL sur L. Alors soit (p%): avec p- = p. une

chatne de L.
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. L . . R . L,» =
Puisque P est une extension fidéle de P la chaine (pi)o doit &tre
une extension fidéle de la chaine qu'elle détermine sur R. Comme R est
chaine-clos i1 faut que L = R, donc (R,pg) est une cléture réelle

généralisée de (K,p).

Théoréme V-7

Soit R un corps chatne-clos. Alors R a exactement deuz chatnes. Soit
2]
(pi)0 l'une des deux chaines et soit v = v(pi) (c'est la méme pour

tous les pi). Alors Vv est hensélienne et le corps résiducl est réel clos.

Démonstration

R est chaTne clos et a donc deux chatnes,soit (pi): T'une d'elle et
s0it = v(pi) la valuation associée & tous les P,

R a seulement deux vrais ordres, donc R a seulement un seul ordre de
niveau exact 2" pour n=22,

Les deux chafnes sont donc (p0 Py p2...pi...) et (pl,po,pz,...,p.,...).

i
Le Henselisé (R',v') de (R,v) contient pé et pi Tes uniques
extensions fidales de Ps et Py - Le corps résiduel de v' é&tant k 1le
corps résiduel de v , alors Eg‘ et 5;' sont le méme ordre p de k que
E; et EI. Donc it existe une chafne (p%): de R', et p% étant

extension fidéle de P, pour 0 et 1 alors (p%): est extension fidéle

de (pi)o . Donc R' =R,
poﬂp1 = R2 entraine p = k2. Si k avait une extension impaire R en

aurait aussi une donc % est finalement réel clos.

Théoréme V-8

Soit K un corps et’ p un ordre de niveau exact 2" ,m>2. Alors deux

clétures réelles généralisées (R,pR) et (E,pE) sont K-isomorphes si

et seulement si elles déterminent les mémes deux chatnes de K.
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Démonstration

= R est chatne-clos donc a deux chaTnes (pi,p?,pg,...) et (p?,pg,pg,.. )

avec pt = pR

Pm P .
Cette extension étant fidéle pour p, les deux chaTnes sont des extensions
fideéles des chaines qu'elles déterminent sur K , soient (po,pl,pz,---)
et (pl,po,...).
Si R et E sont K-isomorphes cet isomorphisme transformera les chatnes

de R en les chafnes de £ et donc E déterminera les deux mames

chaTnes sur K que R,

<= RE&ciproquement
Si R et E déterminent les mémes chaTnes (po,pl,...) et (pl,po,...) de

K alors (R,(p?):) et (E,(pg):) sont deux cldtures de chaines de

(K,(pi):) donc elles sont K-isomorphes (corollaire V-6).
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THE MODEL THEQRY OF CHAIN-~CLOSED FIELDS. (*)

M.A. Dickmann
CNRS - University of Paris VII

Paris - FRANCE

Introduction. The notion of a higher level ordering is a gen-

eralization of the usual notion of an order introduced by Becker
in the study of sums of even-powers in a field ; see [1] for
a general reference. A precise definition of an ordering of level
2™ (level n in the terminology of [1]) is given in Definition
1.1(IT) below.

In [1] Becker worked out the extension theory of fields with

a higher level ordering and introduced the notion of a (generalized)

real closure for such fields. For a survey of (the analog of)

Artin-Schreier's theory of fields with a higher level ordering,

see [2]. In [10] Jacob proved decidability, completeness and model-
completeness (in a suitable language) for the theory of generalized
real clqsed fields. Jacob's results are in a sense optimal insofar
the non-uniqueness of generalized real closures (see {1 ; Ch. 1V,
Thms. 12, 13]) prevents quantifier elimination results from

holding in languages natural from an algebraic point of view.

The following remarkable fact stems from the work of Becker
and Harman : a field having a proper ordering (i.e. one which is
not just an order) of any level, necessarily hés an ordering of
(exact) level 2% for each integer n 22 , plus two usual orders
and, moreover, a tight connection holds between orderings of two
consecutive levels (cf. [9 ; Cor. 1.4] and [1 ; Thm. 15, p. 371).
The typical example is the field IR ((X)) of formal power series

in one variable with real coefficients, [9, Example 1.2]. Thus,

(#) To be published in J.S.L..



it became clear that the natural object of study in this
setting are fields together with two orders and a chain
of orderings of each 2-power level, as above ; these
are called chain fields (see Definition 1.1 below).

In {9] Harman extensively investigated the algebra of
chain fields. He worked out a satisfactory extension the-
ory ([9; §31), proving, Znter alia, that every chain field
has an algebraic extension maximal for the property that the
chain extends faithfully, i.e. preserving the level of each
ordering; see [9; Thm. 4.61]. Furthermore, such a chain—clg
sure is unique, that is, two chain-closures of a chain field
are exchanged by an isomorphism which fixes the base field
[9; Cor. 4.71. He also gave an Artin-Schreier type charac-
terization of chain-closed fields [9; Thm. 4.3]. He
established as well the connection between chain-closed
fields and generalized real closed fields by showing that,
for n = 2 , the nth ordering of a chain-closed field makes
it into a generalized real closed field of level 2R and that,
conversely, given a generalized real closed field <K,P> of
level 2% + K 1is chain-closed for somé chain whose nth term

is P [9 ; p. 167 and cor. 1.4].

In this paper we draw the model-theoretic consequences
of this algebraic theory and, using techniques pertaining to
the model theory of valued fields, establish the following

results :

(1) Completeness of the first-order theory of chain-closed

fields. (Theorem 1.11).
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Chain-closed fields are naturally endowed with a family
of henselian valuations with real closed residue fields. Draw
ing from Becker's work, Harman [9; Thm. 1.8 and Prop. 4.4]
exhibits one such valuation, having an archimedean residue
field, while another example (originating in Ax) comes from
Jacob {10; Thm. 1]; the latter has, in addition, the good

taste of being first-order definable. We prove:

(2) Model-completeness of the theory of chain-closed valuation
fields in the language for fields plus unary predicates
for the members of the chain, and a unary predicate for

the (Jacob) valuation ring. (Theorem 2.3).

(3) Quantifier elimination for the theory of (2) in the lan-
guage enlarged by yet one individual constant (needed to

distinguish the two orders). (Theorem 3.1).

In §4 we establish some connections between the preced-
ing results and previous work in the model theory of real

fields, showing the following:

(4) The theory of chain-closed valuation fields is the model-
companion of the theory of valued fields with precisely
two orders compatible with the valuation and inducing the

same order on the residue field. (Proposition 4.1).

These orders are called superdependent. Their theory was in-
vestigated in B. Laslandes' dissertation [13] (see [ 11], {12]),
who established the existence of a model-companion and gave

an explicit axicmatization for it. We also prove:



(5) The theory of chain-~closed fields is identical with the
theory of Rolle fields with exactly two orders. 1In par-
ticular, the latter ig complete and decidable. (Proposi-

tion 4.2, Corollary 4.3).

Thus, chain-closed fields constitute the simplest example of
Rolle fields beyond the real closed case.

I wish to thank D. Gondard whose expositions in the Paris
DDG seminar aroused my interest on chain-closed fields and
introduced me to the work of Becker and Harman. Thanks are
also due to L. Bélair, F. Delon and F. Lucas whose comments
helped to clarify some points, and to the referee for suggestions

helping to improve the pPresentation of this paper.

§1. Completeness.

For the sake of readability we begin with the following

definition from Harman [9; 1.1, 3.1 and 4.1].

Definition 1.1. Let K be a field.

(A) A sequence (Pi)i.eoJ is a chain of K if

(1) Po’Pl are different orders.

(II) For n»>2, Pn i1s an ordering of exact level 27,

that is:
i) Pn + P c P (where P = p - {g});
i1) Pn . Png Pn;
i1ii) 1€Pn;
iv) E."‘—lcl.J
n =°n
v) The group K/é is cyclic of order 27,
n

(III) For n 1, P,U- P = (Po_ynP)u - (P ._{NP.).
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Y

(B) Let L be a field extension of K and (PJ._>J._€.:‘J a chain
of L. ¢ Pi>i€w is a faithful extension (of (Pin K)iew ) iff
(Pi nK)iEw is a chain of K. [Note: since the sequence

(Pi nK)iew automatically satisfies II. (i)-(iv) and K/gnn K

is a cyclic group of order 2m, m<n, then we have a faithful

extension iff [K : Pnn K] = 2n, for n>2, iff the orders

P, NK, P,N K are distinct (cf. [9; Lemma 1.71)].

{(C) A chain field (K,Pi)iem is chain~-elosed if the chain
(Pi)iecu does not extend faithfully to any proper algebraic
extension of K. A field is chain-closed if there is a chain

with respect to which it is chain-closed. 0O
Notation. L. = {+,-,.,_l,0,l} denotes the usual language
for fields (with inverse for multiplication), and LCF =

LFU {Po,Pl,Pz,...} its expansion by countably many unary

predicates; LCF is the language for chain fields. a
We shall consider the following additional conditions on

a chain field (K'Pi)iGOJ

{IV) Pon P, = K°.

(v} Every polynomial in KI[X] of odd degree has a root
in K.
We call CcCCF the set of L.,-sentences which formalize con

ditions (I)-(V) together with the axioms for fields. We have:

Result 1.2 (Harman [9; Thm. 4.3]).

The models of CCCF are exactly the chain-closed chain fields.d



It is clear from the work of Harman (cf. specially (9;
i
§§1, 41) that the orderings Pn’ n=2, are (implicitly) de-

finable from PO,Pl - Using Result 1.3 below one can dispense

with Po’P as well, and obtain an explicit axiomatization of

1
chain-closed fields in the language for fields.

Result 1.3. (Becker [1; Cor. 2, p. 421).

Let KX be a Pythagorean field having exactly two orders Po’

on 2n+l
Pl’ and such that K # K for some n>»1. Then:
(a) Let a be any element in Pon —Pl; then
2 2 2 2
Po = K U ak™ , Pl = KU —-aKk”.

(b) Let a be any element so that a,-a ¢ KZ. Then, for n=2
oh 2n-l n
P,o=K U-a K is the unique ordering of level
n 2n-1 AL 2n—1 oD
27 , and KX =K U a K™ .

In particular, these identities hold for (K,Pi>iem = CCCr.O

Thus, replacing Pn(x) (n>2) for

n n-1 n
2
(+) Jz(x = z2 Jvvy 3z [ vwly #:th)-+ X = 'Yz z” ],

the axioms of CCCF can be translated into the language of
fields. The neatest Artin-Schreier type axiomatization for

this translation was obtained by D. Gondard [7), [8] :

Proposition l1l.4. Chain-closed fields are exactly the models

of the following set of axioms in L (which we call CCF):
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~ Axioms for commutative fields.
- Pythagorean axioms:

"A sum of two squares is a square",

"A sum of two fourth-powers is a fourth-power".
z2

- 3y [Vw(y # sz y # "WZ)AVX Jz(x = v x = =2% yx = yz

v = —yzz)].
= "Every polynomial of odd degree has a root". a

Remarks. (a) The third axiom just says that the sets P, /Py

of 1.3 (a) are positive cones for total orders.

(b) For several alternatives to the Pythagorean axioms, see

[8 and [9; Cor. 2.4].

(c) Result 1.3 shows that a chain-closed

field K has exactly two chains, differing only in the order

of the first two terms. They begin with the two orders of K,
th

and their n term, n* 2, is uniquely determined by (+); cf.

also Harman [9; Prop. 4.41.

Definition 1.5. (Jacob [10;p. 214]). Let K be a field and

P an ordering of level n> 2 1in XK. Let:

J'(K,P) = {x€K|x g+P and 1 + x€ P},
J'(K,P) = {x€K|x€ + P and x.J'(K,Ple J'(K,P)},
J(K,P) = J'(K,P)U J"(K,P).

For a chain field (X,P.)

n new W€ Set J = Jn(K) = J(K;Pn) P

n=2. . O

Jacob [10; Thms. 1,2] proves :



Result 1.6. (a) J(K,P) 1is a valuation ring of K, and
A
PNJ(K,P) is the positive cone of an order on the residue

field J(K,P}.

{(b) If EKeCCF and(Pi)iEw

luation rings Jn + N 22, are henselian with real closed re-—

is a chain of X, then the va-

sidue field. O

Notation. We denote by 17(K) the family of all henselian va-

luations on a field K with real closed residue field. For

I3

v € PP(K), AV . Moo I‘v , Ev denote the ring, maximal ideal,

value group and residue field corresponding to v. We denote
by 3 the valuation defined by the ring J, and M = M, ,
n n n Jn
r =T , etc.
n In
The next Proposition summarizes the basic properties of

valuations in 7J(K).

Proposition 1.7. Let K =CCF, <Pi)i€w be a chain of K,

and v €V(K). Then:

(a) Let u be a residually positive (resp. negative) unit
n n
of AV. Then u EK2 (resp. ue -K2 } for all n€w .

In particular:
n
(b} 1 + Mvc_:K2 for n>1l. Hence the valuation v is com

patible with every P (i.e. 1+ M,S P ).

