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Hyperseries and surreal numbers
by Vincent Bagayoko

Universität Konstanz

Email: vincent.bagayoko@uni-konstanz.de

March 20th, 2023

Abstract

I give an informal presentation of the project of establishing a correspondence between
certain types of germs, formal series and abstract numbers, in the framework of real
asymptotic differential algebra.

1 Introduction

A standard method for studying well-behaved functions occurring in real geometry and
analysis is to rely on formal counterparts of these functions: formal power series and
generalized power series for analytic functions and quasianalytic classes, transseries for
functions arising from o-minimal geometry. . .

One advantage of the formal method is to give a clear-cut setting in which to dis-
tinguish analytic or geometric properties from purely formal properties. The latter can
sometimes be derived as consequences of universal identities, which may then be recovered
in the geometric setting via various methods of evaluation or resummation (e.g. analytic
or quasianalytic evaluation in almost convergent settings [35], Ecalle-Borel summation for
certain classically divergent settings [15]).

One second advantage of formal objects over geometric ones is that by their nature,
formal objects are uniquely determined by �what they look like�, and do not suffer from
ambiguities (for instance among solutions of a differential equation). However, an algebra
of formal series is a useful tool in studying analytic-geometric problems only insofar as it
is amenable to formal versions of the analytic operations involved: resolution of algebraic
equations, derivation, integration, composition. . .

A particularly good example of such formal objects is Dahn-Göring [16] and Ecalle's
[20] logarithmic-exponential transseries (or variants thereof). These were used for instance
in order to study germs of Dulac maps [20, 28, 34] and to describe the differential algebra
of germs at +1 of non-oscillating differentiable real-valued functions [27, 1]. In the latter
case, transseries are sufficiently rich to fully describe the differential algebra of differential
fields of such germs. In that sense, transseries can be understood as ideal notions of growth
rates of non-oscillating functions at +1. However, they prove themselves insufficient,
by a large margin, to describe the asymptotic behavior of non-oscillating solutions of
more general functional equations. The main reason for this is that transseries are not
closed under simple functional equations which have non-oscillating solutions in the realm
of germs of real-valued functions. If one is to attempt to study tame ordered algebraic
structures equipped with non-commutative operations (such as groups under composition
of definable germs in o-minimal structures), it is necessary to construct larger formal
models.
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In this presentation, we describe these issues at the levels of germs and transseries,
before showing how to construct fields of formal series called hyperseries which do not
present the same shortcomings. Constructing such fields is technical and requires a few
careful steps. We then explain how Conway's surreal numbers form, in a canonical way,
a field of hyperseries which we believe is well suited to the project of studying functional
equations over non-oscillating germs.

2 Germs

We first describe the type of terms we will be concerned with in the sequel.

2.1 Germs at +1 and Hardy fields
We identify two functions f ; g in\

n2N

[
r2R

Cn((r;+1);R);

if f(r)= g(r) for all sufficiently large r 2R (written r� 1). Let G denote the differential
ring of equivalence classes, called germs at +1. A Hardy field is a differential subfield of
G containing R. By the intermediate value theorem for continuous real valued functions
(see [36, Introduction]), such a field field is linearly ordered by

8f ; g 2H; (f < g()8r� 1; (f(r)< g(r))):

Example 2.1. Writing x for the germ of the identity, the fieldsR((xr)r2R),R(x;arctanx),
R(x; ex), and R(log x; log logx).

Example 2.2. Let R= (R;+; �; <; : : : ) be an o-minimal extension of the real ordered
field. Write H(R) for the set of germs at +1 of functions (a;+1)¡!R; a2R that are
definable in R. Then H(R) is a Hardy field [31]. In particular, the field Hexp=H(R;+; �;
exp;<) is a Hardy field.

2.2 Maximal Hardy fields
AHardy fieldH is saidmaximal if it has no proper superset which is a Hardy field. Maximal
Hardy fields exist in virtue of Zorn's lemma, and are by nature very large. This can be
illustrated in two ways.

First, it is known that maximal Hardy fields are closed under certain algebraic differ-
ential equations:

Theorem. [17] If H is a maximal Hardy field and f ;h2H, and P (Y ;Y 0)2H[Y ;Y 0] satisfy

P (f ; f 0)< 0<P (h; h0);

then there is g 2 (f ; h) with P (g; g 0)=0.

It is conjectured [2, Conjecture A] that the above theorem can be extended to differen-
tial polynomials of arbitrary order. Secondly, maximality entails that the underlying linear
order of a maximal Hardy field does not contain certain cuts. More precisely:
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Theorem. [13, Theorem 1.1] Let H be a Hardy field, and let A�H be a countable subset.
There is an 
2 G such that

8f 2A; f <
;

and that H(
;
0;
00; : : : ) is a Hardy field.

It is conjectured that the underlying ordered set of a maximal Hardy field is an �1-set,
i.e.:

Conjecture 2.3. [2, Conjecture B] Let H be a Hardy field, and let A;B �H be countable
with f <h for all f 2A and h2B. Then there is a g 2G such that

8f 2A; 8h2B; f < g <h;

and that H(g; g 0; g 00; : : : ) is a Hardy field.

In particular, applying Theorem 2.2 to the set A= fexp; exp � exp; exp � exp � exp; : : :g
in Hexp, one has Hardy fields containing transexponential germs, i.e. germs which grow
faster than any finite iterate expn := exp � � � � � exp of the exponential. We will also write
logn= log � � � � � log for n2N.

2.3 Transexponentials
Let us look a bit more closely to transexponential germs. Since germs of elementary
functions arising in analysis (e.g. Hardy's logarithmico-exponential functions [23], or as
solutions of ordinary differential equations) are not transexponential, it is necessary to
consider different types of problems in order to encounter well-behaved . A natural is
Abel's equation

8r� 1; E(r+1)= exp(E(r)): (2.1)

for the exponential function, whose solution E can be seen as a transfinite iterate of exp.
It is known [29] that there is a strictly increasing analytic function exp!:R>¡!R which
solves Abel's equation. The germ of exp! is transexponential.

Theorem. [13] The germ of E! generates a Hardy field, i.e. R(exp!; exp!0 ; exp!00 ; : : : ) is a
Hardy field.

Recently [33], it was shown that there are Hardy fields containing the germ of exp!, of
its eventual functional inverse log!, and which are closed under composition of germs.

3 Hahn series

We next give a brief description of the notion of field of generalized series, and introduce
the main elements of structure on the field of transseries.

3.1 Ordered valued fields of Hahn series

Definition 3.1. [22] Let (M;�;�) be a linearly ordered Abelian group (possibly class-
sized). The HHHHHHHHHaaaaaaaaahhhhhhhhhnnnnnnnnn ssssssssseeeeeeeeerrrrrrrrriiiiiiiiieeeeeeeeesssssssss field R[[M]] is the class of functions f :M¡!R whose support

supp f := fm2M : f(m)=/ 0g�M

Hahn series 3



is a well-ordered subset of (M;�) (where � is the reverse ordering on M).

The set R[[M]] has a natural structure of ordered valued field under:

� pointwise sum: Cauchy product:
(f + g)=m 7¡! f(m)+ g(m) (f g)=m 7!

P
uv=mf(u) g(v)

� linear ordering: valuation:
0< f() 0< f(max supp f) 8f 2R[[M]]�; df :=max supp f 2M

The function d�:R[[M]]�¡!M is a valuation with value group (M; �;�). We write
f � g if f =0 and g=/ 0 or f ; g2R[[M]]� and df �dg. This is a dominance relation as per
[1, Definition 3.1.1].

We identify each m2M with the indicator function

�fmg:M¡!R

of the singleton fmg. Then M�R[[M]]� is a subgroup whose elements are called mono-
mials.

3.2 Summability
Fix a Hahn series field S=R[[M]]. There is a well-known notion of (formal) summability
for certain infinite families in S called summable families. It is based on the straightforward
idea of infinite pointwise sums of functions M¡!R.

Definition 3.2. Let I be a class, and let (si)i2I2SI be a family. Then (si)i2I is sum-
mable if

a) For all m2M, the class Im := fi2 I :m2 supp fig is finite.

b) The class S :=
S
i2I supp fi is a well-ordered subset of (M;�).

Condition a) implies that the pointwise sumX
i2I

si:M ¡! R

m 7¡!
X
i2Im

si(m)

is a well-defined map M¡!R. Condition b) implies that the support supp (
P

i2I si)�S
is well-ordered in (M;�), whence

P
i2I si2R[[M]].

Remark 3.3. The family ((
P

i2Im si(m))m)m2M is summable, withX
i2I

si=
X
m2S

 X
i2Im

si(m)
!
:

Remark 3.4. For s2S, the family (s(m)m)m2M is summable with sumX
m2M

s(m)m= s:

Hence elements inR[[M]] can be seen as formal series with coefficients inR and monomials
in M.
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Proposition 3.5. [32] For (rn)n2N2RN and "2S with "� 1, the family (rn "n)n2N is
summable.

e.g.
1

1+ "
=
X
n2N

(¡1)n "n:

See [24, Appendix A] for more details on summability and [25] for generalizations of
Neumann's summability result above.

3.3 Transseries
The field TLE of log-exp transseries is a field of Hahn series involving formal terms x, logx
and ex and combinations thereof.

e.g. f :=
X
n=1

+1

n! e /
x
n+ log2x

=loglogx
+7+x¡1 logx+

X
p=0

+1

e¡x
p+1

xp is a log-exp transseries:

The number of iterations of exp and log must be uniformly bounded. See [19] for a
definition.

� TLE enjoys a derivation @:TLE¡!TLE which acts termwise, e.g.

f � log x=
X
n=1

+1

n!x /1 n+log3x+7+ (log x)¡1 log2x+
X
p=0

+1

e¡(logx)
p+1

(log x)p:

� TLE enjoys a composition law �:TLE�TLE
>R¡!TLE which acts termwise on the

right:

f � log x=
X
n=1

+1

n!x /1 n+log3x+7+ (log x)¡1 log2x+
X
p=0

+1

e¡(logx)
p+1

(log x)p:

The model theory of (TLE;+; �; @;<;�) is surprisingly tame

Theorem 3.6. [1, Chapter 16] Th(TLE;+;�;@ ;R) has QE in a natural language, is model-
complete, decidable, and o-minimal at infinity.

Good progress has been made on the following conjecture regarding the relation between
TLE and maximal Hardy fields:

Conjecture 3.7. [2] Th(TLE;+;�; @) is the theory of maximal Hardy fields.

As for the expansion of this ordered differential field by the composition law (for
instance extended to TLE�TLE by setting f � g := 0 whenever g �R), its first-order
theory is much less tame. This can be illustrated by exhibiting simple functional equations
(i.e. equational atomic formulas) without solution in TLE but which may have solutions
in its extensions.

3.4 Cuts in transseries
We use the notion of cut of [26, Chapter 9] to illustrate the previous point.

Definition 3.8. A cccccccccuuuuuuuuuttttttttt in TLE is an 6-initial subset c�TLE without supremum in (TLE;
6).

Hahn series 5



Certain monotonous operations c1+ c2; c1� c2; ec1 on TLE extend to the set of cuts
c1; c2 in However, cut operations behave quite differently from standard operations: for
instance the additive law of cuts is not cancellative. The good way to define operations on
cuts is via surreal numbers (see Section 5).

In order to prove his intermediate value theorem for differential polynomials on the
field Tg(TLE of grid-based transseries, van der Hoeven gave a classification of cuts in Tg
in terms of transseries in TLE. We can distinguish three types of cuts:

a) �Serial� cuts related to missing pseudo-limits:

L := ff : 9n2N; f < log x+ log2x+ � � �+ lognxg

� := @(L)=
�
f : 9n2N; f <

1
x
+ 1
x log x

+ � � �+ 1
x logx � � � lognx

�
¡ := e¡L=

�
f : 8n2N; f <

1
x log x � � � lognx

�
: (3.1)

Serial cuts are related to difference equations and extensions by adding Hahn series.
For instance, the difference equation

f ¡ f � log x= log x (Es)

has no solution in TLE. Any solution f in extensions T)TLE of TLE fills L.
Solution: logx+ log2x+ ��� in R[[M]]�TLE. We have @(L)=�; we expect that

@(log x+ log2x+ � � �)=
1
x
+ 1
x log x

+ � � �+ 1
x logx � � � lognx

+ � � �

b) �Vertical� cuts


 := TLE=
n
f : 9n2N; f < e �

�
� ex

(n times)
o

1 := ff :9r 2R; f < rg= ff : 8n2N; f < lognxg:

Vertical cuts are related to conjugacy equations and extensions by adding hyperex-
ponentials or hyperlogarithms. For instance, the formal version of Abel's equations

f � (x+1)= ex � f (Ev+) and f � log x= f ¡ 1 (Ev¡)

have no solution in TLE. Any solution of (Ev+) (resp. (Ev¡)) in extensions of TLE fills

 (resp. 1).