(¢} The ring Av is convex with respect to each P,r new
(i.e., a€eP, b-~a€ P and bEAV imply aEAV).

(d) The group T is divisible by every prime p # 2.

v

(e) I"V/Zl"V o 2/22.

{(f) Fv is dense. O
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Remark 1.8. 1In the case v = j_, Proposition 1.7 yields: let

z ﬁ:tPn : then jn(z) # 0. Moreover:

(i) z €t P, and 1 + =z €P, imply jn(z):>0.

(ii) =z €=tPn and 1 + 2z ¢ P, imply jn(z)< 0.

Proof. The first assertion follows at once from 1.7 (a).

- ' ' : =
(i) We show thgt J (K,Pn) c Mn . If x€J (K,Pn) and jn(x) 0,

theri x ' g & b and x" L€ J'(K,P_) ; it follows that 1 + x ,

1 +xte P, o+ whence x T = (1+x)-l(1+x_l) €EP, , 2 contradiction.
2i

(ii) If jn(z)2>0, i.e. 2 EMn, then 1 4+ z € n K™ = Pn r by

1

1.7 (b). o

A field is called a Rolle field (Delon [5]) if it is
orderable and Rolle's theorem for polynomials holds in one
(equivalently, each) of its orders. Brown, Craven and Pel-
ling [3] characterized Rolle fields as those fields carrying

'a henselian valuation with real closed residue field and odd-

divisible value group. Thus 1.6 and 1.7(d} yield:

Corollary 1.9. Any chain-clesed field is a Rolle field. a

We are now in a position to use Delon's analysis of valua
tions in Rolle fields, [5; Prop. 1], in order to prove the

main properties of the valuations jn and their groups.

Proposition 1.10. Let K &CCF and (Pn)nem be a chain of K.

Then:
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{a) The valuations Jgr N2, are minima in V(K), i.e.
A
Jn;;AV for every ve ¥(K). 1In particular,
{b) Jn = Jm for n,m>» 2.
(c) Fn contains no non-trivial 2-divisible convex subgroup.
(d) Fn is regularly dense, that is, mPn is dense in Fn

for every m>1 (cf. Robinson-Zakon [15; Def. 3.3]).

(e) {TEFh | r¢g ZTh } is dense in Pn'

Proof. (a) Delon [5; Prop. 1] shows that V(K) is totally
ordered (by reverse inclusion of the valuation rings)with first

and last elements. The largest wvaluation ring, B, is first-

crder definable in the language of fields:

B= {x €K | vtlvz(t #= 22)AA(t) closed under multiplication

- X € A(t_l)]} '

where a(t) = {x € K | ay(1+tx2 = yz)} .

It suffices to show that B = Jn . Let x ¢ Jn ;7 since
le |4 J, for all 2 € v, we may assume x € P, - By 1.5, there
is y g = ﬁn such that 1 + y € Pn and 1 + xzy g Pn ; by 1.8
we have j_(y) > 0 and jn(xzy) < 0 . Clearly y g +x2" and,
by the proof of Lemma 2.4 below, 20 ! ip(y) . Hence i ty) = ijn(a)
for some 0 s k < n and some a such that 2 )4 j,(a) : clearly
we also have jpa) > 0 and jn(xza) < 0 . Hence 2 J} jn(xza) =
jn(1+x2a) . Putting b = a”!' ye conclude that x ¢ ap™ly . Bv
[S; Prop. 1(3)] we also have that A(b) 1is closed wunder
multiplication. Thus we have shown that x ¢ B.

(k) Trivial.
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Equivalently, P can be replaced by any P_, n>2 (1.10(b)),
Y 2 n

by Poﬂ P (Axiom (III})) or by K2 (Axiom (IV)). Note that

1
the condition xy ¢ = P, is superfluous.

We will need the following result of Robinson-Zakon

{15 ; prccf of Thm. 4.6] :

Result 2.2. The theory of regularly dense ordered abelian groups

with specified invariants [G : PG] (= a power of p , or )
for each prime p , is model-complete in the language J For
ordered groups augmented by the divisibility predicates
D_ (@) < HB(m-B = o) ,
for m=z2 . d
By Proposition 1.7 (d), (e}, the prime invariants of
the (Jacob) value group TI'(K) of a chain-closed field K

are 1 for p#2 , and 2 for p =2 .

Thecorem 2.3. The theory CCVF is model-complete (in Lé%(A)).

Proof. By the Ax-Kochen-Ershov transfer principle for model-
completeness the problem gets reduced_to showing that, whe-
never (K,Pi,J(K)) < ¢ F,Qi,J(F)) are models of  CCVF, the
value group T (K)is an {~substructure of I'(F) , which
is done in Lemma 2.4 below.

Indeed, model-~completeness of real closed fields and
Result 2.2 imply, then, that the canonical inclusions of

residue fields and value groups are elementary. .
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Lemma 2.4. The (lifting of) divisibility predicates Dy »r M2,
dare quantifjer-free definable in Leop modulc the axioms of CCVF.
In particular, if <K,Pi,J(K)> — <F(Qi,J(F)>‘ are models of CCVF,
then I'(K) < I'(F) .

L
Proof. By odd-divisibility (1.7(d))

we need only consider the case m = 29, For x €K, where

(K,Pi,J(K))r=CCVE;we have:

F) =D o (300) L£F (K,T(KD) r3v(3 () = 275(y)) iff
(K, J(K)) =k Z3yz(xz = yzn A "z 1is a unit of A").
. - 2"
The units of J(K) are in * K (1.7(a)). Hence the last
term of the equivalence above implies

2R o
K kE3yz (z # 0 A 2(xz° ) = yv° ),

.,n
showing that x€%*K° . Hence we obtain

. 5n
T(K)=D _(j(x)) iff xezk? .
2
- o0
Since K is quantifier-free definable in terms of the pre-
-5h n .
dicates Pn (namely, K2 = N Pi; cf. 1.3), the lemma is
i=0
proved, a

Remark. Another model~completeness result for chain-closed
fields, in a different language, was subsequently proved by

Delon and Gondard ; see [6].
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§3. Quantifier elimination.

In order to obtaina quantifier elimination result we en-

large the language LCF(A) with a new individual constant

needed to distinguish the orders P, and P,. We call CCVF

+

the theory CCVF plus the axiom:

(VII) PO(C)A 1 Pl(c),

and prove:

Theorem 3.1. The theory CCVFT admits guantifier elimination

in the language LCF(A,C).

Proof. The simplest way to proceed is using the quantifier
elimination transfer theorem of Cherlin-Dickmann [4 ; Thm. 51.

We note the following facts:

(1) The theory of I'(K) - the value group of any model kK,..J
of CCVFY - admits g-e. in the language for ordered groups

augmented by the divisibility predicates Dm ;) Mm=2.

This follows from Weispfenning [16 ;Thm.2.6}, 1.10 (d) and 1.7

(d), (e),

{2) The residue fields of models of CCVF+, being real closed,

admit g.e. in the language with a predicate for the order.
if m odd

1
mq __
(3) [U(K) = U(K) D=, if m even,

where U(K) 1s the multiplicative group of units of J(K).
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(8) The predicate <R is quantifier-free definable in

LCF(A)'

Indeed, by 1.6(a) we have, for x €Kk:

- R -
KEx >0 iff (K,P ,J(K)) & A(x)AA(x l)APZ(x).

Quantifier elimination for CCVF+ is now an easy conse-
quence of that of Z , as follows: given a formula (V) of
Lop(Rrc), use (6) to transform it into a formula @' (V) .of
L(c); then, get a quantifier-free £ (¢)-formula v (v) equi
valent to ¢'(v) modulo =2 ; finally, use (7) and (8) to get
back a quantifier-free formula Y (v) of LCF(A,C). It 1is
routine checking that ccvrt proves the equivalence of ¢ (V)
and ¥(v). a
Remarks. (a) The theory CCCF+ is not complete. Its two comple-
tions are obtained by fixing the sign of the Jacob valuétion
of c¢. In the language Lop(c)  this amounts to addiné as an
axiom either one of the statements "l+cg P," or R14c L €EP,".

(b) As pointed out by the referee; Theorem 3.1 can be improved

to "ccvr’ admits primitive recursive gquantifier elimination™.
Indeed, in [17 ; Thm. 4.12] Weispfenning proves, under assumptions
more stringent than those of [4 7 Thm. 5], that primitive recursive
g.e. of the theory of the residue field (here real closed fields)
and of the theory of the value group (here regularly dense ordered
abelian groups with specific primitive recursive prime invariants,

see [16 ; Thm. 2.6]) lift to primitive recursive q.e. of the



-18-

theory of the valued field. Proposition 1.10 (d) insures that
the additional‘assumpticns are fulfilled in the present case ;
see [17 ;4.1 and 4.13 (iv)]. Thus, the auxiliary theory I has
primitive recursive ¢.e. ; the translation of ccvF'  into &
and back clearly is primitive recursive.

(¢) It is an open question whether the additional constant ¢

is really necessary to get quantifier elimination.

§4. Chain-closed fields, superdependent orders and Rolle

fields.

In [11, 12, 13] B. Laslandes investigated several theo-
ries of fields with finitely many orders. Among others he
considered the theory Cosp, of fields with n superdepen-
dent orders, namely n orders defining the same topology,
provided with a valuation ring convex for all of them, and
inducing the same order on the residue field. He proved that
cosD, has a model-companion, iaﬁgﬁg » and gave an explicit
axiomatization of it in the language with symbols for the n
orders and the valuation ring; see [12; Prop. 1 and Thm. 5I.

We have:

Proposition 4.1. The theory COSD2 is identical with the
theory CCVF (or, to be precise, with the obvicus reformula-

tion cof the latter in the language LFlJ{PO,Pl,A}).
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Prcof. Both are complete theories satisfying Laslandes ax-~

ioms for COSD, , [12; Prop. 1] ; namely:

- PO,P are distinct orders:;

1

- The valuation ring A is convex for both Po'Pl’ and these
induce the same order on the residue field (Proposition 1.7
(e) and Result 1.6(a)).

= A 1Is Henselian with real closed residue field (Result 1.6
(b}).

- The value group T of A is divisible by every odd prime,
F/2T o Z/zz (Proposition 1.7{d), (e)) and regularly dense

(Proposition 1.10(d)). o

- —
Laslandes goes on defining an expansion COSDn of COSD,

which admits g.e. in a suitably enlarged language.

As in 4.1 it is easily checked that his theory 68§62 coin-
cides with CCVF' modulo trivial changes in the languages in-
volved; see [13, Ch. TIII, §54].

Finally we prove:

Proposition 4.2. The theory CCF 1is identical with the theory

of Rolle fields with exXactly two orders.

Proof. After 1.9 it only remains to be proved that a Rolle
field with two orders is chain-closed. Using the characteri-
zation of Rolle fields mentioned before 1.9, we infer form

Harman [9; Cor. 1.5] that K carries a chain (p.) . We

I icw
only need to check Axioms (IV) and (V) of 1. Axiom (V)
readily follows from Hensel's lemma and the fact that the

residue field is real closed.
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Axiom (IV). Since K has two orders, the value group Fv

of any valuation vE V(K) cannot be 2-divisible; otherwise

5
K itself would be real closed. Further, K% # K! , as x% ¢ k*

for any x such that 2 f v(x) . Since a Rolle field is Pvtha~-
gorean (Becker [1; p. 661), Result 1.3(a) shows that P, =
K2u aK2 and Pl = K2 U - aK2 for any ac¢ Pon - Pl' Hence
- %2
Poﬂ Pl K= . a

Corcllary 4.3. The theory of Rolle fields with exactly two

orders is complete and decidable. The theory CCVF of 2

is its model companion. 0

Proposition 4.2 clearly establishes that CCF is the
simplest theory of Rolle fields beyond the real closed ones
(2 Rolle field with only one order is necessarily real closed,
as the value group of any of its valuations in P(X) is 2-

divisible).
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Cancellation and absorption of lexicographic powers
of totally ordered abelian groups
by M. Giraudet.

(Survey)

Abstract: We prove that an ordered abelian group G is
determined up to isomorphism by any of its finite
lexicographic powers whenever, for any ordered abelian
groups A and B, 1f the lexicographic product A-2G-B is
isomorphic to G, then so are the lexicographic products A-G
and G2B; we give a list of ordered abelian groups with these
properties. With similar techniques, we also prove that any
finite lexicographical power of any ordered abelian group G

determines the first order theory and the order type of G.

£0- Notatians:
In thlis paper, 'ordered abelian group” will stand for
"totally ordered abelian group".
For any ordered abelian groups A and B:
A-B denotes the lexicographic product of A and B, read
from left to right: for any a and a’e¢eA and b and b'eB,

(a,a'>¢{(b,b’) in A-B if either a<a' or a=a’ and bib'.



Ak, k a positive integer, denotes the lexicographic
product of k copies of A, we refer to it as the k™
lexicographic power of G.

AxB 1s the (un-ordered) cartesian product of the (un-
ordered groups) A and B.