Solutions: hyperexponential e! and hyperlogarithm `!.
Note that @(1) is the cut ¡ of (3.1). Indeed we expect that

@(`!)=
1

x log x � � � lognx � � �
:

c) �Nested� cuts

N :=

�
f :9n2N; f < x

p
+e logx

p
+e

� ��
lognx

p �
: (3.2)

Nested cuts are related to general functional equations and extensions by adding
nested transseries. The equation

f = x
p

+ef�logx f � x
p

(En)

has no solution in TLE. Any solution of (En) would fill N.
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Solutions: �infinitely nested� series

fn= x
p

+e logx
p

+e
log2x

p
+e

� ��

: (3.3)

It is consistent [37, Section 2.5] to consider fields of transseries containing fn.

4 Hyperseries
Let us next see how to construct fields of generalized transseries, called hyperseries, which
account for each of this type of cuts, equations and extensions.

4.1 Logarithmic hyperseries
Schmeling defined [37, Sections 8�10] a Hahn series field H equipped with functions E!k,
L!k:H>R¡!H>R for all k2N, where

E!k �L!k = L!k �E!k= idH>R; and
E!k+1(s+1) = E!k �E!k+1(s) for all k2N and s2H>R (compare with (2.1))

The function L!k can be thought of as a transfinite iterate of log of order k (see [20,
Chapter 8]), and in particular each L!k+1 grows slowlier than any iterate L!k

�n; n2N of the
previous one.

In fact, it is easier to work with hyperlogarithms L!k; k 2N than with hyperexponen-
tials, because of properties of the radii of formal convergence of their Taylor series. The
various simplifications that are possible when doing so led van den Dries, van der Hoeven
and Kaplan to construct [18] a field L of hyperseries of a purely logarithmic nature called
the field of logarithmic hyperseries.

The field L is given as the Hahn series field L=R[[L]] where L is the group of formal
products

l=
Y
<�

`
l ; (l)<�2R�

where � ranges in the class On of ordinals, ordered lexicographically: with

l� 1() ((l=/ 1) and l> 0 where  :=min f 2On : l=/ 0g).

Setting `!�+ := ` � `!� for all  <!�+1 and

`� 0 :=
1Q
<� `

;

`!�+1 � `!� := `!�+1¡ 1;

it was proved that there is a unique extension of 0 and � into a derivation @:L¡!L which
commutes with transfinite sums and satisfies an infinite Leibniz rule, and a composition
law �:L�L>R¡!L which is associative and satisfies the chain rule with respect to @.

4.2 Hyperserial fields
In order to construct large fields of hyperseries, it is useful to work with an abstract notion
of field of hyperseries, as Schmeling did [37] in the case of transseries. In view of the
interesting properties of the field L of logarithmic hyperseries, our definition should include
L itself and rely on its properties in order to simplify the treatment of these technically
involved objects.

Hyperseries 7



A hyperserial field is a Hahn series field T endowed with a function

�:L�T>R¡!T

called the composition law, which satisfies (among other technical details: [8, Section 6]),
for all f 2L:

Compatibility. For all s2T>R, the function L¡!T;h 7!h� s: is a ring morphism
which commutes with transfinite sums.

Associativity. f � (g � s)= (f � g) � s for all g 2L>R and s2T>R.

Monotonicity. `!� � s< `!� � t for all �2On and s; t2T>R with s< t.

Analyticity. f �(s+ �)=
P

k2N
f(k)�t
k!

�k for all s2T>R, and � 2T with �� s.

The structure (L; �) itself is a hyperserial field [18].

4.3 Hyperserial skeletons

Let T=R[[M]] be a hyperserial field, let f 2L and s2T>R. We note that

1. By compatibility and associativity, the series f � s is determined by the class of
series `!� � t for all �2On and t2T>R.

2. By associativity and analyticity, the series `!�� t is determined by the class of series
`!� � a where a ranges in a given subclass M!��M.

3. For �2On, we have the following self-contained definition of (M!�)�2On:

M1 = M�1;

M!�+1 = fm2M!� : 8n2N; `!�n �m2M!�g; and
M!� =

\
�<�

M!� if �> 0 is a limit.

It becomes advantageous when constructing hyperserial fields to work with the lighter
structure (T;(M!�)�2On;(a 7!`!��a)�2On). Indeed, constructing composition laws entails
proving many formal identities and showing that many families (involved for instance in
the Analyticity axiom) are summable.

Goal: Defining M� as in 3, find conditions on partial functions

L!�:M!�¡!T ; a 7! `!� � a; �2On

so that (L!�)�2On determine a lawful composition �:L�T>R¡!T.
LetT=R[[M]] and let L!�; �2On be partial functions L!�:M!�¡!T. Consider a law

R�M¡!M ; (r;m) 7!mr

of ordered R-vector space on M (mr is interpreted as a real power of m).
For � = 0, i.e. !� = 1, the function L1 is a restriction of the logarithm, for which

axiomatic conditions are well-known (see [30, 37]). Assume that �> 0. We then impose

A1. L!�(a)�L!�(a) for all a2M!� and � < �.

A2. L!�(a)+
1

(L!�)
�n(a)

<L!�(b) for all n2N and � <�, whenever a; b2M!� and a<b.
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A3. L!�+1(L!�(a))=L!�+1(a)¡ 1 for all a2M!�.

We call a structure (T; (L!�)�2On) satisfying these conditions a hyperserial skeleton.

Theorem 4.1. [8, Theorem 1.1] Let (T; (L!�)�2On) be a hyperserial skeleton and assume
that for all �2On, each s2T>R is � sufficiently close � to an a2M!�. Then there is a
unique function �:L�T>R¡!T with `!� � a=L!�(a) for all �2On and a2M!�, and
such that (T; �) is a hyperserial field.

4.4 Hyperexponential closure
A hyperserial field (T; �) is said hyperexponentially closed if for all �2On, the following
function is bijective:

L!�:T>R¡!T>R; s 7! `!� � s:

In other words, a hyperserial field is hyperexponentially closed if each inverse function
E!�=L!�inv is totally defined on T>R. We have a closure functor:

Theorem 4.2. [8, Theorem 1.3] There is a hyperexponentially closed extension �:T¡!
T~ such that for each hyperexponentially closed extension ':T¡!U, there is a unique
embedding  :T~ ¡!U with '=  � �.

T ¡!
�

T~

'& # 9! 
U

This universal condition entails that any element f of T~ can be written as a series
involving elements in T, transfinite sums, products, hyperexponentials and hyperloga-
rithms. It follows that operations defined on T extend uniquely to T~ .

Theorem 4.3. [4, Theorem 6.7 and Corollary 7.24] There are unique extensions �~:L~ �
T~>R!T~ and 0:L~ !L~ of � and 0 with similar properties as � and 0.

In particular, the structure L~ of so-called finitely nested hyperseries is equipped with an
internal composition law L~ �L~ >R!L~ and derivation L~ !L~ which extend the operations
on TLE while extending the range of functional equations with formal solutions in L~ :

Theorem 4.4. [4, Proposition 9.23 and Theorem 10.16] The structure (L~ >R;�; `0;<) is a
linearly bi-ordered group, and any two elements f ; g2L~ with f ; g>`0 are conjugate in L~ >R.

This solves an open problem regarding orderable groups [12, Problem 3.31].

5 Surreal numbers
Despite its strong closure properties, the structure (L~ ;+; �;@;�) of finitely nested hyperseries
is not as �complete� as one may want. The extension of transseries with hyperlogarithms
and then hyperexponentials is sufficient to fill all horizontal and vertical cuts, but not
all nested cuts: indeed there is no finitely nested hyperseries f which fills the nested
cut N of (3.2). This is related to the failure of the IVT for unary terms in the first-
order language including composition, as the term

t(u)= `0
p

+e`0 �u� `1
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does not have the intermediate value property in L~ . In order to obtain a truly complete
hyperserial fields, it is natural to turn to the very large and saturated field of surreal
numbers as defined by Conway was a good candidate.

Indeed, as conjectured by van der Hoeven [26], surreal numbers should have natural
representations as hyperseries, including infinitely nested ones. Let us give the intuition
about this and describe our results.

5.1 The binary tree of surreal numbers
Conway's class No of surreal numbers can be represented as a binary tree. Its underlying
order is lexicographically ordered complete binary tree f¡1;1g<On whose depths are arbi-
trary ordinals.

0

1
2

4
3

!/2 3
!¡1

!2

2!

1¡!¡1

!
p

/! 2

/1 2

/7 8 /7 4
/3 2

!+1!¡ 1

!+ /1 2

2!¡1!¡1

2

!¡2

!¡!

1

!
p

/3 4
/1 4

/3 8/1 8 /5 4 /5 2/5 8

c

0

1
2
3

!

! � 2

!2

simplicity

6

v

a

magnitude

b

depth

���

A number a is simpler than a number b, written av b, if there is a path from a to b in
the tree.

1
2
v 1¡!¡1, 1

2
v/ 2, and 1vx for all x> 0:

5.2 Inductive definitions on surreal numbers
The structure (No;6;v) is determined, up to unique isomorphism, by the following prop-
erties:

i. The class (No;v) is well-founded, and given an a2No, the classes

aL := fb2No : bv a^ b <ag and aR := fb2No : bv a^ b>ag

are linearly ordered (hence well-ordered) subsets of (No;v).
ii. The class (No;6) is linearly ordered, and for all subsets L; R �No with L<R

(i.e. l < r whenever (l; r)2L�R), the class (LjR) := fa 2No :L<a<Rg has a
minimum for v.

The minimum of (LjR) is usually denoted fLjRg. By definition, we have

a= faLjaRg
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for each number a2No. Since (No;v) is well-founded, this allows for inductive definitions
of functions on No and its powers. For instance, the �simplest� way to define a strictly
increasing function f :No¡!No by induction is to set

8a2No; f(a) := ff(aL)jf(aR)g: (5.1)

An easy induction shows that f is well-defined, and is none other than the identity function
onNo. More interestingly, one may define the �simplest� binary operation A:No�No¡!
No which is strictly increasing at each variable as follows:

8a; b2No; S(a; b) := fS(aL; b); S(a; bL)jS(a; bR); S(aR; b)g: (5.2)

Indeed, thatA be strictly increasing in both variables forces S(a;b)2(S(aL;b);S(a;bL)jS(a;
bR);A(aR; b)), hence picking the simplest number of this class is natural. This is the defini-
tion that Conway found for the sum a+b :=S(a; b) of two surreal numbers a; b. That is, not
only does the function satisfy the constraints from which its inductive definition emerges,
but it also satisfies additional properties (associativity, symmetry, etc) that follow, in a
way that is specific to this construction, from the inductive definition.

Using similar inductive definition, Conway also defined a product on No, such that
(No;+; �) is a real-closed extension of R, which is identified here with the subset of surreal
numbers a for which aL; aR are sets of dyadic numbers, aL has a maximum or is empty if
and only if aR has a minimum or is empty.

Furthermore, the class of ordinals with their commutative arithmetic (i.e. Hessenberg
arithmetic) is naturally contained in (No;+; �). So we have surreal avatars !, !!, "0, !1
for all ordinals. See [14, Chapters 1 and 2] for more details.

5.3 Containment of transseries and derivation
Conway also established the identification between surreal numbers and Hahn series with
real coefficient, and whose group of monomials is a subgroup Mo of (No>0; �;<) which is
canonically isomorphic to (No;+;<).

Later, Gonshor defined [21, Chapter 10], again using a simple inductive definition, an
exponential function exp:No¡!No>0 such that (No;+; �;exp) is an elementary extension
[38] of the real exponential field. Taken together, these two ingredients of formal series
representation and exponential give a natural embedding f 7! f(!) ofTLE intoNo. Indeed,
it is unique to send x2TLE to !2No and to commute with transfinite sums and with the
exponentials.

Finally, after giving a precise description of the behavior of the way exp interacts
with the simplicity relation v on No, Berarducci and Mantova defined a derivation @BM:
No¡!No which extends the derivation on TLE. It was shown [3] that (No;+; �; @;<;�)
is in fact an elementary extension of TLE.

5.4 Summing up
The properties of various ordered algebraic structures on No are summed up by the fol-
lowing table. Here �defining properties� refer to first-order properties which are explicitly
implemented in the interpretation of the function symbols on No. The complete theory of
the resulting structure (No;+; : : : ) is obtained by adding to the list of defining properties
an axiom scheme of intermediate value theorem for unary terms in the language:

(IVT for (No;+; : : : )) If t(u) is a unary term in the first-order language of (No;
+; : : : ) and a; b2No are such that a< b and t(a)< 0< t(b), then there is a c2 (a; b)
with t(c)= 0.

Surreal numbers 11



Structure Defining proper-
ties

Complete theory Closure properties

(No;+;<) ordered group < (R;+) IVT for (No;+)
(No;+;�;<) ordered ring < (R;+; �) IVT for (No;+;�)

(No;+;�; exp; <) ordered exponential
field

<Rexp IVT for (No;+;�;
exp)

(No;+;�; @BM;<) Liouville-closed H-
field with small
derivation

<TLE IVT for (No; +; �;
@BM)

(No;+;�; @; ��;<) ?? ?? ??

(In the case of the theory of ordered exponential field, it is unknown if this IVT scheme
is sufficient to imply the complete theory.)

Our work with coauthors Joris van der Hoeven, Elliot Kaplan and Vincenzo Mantova
consists in defining a composition law �:No�No>;�¡!No expanding the composition
law on transseries, satisfying a chain rule @(a � b) = @(a) � b � @(b) with respect to the
derivation @.

Since the derivation @BMwas defined without this goal in mind, it is in fact incompatible
with the existence of such a composition law [11, Theorem 8.4]. Therefore, it is also
necessary to define a distinct derivation @ on No. Our approach is to define it in relation
to a representation of each surreal number a as a formal hyperseries

a= f(!) (5.3)

in !, where f possibly involves infinite nesting. Then the way a acts with respect to @ and
� is entirely specified in the formal series f , which should allow us to define � and @ on
No. In the sequel, we present the method used to establish the hyperserial representation
(5.3) of surreal numbers.

6 Numbers as hyperseries
Let us see how to represent a number a2No as a hyperseries in !. We must first construe
No as a hyperserial field so as to be able to give a meaning to the identification (5.3).

6.1 Surreal numbers as a hyperserial field
To construe No=R[[Mo]] as a hyperserial field is to define a composition law �: L�
No>R¡!No satisfying the properties in Section 4.2. Thanks to the hyperserial skeleton
method (see Section 4.3), this reduces to defining partial functions L!�:Mo!�¡!No,
� 2On in an inductive manner. For �= 0, this was already done by Gonshor [21]. Let
us explain how L! is defined. The class Mo! is that of log-atomic numbers as per [37, 3].
This was identified [10] by Berarducci and Mantova as an isomorphic copy of (No;6;v)
inside itself. Thus we may use an inductive definition of the same form as (5.1-5.2):

8a2Mo!; L!(a) := fR; L!(a0)+
1

logn(a0)
jL!(a00)¡

1
logn (a00)

; logn(a)g; (6.1)

where a0; a00 range in Mo! with the constraint that a0< a< a00, and n ranges in N. a0;
a002Mo!. The reader can see that (6.1) is a direct translation of the conditionsA1,A2 for
L!. As is often the case for inductive definitions onNo, one also get the additional algebraic
identity A3, as well as existential properties which insure that L! extends canonically into
a surjective strictly increasing function No>R¡!No>R. See [9] for more details.
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Relying on earlier work [5], we showed that the inductive definition (6.1) generalizes to
all ordinals �> 0 (see [6, Section 6]). We obtain the desired result:

Theorem 6.1. [6, Theorem 1.1] There is a composition law �:L�No>R¡!No for which
(No; �) is a hyperexponentially closed hyperserial field.

6.2 Numbers as hyperseries
In order to represent numbers as hyperseries, we must first express each surreal monomial
m2Mo using hyperexponentials and hyperlogarithms of �less complex numbers�, positing
that ! is itself simple and cannot be further expanded. Indeed, we can see that every non-
trivial monomial m2Mo n f1g admits a unique expansion as

m=e (L�(E�(u)))�; (6.2)

where e 2Mo, �2f¡1;1g, �2On;�2!On satisfy additional technical conditions (see [7,
Section 5.1]). The precise conditions are irrelevant for the discussion here. We adopt the
notations

L�E�
u := L�(E�(u)) and

terma := famm:m2 suppag:

Unfortunately, it is impossible to define a complexity measure for which the parameters
u;  in the expansion of m are always strictly less complex than m. This is related to the
existence of infinite paths as defined next. An infinite path P =(rimi)i2N in a2No is thus
defined as a sequence of non-zero terms P =(rimi)i2N2 (R=/ Mo n f1; !g)N with

8i2N; rimi2 term  i[ termui;

where (u0;  0) = (a; 0) and each mi expands as mi= e i+1 (L�iE�i
ui+1)�i. We showed that

each path P =(rimi)i2N in a is such that for sufficiently large j > 0, we have

uj= 'j� e j+1

0BB@
E�j

'j+1�e
 j+2

0BB@
E�j+1
� ��

'j+i�e
 j+i+1

 
E�j+i

� ��
!�j+i1CCA

�j+1
1CCA
�j

: (6.3)

In other words, for large enough j 2N, the number uj is an infinitely nested expansion.
We proved [7, Theorem 1.1] that given the sequence of parameters ('i;  i+1;�1; �i; �i; �i;
ui+1)i>j, the classNe of numbers that expands exactly as uj is not a singleton, but a proper
class. Moreover [7, Theorem 1.2], (Ne;<;v) is uniquely isomorphic to (No;<;v). So any
element expanding as uj may still be uniquely identified by the unique �label� l(uj)2No
such that the isomorphismNo¡!Ne sends l(uj) to uj. This allowed us to represent surreal
numbers as trees labeled by real numbers, ordinal numbers and surreal numbers. We call
such expressions hyperserial descriptions. The last main result is the following:

Theorem 6.2. [7, Theorem 1.3] Every surreal number has a unique hyperserial description.
Two numbers with the same hyperserial description are equal.

In this way, every surreal number is seen as a hyperseries in !. Furthermore, the
description of paths in No is enough to give a natural way to define a derivation and
composition law on No. We plan to do this in further work and then study the first-order
structure (No;+; �; @; �; <), starting possibly with the simpler �almost reduct� (No>R; �;
<).
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On Rayner Structures
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Abstract

In this note, we study substructures of generalized power series fields induced by
families of well-ordered subsets of the group of exponents. We characterize the set-
theoretic and algebraic properties of the induced substructures in terms of conditions
on the families. We extend the work of Rayner (F. J. Rayner, An algebraically closed
field; Glasgow Math. J. 9 (1968), 146151) by giving both necessary and sufficient
conditions to obtain truncation closed subgroups, subrings and subfields.
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HYPERBOLIC POLYNOMIALS

DANIEL PLAUMANN

Abstract. Hyperbolic polynomials are real homogeneous polynomials in several variables
with a certain reality condition on their roots. They orginate in PDE theory but have more
recently been studied extensively in combinatorics, convex optimization and real algebraic
geometry. A lot of their theory can be thought of as generalising symmetric determinants. In
this talk, I will give a gentle introduction, survey several important results and point to some
recent developments and open problems.

Results presented towards the end of this survey have been obtained in collaboration and
have since been published:
[1] D. Plaumann, R. Sinn and S. Weis, Kippenhahn’s Theorem for joint numerical ranges and
quantum states, SIAM Journal on Applied Algebra and Geometry, 5, 86-113 (2021).
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.
THE WONDERFUL GEOMETRY OF THE VANDERMONDE MAP

JOSE ACEVEDO, GRIGORIY BLEKHERMAN, SEBASTIAN DEBUS, AND CORDIAN RIENER

Abstract. We study the geometry of the image of the nonnegative orthant under the power-
sum and elementary symmetric polynomials maps. After analyzing the image in finite number of
variables, we concentrate on the limit as the number of variables approaches infinity. We explain
how the geometry of the limit plays a crucial role in undecidability results in nonnegativity of
symmetric polynomials, deciding validity of trace inequalities in linear algebra, and extremal
combinatorics (recently observed by by Blekherman, Raymond, and F. Wei [BRW22]). We
verify the experimental observation that the image has the combinatorial geometry of a cyclic
polytope made by Melánová, Sturmfels, and Winter [MSW22], and generalize results of Choi,
Lam, and Reznick [CLR87] on nonnegative even symmetric polynomials. We also show that
undecidability does not hold for the normalized power sum map.

1. Introduction

The main object of this article is the so called Vandermonde map which appears quite nat-
urally in various contexts and thus providing connections between different mathematical do-
mains. Our interest in this object is motivated by the following problem. Suppose that we are
given a polynomial expression in traces of powers of symmetric matrices, such as

2 tr(A2) tr(B6) − tr(A4) tr(B4),

is there an algorithm to decide whether this expression is nonnegative for all symmetric matrices
A, B of all sizes? What happens if we replace trace by normalized trace t̃r(A) = tr A

n , where n
is the size of the matrix?

As one of the results of our work we show that the first (unnormalized) problem is undecidable,
while the second one is decidable. The key to the hardness of the unnormalized problem is the
fascinating geometry of the image of the probability simplex under the Vandermonde map. As
we explain below, some geometric properties of this set were observed in different areas of
mathematics making it an important and beautiful object to study.

For any n × n matrix A recall that tr(Ad) = λd
1 + ⋅ ⋅ ⋅ + λd

n, where λi are the eigenvalues of A.
We use pd to denote the d-th power sum polynomial: pd(x) = xd

1 + ⋅ ⋅ ⋅ + xd
n. We see that testing

whether 2 tr(A2) tr(B6) − tr(A4) tr(B4) is nonnegative on all symmetric matrices of all sizes is
equivalent to understanding whether 2p2(x)p6(y)−p4(x)p4(y) is nonnegative on all real vectors
x and y of any dimension. Define the d-th Vandermonde map νn,d by sending a point in Rn to
its image under the first d power sums:

νn,d(x) = (p1(x), . . . , pd(x)).

Let ∆n−1 be the probability simplex in Rn: ∆n−1 consists of all vectors with nonnegative
coordinates with the sum of coordinates equal to 1. We call the image νn,d(∆n−1) of the
probability simplex under the Vandermonde map the (n, d)-Vandermonde cell and denote it by
Πn,d. Observe that the first coordinate of Πn,d is identically 1, and so we may project it out,
and see Πn,d as the subset of Rd−1, which is the image of ∆n−1 under (p2, . . . , pd).

Key words and phrases. Vandermonde map, cyclic polytopes, trace polynomials, copositivity, undecidability.
The first and second author were partially supported by NSF grant DMS-1901950. The third and fourth

author have been supported by European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement 813211 (POEMA) and the Tromsø Research foundation grant agree-
ment 17matteCR. The third author was additionally supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 314838170, GRK 2297 MathCoRe.
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Since 2p2(x)p6(y) − p4(x)p4(y) is an even homogeneous polynomial, deciding whether it is
nonnegative for all x, y ∈ Rn is equivalent to deciding whether the polynomial 2a1b3 − a2b2 is
nonnegative on the product Πn,3 ×Πn,3, where ai = pi(x) and bi = pi(y).

We reach two important conclusions: first, we are interested in nonnegativity of polynomials
on (products of) Vandermonde cells Πn,d, and second, to consider matrices of all sizes we need
to take the limit of the Vandermonde cell Πn,d as n goes to infinity.

The Vandermonde cell Πn,d is a compact subset of Rd−1, and our first main result is that
Πn,d has the combinatorial structure of a cyclic polytope, verifying an experimental observation
of [MSW22].

For a fixed d the sets Πn,d form an increasing sequence of sets in Rd−1. Let Πd be the closure
of the union of Πn,d. We show that the set Πd has the combinatorial structure of an infinite
cyclic polytope, and that Πd is not semialgebraic for all d ≥ 3. The sets Πn,3 and Π3 are depicted
in Figure 1. Reduction needed to show undecidability of the unnormalized trace problem is
borrowed from the one used by Hatami and Norine in [HN11] in the context of homomorphism
density inequalities in graph theory. The set used by Hatami and Norine is essentially a linear
transformation of the set Π3, and the reduction is based on the geometry of Π3. In particular
this shows that deciding validity of matrix power trace inequalities is already undecidable if we
only use second, fourth and sixth matrix powers, and we need at most 11 matrix variables for
the problem to become undecidable. We note that the geometry of Π3 was also used directly
by Blekherman, Raymond and Wei [BRW22] to show undecidability of homomorphism density
inequalities with arbitrary edge weights.