A =« B means A and B are isomorphic as ordered groups in
the language {+,¢3).

A = B means A and B are elementary equivalent as ordered
groups (still in the language {+, <1,

A =, B means A and B are isomorphic as groups <in the
language {+}),

A =; B means A and B are isomorphic as ordered sets (in
the language {¢})

If X and Y are totally ordered sets (chains) we shall
alsa use the notation XY to dencte their lexicographic

product defined as abave.

%1-FPrablems and background

In (O-21, F. Oger gave an example of two non-isomorphic
ordered abelian groups with isomorphie lexicographic squares
which was a strong motivation to the pPresent work. The
following question arasae:

Let # stand for "isomorphic as ordered grqus”,
"elementary equivalent as ordered groups”, or "isomorphic
as chains"”, when should the following cancellation rule:

(Can,#): "G" = H* implies G # H for any ordered abelian
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group H”
be true, for a given group G, and a given integer k, k2, 7
Most of our proofs of an eventual satisfaction of a
tcan, #) (Theorems on isomorphism, elementary equivalence and
order isomorphism in this paper) make use of the fact that
the following absorbing rule happens to be satisfied:
(Abs, #): "G =z A-4G-B implies G # G-B (or, equivalently
G # A=G) for any ordered abelian groups A and B.”
Cbviously, in order to have (Abs,#), it is enought that

any 0f the followlng (I,#,L) and (I, #R) holds:

(L, #,Los "G = A4G, A an ordered abelian Eroup, implies

G # A'w'aX for some ordered abelian group X."
(L, #, Ryt "G = G-B, B an ourdered abelian group, implies
G # XaB'«*? for some ordered abelian group X.”

From these observations follows a list of ordered abelian
groups which are uniquely determined by any of their
k™ lexicographical power (Examples in & 3 here).

In {0-1], F. Uger also proved that any w,—-saturated
ordered abelian group G satisfies:
(hy=,Ly: "G = A-G, A any ordered abelian group, implies

G = AwsX for some ordered abelian group X.*

which also implies {Abs,=), hence, by our theorem on
lsomorphism, any wy-saturated ordered abelian group G is
2ls0 characterized by any of its k™ lexicographic power

From the fact that <I,=,R> holds for any ordered abelian
group (Proposition on elementary equivalence), follows that

the theory of any ordered abelian group is uniquely



~=varmined by any at the X" lexicographic powers of this
ordered abelian group (Theorem on elementary equivalence)’.

In [D-L-11 and {D-L-21, the fact that the theory of any
ordered abelian group is wvniquely determined by the theory
0t any of its k™ lexicographic powers (Corollary 4-14 1in
[D-L=17> and Theorem 5 in [D-L-2], was established using the
ciassification of theories of ordered abelian Eroups given
in 181. We get, from our technigues, a new proof of this
result (indeed two proofs, one using and one not using the
result of (G-115.

[he fact that the order type of = vhain is not uniquely
determined by the order type of i'ts lexicographic square is
established in [81] (Exercise 9 p. 232). A very slight
change in the example aof 18il shows that W42 and (Q+12-7
{where & is the chain of rationals and % is the chain of
integars) have isomorphic k™ lexicographic powers (k»2)
whence Q-2 is groupable (=admits a structure of ordered
abelian group, see [R] p.125) and (Q+1)2Z is not even
transitive. The characterisation of countable groupable
chaims, gilven in [R] makes it easy to check that at least
the unscatterad ones are determined by any of thelr k™
texnlcographic power. However, the problem does not meem
qulite s0 clear in the uncountable case, and the fact that
the order type of any ordered abelian group ié determined
by fthe ordered group structure ot any of its k™
lexicographic powers follows very easily from our techniques

(Theorem un order isomorphism). Note that <¢Z,=~.,R) holds for
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every ordered abelian group but (I,=.,L)> does not (example

at the end).

42 Results and "

Our main tool is indeed the following lemma:

Maip lemma:

Let G, G', H and H' be ordered abelian groups, the following
are equivalent:

12 GG = H-H'

—1i1) For some ordered abelian group A:

either: ¢ = H-4 and H!' = A5G’
or: H = G234 and G' =~ A-KH'
Proof:

—ir=1ii): Let f be an isomorphism from G-G’' onto H-H', let G”
denote f£({0}-2G'>, which is a convex subgroup of H-H', and
assume that G' is a convex subgroup of {0}-H' <(otherwise,
consider £ 7).

Let H” denote {0}-H'. Since G" is a direct summand of H-H’,
it is a direct summand of H",

Set A = H"/G": H' = H" = A3G" = AsG'.,

Now: G = (G3G' >/ ({0}-G*')> = (H-H')/G" = H4(H"/G") = H-=A

—ii»=1i) is easy to check.



Using the main lemma, the problen of <{can,=) can be

completely settled for k=2:

P N .
let G and H be ordered abelian groups, the following are
equivalent:

-1) G¥ =~ H¥

—11) For some ordered abelian group A:

either: G =~ H2A and H =~ A-G

I

or: H G~A and &

12

A-H,
—1ii) For some ordered abelian Sroup A:

G = A+G-A, and either H =~ A-G ar H = G4,

Theorem on squares:
Let G be an ordered abelian group, the following are

equivalent:

—1) For any ordered abelifan group A, G =~ A-G-A implies

Note that, 1f G =~ A4G-B, then G = GaB is equivalent to

G = A4G, but if G and G9B are not isomorphic, G-B and A-G
may or may not be isomorphic, even when A=B: they are not in
(0-21, but it may happen that exactly two non-isomorphic
ordered abelian groups have the same lexicographic square as

can be seen from an example at the end of this paper



M. Giraudet

Ve now want to deduce (can,#) (for any integer k) from

(abs, #>, and the technique falls into two cases:

— Case 1: Since some ordered abelian groups do not satisfy
(abs,=) ((our theoremem on squares shows that the counter
exanmple in [0-2] is a counter example to this), 1t is not
suitable, when considering G*=H" where G satisfies (abs,=),
to assume H satisfies {(abs,z) too. Fortunately, since the
conclusion of {abs,=), is concerned with = as well as the
premices, the proof gets throught applying twice (abs,=> to

the same group G, and gives:

Theorem on isomorphism

Let G be an ordered abelian group and assume G satisfies:
(1) For any ordered abelian groups A and B, G = A-G-B
implies G = A4-G (or, equivalently, implies G = G-B),

Then G satisfies:

(z) For any ordered abelian group H and for any positive

integer k: GraH" implies G=H.

- Case 2: Prooving that {(abs,=) and (abs,=.> hold for every
ordered abelian group is now the way to proove that so do

(can,=> and <{(can,=.), and we get:



Proposition on elementary equivalence:

Let G be any ordered abelian group, let A and B be
(possibly trivial) ordered abelian groups, and let p be a
positive integer.

If: G = A2G2B=
then: G = X2B“«w** for some ordered abelian group X

hepnce & A=3G = G928

I

Iheorem on elementary equivalence:
Let G and H be ordered abelian groups such that, for some
positive integer k: G+ =~ H*

Then G = H.

P {3 3 I hism:
If, for some ordered abelian groups A, G, and B and some
positive integer n:

G = A7G=B" (as ordered groups)

then: <{as ordered sets)

-1 G

1

v X23Bt«*? for some ordered abelian group X.

-2} G 2y A3G x, GHB

Let G and H be ordered abelian groups such that, for some
positive Iinteger k: < =~ F*
then:

G and H are isomorphic as ordered sets.
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Both ceses 1 and 2 make use of the following technical

lemma (case 1 using 1 zand 2, case 2 using 3):

ITechnical lemma:

let G and H be ordered abelian groups such that, for some
integer k, k22, G*=H%, then:

—-1) For some ordered abelian groups 4, B, C, and D:

G ~ A-H+B and H ~ C3G~»D, where A or C is a trivial group.
-2) For some ordered abelian groups A', B’', C’', and D':

G = A'-H=B' and H ~ C*'-2G3D', where B' or D' 1s a trivial
group.

-3) For some ordered abelian groups A, B, C, and D, one of
the following four conditions holds:

-1i) G & A-H =~ H+B and H = C=G-D

—-ii) ¢ = A-<H and H =~ (G-E

~1’) and 1i')> obtained from 1) and ii), by exchanging G

and H

However, none of the techniques described here have
worked out the problem of <(can,=.), and wether ail ordered
abeiian groups satisfy (abs,=~.) and {(can,=~.) seems still

unknown.



The following ordered abelian graups satisfy (abs, =), hence
are uniquely determined by any of thelr k™ lexicographic
powers, k finite:

—1) ordered abelian groups in which every convex subgroup is
a direct summand: divisible ordered abelian groups,

(whatever the order relation they are provided with
i), summs and Hahn products of archimedian ordered abelian
groups
~Z2) ordered abelian groups in which no chain of convex
direct summands 1s of order type wtu*,
~3) ordered abelian groups without proper direct summand,
groups which are isomorphic to none of thelr proper direct
summands (whatever the order relation they are provided with
ig?, groups which are I1somorphic to no proper homomorphic
Image of one of their proper convex direct summands.

—4) Any finite lexicographic product of the ordered abelian
groups mentioned above (and, more generally, of groups

satisfying (abs, =)J).

Remark 1.

By 0-17, Lemma 4-1, whenever G 1s An wr —saturated
ordered abelian groups, G = A-G implies G = AwaG for any
ordered abelian groups A, where A“ is the product of w

copies of A. We mentionned in &1 that it follows from this

- 10 -~
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coples of A. We mentionned in &1 that 1t follows from this
and our Theorem on isomorphism that every w:—saturated
ordered abelian groups is uniquely determined by any of its
k™ lexicographical powers (and so is any finite lexicogaphlc
product of wi-saturated ordered abelian groups with groups
mentionned above.

It also follows that any ordered abelian group which is
not determined by its k™ powers is elementary equivalent to
some wi-saturated one which is, whence, by corollary 8, in
some elementary classes of ordered abelian Sroups
(divisible ones for instance) every model is uniguely

determined by any of its k™ powers.

Remark 2: One may reasonably wonder wether there is any
simple relationship between (abs,=>) and the following
absarption property (abs,squ.) considered in [0O-1]:
(abs,squ.): A¥3G = G implies A+G =~ G for any ordered
abelian group A.
The answer is no: In [0-1], F. Oger gave two examples of
groups G not satisfying (abs,squ.). In both cases, the order
type of the set of convex subgroups of G is w, hence, for
any ordered abelian group B, G =~ A4G4B implies B = {0} and
G = A-G, hence G satisfies (abs,=). On the contrary, the
example in [0-2]1 of an ordered abelian group G not
determined by its lexicographic square, hence not satisfying

(abs, =) (by the Theorem on igsomorphism), is such that, if

- 11 -



A“3G = G for some ordered abelian group A, then A = {0},

hence A-SG « G,

Eemark 3 (miscellanecus):

i- When G = A-G, there is not always a chain X such that

G =y AcwraX,

ii- In [0-21, Oger's example is an ordered abelian group
not determined by its square but determined by its cube:
il- For any integer n <n?2), there can be exactly n non-
isomorphic ordered abelian groups with the same sguare (or

infinitely many, like in [0O-21).
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If M and N are ordered groups, we denote by MN the group MxN
equipped with the lexicographical order: (a,b) < (a’,b') if and only if

' or (a=a' and b<b’),

a<a

In [1], A.S.L. Corner gives an example of two countable abelian groups
A,G such that G and AxAxG are isomorphic while G and AxG are not
isomorphic; he also gives an exemple of two nonisomorphic countable abelian
groups G,H which satisfy GxG = HxH .

On the other hand, we can easily deduce from [5, Theorem 5.2] that, if A
and G are abelian groups and if G and AxAxG are elementarily equivalent,
then, G and AxG are elementarily equivalent. It follows from the same
theorem that two abelian groups G,H are elementarily equivalent as soon as
GxG and HxH are elementarily equivalent.

We showed in [4] that, if A and G are ordered abelian groups and if
G and AXAXG are elementarily equivalent, then, G and A¥G are
elementarily equivalent. We also gave an example of two countable ordered
abelian groups A,G such that G and ARAXG are isomorphic while G and
ARG are not isomorphic.

In {2, Corollary 4.7) and [3], F. Lucas and M. Giraudet prove that two
ordered abelian groups G,H are elementarily equivalent as soon as GXG and
URH are elementarily equivalent. In the present paper, we give an exemple of

two nonisomorphic countable ordered abelian groups G,H which satisfy GXG =
BH .

1. Notations; definition of the o (o} H .

-1 -



For each prime number p , ZP is the ordered subgroup of @ which
consists of the elements a/b with aeN ) ben” and b not divisible by
P .

We consider a sequence (p(n))nez of prime numbers which are all

different and we denote by A the direct sum o Zp(n) equipped with the
ne2

lexicographical order: (an)nez < (bn)nez if and only if there exists an
integer n such that a < bn and a = bm for each integer m<n . For each
n€Z , we consider the element 1n . (am)maz € A with 8, = 1 and a_ = ¢

il
for mgn .