We also consider the image of ∆n−1 under elementary symmetric polynomials. Our previous
results on the boundary structure transfer over by using Newton’s identities. We write En,d ∶=
(e1, . . . , ed)(∆n−1) and denote the limit image by Ed. We show that the convex hull of En,d is
an actual cyclic polytope. This helps us reprove and slightly generalize the result of Choi, Lam
and Reznick [CLR87] on test sets for nonnegativity of even symmetric sextics. We note that
the convex hull result can be traced to the work of Bollobás in extremal graph theory [Bol76].

Testing nonnegativity of univariate normalized trace polynomials was considered by Klep,
Pascoe and Volčič [KPV21] where the authors proved a Positivstellensatz in the univariate case.
Geometrically, such normalized trace polynomials correspond to power means. Nonnegativity
of polynomials in power means was investigated by Blekherman and Riener in degree 4 [BR21]
and more generally by Acevedo and Blekherman [AB23]. We briefly illustrate the connection
with the Vandermonde map. Decidability of the normalized trace problem follows quickly from
the work in [BR21]. As before we can consider the image of the normalized Vandermonde
map, and fixing d take the (closure of the) limit as n goes to infinity. As explained in [AB23]
the geometry of the limit is drastically different. For instance, the limit of the normalized
Vandermonde map of the unit simplex ∆n−1 corresponds to the set of the first d moments of a
probability measure supported on R≥0, and it is well-known that this set can be described by
linear matrix inequalities [Sch17]. In particular, the limit is semialgebraic for all d.

1.1. Previous Work and Main Results in Detail. The Vandermonde map has been studied
from several different perspectives. Originating from the question of understanding univariate
hyperbolic polynomials, Arnold, Givental and Kostov investigated the sets (e1, . . . , ed)(Rn)
[Arn86; Giv87; Kos89; Kos89; Kos99]. A detailed examination can also be found in [Meg92].
Kostov investigated the limit of the images of Rn for d = 4. The authors observed, that one can
also allow positive weights in the definition of the Vandermonde map. Their description of the
boundary of the image of the Vandermonde map and of fibers generalizes to the map

Rn Ð→ Rd, x↦ (a1x1 + . . . + anxn, . . . , a1x
d
1 + . . . + anx

d
n)

for any positive weights a1, . . . , an > 0. This is mainly due to the fact that Jacobians of the
weighted and unweighted maps differ only by positive constant multiples.

The restriction of the Vandermonde map to the nonnegative orthant was investigated by
Ursell [Urs59]. The paper contains several important results some of which we reprove. Ursell
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observed that the geometry of the Vandermonde map restricted to the nonnegative orthant
generalizes further to arbitrary real positive exponents, i.e. to maps

Rn Ð→ Rd, x↦ (xα1
1 + . . . + x

α1
n , . . . , xαd

1 + . . . + x
αd
n )

for which 0 < α1 < . . . < αd. Ursell’s original motivation came from studying valid inequalities
in ℓp-norms.

Recently, there has been an interest in describing fibers and the image of the Vandermonde
map using computational algebraic geometry [BCW21; MSW22]. Bik, Czapliński and Wa-
geringe derived semialgebraic description of νn,3([0,1]n) for all n ≥ 3 which has applications in
the study of L-functions and their zeros. Melánová, Sturmfels and Winter explored fibers and
the image of the Vandermonde map over the complex numbers and real numbers.

Our first theorem is a result initially found by Ursell [Urs59]. We provide a different proof
by adapting the techniques in Arnold’s and Givental’s work.
Theorem 2.4. For integers n ≥ d the set bd Πn,d is the set of evaluations of νn,α at all points
in ∆n−1 of the following two types:

(1) (0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

r0

, x1

r̄1

, x2, . . . , x2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r2

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rd−1

) with r2k−1 = 1 and r0 ≥ 0, r2k ≥ 1 for all k,

(2) (x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, x2

r̄2

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rd−1

) with r2k = 1 and r2k ≥ 1 for all k.

and 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd−1

We then investigate concretely the planar boundaries of Πn,3 and the limit set Π3 and derive
consequences for all d ≥ 3.
Corollary 2.20. The sets Πd and Ed are not semialgebraic for all d ≥ 3.

Let µd ∶ R→ Rd, t↦ (t, t2, . . . , td) denote the d-dimensional moment curve and let t1 < . . . < tn.
For n > d the cyclic polytope C(n, d) is the convex polytope with vertices µd(ti) for 1 ≤ i ≤ n.
The combinatorial structure of the cyclic polytope is independent of the chosen n points on the
moment curve. Cyclic polytopes are the polytopes with maximal f -vector among all convex
polytopes of given dimension and number of vertices [McM70; Sta75]. The facets of C(n, d) are
characterized by Gale’s evenness condition [Gal63]. A subset {µd(ti1), . . . , µd(tid

)} with ij < ij+1
for all 1 ≤ j < d spans a facet if and only if any two elements in {t1, . . . , tn} ∖ {ti1 , . . . , tid

} are
separated by an even number of elements {ti1 , . . . , tid

}. Answering a question in [MSW22] we
prove that the set Πn,d has the combinatorial structure of a cyclic polytope, in the sense that
the boundary is a gluing of patches where each patch is a curved simplex and the vertices of
the patches are characterized by Gale’s evenness condition. A set S is a curved simplex if it is
the image of ∆m under a continuous map f , such that f is a diffeomorphism when restricted
to the relative interior of any face of ∆m.
Theorem 3.1. The set Πn,d has the combinatorial structure of the cyclic polytope C(n, d − 1),
i.e. there is a homeomorphism bdC(n, d−1)→ bd Πn,d that is a diffeomorphism when restricted
to the relative interior of any face of bdC(n, d − 1).

We provide an explicit map bdC(n, d − 1)→ bd Πn,d in Section 3.
For n ≥ d it follows from Newton’s identities

pk = (−1)k−1kek +
k−1
∑
i=1
(−1)k−1+iek−ipi for all 1 ≤ k ≤ n(1.1)

that the image of the even Vandermonde map is diffeomorphic to the image on the first d
elementary symmetrics, i.e. En,d ≃ Πn,d under a polynomial diffeomorphism. We show that the
convex set En,d ∶= convEn,d has nice properties which conv Πn,d does not have.
Theorem 5.1. For d ≥ 3 the set En,d is a cyclic polytope, and it is the convex hull of the
following finite set of points ((k2)

1
k2 , . . . , (kd)

1
kd ) ∶ k ∈ [n].
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Recall that any symmetric polynomial can be written as a polynomial expression in elemen-
tary symmetrics or power sums. The vertices of En,d relate to copositivity of homogeneous
symmetric polynomials in which only e1 occurs nonlinearly, i.e. symmetric forms which can be
written as

f = c1e
d
1 + c2e

d−2
1 e2 + . . . + cmed

for some c1, . . . , cm ∈ R. We call such forms hook-shaped symmetric polynomials.
Theorem 5.7. Let f be a hook-shaped symmetric polynomial in n ≥ d variables. Then f is
copositive if and only if f (1, (k2)

1
k2 , . . . , (kd)

1
kd ) ≥ 0 for all k ∈ [n].

For d = 3 this test set was found by Choi, Lam and Reznick [CLR87] but formulated for even
symmetric sextics.
Theorem 5.6. [CLR87] Let f(p2, p4, p6) be an even symmetric form of degree 6 in n ≥ 3
variables. Then, f is nonnegative if and only if f (1, 1

k ,
1

k2 ) is nonnegative for all k ∈ [n].
Using Newton’s identities and the fact that we can restrict to p2 = 1 due to homogenicity and

the nonnegative orthant, the test sets in elementary symmetrics and power sums are equivalent
for d ≤ 3 due to the linear relation of those families of polynomials on the probability simplex.
Surprisingly, we show that the test set for copositivity in power sums does not generalize to any
higher degree.
Proposition 5.5. Let n ≥ d ≥ 4. Then the set conv {( 1

k ,
1

k2 ,⋯, 1
kd−1 ) ∶ k ∈ [n]} does not contain

the set Πn,d and Πd /⊂ conv {(0, . . . ,0), ( 1
k ,

1
k2 ,⋯, 1

kd−1 ) ∶ k ∈ N}.
Finally, we prove undecidability of testing validity of inequalities of trace polynomials in all

symmetric matrices of all sizes.
Theorem 6.2. The following decision problem is undecidable.

Instance: A positive integer k and a trace polynomial f(X1, . . . ,Xk).
Question: Is f(M1, . . . ,Mk) nonnegative for all real symmetric matrices M1, . . . ,Mk of all sizes

for all 1 ≤ i ≤ k?

When we replace the usual trace by the normalized trace, i.e. tr(A)
n for a symmetric matrix

A of size n × n, the problem becomes decidable.
Theorem 6.5. The following decision problem is decidable.

Instance: A positive integer k and a normalized trace polynomial f(X1, . . . ,Xk).
Question: Is f(M1, . . . ,Mk) nonnegative for all symmetric matrices M1, . . . ,Mk of all sizes?

2. The Vandermonde map

In this section we study the geometry of the boundary of the Vandermonde cell. We start
with some definitions.

Definition 2.1. (1) For n, k ∈ N, n ≥ k we write
ek ∶= ∑

I⊂[n],∣I ∣=k
∏
i∈I
xi

for the k-th elementary symmetric polynomial in n variables.
(2) For a ∈ R>0 we consider

pa ∶=
n

∑
i=1
xa

i

the power sum function, which for a ∈ N is called a power sum polynomial.
(3) Given a sequence of strictly increasing positive real numbers α = (α1, . . . , αd) ∈ Rd

>0 we
consider the α-Vandermonde map in n variables to be the function

νn,α ∶ Rn
≥0 Ð→ Rd

x z→ (pα1(x), pα2(x), . . . , pαd
(x))
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In the sequel we will restrict our study of Vandermonde maps to the probability simplex
and power sum polynomials. This can be done without loss of generality which can be seen as
follows.

Remark 2.2. Given a sequence α as in Definition 2.1. We obtain the following normalized
sequence

β = (1, α2
α1
, . . . ,

αd

α1
)

for which we find νn,α(x) = νn,β(xα1
1 , . . . , xα1

d ) for all x ∈ Rn
≥0. Therefore, given rational positive

α ∈ Qd
>0, i.e., the components of α are of the form α1 = s1

t1
, . . . , αd = sd

td
for some integers si, ti one

can set q ∶= t1⋯td and β ∶= (qα1, . . . , qαd) to obtain νn,α(xq) = νn,β(x). Taking into consideration
that every real power sum function with irrational exponents can be be approximated by rational
power sum functions, we can conclude that it is sufficient to study the image of νn,α for integer
exponents and α1 = 1 in order to explore the geometry of general Vandermonde mappings.

Definition 2.3. Let ∆n−1 ∶= {x ∈ Rn
≥0 ∶ x1 + . . . + xn = 1} and α = (α1, . . . , αd−1) ∈ Rd−1

>1 be a
strictly increasing sequence of real numbers larger than 1. The (n,α)-Vandermonde cell Πn,α

is the set νn,α(∆n−1). Note for α = (2, . . . , d) we also write Πn,α = Πn,d.

In Subsection 2.1 we investigate generally the boundary of the Vandermonde cell. In Subsec-
tion 2.2 we parameterize planar boundaries of the sets Πn,3 and Π3 and we show that the limit
set Πd is not semialgebraic for all d ≥ 3.

2.1. The boundary the Vandermonde cell. In the sequel we will prove the following state-
ment on points on the boundary of a Vandermonde cell.

Theorem 2.4. For integers n ≥ d the set bd Πn,α is the set of evaluations of νn,α at all points
in ∆n−1 of the following two types:

(1) (0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

r0

, x1

r̄1

, x2, . . . , x2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r2

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rd−1

) with r2k−1 = 1 and r0 ≥ 0, r2k ≥ 1 for all k,

(2) (x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, x2

r̄2

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rd−1

) with r2k = 1 and r2k ≥ 1 for all k.

and 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd−1

Definition 2.5. The vector r = (r0, . . . , rd−1) ∈ Nd defined via Theorem 2.4 for every x ∈ ∆n−1
is called the multiplicity vector of x, where we set r0 = 0 if the associated point is of type (2).