We denote by I the ordered set which consists of the sequence

Un = Uantlanser lonegr s oo oo lppugiloniasly 1) and
Yn © (12n’12n+2’12n+4’"""”12n+7’12n+5’12n+3)'
We consider the subgroup M (respectively N) of ® A which is
iel

generated by @ A and the elements un {respectively vh) and we denote by
iel
G (respectively H) the subgroup of ® A which consists of the elements
iel
x such that there exists an integer s>1 for which sx e M (respectively

N). We define an order on ¢ (respectively H) as follows: for two different

elements u = (a,). and v = (bi)

i)ier which belong to @ (respectively

iel
H}, there exists an element i€l such that a; # bi and a'j = bj for each

J<i (this property is true for G and H though it is false for @ A); we
i€l
write u<v if and only if a, < bi i

—~p

2, G d B i ic.

We define an isomorphism f : GRG » H¥H by writing, for any sequences

(a,)

€G and (c,)

i ieI € G ’ f((ai)‘eI!(cl)ieI) = ((bi)iEIi(d-)- ) Wit'h

i'iel i i'iel
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= a for each neN , b

b+ =2, - = B(ns1)- for each neN , dj =a

O+ 0-?

d =c for each nem* and d =¢ for each nem .
n {n-1)+ n- n-

For each n€Z , we have

£((4,,0)) = (v,0) + (0,(1, , 1,0,000,0,..0))
f((oiun)) = (0!vn_1) - (0’(12n_2!0!°"301"')) L]
(Vnso) = f((un’o} - ((---}0:-°050112n+1)30)) »

(O’Vh) f((oiun+1) + ((0--;0,---:0:12n)’0)) .

3. G and H are isomorphic ag groups.

Let us write E(m) = {0-} , E(-m) = {0-,1-,...,{(2m)-} , F{m) = ¢ and
F(-m) = {0-,1-,...,(2m-1)-} for each meN . For each neZ , let us consider
the following subgroups in G and H :

Kin) = {x = (x,) € G ] for each meN , Xy = (ak)kez with a = 0 for

i'ie€l
k #2 (mén}) and X = (ak)kez with a = 0 for k# 2 (mtn) + 1} ,
K'(n) = {x = (Xi)ieI € K(n) | X, = 0 for i e E(n)} ,
K'(n} = {x = (xi)iGI € K(n) | X, = 0 for ieI- E(n)},

L{n) = {x = (x.l)ie € H | for each meN , Xy = (ak)kez with 8 = 0 for

I
k # 2 (mn}) and X = (ak)kez with a = 0 for k # 2 (mn) + 3} ,
)

L"(n) = {x = (x,)

1

L'(n) = {x (xi el € L{n) | X = 0 for i e F(n)} and

€ L(n) ] X, 0 for i€1I-F(n)} .

i€l
For each ne€Z , we have u, € K(n) , v, € L(n) , K(n) = K'(n) @ K"(n)

and I{n) = L’(n) ® L"(n) . It follows G = ® K(n) = (@ K'(n)) e

neZ nez
(® K'(n)) and H= @ L(n)=(e L'(n))® (e L"(n)) .
nezZ nez neZ nez
We define an isomorphism f : @ K'(n) + @ L’(n) by writing
nezZ nes
f((ai)iel) = (bi)ieI with b, = a , for each neN and b,_ = B(ne1)- for

each neN .

For each meM , we have K'"'(m) = Z L"(M) = {0} , K"(-m) =

p{2m+1) ?



m m
8 2 and L"(-m) = @ z . It follows @& K"(n) =
k=-m p{2k+1) ke-me1 P(2k+l) i

@ L"'(n)s @ (e 2z

)
nez ken nez P(2ntl)

4. G_and H are not isomorphic as ordered Eroups .

Convex subgroups.

The following subgroups are convex in G (respectively H):

- for each i€l , @G, = {x

; (aj)jel €G | a; = 0 for j<i} , (respectively

Hi = {x = (aj)jeI €H | aj =0 for j<i});

-G o= {x= (aj)jeI €G | a ., = 0 for each neN} (respectively
H = {x= (aj)jeI €H | a ., =0 for each new}).
If x= (aj)jel is an element, of qﬂ (respectively Hw)' we have

a. = 0 except for a finite number of values of J . It follows Gw =

U Gh— = Gh+ and Hw = U Hn? = 1 Hh+ .
neN ' neN neN nenN

The set of all convex subgroups of G and the set of all convex

subgroups of H , ordered by inclusion, can be described by the following

diagram:
to} G- GG G, Gy Gy, G Goy = G
LN T T I T IH'HHHHIII I’Hlllllllll | |I|’|l| |
{03 Ho- My Hy H Hy Hy  Hj, Hy, = H

It follows from the structures of these isomorphic ordered sets that an
isomorphism f : G 5 H nhecessarily satisfies f(Gi) = Hi for each

ieTITu {w}.

Arguments of divisibility.
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For each nez , A(n) = {x

(a )

ez € A & = 0 for m# n} is the

set of all elements of A which are divisible by each integer k which is
not itself divisible by p(n) . Consequently, for each neZ ,

)

&n) {x = (xi jel € G | X, € A(n) fgr each 1i€l} (respectively

Hi{n) = {x

(xi) €H | x; € A(n) for each i€I}) is the set of all

iel
elements of G (respectively H) which are divisible by each integer k
which is not itself divisible by p(n) . So, any isomorphism f : G - H
satisfies f(G(n)) = H(n) for each nez .

Moreover, for each each element
x = (1/s) ((ai)iEI + b, Y1) oo+ bk ur(k)) €G
(respectively x = (l/s) ((ai)ieI + b1 Vr(l) + ... 4 bk Vr(k)) € H},
with s e N* y o8y € A for each ieI , a;, = 0 except for a finite number of

values of 1 , bl’“"’bk € 2 and r(l),...,r(k) elements of Z which are

all different, we have x € G{n) (respectively x € H(n)) if and only if

bl = L., = bk = 0 and a; € A(n) for each i€l . This implies G(n) = H(n) =
& A(n) for each n€ and + G(n) = + H(n) = & A . So, any
i€l nez nez iel
isomorphism f : G+ H satisfies f( & A) = & A .
iel iel

End of the proof.

Here, we consider an isomorphism f : G + H and we prove that the
elements Vo cannot belong to f{(G) , whence a contradiction.
For each jeI and each nez , we write 1, _ = (a,). with a; =0
H

for i#j and aj = ln . We consider the following subgroups in G and H :

r ) y - * y .
Gy = {0} 3 G- G(n—l)— for each neN” ; G, G(n+1)+ for each nem ;
¥ - . H - * . H =
Hy. = {0} 3 H = H(n—l)— for each neN ; H. H(n+1)+ for each neN .,
For each jelI and each ne2 , f(l1, ) belongs to H{n) N H. since 1.
JHn J Jn



belongs to G(n) N Gj . Moreover, the image of f(lj n) in HJ/H3 is not

divisible by p{n) since the image of lj N in GJ/G3 is not divisible by

p(n) . So, we have f(lj,n) = (bi)ieI with bi € A(n) for each ieTI ,
bi =0 for i<j and bj not divisible by p(n) .
For each nez and each ken , f(un) - f(1k+,2(n+k)) is divisible by

{(p(2 (n+k)))t for each teN =ince u, - iz divisible by

1k+,2(n+k)

t . .
{(p(2 (ntk))) for each teN ., Similarly, f(un) - f(lk-,2(n+k)+1) is

—— t i i
divisible by (p(2 (nt+k) + 1)) for each teN since u, - 1k~,2(n+k}+l is

divisible by (p(2 (n+k) + 1))° for each ten .

It follows f(un) = (xi)ieI with, for each keN , Xy not, divisible by
p{2 (n+k)) , Xyt divisible by (p(2 (m+k)))t for each integer mPn and
each teN , X . not divisible by p{(2 (n+k) + 1) and Xy divisible by

{(p(2 (mtk) + 1))t for each integer m<n and each teN .

: - - . X
Let us write f(uh) = (xi)ieI = (1/8) [(a.i)ieI + 2 e, Vh] with san |,
meZ
a, € A for each i€l , a, = 0 except for a finite number of values of i ’

<h € 2 for each me€Z and Cp = 0 except for a finite number of values of
mn .
For each k&N such that A, = 0 , we have Xy =

{(1/s) mzz <h 12(m+k) . This implies <, #0 and Chn = 0 for m>n since X,

is not divisible by P(2 (n+k)) and x., is divisible by (p(2 (mtk)))® for

each integer m>n and each teN .

For each keN such that 8. =0, we have X =
(1/s) 2 < 12(m+k)+3 « This implies c_ , # 0 and C, =0 for m< n-l

meZ
since Xy is not divisible by p(2 (n-1+k) + 3) and X is divisible by

(p(2 (mtk) + 3))t for each integer m < n-! and each t=N .
It follows f(un) = (1/s) (c Vo1 * d v, * y) with seN" , c,dez”

and yGGA-
i€l
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n
Any element of G- @ A can be written u = (1/8) ( Z a u + x}
i€l k=m

) x
with seN , mpnez, m<n, a €Z for m<k<n, an £0, a, £0

and x € ® A . There exists an integer t>1 such that t f(uk) € N for

i€l

each integer k which satisfies m ¢ k { n ; we have f(uk) =
N *
(1/t) (ck Vier * dk Vi + yk) with Ck’dk € Z and Yy € i:I A for
m¢k<n . It follows f{u} = (1/st) [am ¢n V-1 +
n
> (Bp1 Cppr * 2 d) v # a, dy vy + (E flx) 4+ 2 a y )] with

m<k<n-1 k=m

n
t fix) + 2 8 v € @ A . The element f(u) cannot be equal to any v

k=m k 1€l k

since a ¢ and a d are both non trivial.
m m n n
On the other hand, for each u€ ® A, we have f(u} € ® A and f(u)
i€l iel

cannot be equal to any Vie This achieves to prove that the elements Vi

cannot belong to f(G) , whence a contradiction.
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EQUIVALENCE ELEMENTAIRE & CODIMENSION
DANS LES CORPS p-aDIQUES

L. Bélair

Résumé. Nous présentons le résultat d’une note avec A. Macintyre et L.
van den Dries. On sait que tout corps algébriquement. clos de caractéristique
nulle posséde un sous-corps réel clos d’indice 2 . Du point de vue de la
théorie des corps réels clos ceci se traduit en ce qu'un corps élémentairement
équivalent a une extension finie de R posséde un sous-corps d’indice fini
élémentairement égquivalent &4 R . Nous montrons qu’il n’en est pas de méme
pour le corps des nombres p-adiques, Qp { P un nombre premier fixé)}. A savoir
que, pour toute extension f;nie de Qp donnée, il existe un corps
€lémentairement équivalent qui ne contient pas de sous—corps d’'indice fini
élémentairement équivalent a Qp . La théorie des modéles de R et Qp différe
donc sur ce point. Nous soulignons que les exemples donnés possédent le groupe
de valuation le plus simple possible, i.e. 2 . On utilise des résultats
élémentaires de la géométrie algébrique (réduite de Weil, dimension), le
théoréme de Baire dans Qp , et le fait que dans une extension finie de Qp '
un sous-corps relativement algébriquement clos est élémentairement équivalent

a l’extension elle-méme. Les détails devraient paraitre dans Manuscripta

Mathematica.

L. Bélair

Université de Paris VII- C.N.R.S.

Equipe de logique mathématigque, U.A. 753
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AXTOMATISATIONS “"A LA ARTIN SCHREIER" DES CORPS
CHAINABLES ET DES CORPS CHAINE-CLOS

par Danielle GONDARD

(Université de Paris 6)

En 1982 Harman introduit la notion de chaine d'ordres de niveau supé-
rieur faisant ainsi suite aux travaux de Becker qui avait formalisé Ta notion
d'ordre de niveau supérieur et obtenu divers résultats sur ce sujet.

La motivation fondamentale pour 1'introduction de ces chaines d'ordre
de niveau supérieur par Harman était en fait que pour un corps K muni
d'un ordre de niveau supérieur on ne pouvait trouver de notion de cldture
réelle généralisée satisfaisante car on pouvait obtenir différentes cldtures
non K-isomorphes.

Au contraire si on considére un corps K muni d'une chaine d'ordres
de niveau supérieur on aura une cldture de chaine unique 8 K-isomorphisme
prés. Ceci s'expTique par le fait qu'un ordre de niveau supérieur peut appar-
tenir & plusieurs chaines différentes.

Nous appelierons corps chainable un corps K qui peut &tre muni d'une

chaine d'ordres de niveau supérieur et corps chaine-clos un corps K admet-

tant une chaine d'ordres (Pi)ieml tel que (K,Pi)iemﬂ n'admette pas d'ex-
tension algébrique fidele au sens de Harman. Nous dirons qu'un corps

(K’(Pi)if:N) est un-chainé Torsqu'il n'admet qu'une seule chaine d'ordres

de niveau supérieur, & échange de P0 et P1 prés,
Les résultats de cet article consistent en des axiomatisations des

diverses notions de corps chainable, corps pythagoricien un-chainé n'admettant



que deux ordres et corps chaine-clos, parfaitement dans 1'esprit des axio-
matisations de corps ordonnable et de corps ordonné maximal dues a Artin-
Schreijer.
Rappelons tout d'abord les définitions d'un ordre de niveau supérieur
et d'une chaine d'ordres de niveau supérieur :
P < K est un ordre de niveau supérieur si
(a) P =P - {0} est un sous groupe de K = K - {0} .
(b) P+Pcp

(c) K/P est un groupe cyclique fini.

On dira que P est un ordre de niveau q si |k/ﬁ| divise gq ,

et que P est un ordre de niveau exact q si |k/ﬁ| =q .

(Pi)i eN est une chaine d'ordres de niveau supérieur si

(i) P0 et P1 sont deux ordres (au sens usuel) distincts

(i) Pour tout iz 2 , Pi est un ordre de niveau exact 2'.

(iii) Pour tout 1 2 1

PiU-Py={PiynP)u-~ (P NP .

Bans nos démonstrations nous reverrons le lecteur 3 nos articles
[G1] et [G2] pour Tles résultats utilTisés concernant les théories des ordres
de niveau supérieur et des chaines d'ordres de niveauy supérieur quoique
ces résultats soient Te plus souvent dus & Becker [Be] ou 3 Harman {Hal ,
puisque les premigres références sont directement utilisables dans ce méme
volume du séminaire.

Dans toute la suite du texte la notation I K2 représentera

] n 2") .

-] 1 o 1
vl g x2) et de méme I K2 notera yf{ ¢ x
=1 p=o i=1 p=o P
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I CORPS CHAINABLES

Soit £(0,1,+,.,~,=,0) Te langage formé de

0,1 et o comme symboles de constante

+ et . comme symboles fonctionnels 3 2 variables
- comme symbole fonctionnel a 1 variable

= comme symbole relationnel.

THEQREME I-1 : Un corps K est chainable si et seulement si on peut y trouver

un élément o tel que (K,3) satisfasse le systéme d'axiomes T, du

langage £ .
r Ax Ay Az((x+y)+z = x + (y+z))
( [ [ Axiomes de
AX Ay (x+y = y+x)
Groupe 5
Ax (x +0 = x)
commutatif

L Ax (x + (~x) = 0)
Axiomes de
Ax Ay Az (x.(y.z) = (x.y).z)
Axtomes de 4§ corps
Ax Ay (x.y = y.x)

corps commutatif
T, Ax (x.1 = x)
commutatif
Ax Ay (x =0 v x.y = 1)
ordonnable

Ax Ay Az (x.(y+z) = x.y + x.z)

~7(0 = 1)

pour chaque n 2 1 1'axiome

. Axn (-1 = x% S X§)

x,

pour chaque n z 1 Il'aziome

\ 2 _ 4 4
Ax1... Axn*r(a = Xy et xn) .

Démonstration.

Les premiers axiomes assurent qu'un modéle de T1 est un corps com-
mutatif ordonnable (Artin-Schreier). Le dernier schéma d'axiome montre qu'il
existe un élément o du corps K tel que a2 n‘est pas une somme de puis-

sances quatrigmes.



Ceci entraine que % K2 I K4 et donc que le corps K admet des
ordres de niveau supérieur non triviaux, (voir [G1] , th. 4-4) et donc que
pour tout n il existe un ordre de niveau exact 2" soit Pn (voir [G1j,
th. 4-3). I1 passe alors par cet ordre P, une chaine d'ordres (P.): p
([G2], th. IV-3). Un modele de T, est donc bien un corps chafnable.

Réciproquement : tout corps chainable est un modeéle de T, . En effet si K

1
est un corps chainable i1 admet des ordres de niveau exact 2" pour tout n
et donc ¢ K? F# I K ([G1], th. 4-4). Si pour tout « €K on a 32 €53 K4
alors toute somme de carrés d'éléments de K est une somme de puissances
quatriémes ce qui est impossible ; Donc il existe o tel que az £ L K4.
Un corps chainable étant nécessairement ordonnable ([G11, th. 4-1),

K est bien un modale de T1 R

CONJECTURE I-2.

On ne peut pas trowver une axiomatisation du premier ordre de la
théorie des corps chatnables dans le langage des corps £"(0,1,+,.,-,=) ,

c'est—-d-dire L privé du symbole de constante « .

IT CORPS UN-CHAINE,PYTHAGORICIEN N'AYANT QUE DEUX ORDRES USUELS.

Soit £'(0,1,+,.,-,=,0, >,>) Jle langage formé a partir de £ en ajou-
01

tant > et ? comme symboles relationnels,

THEOREME II-1 :

Un corps K est un-chatné, pythagoricien et a seulement deux
ordres vrais gi et seulement si on peut y trouver un élément o tel que

(K&} satisfasee le systéme d'axiomes 15 du langage £'

(On peut remarquer que le théoreme II-1. reste valable en remplacant

un-chainé par chainable).
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r ( ( r{ Axtomes de corps commutati

(ef. théoréme I-1)
Axiomes de
AX Ay{x20)a{y>0)~+ x+y>0)
B 0 (] [+]
corps ordonné %
AX Ay(XSO)A(y30)+~x.y50)
Axiomes de ! pour %

Ax (X%O)V('X%O)

T corps ordonnéd
1 ] CAx (706,0)A(~x30) v x=0)
pour » et pour ?

Les 4 axiomes obtenus en substituant ? a E

e 11=29 . dans les 4 axiomes ci~dessus

pour chaque n z 1 1'axiome

LAX, ...'Axn ‘7(a2 = x? tooot xg)
(us 0) A (a ? 0)
Ax Vy ((x = yz) v {x =~ yz) vi{x = uyz) v{x = - ayz))

LEMME II-2 : Un corps K est chatnable si et seulement si on peut y trouwver

un élément a tel que (K,a) satisfasse le systéme d'axiomes T! du

1
langage £

C'est clair : Un modele de Ti est ordonnable donc est aussi moddle
de T1 et est un corps chainable.
Réciproquement un corps chainable est un modale de T1 et comme i1 a

toujours deux ordres vrais au moins il est aussi modéle de Ti

Démonstration du théoréme : Soit K un moddle de Té . Par le lemme nous

savons qu'un modéle de Té est un corps chainable.
2

Posons Py = G Uua K™ et P, = K2 U - a K et montrons que P = et

P, sont des ordres :

(1) Po U - P0 = K , est clair d'aprés le dernier axiome.
(2) P0 X Poc: P0 est évident.
(3) P, N - P, = {0} : En effet soit xe¢ Po N - P, » on a donc

X € (K2Ua K2) n (- K2 U-o Kz) . Alors :



Si1 x € K2 et x € - K2 , Clairement x = 0

Si x € K2 alors x . et si x € - g K2 alors 0

5 0 5 *
car a2 0 . Donc x =0
Si x €« K2 alors x A 0 car o > 0, et si x € -q K2
alors O $ x car a 3 0 Donc x =0 _
Enfin si x € a K2 alors x 2 0, et si x € - K2 ,
alors x S 0, donc x =0,
Dans tous les cas x € Po 0 - P0 entraine x =0 .
(4) PO+POCP0: |
Soit x€P =K Uakl et ye P, = K2 uak? .
X 8 0 car K2 est formé d'éléments positifs pour S et a B 0.
y 3 0 de méme donc x + y 3 0.
Mais x +y €K =K u-KUuak?u- ag? .
Les éléments de -K2 et de -aK2 étant négatif pour S on a
x+y€K2UaK2=po.
Les propriétés (1) & (4) montrent que Po est un ordre sur K .
On démontrerait de méme que P1 est un ordre sur K .
2 2 2 2

Si PO = K- Uo K™ et P1 =K U -cxK2 , 11 est clair que P0 n P1 = K

51 on considére tous les ordres possibles de K on sait que
EKE=nPcPonP, =k donc I K2 = K2

1 et le corps K est un corps
P ordre de K

pythagoricien.

Enfin P0 et P1 sont évidemment les seuls ordres de K : en effet si

P est un autre ordre de K ona ¢ €P oua € -P.

Si ¢« €P alors P> K2 Ua K2 = P0 et donc P =P

Si -a €P alors P oKe U~ ok = Py et P =P

0"

1

Le corps K n'admet donc que deux vrais ordres Po et P1 (correspondant

en fait aux symboles g et T finalement}.
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Dans un tel corps i1 n'existe pour tout n 2 2 qu'un seul ordre de

niveau 2" , et celui-ci est donné par

(voir [G1]) , th. 5-3) ; Le corps K est donc un-chainé. Les mod2les de T,
sont donc bien les corps un-chainé, pythagoricien n'admettant que deux ordres
vrais.

Réciproquement, soit K un corpsunchainé, pythagoricien n'admettant

que deux ordres. C'est d'abord un corps chainable qui vérifie donc les axiomes

Ti avec > et ? pour ses deux seuls ordres.

2 2

IT est pythagoricien donc I K® = K et les éléments totalement positifs

de K sont ceux de K2 . Si al gLz K4 alors o £ K2 et o £ -K2 donc ¢«
n'est ni totalement positif ni totalement négatif et on a bien o 3 0 eta ? 0.
IT suffit alors de montrer qu'un B convenant au dernier axiome est

2
bien tel que B €r K4 . Dans un corps chainable n'ayant que deux ordres
P0 et P1 » 1] existe B tel que PO = I K2 UBEL K2 et P1 = I K2 U-Bgr= K2
(IG11 , Ex. 5-3). K étant pythagoricien c'est en fait PO = K2 (VI K2 et

2

P, =KkKZu - B K » et B est donc bien convenable pour le dernier axiome.

4,

1
Montrons que 82 g ZK

Si 82 (PN K4 alors puisque P2 1'unique ordre de niveau 22 de K

est donné par

P2 =L K4 U -62 by K4 , alors on a P2 =3 K4 U -z K4 , donc aussi
4 4
U - = -
P2 P2 LK'U=-%K .
Or d'aprés la définition d'une chaine d'ordres de niveau supérieur
- = - _ 2, _ 2 _ 2 _ 2
P2 v P2 = (P1 n PO) U -(P, n Po) =LK U-ZK =KU-K" .

1

En comparant Tes éléments totalement positifs et totalement négatifs

4 2

de P2 U - P2 on aurait % K = K" ce qui est impossible dans un corps

4

chainable. Donc 82 gz K . K est bien un modele de Té .



I11. CORPS CHAINE-CLOS ,
Un corps chaine-clos étant en particulier un-chainé, pythagoricien et
ayant seulement deux vrais ordres une axiomatisation de sa théorie pourra

contenir une axiomatisation de la théorie étudide au II
THEOREME ITI-1 : Un corps K est chafne-clos si et seulement si on peut y

trowver un élément G tel que (K,a) satisfasse le systéme d'aviomes Ts

du langage §' .
f ( ¢

Axiomes de corps commutatif
corps ordonné pour 5 et pour ?
corp commutatif chatnable ) fef. th. II-1).
un-chainé ) T pour tout n z 1 1llaxiome
1
S 2 _ 4 4
Té | pythagoricien L Axq . Axn-7(a = Xy et xn)

2 ordres seull

IF:

(230) 4 (a50)

L Ax Vy(x = y2 VX = - y2 v X =(xy2 vXx=-=-0ay

2y

pour tout n 2 0 [’ariome

2n+1

| AX_ ... AX VY (X Xoy *eoit Xy Y =0V X1 =0)

0 2n+1

Les modéles K de Té sont des corps chaine-clos. I1 est clair qu'étant

modeles du Té ils sont unchainé, pythagoricien et n'ont que deux ordres vrais.

2 (ot

On sait qu'alors P0 npe ol P0 et P1 représentent 1'ensemble des

1 =K

éléments positifs pour chacun des deux ordres). Le dernier schéma d'axiome
assure alors que tout polynfme de degré impair a une racine. Par la caracté-

2

risation des corps chaine-clos comme corps chainé tel que Po ne, =K

1
et K n'a pas d'extension algébrique de degré impair non triviale

([G21, th. V-3) i1 est clair qu'un modele de Té est chaine-clos.

Inversement, tout corps chaine-clos étantun-chainé pythagoricien avec
deux ordres seulement est modele de Té et puisqu'il n'admet pas d'extension
algébrique de degré impair i1 est modele de Té .
Lors d'un entretien avec Max Dickmann, qui souhaitait Tui une axiomati-

sation des corps chaine-clos dans le langage des corps, nous avons pu obtenir
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a partir du théoréme III-1 1'axiomatisation suivante ot £"(0,1,+,.,-,=)

est le langage £ privé du symbole de constante o .

THEOREME III-2. Dans le langage I" le systéme d'ariomes qui suit est une

axiomatisation Tg de la théorie des corps chatne clos.