In order to understand the boundary of the Vandermonde cell we are considering the following
notion of generalized positive Vandermonde variety. The study of such varieties goes back to
work of Arnold, Givental and Kostov [Arn86; Giv87; Kos89] who had considered these in their
study of hyperbolic polynomials. Our setup is a bit more evolved, as in contrast to the above
named authors, we will consider general exponents and consider only the positive part. We fix
2 ≤ d ≤ n and a vector of integer exponents α = (α1, . . . , αd−1) with 1 < α1 < . . . < αd−1 for the
remaining part of this subsection.

Definition 2.6. For 2 ≤ k ≤ d and c ∈ {1} ×Rk−1
≥0 we define the associated generalized positive

α-Vandermonde variety to be the fiber over c of the corresponding Vandermonde map, i.e.,
V α

k (c) ∶= ν
−1
n,(1,α1,...,αk−1)(c) ∩R

n
≥0.

Some fundamental properties of these varieties had been shown already by the mentioned
authors. We show here that their proofs almost directly can be generalized to the more general
setup presented above. To this end we follow the proofs presented in [Meg92] (see also [Rai04]
Section 3).

We begin with the following observation for the tangent space of a Vandermonde variety.

Lemma 2.7. Let c ∈ {1} ×Rk−1
≥0 . Then a point x ∈ V α

k (c) ∩R
n
≥0 with more than k distinct need

non-zero coordinates is a smooth point.
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Proof. First, note that ∂pa

∂xj
= axa−1

j . Therefore, the Jacobian of the map (p1, pα1 , . . . , pαk−1)
equals

⎛
⎜⎜⎜
⎝

1 1 . . . 1
α1x

α1−1
1 α1x

α1−1
2 . . . α1x

α1−1
n

⋮ ⋮ ⋮
αk−1x

αk−1−1
1 αk−1x

αk−1−1
2 . . . αk−1x

αk−1−1
n

⎞
⎟⎟⎟
⎠

Now suppose that the rows of the Jacobi matrix are linearly dependent, so there exist l0, . . . , lk−1
such then every column satisfies l0 ⋅ 1 + l2 ⋅ α1x

α1−1
j + . . . lk−1 ⋅ αk−1x

αk−1
j = 0. Therefore, every

coordinate xj is a solution to the same univariate polynomial

f(t) = b0 + b1t
α1−1 + . . . + bk−1t

αk−1−1.

However, by Descarte’s rule of signs f can have at most k − 1 different roots in Rn
>0. Therefore,

in case x has more distinct non-zero absolute values of coordinates the Jacobi matrix has full
rank. □

Lemma 2.8. Let c ∈ {1} × Rd−2
≥0 be generic. The critical points of pαd−1 on V α

d−1(c) ∩ R
n
≥0 are

exactly the points with precisely d − 1 distinct non-zero coordinates.

Proof. For generic c the Vandermonde variety V α
k (c) is smooth and by the Jacobian criterion

([Eis13, Thm 16.19]) (n − d − 1) equidimensional (or empty), therefore by the previous Lemma
every point in x ∈ V α

d−1(c) will have strictly more than d − 2 distinct non-zero coordinates. Let
z = (z1, . . . , zn) ∈ Rn

≥0 be a critical point of pαd−1 on V α
d−1(c).

Then, there exists Lagrange multipliers λ∗1 , . . . , λ∗d−1 ∈ R such that all partial derivatives of
the Lagrangian function

(2.1) L(X) ∶= pαd−1(X) + λ0(p1 − a1) +
d−2
∑
i=1

λ∗i (pαi(X) − ai+1)

vanish at x. This yields

0 = ∇pαd−1(z) + λ
∗
1∇p1(z) + . . . + λ∗d−1∇pαd−2(z).

Again noting that ∂pa

∂xj
= axa−1

j we observe that there exists a univariate polynomial

f(t) = αd−1t
αd−1−1 − λ1t − . . . − λd−1αd−2t

αd−2−1

such that f(zi) = 0 for all 1 ≤ i ≤ n. However, by Descarte’s rule of signs the polynomial f can
have at most d − 1 positive roots. Since z ∈ Rn is regular we have z must have exactly d − 1
distinct absolute values of non-zero coordinates. Conversely, if z ∈ V α

d−1(c) ∩ R
n
≥0 has precisely

d − 1 distinct absolute values of non-zero coordinates the existence of the Lagrange multipliers
follows from the observation that the rank of the d − 1 × d matrix

A ∶=

⎛
⎜⎜⎜⎜
⎝

z1 zα1−1
1 . . . zαd−1−1

1
z2 zα1−1

2 . . . zαd−1−1
2

⋮ ⋮ ⋮
zd−1 zα1−1

d−1 . . . zαd−1−1
d−1

⎞
⎟⎟⎟⎟
⎠

is d − 1. Thus, the columns of this matrix being linearly dependent yields the existence of the
Lagrange multipliers. □

Definition 2.9. To x ∈ Rn
≥0 we associate the multiplicity vector m = (m0, . . . ,mn) ∈ Zn

≥0 as
follows: The number m0 counts the number of zero coordinates, and mi corresponds to the
number of times the i − th smallest coordinate appears. This means, assuming that x has k
positive coordinates which are ordered increasingly, we have

x = (0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

m0

, x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m1

, . . . , xk, . . . , xk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mk

).
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Proposition 2.10. Let V α
d−1(c) be a smooth Vandermonde variety and x ∈ Rn

≥0 be a critical
point of pαd−1 on V α

d−1(c). Further set ri =mi −1. Then, if d is odd (even), the Hessian of pαd−1
on V α

d−1(c) at the point x is the sum of a negative (positive) definite quadratic form on Ra and
a positive (negative) definite form on Rb, where a = ∑i<d,i/∈2N ri and b = m0 +∑i<d,i∈2N ri. pαd−1
is a Morse function on V α

d−1(a) with Morse index b.
Proof. Let x be a critical point which we assume without loss of generality to have only non-
negative coordinates. By Lemma 2.8 we can assume

x = (0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

m0

, x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rd−1

, x1, . . . , xd−1)

for some positive pairwise distinct xi’s. Let
x̃ = (0, . . . ,0

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
m0

, x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rd−1

) ∈ Rn−d+1

denote the point consisting of the first n − d + 1 coordinates of x. Notice that since x1, . . . , xd−1
are pairwisely distinct, the last d − 1 columns of the associated Jacobian will be of full rank.
Thus, the first n−d+1 coordinates can be used as a system of local coordinates for V α

d−1(c) in a
neighborhood of x. Since x is a critical point we know from the proof of Lemma 2.8 that every
coordinate of x satisfies the same univariate polynomial equation f(xi) = 0. By the intermediate
value theorem the roots of the derivative f ′(t) interlace the roots of f . Noting that the leading
coefficient of g is positive, we find that the function values of the derivative f ′ at the roots of f
satisfy

f ′(xd−1) > 0, f ′(xd−2) < 0, f ′(xd−3) > 0, . . . , (−1)qf ′(x1) < 0, (−1)qf ′(0) > 0,
where q = d − 1 mod 2. Now, since we have that the Hessian of Lagrange function in (2.1)

∂2L

∂Xi∂Xj
= 0 for i ≠ j, and ∂2L

∂Xi∂Xi
= f ′(xi),

we can conclude that the Hessian of pαd−1 on V α
d−1(c) at x has indeed the claimed form. □

Thus, we immediately obtain:
Corollary 2.11. Let x be a critical point of pαd−1 on V α

d−1(c). Then x is a strict local minimum/
maximum if x is of type (1)/(2) if d is odd and of type (2)/(1) if d is even.
Lemma 2.12. Let n ≥ d ≥ 2. The image of the function pαd−1 ∶ Rn → R on the set V α

d−1(c) is
either empty or an interval for all c ∈ Rd−1.

The proof of this Lemma essentially follows from the following statement, which originally
had been shown bu Givental [Giv87, p. 275] for the case of Vandermonde varieties V α

d−1(c),
with α = (2, . . . , d).
Proposition 2.13. For generic c the set

{0 ≤ x1 ≤ . . . ≤ xn} ⋂ V α
d−1(c)

is either contractible or empty.
Although the statement in Givental’s article [Giv87] is not stated in this generality the

proof follows verbatim using Proposition 2.10 and the following general insight the on the
local topology of functions with non-degenerate Hessians.
Proposition 2.14. [Giv87, Lemma 2] The reconstruction of the topology of a level set of a
function f on Ra

+×Rb
− in the neighborhood of the critical point (0,0) with non-degenerate Hessian

F = Q+ +Q− is trivial if a, b > 0 and consists of the birth (death) of a simplex otherwise.
A reader interested in more details about the above statements might also consult [Rai04;

Meg92] for more detailed proofs. With these preparations the proof of Lemma 2.12 follows
almost directly.
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Proof of Lemma 2.12. We remark first that it is sufficient to show the claimed statement for
generic c ∈ Rd−1 since it follows from [Kos89, Lemma 2.6] that from the generic case the statement
follows for all c. Thus, we can assume that c is generic. Then, following Proposition 2.13 the
image of pαd−1 on the restriction is connected and compact and thus, if it is non-empty, an
interval. □

We are now in the position to give the proof of Theorem 2.4.

Proof of Theorem 2.4. We conduct the proof in three steps starting with integer exponents and
then deal with positive rational and general positive exponents.
(1) First, we suppose α ∈ Zd−1

≥2 is an integer exponent vector. Any point of type (1) or (2) with
d − 1 distinct non-zero coordinates is indeed mapped to the boundary by Corollary 2.11.
However, any point of type (1) or (2) with less than d−1 distinct non-zero coordinates is then
also mapped to the boundary by continuity. Now, we assume that c ∶= (pα1(x), . . . , pαd−1(x))
is contained in the boundary of the set Πn,α. If c is non-singular the set pαd−1(V α

d−1(c)) is
an interval by Lemma 2.12. We observe that pαd−1 is either minimized or maximized at x.
We can apply Corollary 2.11 and obtain that x must be of type (1) or (2). If c is a singular
point then x can be obtained as the limit of a sequence of such points.

(2) Second, we suppose α ∈ Qd−1
>1 is a rational exponent vector. There exists q ∈ N such that

β ∶= qα ∈ Zd−1
≥2 is an integer exponent vector and νn,α(x) = νn,β(x1/q) for all x ∈ Rn

≥0,
where x1/q = (x1/q

1 , . . . , x
1/q
n ). We already know that the claim for the Vandermonde cell

Πn,β. However, since νn,β is weighted homogeneous, we have an analogous description
of bdνn,β(Rn

≥0) = νn,α(Rn
≥0). This shows the claim for Πn,α since also νn,α is weighted

homogeneous with rational weights.
(3) Third, we suppose α ∈ Rd−1

>1 is a real exponent vector. Then there exists a sequence of
rational exponents αm ∈ Qd−1

>1 which converges to α. We have c ∈ bd Πn,α if and only if
there exists a sequence cm ∈ bd Πn,αn with cm → c for m → ∞. Then the claim follows by
continuity.

□

Remark 2.15. The description of the boundary of the (n,α)-Vandermonde cell in Theorem
2.4 transfers to α-Vandermonde maps with positive weight vector w ∈ Rn

>0, i.e. to maps
x↦ (w1x

α1
1 + . . . +wnx

α1
n , . . . ,w1x

αd−1
1 + . . . +wnx

αd−1
n )

This is since the Jacobi matrix of a weighted α-Vandermonde map differs only by positive scalars
of the Jacobi matrix of an α-Vandermonde map and thus of a generalized Vandermonde matrix.

2.2. Boundary of the Vandermonde Cell Πn,3. In this subsection we investigate planar
parametrizations of bd Πn,3. Newton’s identities imply Πn,d ≃ En,d up to a polynomial diffeo-
morphism for n ≥ d. Thus, the parametrization transfers to the image in elementary symmetric
polynomials.