. ( { Aziomes de corps commutatif ordonnable
Ax Ay Vz(x2+y2 = 22)
T§ { AX Ay Vz(x4+y4 = 24)

Th «
N Vo AX(“’(az = x4) AVy(x = y2 v X = -yzvx=-ay2vx = @ yz))

Pour tout n 20 I'axiome
2n+1

L AXg AXo wes MXp Vy(x0 KoY Feeit Xpp o0 Y =0V Xpn,1 = 0)

LEMME IIT.3. T£ est une ariomatisation de la théorie des corps wwechainé,

thagoricien, n'ayant que deux ordres.
pythag

Démonstration du lemme III.3 : Soit K un mode2le de TE . S1 on pose

P, = Kokl et Py = Ko u - akf

ol g vérifie le dernier axiome

de Tg alors on peut vérifier que P0 et P1 sont des ordres sur K .
(1) P0 U -P0 = K découle immédiatement du dernier axiome de TE

(2) P0 . P0 < PO est clair

(3) PO n —P0 = {0} . Soit x € P0 n -P0 , alors

2 2

x € K-UaKkK 2) .

et x € - (K U oK

. x € K2 et x € -K2 entraine x =0 .

. x €0 K2 et x € -o K2 entraine aussi x = 0 immédiatement.

.S x€ K2 et x € -o Kz , alors il existe y et z , non nuls

si x #0, tels que y2 = - a22 , donc -a = (%)2 ce qui est impossible,
car o? € K4 ; donc x =0 .

. De méme si x € --K2 et x € ¢ K2 on obtient si x # 0 1'existence
de y et z non nuls tels que -y2 = 0 22 et a=- (%)2 ce qui est impossible ;

Donc x =0,
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(4) Py * P, P0 : soient x et y appartenant a P0 = k2 Uo K2 .

. S1 x ety sont dans K2 » X +y est aussi car K est pythagoricien,

donc x +y € P0 .
.51 x ety sont dans « K2 , de méme x +y € q K2 .

0Sioxek et yeakl ,x+y ek v -k uak? U -ak? .

a) Si x +y e -K° » en supposant y # 0 (sinon x = 0 aussi)
il existe x', y' et z avec y' #0 tels que
x'2 + ay'2 = -22 d'oli -ay'z = x'2 + z2
et -ay‘z = T2 car K est pythagoricien. On en déduit -g = (%n)z
ce qui est impossible.
b) Si x+y € ~ak? alors de méme on peut supposer y # 0

(sinon x = 0) et il existerait x', y' #0 et z tels que

x'2 + uy'z = =g z2 . On en déduit

u(y'2+22 = - x'? et puisque K est pythagoricien

o = - x'% et a= - (Eéd ce qui est impossible (T est non nul car
1% = y'2+z2 et y' #0) . !

Donc finalement x +y € K2 Ua K = P0 et (4) est bien vérifié.

Les relations (1) a (4) montrent que P, estun ordre de K ; On mon-
trerait de méme que P1 = K2 U -aKz est un ordre sur K.

4 4 4 4

Le dernier axiome de TE assure que a2 € K* et puisque K" + K" = K",

on a az £ & <t . Un modéle K de T5 €tant donc ordonnable et tel qu'il
4

existe o € K avec az £ L K' est donc un corps chainable (th. I-1).

K_est pythagoricien d'apr2s 1'un des axiomes. Par un raisonnement
2

déja effectué au II, K n'a que les deux ordres P, etP P0 ne, =K

1° 1
et toujours de méme i1 existe un unique ordre Pn de niveau 2" donné
2n 2?1"‘1 2“
par Pn =2 K Uuy-aqg L K~ . K est donc bien un-chainé.
Inversement un corps K pthagoricien un-chainé et n'ayant que deux ordres

et automatiquement pythagoricien 3 tout niveau donc K4 + K4 = K4 et il
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posséde un élément o £ L K4 et qui est tel que K = I(2 u- K2 Ua K2 U -a K2

(cf. démonstration & la fin du II). C'est donc bien un modale de TE 3

Le théoréme III-4 découle alors immédiatement du lemme et du théoreme II]-1.

Remarque III-4.

Dans T, on peut supprimer 1‘axiome assurant que k2 + k% = 2 ,

4 4 4 2, .2 _ 2

car dans un corps ordonnable K™ + K" = K entraine K™ + K~ = K~ ,

(voir [Hal) .

En conclusion 1'axiomatisation Ta plus adaptée pour 1'étude des corps
chainables et chaine-clos apparait a 1‘auteur étre celle écrite dans le
langage £(0,1,+,.,-,=,0) et énoncée dans le théoreme ci-dessous :

THEOREME III-5 : Un corps K est chaine-clos si et seulement si on peut y

trouver un élément & tel que (K,&) satisfasse le systéme d'ariomes T,

du langage £.

( ( f Axiomes de corps commutatif
corps ordonnable.
~ L
corps , chatnable pour tout n 21 L'axiome
un-chainé 1T, . 2 _ 4 4
1 L Mxg ... Axn-v(a = Xg *ooot X)
pythagoricien 2 2 2
corps . : Ax Ay Vz x+y =12z
2 ordres seul¥ 2 2 2 2
chaine—clos ([ Ax Vy (x =y " vx=-y" vXx=ay vxs=-ay")
T T2 '
3
pour tout n2 0 1'ariome
Ax AX Vy(x_+x.y+ + 2n+l _ gy = 0)
[ Mot MX2n4 0¥t oo Y Yona Y = 2n+1 .

LEMME III-6 : Un corpe K estumchatné, pythagoz;;icien et a seulement deux
ordres vrais 8t et seulement si on peut y trouver un élément @ tel que
(K,a) satisfasse le systéme d'axiomes T2 du langage £ .

Le théoréme III-5 découle alors immédiatement du lemme III-6.
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Démonstration de lemme I1I-6.

Un modele de T, est un corps chainable puisque modele de Ty- 11 est
pythagoricien puisque c'est dans les axiomes. I1 suffit de vérifier que

un modéle K de T2 n‘a que deux ordres.

Posons P = K u o K? et Py = K U -a K% . Les propriétes (1)

Po U -P, = K et (2) PO.P0 = P0 sont évidentes.

Puisque az gz K4 alors o g L K2 et les démonstrations faites
dans le lemme III-3 sont valables et montrent que (3) P, N =P, = {0} et
(4) Py * Py © P,

Donc P0 est un ordre sur K . De méme pour P1 . Puisque P0 n P1 = K7,

K n'a que Tes deux ordres PO et P1 et donc un unique ordre Pn donné par

Pn =K U-aqa z K2 . K est donc bien un corpsun-chainé.

Réciproquement tout corps K un-chainé pythagoricien n'ayant que deux

ordres est modéle de T2 : 8"l estun-chainé i1 est chainable donc modeéle de T1.

Il est pythagoricien donc vérifie 1'axiome suivant, enfin puisqu'il n'a que

deux ordres ces deux ordres sont donnés par Po = KZlJB K2 et P1 = K2 u -8 K2

et le raisonnement fait a la fin de II assure que ce B est bien tel que

8 g5kt
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I. INTRODUCTION:

Dans cet article, nous traitons le probléme de 1'€limination de quanti-
ficateurs dans la théorie &l&mentaire des corps réel et algébriquement clos (de
charact8ristique arbitraire) du point de vue des complexit&s séquentielle et pa-

rallele.

L'intér8t du cas des corps algébriquement clos est plus th8orique que
pratique (par exemple la détermination de la dimension d'une variété algébri-

que) et nous le traitons ici de maniére succinte.

Nous travaillons plus en dé&tail le cas des corps réel clos pour deux
raisons: la premiére est qu'en géné€ral la litt8rature sur le sujet est de lec-
ture difficile et nous proposons ici des démonstrations accessibles d un public
moins familiaris€ avec les notions de complexit&. D'autre part, dans le domaine
de la Robotique, une tendance moderne essaye de réduire les problémes de mouve-
ment & des probldmes de gBom8trie semi-algébrique od apparaissent des formules
trés intriquées dans le langage de premier ordre du corps réel R. Une maniére
d'attaquer ce probleéme du point de vue calculatoire est d'essayer d'éliminer
effectivement et efficacement les quantificateurs de la formule donnde. Ceci ne
veut pas dire que nous proposons cette attaque du probléme: nous essayons sim-
plement d'examiner les possibilit€s qu'offrent les bornes obtenues. Il existe
de s@rieux doutes quant a l'efficacité de cette méthode, vu les bornes inférieu-
res doublement exponentielles en sé€quentiel. La seule solution que nous voyens
pour résoudre ce probléme inhérent 3 1'€limination des quantificateurs est de
considdrer un modele de complexitd qui permet de travailler en parallle, sans
augmenter plus que né&cessaire le nombre de processeurs. Il faut aussi tenir

compte du fait que dans la r@alit& un processeur physique peut s'utiliser



plus d'une fois alors que notre modéle prévoit un usage unique de chaque processeur.
Ce¢i se manifeste par les r&sultats de complexité séquentielle ( nombre de noeuds

du réseau arithmétique en jeu.) C'est pour cell que nous serions aussi int&ressés
par la possibilité de créer un modale qui permettrait d'€conomiser le nombre de
processeurs physiques. Comme nos bornes en paralléle sont optimales,nous laissons

le lecteur juger si le rapprochement de 1'€limination de quantificateurs avec le pro-

bltme de la Robotique est viable ou non.

Le fait que la th&€orie &l&mentaire des corps réel clos admet 1"élimination
de quantificateurs a &té démontrd par Tarski dans les années 30 (voir [42] ). Dans
cet article, Tarski donne un algorlthme effectif, mais impraticable dams la réalité

car il fonctionne en temps 21(2 A L est la longueur de la formule d'entrée, &-

crite sur un ruban de machipe de Turing.

La recherche d'algorithmes rapides provient de 1'id&e d'appliquer 1'&limina-
tion de quantificateurs 3 des problemes concrets de géomftrie &l&mentaire. En 1975,
dans [ 14 ] on trouve un algorithme qui fonctionne en temps 2% ,olt log dé-
signe le logarithme en base 2, Le méme genre de bornes est obtenu dans [ 44 J » ins—
piré sur[37 ;[41 ] (algorithmes rapides en séquentiel pour la décision de la théo-
rie &€lémentaire des corps réel clos. ) Dans le cas des corps algébriquement clos, des
résultats analogues sont donnés dans [30 [29 ] [11 } Les bornes les plus intéressan—
tes pour les corps réel clos sont obtenues dans[28 ][ 27 ] ou les résultats géné-
raux ne sont pas essentiellement modifids mais sont plus précis quant aux paramdtres

qui mesurent la taille de 1la formule d'entrfe, ce qui permet dans certains cas des
; qul p

applications pratiques, (Toutes ces bornes correspondent au temps séquentiel.)

Les m€thodes utilises jusqu'a présent pour 1'élimination des quantificateurs
dans la théorie des corps r8el clos sont toutes fond€es sur des sous-algorithmes qui
peuvent €tre considérds comme des calculs de fonctions de Skolem semi-algébriques,
ce qui en sol n'est pas efficacement parallélisable: c'était 15 1'cbstacle principal
pour trouver des algorithmes rapides en paralldle. Pour le probl2me de la décision,
il existe par contre un résultat précurseur[ 6 ], un algorithme qui fonctionne en
temps paralléle simplement exponentiel avec un nombre doublement exponentiel de pro-

cesseurs ( c'est~d-dire de type doublement exponentiel en séquentiel)

Pour préciser un peu les concepts, disons que nous considdrons le langage de

premier ordre de R, avec les symboles non-logiques suivants ={a, a€ Q} sFomae,=, >
et les variables Xl I Xn PO . Les termes de notre langage sont écrits

sous forme de polynOmes i coefficients dans Q (représentation dense). Dans le cas d'

un corps algébriquement clos k, les symboles seront {a,aaellj sFs=s « 4= ol (L est
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le corps premier de k,

Pour le modéle séquentiel, il est naturel de représenter les mots du langa-
ge L sur un alphabet fini,convenablement choisi,et de codifier la formule sur un
ruban de machine de Turing. La formule @ d'entrée a alors une longueur I@ lqui cor-
respond au nombre de cases du ruban qu'elle occupe, et les notiomns de temps et d'es-
pace de l'algorithme qui découlent de ce moddle sont le nombre de pas qu'effectue la
machine de Turing pour ré&aliser 1'algorithme et la quantité de cases occupée pendant

ce processus,

La présentation que nous choisissons dans ce travail est plus simple. Nous
utilisons le modele alg8brique ol additionner et multiplier deux &l&ments du corps
de base colite toujours un, indépendemment de la longueur binaire de ces éléments,

I1 n'y a pas de perte de généralité dans le cas séquentiel car les bornes qui s'ob-

tiennent sont exactement du mime type que si 1l'on travaille avec le modéle de la ma—
chine de Turing. Il nous semble que le modéle alg@brique proposé ici est plus en ac—
cord avec le genre de probldme que nous traitons: la raison est que la notion de ma-

chine de Turing n'est gudre parallélisable.

Nous cherchons donc un modadle qui est 3 la fois déterministe et ol la no-
tion de parallélisme a un sens. Le mod2le adéquat, quant au travail qui s'effectue
sur les polyndmes ( termes de notre langage ) est celui de réseau arithmétique, que
nous définirons ensuite. En résumg, 1l'algorithme est décrit par un graphe ou le nom
bre de noeuds représente la complexitd séquentielle et la profondeur du graphe ( che-

min le plus long ) la complexité paralldle.

Une partie du modile qui n'est pas explicitfe est celle de la manipulation
des lettres de la formule. Mais le chemin & suivre est clair et n'est d'ailleurs pas

essentiel pour les bornmes sup@rieures et inférieures, comme le lecteur verra.

Avec ce mod2le, nous obtenons des bornes supérieures ﬁour la complexité paral-
1léle de 1'€limination de quantificateurs dans la théorie des corps réel et algébri-
quement clos, sans augmenter essentiellement la complexité séquentielle, Le lecteur
intéress€ pourra aisément traduire les résultats pour la complexité séquentielle au

modéle de machine de Turing, afin d'aboutir ay méme genre de bornes qu'en {44 ]

De plus, nous démontrons que les bornes sont optimales, tant en séquentiel

qu'en paralldle dans les deux cas ( pour les ré@sultats antérieurs, voir [29][43][19])



Le probléme des bornes inférieures pour la complexit& paralléle des corps réel
clos avait &t€ esquissé@ dans [s ]oh les auteurs pensaient appliquer, apparemment
sans résultat (Voir[lO]), les techniques de (:35] en combinaison avec le théo-

reme des z€ros de Hilbert; c'est un tout autre chemin que nous suivons ici.

I1. LES RESULTATS :

Soit k un corps réel clos ou algdbriquement clos. Comme nous considérons la

théorie &lémentaire de k, dans le cas réel clos, nous &crirons simplement k= R.

Pour parler de k, nous considérons le langage de premier ordre L, avec

les symboles non logiques: {a, aefL},+,-,.,=, ouf est le corps premier de k.
Dans le cas réel clos, nous avons en plus un symbole relationnel >.

Nous consid€rons les variables de L comme ind&termindes Xl,... ,Xn,...
sur k. Les termes de L sont représentés par des polynfmes 3 plusieurs variables,
2 coefficients dans {1 (représentation dense). Par conséquent, un terme typique
a l'aspect FE.ﬂ[Xl,...,Xn] et une formule typique est du genre F=0, et si
k= R, aussi F>0. Pour la ndgation de ces formules nous &crivons F#0 ( et FgO,
pour k= R).

Notre langage L est construit 3 partir des formules atomiques en utili-
sant les connectifs logiquesV, A, et aussi par convenance -*, et les quanti-
ficateurs 3, v qui s'appliquent aux &l&ments de k (pas A des sous-ensembles,
ni a des relations ). Chaque formule @ de L contient alors des polynames, di-
sons Fl"”’Fs deﬂ[Xl,...,XrJ » et Xl,...,Xn sont les variables de @ g

Nous considérons le langage L comme un ensemble de mots sur 1'alphabet
(infini) des symboles de L (variables, symboles non logiques et connectifs lo-
giques, quantificateurs et parenthéses.) A toute formule @de L correspond a-
lors une longueur naturelle |@| {nombre de symboles utilis&s pour Bcrire @ )

Les autres parametres que nous utilisons sont:

o(@)):= 2 + 3 deg(Fi)
lgigs

n:= le nombre total de variables qui apparaissent dans la formule @ i
Et si @ est une formule prénexe, c'est-a-dire tous les quantificateurs se trou-
vent au début de @ ), nous tenons compte aussi de:

r:= le nombre d'alternations de blocs de quantificateurs E,V
( Une formule @ peut etre ramen€e en temps séquentiel linfaire O(@) 3 une for-

mule Equivalente \Y prénexe; ce processus ne modifie guere | @[, o'((TP) et n.
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Nous allons maintenant donner les notions de complexité nécessaires

a la compréhension des résultats.

Le noyau de notre algorithme correspond 2 faire des opérations a-
rithmétiques avec des polynOmes F € Il[Xl,...,Xn] ( repré@sentés par le vec~
teur des coefficients, &crits de maniére dense ), et dans certains cas, nous

nous posons la question F=0? (selon si la réponse est Vrai ou Faux nous sui-

vons un chemin ou 1'autre.)

Le modéle le plus convenable pour ce genre d'algorithmes arithm&tiques
est celui de "r@seau arithmétique" [ 25 ], qui utilise comme entrées les
constantes du corps k et qui permet les opé&rations +,-,. . Pour la question
F=0 ( et F>0, dans le cas de R ), nous admettons aussi les comparaisoms. Cette
notion de ré€seau arithmétique peut €tre décrite par un graphe, ou chaque noeud

représente une op&ration ( entre deux &léments ) a réaliser.

Par exemple, additionmer xj,...,xg » X3 € R peut €tre représenté

par 1'algorithme (I) suivant:

=

x2

X
w

bl
=

=
w

b X7 xg

On peut aussi exBcuter ce calcul par 1'algorithme (II):

X2 X3 Xy X5 Xg
N/ NS

///,+ +\\\\

la maniére de calculer une fonction n'&tant pas unique en général.

Xg
e
+

X7
N
+’///

+

Nous pouvons définir, pour un algorithme donné d&erit par un graphe,
deux notions de complexitZ:
1)La complexité séquentielle de 1'algorithme: C'est le nombre de noeuds du gra-
phe (dans les exemples (I) et (II), 7 ). Si 1l'on suppose que chaque opération

de 1'algorithme se réalise en une unité de temps fixe, la complexité séquentielle



représente le temps nécessaire a In processeur pour effectuer 1'algorithme.

2} La complexité parallele de 1'algorithme, ou profondeur du graphe: C'est le
nombre d'"Etages" du graphe, c'est-3-dire le chemin le plus long a suivre pour
arriver aux r&€sultats ( Dans 1'exemple (I) la profondeur est 7, alors que dans
l'exemple (II) qui d8crit le méme calcul, la profondeur est 3.) Cette notion
de complexité parallele correspond au temps minimum nécessaire pour réaliser

1'algorithme, =i nous disposons d'une quantité arbitraire de processeurs qui

fonctionnent en parallele, c'est-a-dire si tous les processeurs peuvent effec-
tuer des opérations en méme temps, et les processeurs sont int€grés de maniere
telle que le ré@sultat obtenu par un processeur peut €tre transmis 2 un autre
processeur qui r2alise alors 1'opération suivante. Comme la profondeur du gra-
phe décrit le nombre d'opérations qui doivent attendre les résultats d'opéra-
tions précédentes, cette notion correspond clairement au temps indispensable
pour effectuer 1'algorithme, méme si 1'on dispose d'un nombre illimitZ de pro-

cesseurs.

5i nous observons 1'exemple (I), la quantit@ nécessaire de processeurs
pour effectuer 1'algorithme en temps 7 est 1, alors que dans 1'exemple (II) qui
fonctionne plus rapidement en paralléle, il en faut 4 (qui correspondent aux
quatre premiéres op&rations i faire.) Malheureusement, comme en général les gra-
phes ne sont pas aussi réguliers que ceux de ces exemples, la seule borne dont
nous disposons pour le nombre de processeurs est la quantit@ de noeuds du gra-
phe, c'est-a-dire la complexité séquentielle de 1l'algorithme, Ceci veut dire
que nous "jetons" un processeur aprds Ll'avoir utilis@ une seule fois. Bien &vi-
demment, dans la réalité, un processeur peut Stre réutilisd aprés avoir effec-
tué une opération; il serait donc intéressant d'obtenir des bornes sur le noca~
bre de processeurs nécessaires, en fonction du nombre de noeuds et de la pro-
fondeur du graphe. Comme nous n'avons pas ce genre de bornes, nous présupposons
ici un usage unique de chaque processeur, et le nombre de processeurs sera re-

présenté par la complexité séquentielle de 1'algorithme.

GEnéralement, les algorithmes qui donnent la meilleure complexité s@-
quentielle ne sont pas ceux qui fonctionnent le plus rapidement en parallele, et
un "bon" algorithme en paralléle fait augmenter le nombre de processeurs néces—
saires (complexit& séquentielle.) On cherche 3 obtenir des algorithmes rapides
en parallele qui ne font pas "exploser" le nombre de processeurs, c'est-a-dire
qui n'empirent pas essentiellement la complexité@ s@quentielle. Ceci signifie
que les r&sultats qui s'obtiennent pour la complexité s@quentielle de ces algo-
rithmes doivent €tre dans le méme ordre que ceux qui se connaissent d&ja par

d'autres algorithmes représentant le mfme calcul, rapides en séquentiel. Par
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exemple, si nous savons que les meilleurs algorithmes séquentiels pour cal-
culer une fonction donnée en n variables s'ex@cutent en temps 20(n.logn)
autre algorithme decrlvant le méme résultat qui fonctionne en temps paralle-
)processeurs est "bon" alors que s'il utilise 22°mgro~

le O0(n.logn) avec 2 O(n
cesseurs, l'ordre de complexité séquentielle est modifid et cet algorithme
n'est pas utile.

Dans le paragraphe précédent, nous avons sans le préciser esquissé@
la notion de complexit@ de calcul de fonctions. On d@sire calculer une fonc-
tion F. La complexit& séquentielle de F est la plus petite des complexit@s
séquentielles des algorithmes qui donnent comme r&sultat F. De la meéme ma-
niére, la complexité@ parallele de F est la plus petite des complexit@s pa~
ralléles des algorithmes qui calculent F. Par exemple on; peut démontrer que
dans le cas de F= x1+...+ xg, x;€ R, la complexité séquentielle L(F) est 7

alors que la complexité parallele, D(F) ,est 3.

La partie du modéle que nous ne décrirons pratiquement pas est celle
qui correspond a la manipulation de la formule d'entr&e pour obtenir la fa-
mille de polyn®mes sur laquelle nous travaillons, ou pour décrire la formule
de sortie (sans quantificateurs) 3 partir de polyndmes. Nous admettons le me-
me genre d'opérations avec les lettres (symboles) qu'avec les &léments de k:
par exemple, joindre des mots, interchanger ou insérer des lettres. Ces opé-
rations permettent par exemple en temps linéaire O({@J) de construire a par-
tir d'une formule § une formule équivalente‘y prénexe, ou de savoir & quels
polyndmes il faut appliquer la décomposition cylindrique. Nous laissons le

lecteur créer le modéle le plus convenable pour représenter ce travail.

Rous abordons dans cet article deux problémes différents: le problé-
me des bornes supérieures et le probleéme des bornes inférieures pour la com—
plexité paralléle de 1'élimination de quantificateurs dans la th@orie &l&men-

taire des corps réel et algébriquement clos.

1) Les bornes sup€rieures: Dans ce cas, selon ce qui a &té& dit aupa-

ravant, il suffit d'exhiber un algorithme qui fonctionne rapidement en paral-

~ -
lele sans faire exploser le nombre de processeurs.

Dans le cas de R, pour la complexité séquentielle, les meilleures
bornes sont obtenues dans[14 ],[44 },[37 ],[41 ]et [27] et sont doublement
exponentielles : o(§)% + 0([§|), les plus précises &tant celles de [27 ]
(Voir au551[28}) ou le facteur doublement exponentiel dependounlquement du
nombre d'alternations de blocs de quantificateurs r : of é) + 0(| @D
Dans ce cas, comme le modéle adéquat (pour la complexité s@quentielle) est

celui de la Machine de Turing, le terme o(@) controle aussi la longueur



binaire des coefficients des polyndmes de la formule ®© » et n est le nombre de
variables de @ . Le terme 0(]® |) provient du fait que la formule d'entrde [)
doit subir un processus de préparation, qui la raméne 2 une formule prénexe,
qui contrSle raisonnablement les connectifs et qui donne explicitement les po-
lynBmes; en géndral, les auteurs présupposent ce travail préparatoire déja
fait. et donnent directement leurs résultats en fonction de c(@), n et r.
Bien &videmment, les mfmes bornes sup&rieures s'appliquent aussi pour le pro-

bleme de la décision de la th8orie &l&mentaire des corps réel clos.

En ce qui concerne la complexité& paralléle, on trouve dans{6 ] un al-
gorithme, pour le probleme de la décision, qui fonctionne en temps parallele
»
no(n).log(q(§))o(l) + 0(|§[) en utilisant o(§)n + 0(|§|) processeurs (com-

plexité sé€quentielle).

Dans le cas des c:(;rps algébriquement clos de charact@ristique arbitrai-
re, des bornes sup8rieures pour l'€limination de quantificateurs et la décision
&quivalentes a celles de R sont donndes dans .'(30][29][11], ce dernier article,
fondé sur[ 13 ]donnant des résultats plus différencifs quant aux parambdtres
(le facteur doublement exponentiel dépend uniquement de r ) mais avec la res—
triction suivante: le corps des constantes n'est pas tout le corps k mais un

certain corps arithmétique de base.