Theorem 2.16. For n ≥ 3, a parametrization of bd Πn,3 is given by the following n arcs. The
upper part of the boundary is parametrized by the arc

((1 − t)
2

n − 1
+ t2, (1 − t)

3

(n − 1)2
+ t3) ∶ 1

n
≤ t ≤ 1(2.2)

while the lower part is parameterized by the n − 1 arcs

(( (1 − t)
2

n − k − 1
+ t2, (1 − t)3

(n − k − 1)2
+ t3) ∶ 0 ≤ t ≤ 1

n − k
)

0≤k≤n−2
.(2.3)

Proof. We apply Theorem 2.4 to determine the boundary. The boundary consists of the closure
of the set of all point evaluations in (p2, p3) at all points (0, . . . ,0, x1, . . . , x1, x2, . . . , x2) ∈∆n−1
of the form 0 < x1 < x2 of type (1) or (2).
Note that any point of type (2) must be of the form (a, . . . , a, b) with 0 < a < b and (n−1)a+b = 1.
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Thus, a = 1−b
n−1 , 1

n < b < 1 and we observe that the upper part of the boundary is indeed
parameterized by the curve in (2.2).

We note that there are essentially n − 1 points of type (1). Namely, points of the form

(0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

#=k

, a, b, . . . , b
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
#=n−k−1

)

for 0 ≤ k ≤ n−2 satisfying b = 1−a
n−k−1 and a ≤ 1

n−k . We obtain precisely the parametrizations (2.3)
of the lower part of the boundary. □

Figure 1. The sets bd Πn,3 for 3 ≤ n ≤ 5

We immediately obtain parametrizations of the boundary of the sets En,3 by Newton’s iden-
tities. See Figure 2 for a visualisation of these boundaries.

Figure 2. The sets bdEn,3 for n ∈ {3,5}

Theorem 2.16 generalizes to a parametrization of the boundary of the set

{(pk(x), pm(x)) ∶ x ∈∆n−1}

for 2 ≤ k < m. However, we note that the upper part of the boundary cannot be described by
just one smooth parametrizitation. This is since there are essentially more points of type (1)
resp. (2) than for k = 2 and m = 3, where there is only 1. However, a careful analysis can lead
to a description of the boundary.

Example 2.17. For 2 ≤ k ≤ 3, the lower part of the boundary of the set

{(pk(x), p4(x)) ∶ x ∈∆3}

is the union of the images of the following two parametrizations

(2sk + tk + (1 − 2s − t)k,2s4 + t4 + (1 − 2s − t)4) ∶ 0 ≤ s ≤ t ≤ 1
2
− s ,(2.4)

(sk + tk + 1
2k−1 (1 − s − t)

k, s4 + t4 + 1
8
(1 − s − t)4) ∶ 0 ≤ s ≤ t < 1

3
− 1

3
s .(2.5)

9



Parametrization (2.4) comes from the points with multiplicity vector (x1, x1, x2, x3) and (2.5)
from the points (x1, x2, x3, x3).
The upper part of the boundary is the union of the images of the following two parametrizations

(sk + 2tk + (1 − s − 2t)k, s4 + 2t4 + (1 − s − 2t)4) ∶ 0 ≤ s ≤ t ≤ 1
3
− 1

3
s ,(2.6)

(sk + tk + (1 − s − t)k, s4 + t4 + (1 − s − t)4)) ∶ 0 ≤ s ≤ t ≤ 1
2
− 1

2
t .(2.7)

Parametrization (2.6) comes from the points with multiplicity vector (x1, x2, x2, x3) and (2.7)
from those with (0, x1, x2, x3).

In the transition from Πn,3 to Πn+1,3 in Theorem 2.16 the arc describing the upper part of the
boundary grows and converges. Its limit has the parametrization (t, t3/2), 0 ≤ t ≤ 1. Moreover,
any point on the lower part of the boundary for n remains on the boundary for n + 1, but a
single new smooth curve is added. Namely, the smooth curve with parametrization

((1 − t)
2

n
+ t2, (1 − t)

3

n2 + t3) , 0 ≤ t ≤ 1
n + 1

.

Figure 3. The boundary of the set Π20,3

Corollary 2.18. The boundary of the set Π3 equals

{(t, t3/2) ∶ 0 ≤ t ≤ 1} ∪ ⋃
k∈N>1

{((1 − t)
2

k
+ t2, (1 − t)

3

k2 + t3) ∶ 0 ≤ t ≤ 1
k + 1

} .

We note that two different parametrizations of the lower part of the boundary

((1 − t)
2

k
+ t2, (1 − t)

3

k2 + t3) ∶ 0 ≤ t ≤ 1
k + 1

and

((1 − s)
2

l
+ s2,

(1 − s)3

l2
+ s3) ∶ 0 ≤ s ≤ 1

l + 1
intersect if and only if k = l−1 or k = l+1. Without loss of generality be k = l−1. The intersection
is a point and the curves meet at (1

l ,
1
l2
) for t = 1

l and s = 0. Moreover, the gradients (0,0) and
(−2

l ,
−3
l ) differ at this point which shows that (1

l ,
1
l2
) is a singular point of bd Π3.

Corollary 2.19. The limit Vandermonde cell Π3 has countably infinitely many isolated singular
points which are the points of the form

(1
k
,

1
k2) , k ∈ N>0 and (0,0) .

Proof. It follows from the discussion above that only neighboring parametrizations of the lower
part of the boundary intersect and their intersection point is a singular point of the boundary.
The intersection points are all of the form ( 1

k+1 ,
1

(k+1)2 ) for all k ∈ N. However, (1,1) is an
intersection of the parametriztation (t, t3/2),0 ≤ t ≤ 1 of the upper part of the boundary and
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((1 − s)2 + s2, (1 − s)3 + s3) ∶ 0 ≤ s ≤ 1/2 of the lower part. For t = 1 and s = 0, but again the
gradients are different which shows that (1,1) is a singular point.
Moreover, any singular point must be an intersection of two parametrizations. But the inter-
section points are precisely the points of the claimed form and the limit point (0,0).
Since all the singular points lie in the rational moment curve (t, t2) the points are indeed isolated
(see e.g. ([Bar02, Chapter II.9.])). □

Corollary 2.20. The sets Πd and Ed are not semialgebraic for all d ≥ 3.

Proof. We show that Π3 is not semialgebraic. Then for d ≥ 4 the set Πd is not semialgebraic,
since for d ≥ 3 we have Π3 = π(Πd), where π ∶ Rd → R2 denotes the projection onto the first
2 coordinates. Moreover, Ed is a polynomial image of the set Πd which must also be non
semialgebraic.

Suppose hat the set Π3 is semialgebraic. However, by Corollary 2.19 the semialgebraic set Π3
has countably infinitely many isolated singular points. Let T denote the union of these singular
points. The union of all singular points of a semialgebraic set is again semialgebraic since this
condition can be formalized as the vanishing and non-vanishing of certain polynomial equalities.
Thus, T is semialgebraic. By ([BCR13, Theorem 2.4.4]) every semialgebraic set is the disjoint
union of a finite number of semialgebraically connected semialgebraic sets. However, there are
countable infinitely isolated points in T which contradicts T being semialgebraic. In particular,
Π3 cannot be semialgebraic. □

3. Combinatorial properties of the boundary of Πn,d

Our main result in this section is the following theorem, which provides a combinatorial
description of the boundary of the Vandermonde cell.

Theorem 3.1. The set Πn,d has the combinatorial structure of the cyclic polytope C(n, d − 1).

Cyclic polytopes are well studied objects in polyhedral combinatorics.

Definition 3.2. For n > d ≥ 2 the cyclic polytope C(n, d) is the convex polytope with n vertices
which are points on the real d-dimensional moment curve (t, t2, . . . , td).

The combinatorial structure, e.g. the f -vector, of C(n, d) is independent of the chosen points
and its boundary is a d−1-dimensional simplicial polytope. Thus, we can speak about the cyclic
polytope C(n, d). Cyclic polytopes are interesting objects. For instance, the upper bound
theorem says that C(n, d) has the component-wise maximal f -vector among all d-dimensional
convex polytopes with n vertices [McM70; Sta75]. We refer to ([Zie12, Section 0]) for more
background on cyclic polytopes. For all n ≥ d ≥ 3 we have conv {( 1

k ,
1

k2 , . . . ,
1

kd−1 ) ∶ k ∈ [n]} is the
cyclic polytope C(n, d − 1) and this is the choice of vertices of C(n, d − 1) we will usually use.

Definition 3.3. A set S ⊂ Rd has the combinatorial structure of the cyclic polytope C(n, d) if
there exists a homeomorphism Φ ∶ bdC(n, d)→ bdS which is a diffeomorphism when restricted
to the relative interior of any face of bdC(n, d). The vertices of S are the images of the vertices
of C(n, d).
We call a set S ⊂ Rn a curved m-simplex if S is the image of ∆m under a continuous map f ,
such that f is a diffeomorphism when restricted to the relative interior of any face of ∆m. The
vertices of a curved m-simplex are the images of the vertices of the simplex ∆m.

Note that the boundary of a set which has the combinatorial structure of a cyclic polytope
is the gluing of #{facets of C(n, d)} many patches and each patch is a curved d-simplex such
that the vertices of the patches are labelled by Gale’s evenness condition. Moreover, patches of
the boundary intersect if and only if the intersection of their sets of vertices is non-empty.

The facets of a cyclic polytope C(n, d) are characterized by Gale’s evenness condition. For
an integer k we write k̂ ∶= ( 1

k ,
1

k2 , . . . ,
1

kd ).
11



Theorem 3.4 ([Gal63]). The facets of C(n, d) are precisely given by all {k̂ ∶ k ∈ S}, where
S ⊂ [n] is any set of size d satisfying

i) If d is even, then S is either a disjoint union of consecutive pairs {i, i+1}, or a disjoint
union of consecutive pairs {i, i + 1} and {1, n}.

ii) If d is odd, then S is a disjoint union of consecutive pairs {i, i + 1} and either the
singleton {1} or {n}.

The standard formulation of Gale’s evenness condition is the following. Let n > d, k1 < . . . <
kn ∈ R and T = {k̂1, . . . , k̂n} be the vertices of conv{k̂i ∶ 1 ≤ i ≤ n}. Then a set Td ⊂ T of size
d spans a facet of C(n, d) if and only if any two elements in T ∖ Td are separated by an even
number of elements from Td in the sequence (k1, k2, . . . , kn).

We briefly present an outline of our proof of Theorem 3.1. By Theorem 2.4 we have bd Πn,d =
{(p2, . . . , pd)(x) ∶ x ∈ ∆n−1, xi ≤ xi+1,∀i, x is of type (1) or (2)}. We associate the multiplicity
vectors r of type (1) and (2) with d−2-dimensional simplices ∆r

∗ and the simplices correspond to
the facets of C(n, d−1) (see Proposition 3.8). We show that there are natural homeomorphisms
Ψr ∶∆r

∗ → bd Πn,d which are diffeomorphisms when restricted to the relative interior of any face
of ∆r

∗ in Lemma 3.5. Then we show that there is a one-to-one map between the union of all the
associated simplices ∆r

∗ and bd Πn,d in Theorem 3.10.
For a sequence r = (r0, r1, . . . , rd−1) ∈ Nd we define the d − 2-dimensional simplex

∆r
∗ ∶= {(0, . . . ,0

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
r0

, x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rd−1

) ∈ Rn
≥0 ∶ xi ≤ xi+1∀i,

d−1
∑
i=1

rixi = 1}

and the map
ψr ∶ ∆r

∗ Ð→ Rd−1
≥0

z z→ (p2(z), . . . , pd(z))
.

Lemma 3.5. Let r ∈ Nd with ∑d−1
i=0 ri = n. Then the map ψr ∶∆r

∗ → Im(ψr) is a homeomorphism
and a diffeomorphism when restricted to the relative interior of any face of ∆r

∗.

Proof of Lemma 3.5. First, we want to show that ψr is a homeomorphism. It follows from
([Mas79, Theorem 1]) that we only need to verify that the Jacobian of ψr is positive on the
interior of ∆r

∗ and positive on the restriction of ψr to any face. Note, this is true since

det(Jacψr) = r1r2⋯rd−1 ⋅ (d − 1)! ∏
1≤i<j≤d−1

(xi − xj)

is a positive scalar of the Vandermonde determinant and the Vandermonde matrix is totally
positive [Ste02], i.e. all the minors are positive.
Second, we show that ψr restricted to the relative interior of any face is a diffeomorphism. Since
the Jacobian of ψr restricted to the relative interior of any face of ∆r

∗ is always non-singular a
local inverse of the Jacobi matrix exists, by the inverse function theorem. However, the Jacobi
matrix at any point in the interior of ∆r

∗ is a one-to-one map and differentiable in any local
neighborhood. Thus, the local inverse must be a global inverse and ψr is a diffeomorphism when
restricted to the relative interior of any face. □

Corollary 3.6. Each simplex ∆r
∗ is mapped to a curved d − 2-simplex in Rd via ψr and the

vertices of the curved simplex ψr(∆r
∗) are the points ( 1

k ,
1

k2 , . . . ,
1

kd−1 ) for all vertices k of ∆r
∗.