Nos r&sultats pour les bornes supérieures de la complexité parallele

sont les suivants:

Soit k un corps réel ou algébriquement clos (de charactéristique ar-

bitraire):

Théoreme 1 : Pour tout L &N, il existe un réseau Ng sur les symboles de L,
langage de premier ordre de k, de profondeur (complexit& paralldle) LO(‘Q) et
de complexitZ sé&quentielle )Llo avec la propriété suivante: _

Pour toute formule d'entrée ﬁie:— L, avec ]@ |=‘E, Ng calcule une formule sans

quantificateurs &quivalente a § (modulo la thé€orie &l8mentaire de k)

Autrement dit , il existe un algorithme (la famille de r@seaux Ny

s L elN)

qui 8limine les quantifiecateurs en temps parallele (profondeur de Ng)
I@IO(@” il

et temps séquentiel | |@ , ot eI est une formule d'entrée
arbitraire de longueur X .

Corollaire : Il existe un algorithme qui dZcide la théorie &lémentaire de k
en temps parallele simplement exponentiel et temps séquentiel doublement expo-
nentiel, la formule d'entre &tant mesuré@e par sa longueur.

(Ceci est le résultat principal de[ 6 ], pour les corps ré&el clos et les corps
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algébriquement clos de characté@ristique 0.)

Pour le th&oreme 1 nous avons utilis& comme seul parametre la Tongueur
de la formule d'entrée i? . Pour les théoremes suivants nous allons supposer
que ti)est une formule prénexe et convenablement "pré&parée™ (les polyndmes de
@5 sont donnés explicitement). Comme le modéle adéquat est ici le modéle ol-
gébrique, les paramétres que nous utilisons sont o(®) qui controle la quanti-
té et le degré des polynSmes de ® , n ~le nombre de variables de @ -,et r -1a

quantité d'alternations de blocs de quantificateurs.

Théoréme 2 : i) Il existe un algorithme qui Zlimine les quantificateurs, modu-
lo la théorie &l&mentaire de k, en:
n0(1)
temps parallele: 2 log o(d) + 0(103]@,)
O(n)
temps séquentiel: d(@)n +o(|& ]

ii) Les mémes bornes s'appliquent pour le probléme de la décision.

Le thBoreme 2 implique que 1'&limination de quantificateurs et le pro-~
bleme de la décision de la th@orie &l&mentaire des corps réel et algfbriquement
clos appartienment a la classe NC (complexité séquentielle polyndmiale et com-
plexit& parallele polylogarithmique) si le nombre de variables n de la formule
d'entrée §E est fixé.

Dans le cas des corps algébriquement clos de charactériscique 1, on ab-

tient aussi le r&sultat plus différencié suivant:
Théoréme 3 : Soit k un corps algébriquement clos de charactéristique O,

1) 11 existe un algorithme qui &limine les quantificateurs (module 12 thiorie

¢lémentaire de k)

en temps parallele: no(r)log o (P )O(l) + 0(log|® |
nO(r)

et temps sdquentiel: o(§) + O(l—§ D)

ii) Les mémes bornes s'appliquent pour le probleéme de-la d&cision.

2) Les bornes inf@rieures: Le but de cette section est de dém niror que

nos algorithmes sont optimaux en tant que mesure générale de complexité. C'est-
a-dire que le problime général de 1'élimination de quantificateurs sur R ou sur
un corps algbriquement clos est de complexit& inh&rente doublement exponen-—
tielle en sBquentiel (nombre de processeurs) et simplement exponentielle en pa-
rallele. Cela n'empéche pas que les bormes supérieures puissent €tre données
d'une maniére plus précise quant aux paramétres dans le futur. En ce sens

le Théoréme 3 est seulement une premiére approximation aux ré&suvltats possibles



en paralltle, puisque vu.[l{]on s'attend 3 un résultat qui ne dépend pas de
la charactéristique de k, et dans le cas de R on pourrait aussi obtenir en
paralléle des bornes plus différencifes comme celles qui se trouvent pour la
complexité& séquentielle dans[Z?]. Ceci est une des taches que nous nous pro-

posons.

En ce qui concerne les bornes inférieures, il existe le résultat de
(24 ) pour le probléme de la décision &l8mentaire de k. Ces bornes sont don-
nées pour le modéle s€quentiel et sont simplement exponentielles, alors que
les bornes sup&rieures connues sont doublement exponentielles: ce déphasage

n'indique donc pas si les bornes supérieures obtenues sont optimales ou non.

Pour la complexité@ s8quentielle de 1'&limination de quantificateurs,
des bornes inférieures doublement exponentielles sont données dans [ 43],

{19 ]et,[29]dans le cas des corps réel ou algébriquement clos. La méthode sui-
vie dans ces travaux est la suivante: on exhibe une succession de formules
“Vk € L, kel (en 1 ou 2 variables libres, de longueur |¥Jk| = 0(k) et avec
6k quantificateurs) qui a la propriété suivante: \Vk définit 2° points -
s0l€s du corps k dans la topologie de Zariski si k est alg@brigquement clos
(respectivement de R, dans la topologie forte si k= R.) ; ensuite on d&mon-
tre que n'importe quelle formule G}k sans quantificateurs fquivalente & ij
contient des polyndmes Fl,.n.,Fs, tels que 1£ﬁgeg(Fi) = 21 » ce qul entrai-
ne | ekJ; 2%" . si nous supposons que les polyndmes de Qk sont codifils Ge
maniére dense dans le langage de L, n'importe quel algorithme pour 1'&limi-
nation de quantificateurs doit nécessairement utiliser un temps double-
ment exponentiel pour produire le ré8sultat. Cette dépendance de la codifi~
cation (dans ce cas, représentation dense des polynSmes) pour les bormes in-
férieures est nabituelle dans les articles €crits sur le sujet, elle existe
aussi dans les résultats de[24.], Les résultats les plus importants jusqu'l
présent, quant aux bornes inférieures en “Calcul Formel, sont’ceux de [35 ],
(voir aussi [20]et [ 4]) qui sont indépendants de la codification choisie

et traitent le probleme de l'appartenance d'un polyndme 3 un id&al.

Pour la décomposition cylindrique alg@brique, il existe aussi une bor—
ne inférieure indépendante de la codification, doublement exponentielle, dans
[19] qui pourrait avoir des consé&quences pour la recherche en Robotique: dans
(39] et [40], les auteurs r@duisent le probleme de construire des robots (qui
"déménagent des pianos"-Piano Movers Problem-) au probleme de dEcomposition
d'ensembles semi-algébriques en composantes semi~alg@briques connexes de di-

mension constante. Notons, en passant, que la décomposition eylindrique four

10.
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nit une notion de uimension. Cette notion est &quivalente aussi bien a la po-—
tion algébrique de dimension qu'a celle obtenue par le biais du spectre réel
(voir [17],{8 ], [22]).

51 la construction d'un robot entraine la nécessité d'effectuer une dé-
composition cylindrique algébrique, il est &vident qu'il ne faut pas attaquer ce
probl®me par un algorithme général et séquentiel, vu sa complexité inh&rente,
doublement exponentielle; ceci est du au fait qu'il n'est guére possible de se res-

- T ~ - - - -
treindre a des espaces ambiants de dimension "petite".

L'idée qui apparait alors est celle d'utiliser des machines qui fone-
tionnent en paralléle (réseaux). Dans ce cas, les bornes pour la complexité pa-
rallele obtenues sont simplement exponentielles, nous allons démontrer qu'elles

sont optimales et qu'elles ne dépendent guére de la codification.

Nous pouvons aussi considérer un point de vue différent: Supposons que
les bornes sup@rieures pour la complexité paralléle des problimes traités sont
des bornes qui s'appliquent pour une notion r&aliste de 1'espace (Voir Ce ]
et que l'ordre des bornes en paralléle est toujours le logarithme des bornes
séquentielles, supposons aussi que la complexité séquentielle intinséque des
problémes "géomBtriques" est simplement exponentielle([21thandis que celle des
problémes "algébriques" et de 1'€limination des quantificateurs est doublement
exponentielle, il existe alors vraiment une possibilit& d'obtenir pour la Ro-
botique des bornes polynSmiales (en fixant le nombre d'alternations de bloces

d'3, ¥ ) grice aux processeurs qui fonctionnent en paralléle.

Un mot final sur notre modéle "&liminateur de quantificateurs": Ce mo-
déle consiste en une machine qui fait le "travail intellectuel" (et dont nous
ne savons pas donner des bornes inférieures de complexité) et en une "impri-
mante" (ou bien, dans le cas paralléle, en une machine qui contient un réseau
arithmétique qui &value les polyndmes) et nous avons pour lui des bornes infé-
rieures, soit pour l'€limination de quantificateurs, soit, dans le cas k= R,
pour la décomposition cylindrique algébrique. Ce modéle est raisomnable puis—
que jusqu'a présent, en &liminant des quantificateurs, 1'"intelligence naturel-
le" (non-mesurable) a toujours gagné contre 1'"intelligence artificielle"([36 1,
f34],[1],[2]l Pour faire faillir 1'intelligence naturelle, il faudrait res-
treindre la mémoire qui permet de r8aliser les calculs, ou la quantité de pa-

. - - - -
pier nécessaire pour &crire les ré@sultats obtenus grace a cette mémoire.



Théoreme 4 : T1 existe une succession de formules (avec des quantificateurs
et en 1 ou 2 variables libres) \Pk € L, k€N avec les propriétés suivantes:
D1 ¥l = 0w

ii) Pour chaque formule B€ 1, sans quantificateurs et &quivalente a qjk, com-~

posée de forﬁfles atomiques qui contiennent les polynﬁm%s Fl""’Fs’ on a:
[+

b deg(Fi); 2% et il existe j, lgjgs tel que deg(Fj);Z2 ,ou ¢>0 est une cons-

14145
tante approprige.
. paan . 2 = . .
L'énoncé (ii) implique que | QI;Z et que chaque réseau qui construit
O contient un réseau arithnétique de profondeur ZCk parce qu'il doit &valuer
ck

un Fi (lgigs) de degré ;21 (Voir [257)

Corollaire: L'€limination de quantificateurs de la théorie €lémentaire de k
est doublement exponentielle en temps sEquentiel et simplement exponentielle

en temps paralléle.

N'importe quel algorithme de dé€composition algébrique cylindrique
sur R entraine un algorithme d'&limination de quantificateurs pour la théo-
rie €l&mentaire de R. Alors, comme notre algorithme d'€limination de quanti-

ficateurs de R est bas@ sur la d&composition algdbrique cylindrigue, les bor-

nes du Corollaire s'appliquent aussi 3 la d€composition algébrique cylindrique.

Révisant notre démonstration, on peut procéder directement, car la d&composi-

6k-+2 Pisaie

tion algébrique cylindrique de R induite par V& conduit a au moins 2

régions de dimension 0. Cela entraine:

Théoreme 5 : Le temps séquentiel pour décomposer cylindriquement B6k+2 a
ksd
partir de 8k+2 polyndmes de degré <4 est au moins 2% . Le temps paralléle

. N k
nécessaire pour la méme tiche est au moins 2 - 3 .

LII. DEMONSTRATIONS:

1) Bornes sup@rieures pour 1'élimination de quantificateurs dans la

théorie &lémentaire des corps réels clos:

Nous suivrons le raisonnement de [ 44 J » qui se base sur la D&com-
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position cylindrique algébrique (Voir aussi { 14 ] ). Ces algorithmes

sont en partie aisément parallélisables, grace a l'existence de calculs ra-
pides de d8terminants en paralldle ([ 7 1,[18 ]). La difficulté essen-
tielle pour paralléliser complétement ces processus consiste en la manié-
re de déterminer le signe que prend un polyn®me sur un vecteur de nombres

algébriques (ce que nous faisons en détail dans (B)).
Nous décrirons brevement l'algorithme (récurrent) de [ 44 ] :

51 @(Xl... Xr) est une formule, "a variables libres X "Xr et

1
variables lifes, du langage de ler. ordre de R, on d&compose R en sous-

ensembles ot ® a une valeur de véritéd fix8e. Pour déterminer si la for-
mule & est vraie sur un sous—ensemble donné&, il suffit alors de 1l'&valuer
en un point choisi de ce sous-ensemble (ces points se choissisent algorith-
miguement et définissent un systéme de représentants). Finalement, on dé&-
crira par des formules sans quantificateurs les sous-ensembles de R" ou

§§ est vraie.
Ce chapitre est divisé en trois parties:
= . . . T . .
A) La décomposition cylindrique de R" et le choix du systeme de
représentants.

B} La détermination du signe d'un polyndme &valud en un vecteur

de nombres algé&briques.

C)}) Le calcul total des complexités.

A. DEcomposition cylindrique de R" et choix du systéme de repré

sentants .

Comme nous suivons 1'algorithme proposé dans [ 44 ],'nous gvite-
rons d'entrer dans les détails. Le lecteur inté@ressé& peut trouver toutes
les démonstrations dans 1'article mentionné.

Les calculs de complexit& parallele seront r&alisés dans (C).

- Soit P ¢ Z [X,...X ] fini

W.(WP) est la partition de Rn, ot chaque &lément de la partition
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