It follows from Theorem 2.4 that the set bd Πn,d is the union of the curved simplices ψr(∆r
∗)

for all multiplicity vectors of type (1) and (2). We still have to show that the vertices of each
simplex satisfy Gale’s evenness condition and the curved simplices are indeed correctly arranged
patches of bd Πn, d.
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Recall, a multiplicity vector r of type (1) has the form r0 ≥ 0, r2k−1 = 1 and r2k ≥ 1 for all
1 ≤ k ≤ ⌊d−1

2 ⌋ and a multiplicity vector of type (2) is of the form r0 = 0, r2k−1 ≥ 1 and r2k = 1 for
all 1 ≤ k ≤ ⌊d−1

2 ⌋. For 1 ≤ k ≤ n we write k ∶= (0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n−k

, 1
k , . . . ,

1
k

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
k

).

Lemma 3.7. Let r ∈ Nd with ∑d−1
i=0 = n be a multiplicity vector of type (1) or (2). The vertices

of ∆r
∗ are

{ n − r0, n − r0 − 1, n − r0 − r2 − 1, n − r0 − r2 − 2, . . . if r is of type (1)
n,n − r1, n − r1 − 1, n − r1 − r3 − 1, n − r1 − r3 − 2, . . . if r is of type (2)

Proof. The vertices are the points where all but one of the defining inequalities of the simplex ∆r
∗

are tight. Thus, the vertices are the d−1 points for which xi = 0,1 ≤ i ≤ k−1 and xk = . . . = xd−1
for all 0 ≤ k ≤ d − 2. □

In the following Proposition we observe that multiplicity vectors of type (1) and (2) encode
Gale’s evenness condition with the identification k↔ k.
Proposition 3.8. Let r = (r0, . . . , rd−1) ∈ Nd with ∑d−1

i=0 r = n be a multiplicity vector of type (1)
or (2). Then, the set

{k ∈ [n] ∶ k vertex of ∆r
∗}

satisfies Gale’s evenness condition. Moreover, any set S ⊂ [n] of size d − 1 satisfying Gale’s
evenness condition gives rise to a simplex ∆s

∗ such that ∣s∣ = n and the multiplicity vector s is
of type (1) or (2).
Proof. We distinguish between d − 1 odd and even. We first consider the case d − 1 is odd. In
this situation we have by Lemma 3.7 that the vertices of ∆r

∗ are

{ n and rd−1, rd−1 + 1, . . . , n − r1 − 1, n − r1 if r is of type (1)
1 and 1 + rd−1,2 + rd−1, . . . , n − r0 − 1, n − r0 if r is of type (2)

The corresponding set of integers satisfies Gale’s evenness condition in both cases. Conversely,
we suppose J ⊂ [n] with ∣J ∣ = d−1 and J satisfies Gale’s evenness condition. Given a set S ⊂ [n]
we construct the associated multiplicity vector s.

(1) First, we suppose J = ⊎
d
2−1
j=1 {ij , ij + 1}⊎ {1} and 1 < i1 < . . . < i d

2−1 < n. We note d− 2 is even
and define sd−2 ∶= i1 − 1 ≥ 1 and sd−2j ∶= ij − ij−1 − 1 ≥ 1 for all 1 < j ≤ d

2 − 1. Then,

s2 + s4 + . . . + sd−2 = i d
2−1 −

d

2
+ 1 ≤ n − d

2
.

We set s1 = s3 = . . . = sd−1 ∶= 1 and 0 ≤ s0 ∶= n − s1 + s2 + . . . + sd−1. We note s1 + . . . + sd−1 ≤
n − d

2 + ⌈
d−1

2 ⌉ ≤ n. Thus, the vector s is indeed of type (2) and the simplex ∆s
∗ has vertex

set {k ∶ k ∈ J}
(2) Second, we suppose J = ⊎

d
2−1
j=1 {ij , ij+1}⊎{n} and 1 ≤ i1 < . . . < i d

2−1 < n. We define sd−1 ∶= i1,
sd−2j+1 ∶= ij − ij−1 − 1 ≥ 1 for all 2 ≤ j ≤ d

2 − 1. Then,

sd−1 + sd−3 + . . . + s3 = i d
2−1 −

d

2
+ 2 ≤ n − d

2
.

We define s2 = s4 = . . . = sd−2 ∶= 1 and s1 ∶= n − (sd−1 + sd−1 + . . . + s2) ≥ 1. We have s is of
type (2) and the simplex ∆s

∗ has vertex set {k ∶ k ∈ J}.
We now turn to the case with d − 1 even. Again by Lemma 3.7 the vertices of ∆r

∗ are

{ rd−1, rd−1 + 1, . . . , n − r0 − 1, n − r0 if r is of type (1)
1, n and rd−2 + 1, rd−2 + 2, . . . , n − r1 − 1, n − r1 if r is of type (2)

Also in this case the corresponding set of integers satisfies Gale’s evenness condition. Conversely,
let J ⊂ [n] be of size d−1 satisfying Gale’s evenness condition. Given a set S ⊂ [n] we construct
the associated multiplicity vector s.
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(1) First, we suppose

J = {1, n} ⊎
d−3

2

⊎
j=1
{ij , ij + 1} with < i1 < . . . < i d−3

2
< n − 1.

We define s2 = s4 = . . . = sd−1 ∶= 1, sd−2 ∶= i1−1 ≥ 1, sd−2k ∶= ik − ik−1−1 ≥ 1 for all 2 ≤ k ≤ d−3
2 ,

and s1 ∶= n − (s2 + . . . + sd−1) ≥ 1. The vector s is of type (2) and the simplex ∆s
∗ has the

vertex set {k ∶ k ∈ J}.
(2) Second, we suppose

J =
d−1

2

⊎
j=1
{ij , ij + 1} and 1 ≤ i1 < . . . < i d−1

2
< n.

We set s1 = . . . = sd−2 ∶= 1, sd−1 ∶= i1 ≥ 1, sd−2k+1 ∶= ik − ik−1 − 1 ≥ 1 for all 2 ≤ k ≤ d−1
2 and

s0 ∶= n − (s1 + . . . + sd−1) ≥ 0. Then, the vector s is of type (1) and the vertex set of the
simplex ∆s

∗ is {k ∶ k ∈ J}.
□

Corollary 3.9. The map
κn,d ∶ bd (conv{(1

i , . . . ,
1

id−1 ) ∶ 1 ≤ i ≤ n}) Ð→ ⋃r has type (1),(2)∆r
∗

∑d
j=1 λij ( 1

ij
, . . . , 1

id−1
j

) z→ ∑d
j=1 λij (0, . . . ,0, 1

ij
, . . . , 1

ij
)

is a homeomorphism and a diffeomorphism when restricted to the relative interior of any face
of bd (conv{(1

i , . . . ,
1

id−1 ) ∶ 1 ≤ i ≤ n}).

The map bdC(n, d − 1)→ bd Πn,d in Theorem 3.1 will be the composition νn,d ○ κn,d.

Proof. Since any facet of the cyclic polytope conv{(1
i , . . . ,

1
id−1 ) ∶ 1 ≤ i ≤ n} is the convex

hull of d − 1 points on the moment curve, these points are convexly independent. More-
over, the facet defining sets of vertices correspond to the multiplicity vectors r of type (1)
and (2) by Proposition 3.8. Thus the map κn,d is well-defined. However, the map is clearly
a homeomorphism and a diffeomorphism when restricted to the relative interior of any face of
bd (conv{(1

i , . . . ,
1

id−1 ) ∶ 1 ≤ i ≤ n}) since it is a linear map on any facet of C(n, d − 1). □

The following Theorem is used to show that the curved simplices ψr(∆r
∗) can be arranged

according to Gale’s evenness condition as patches of bd Πn,d.

Theorem 3.10. The Vandermonde map maps ν−1
n,d(bd Πn,d) ∩ {x ∈ Rn

≥0 ∶ 0 ≤ x1 ≤ . . . ≤ xn}
one-to-one to bd Πn,d.

Thus, any point in bd Πn,d has a unique preimage in {x ∈ ∆n−1 ∶ 0 ≤ x1 ≤ . . . ≤ xn}. Theorem
3.10 is actually an adaption of ([Kos89], Theorem 1.12.) and follows from restricting the domain
of the Vandermonde map from {(x1, . . . , xn) ∈ Rn ∶ x1 ≤ . . . ≤ xn} to its intersection with the
nonnegative orthant.

Proof of Theorem 3.10. The proof follows exactly the same steps as Kostov’s proof of ([Kos89],
Theorem 1.12.). Since the Vandermonde map is weighted homogeneous we actually can prove
the claim for the domain {x ∈ Rn ∶ 0 ≤ x1 ≤ x2 . . . ≤ xn}. Instead of considering (p1, . . . , pd)({x ∈
Rn
≥0 ∶ xi ≤ xi+1}) we consider (p2, . . . , p2d)({x ∈ Rn ∶ 0 ≤ x1 ≤ x2 . . . ≤ xn}).
All statements in [Kos89] needed to prove an adapted version of ([Kos89], Theorem 1.12) are

already proved in Subsection 2.1 with the exception of ([Kos89], Theorem 1.8), i.e. the image of
the closure of any k ≤ d dimensional stratum of {x ∈ Rn

≥0 ∶ 0 ≤ x1 ≤ . . . xn} under (p2, . . . , p2d) is a
stratified manifold and the graph of a d−k dimensional vector function. However, working with
even power sums restricted to {x ∈ Rn ∶ 0 ≤ x1 ≤ . . . ≤ xn} instead of the Vandermonde map on
{x ∈ Rn ∶ x1 ≤ . . . ≤ xn}, the determinant occurring in Kostov’s proof of ([Kos89], Theorem 1.8)
must be replaced by ∏k

i=1 xi∏1≤q<r≤k(x2
q − x2

r) which is up to a positive scalar equal to the
14



determinant of (∂p2i

∂xj
)1≤i,j≤k. This determinant vanishes at a ∈ {x ∈ Rn ∶ 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn} if

and only if a is contained in the boundary of a stratum of {x ∈ Rn
≥0 ∶ 0 ≤ x1 ≤ . . . ≤ xn}.

This way we obtain an adapted version of Theorem ([Kos89], Theorem 1.8). □

We are ready to give a proof of Theorem 3.1.

Proof of Theorem 3.1. We suppose C(n, d−1) = conv{(1
i , . . . ,

1
id−1 ) ∶ 1 ≤ i ≤ n}. By Corollary 3.9

the map κn,d ∶ bdC(n, d − 1) → ⋃r has type (1),(2)∆r
∗ is a homeomorphism and a diffeomorphism

when restricted to the relative interior of any face of bdC(n, d − 1).
We consider the map νn,d○κn,d ∶ bdC(n, d−1)→ bd Πn,d. The map νn,d is surjective by Theorem
2.4. On each simplex ∆r

∗ the map ψr is a homeomorphism and a diffeomorphism when restricted
to the relative interior of any face by Lemma 3.5. Thus, νn,d ○ κn,d is a diffeomorphism on the
restriction of any face of bdC(n, d − 1). The claim follows, since ν−1

n,d(bd Πn,d) → bd Πn,d is
one-to-one by Theorem 3.10. □

We conclude the section with two observations.

Remark 3.11. Although the set Πn,d has the combinatorial structure of a cyclic polytope the
natural extension κ of κn,d to the interior of C(n, d − 1)

κ ∶ conv{(1
i , . . . ,

1
id−1 ) ∶ 1 ≤ i ≤ n} Ð→ Πn,d

∑d
j=1 λij ( 1

ij
, . . . , 1

id−1
j

) z→ νn,d (∑d
j=1 λij (0, . . . ,0, 1

ij
, . . . , 1

ij
))

is not well defined. For instance, 1
13(

1
2 ,

1
4) +

12
13(

1
4 ,

1
16) =

27
52(

1
3 ,

1
9) +

25
52(

1
5 ,

1
25) but

ν5,3 (1/13 (0,0,0,1/2,1/2) + 12/13 (0,1/4,1/4,1/4,1/4)) = (1,85/338)
ν5,3 (27/52 (0,0,1/3,1/3,1/3) + 25/52 (1/5,1/5,1/5,1/5,1/5)) = (1,319/1352) .

Similarly, we obtain from ([Kos89, Theorem 1.14]) that bd(νn,d(Rn)) is a gluing of patches

νn,d({(x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t1

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

td−1

) ∈ Rn ∶ x1 ≤ x2 ≤ . . . ≤ xd−1})

where t2i ≥ 1, t2i−1 = 1 or t2i = 1, t2i−1 ≥ 1 for all 1 ≤ i ≤ d − 1. Moreover,

⋃
t eligible

{(x1, . . . , x1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t1

, . . . , xd−1, . . . , xd−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

td−1

) ∈ Rn ∶ x1 ≤ x2 ≤ . . . ≤ xd−1}→ bdνn,d(Rn)

is one-to-one. Recall that the patches on the boundary of the Vandermonde cell are of type (1)
or (2), while the patches on bd(νn,d(Rn)) are all of type (2). In general there are less patches
than facets of the cyclic polytope C(n, d − 1). For instance, the facets of C(4,3) correspond to
{1,2,3},{1,3,4},{1,2,4},{2,3,4}. But the multiplicity patterns of points on the boundary of
µ4,4(R4) are (x1, x1, x2, x3), (x1, x2, x3, x3) and (x1, x2, x2, x3)

4. The boundary at infinity

We show that the set bd Πd is a gluing of countably infinitely many patches and each patch
is a curved (d − 2)-simplex. The vertices of any patch satisfy Gale’s evenness condition. We
begin with investigating properties of Πd.
We write pk ∶= ∑i∈N x

k
i for the power sum function in countably many variables. If x ∈ RN

contains only finitely many non-zero coordinates we could also write pk(x) instead of pk(x) for
a power sum polynomial in sufficiently many variables.

Lemma 4.1. For x = (x1, . . . , xd−1) ∈ Πd we have (t2x1, . . . , t
dxd−1) ∈ Πd for all 0 ≤ t ≤ 1.

Proof. Let x = (p2 . . . , pd)(z) for a point z ∈∆n−1 and consider the point z′:

z′ = (tz, 1 − t
n

, . . . ,
1 − t
n
) ∈∆2n−1.

15



We see that

νn,d(z′) = (t2x1, . . . , t
dxd−1) + (

(1 − t)2

n
, . . . ,

(1 − t)d

nd−2 ) ∈ Πd,

which implies (t2x1, . . . , t
dxd−1) ∈ Πd for n→∞. □

Let ∆′n−1 be the convex hull of ∆n−1 and the origin, i.e. ∆′n−1 consists of all points with
nonnegative coordinates, with the sum of coordinates at most 1.

Lemma 4.2. The set Πd is the closure of the limit of the sets νn,d(∆′n−1) as n goes to infinity,
i.e. Πd = cl (⋃n≥d νn,d(∆′n−1)).

Proof. Clearly, we have Πd ⊂ cl(⋃n≥d νn,d(∆′n−1)). If x = (x1, . . . , xn) ∈∆′n−1, then θ ∶= ∑n
j=1 xj ≤

1 and thus x[m] ∶= (x, (1 − θ)/m, . . . , (1 − θ)/m) ∈∆n+m−1. We have

Πd ∋ lim
m→∞

νn,d(x[m]) = νn,d(x)

and the remaining inclusion follows since Πd is closed. □

Lemma 4.3. Let d ≥ 3. Then p ∈ bd Πd if and only if there exists a sequence (pn) such that
pn ∈ bd Πn,d and pn → p as n→∞.

For a set A ⊂ Rn and a point x ∈ Rn we denote the distance from x to A by d(x,A), i.e.
d(x,A) = inf {∣∣x − a∣∣ ∶ a ∈ A}.

Proof. First, we suppose that p ∈ bd Πd. Then, since the sets Πn,d are nested increasingly, we
have d(p,Πn,d) is a decreasing sequence in n. However, p ∈ bd Πd implies that p /∈ int Πn,d for all
n, and thus d(p,Πn,d) = d(p,bd Πn,d). Hence d(p,bd Πn,d) → 0 which implies that there exists
a sequence (pn)n with pn ∈ bd Πn,d and pn → p.

Now suppose that p /∈ bd Πd. If p ∉ Πd, then clearly there does not exist a sequence of points
in Πn,d approaching p. The only remaining case is p ∈ int Πd. Suppose that for some ε > 0 and
some n′ we have Bε(p) ⊂ Πn′,d. Then, ε ≤ d(p,bd Πn) for all n ≥ n′, which shows that there
cannot exist a sequence pn ∈ bd Πn,d with pn → p. Since we have d(p,Πn,d) → 0, it follows that
for any ε > 0, the ball Bε(p) contains a boundary point of Πn,d for all n sufficiently large. □

Recall that bd Πn,d is a gluing of patches, where each patch is a curved (d−2)-simplex whose
vertices satisfy Gale’s evenness condition for the set [n] by Theorem 3.1. We aim to show in
Theorem 4.4 that the boundary of Πd consists of two types of patches. The first type comes
from a finite subset J of N which satisfies Gale’s evenness condition. We call such patches
stable patches. Let m be the maximal element of J . Note that the patch corresponding to J is
a boundary patch of Πn,d for all n ≥m, and therefore it lies on the boundary of Πd. The second
type comes from limits of patches of Πn,d, and we call such patches limit patches.

For n ≥ d ≥ 3, we say that a set J ⊂ [n] of size d − 1 satisfying Gale’s evenness condition
contains n as an end point, if J = ⊎i∈J̃{i, i + 1} ⊎ {n} or J = ⊎i∈J̃{i, i + 1} ⊎ {1, n}. Note that
d must be even in the first case and odd in the second case. Let I ⊂ [m] be a set of size d − 1
satisfying Gale’s evenness condition which contains m as an end point. Then, for n ≥ m we
define In ∶= I ⊎ {n}∖ {m}. The set In ⊂ [n] also satisfies Gale’s evenness condition and contains
n as an end point. We can take the limit of the patches In, and we say that the resulting limit
patch corresponds to the set I∞ ⊂ N ∪ {∞}, where I∞ ∶= I ⊎ {∞} ∖ {m}. We denote this limit
patch by PI∞ . We note that a point q belongs to PI∞ if and only if there exists a set I ⊂ [m] of
size d−1 satisfying Gale’s evenness condition which contains m as an end point, and a sequence
(qn)n≥m such that qn ∈ PIn for all n ≥m and qn → q for n→∞.

More formally, we can naturally extend Gale’s evenness condition to subsets of N∪{∞}, and
we see that I∞ does indeed satisfy Gale’s evenness condition. Recall that the vertices of the
patch of Πn,d corresponding to J ⊂ [n] have the form (1

j ,
1
j2 , . . . ,

1
jd−1 ) for j ∈ J . Therefore the
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endpoints of In converge to 0 ∈ Rd as n goes to ∞. For a finite finite set J ⊂ N ∪ {∞} we define

PJ ∶= (p2, . . . ,pd)(conv{(0, . . . ,0,1/j, . . . ,1/j
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j times

) ∶ j ∈ J})

where we say that 1/j = 0 if j =∞.

Theorem 4.4. The set bd Πd is the union of all stable and limit patches. It consists of curved
d−2-simplices PI , where the index set I ⊂ N∪{∞} ranges over all sets of size d−1 which satisfy
Gale’s evenness condition i.e. all sets I ⊂ N ∪ {∞} of size d − 1 of the form

I =⊎
i

{i, i + 1} or I = {1,∞} ⊎⊎
i

{i, i + 1} or I = {∞} ⊎⊎
i

{i, i + 1} or I = {1} ⊎⊎
i

{i, i + 1}.

Proof. By Lemma 4.3 the boundary of Πd consists of the points q for which there exists a
sequence (qn)n with qn ∈ bd Πn,d and qn → q. In particular, if I ⊂ N ∪ {∞} satisfies Gale’s
evenness condition, we have PI ⊂ bd Πd. To prove the theorem we need to show that any limit
of a converging sequence (qn)n with qn ∈ bd Πn,d is contained in a patch PI for a set I ⊂ N∪{∞}
of size d − 1 which satisfies Gale’s evenness condition.

Suppose that (qn) is a sequence with limit q, and qn ∈ PJn where Jn ⊂ [n] satisfies Gale’s
evenness condition. We proceed by a case distinction.
(1) There exists an integer N and a subsequence of index sets (Jnk

) such that Jnk
⊂ [N] for all

k. Then, by the pigeonhole principle (Jn) contains a constant subsequence (J). Since PJ

is closed, we have q ∈ PJ and J ⊂ N ∪ {∞} satisfies Gale’s evenness condition.
(2) There does not exist a subsequence of bounded index sets. Then there are two options:

(a) The sequence (αn), where αn is the smallest element of Jn, has a subsequence which
monotonously diverges to ∞.
(b) There exists an integer K ∈ N and a subsequence (Jnk

) of (Jn) with ∣[K] ∩ Jnk
∣ = m

is equal for all k and the sequence (αnk
), where αnk

is the smallest element of Jnk
∩ [K]c,

monotonously diverges to ∞.
We investigate the cases 2) (a) and (b) below.
(a) We must have qnk

→ 0 for k → ∞. Recall that 0 ∈ PI for any set I ⊂ N ∪ {∞} of size
d− 1 which contains ∞. In particular, there exists a set I ⊂ N∪ {∞} of size d− 1 of the
form

I = {∞} ⊎⊎
i

{i, i + 1} or I = {1,∞} ⊎⊎
i

{i, i + 1}

and 0 ∈ PI ⊂ bd Πd.
(b) In the second case we can restrict to a subsequence (Jnℓ

) of (Jn) which intersection
with [K] is the same set for all nℓ ∈ N. This follows from the pigeonhole principle. We
claim that we can extend the set Jnℓ

∩ [K] to a set I ⊂ N ∪ {∞} of size d − 1 satisfying
Gale’s evenness condition and q ∈ PI . It must be

Jnℓ
∩ [K] =⊎{i, i + 1} or Jnℓ

∩ [K] = {1} ⊎⊎{i, i + 1}

since Jnℓ
satisfies Gale’s evenness condition and K + 1 /∈ Jnℓ

. We have to distinguish
between d even and odd.

(i) If d − 1 is odd and Jnℓ
∩ [K] = ⊎{i, i + 1} we consider

I ∶=⊎{i, i + 1} ⊎ {∞} ⊎⊎{j, j + 1}

for some (possibly none) large integers j which is possible since ∣Jnℓ
∩[K]∣ is even

and cannot satisfy Gale’s evenness condition.
(ii) If d − 1 is even and Jnℓ

∩ [K] = ⊎{i, i + 1} we know that d − 1 > ∣Jnℓ
∩ [K]∣. Let

k ≤K + 1 be minimal with k /∈ Jnℓ
∩ [K].

(A) If k = 1 we set

I ∶= {1,∞} ⊎⊎{i, i + 1} ⊎⊎{j, j + 1}

for some (possibly none) large integers j.
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(B) Otherwise

I ∶= {1,∞} ⊎ {2,3} ⊎ . . . ⊎ {k − 1, k} ⊎ ⊎
k<i≤K−1, i,i+1∈Jn

{i, i + 1} ⊎⊎{j, j + 1}

for some (possibly none) large integers j.
In (A) and (B) we added an even number of integers to Jnℓ

∩[K]. This is possible
since ∣Jnℓ

∣ is even and contains at least two integers larger than K.
(iii) If d − 1 is even and Jnℓ

∩ [K] = {1}⊎{i, i + 1} one proceeds analogously to (ii).
(iv) If d − 1 is odd and Jnℓ

∩ [K] = {1}⊎{i, i + 1} one proceeds analogously to (i).
Finally, we point out that q is indeed contained in PI since the limit of the sequence qn

equals (p2, . . . ,pd)(y) for an y ∈ conv{(0, . . . ,0), (0, . . . ,0,1/j, . . . ,1/j) ∶ j ∈ Jnℓ
∩ [K]}.

□

Remark 4.5. Sequences of patches of bd Πn,d indexed by sets In ⊂ [n] satisfying Gale’s evenness
condition which do not contain n as a boundary point but contain n, i.e {n−1, n} ⊂ I is a disjoint
part of In, converge to lower dimensional cells in bd Πd. Any such lower dimensional cell is
contained in a patch PI of bd Πd.

5. Convex hull for elementary symmetrics and test sets for copositivity

In this section we analyze the convex hulls of the sets En,d,Πn,d,Ed and Πd. Although
En,d ≃ Πn,d and Ed ≃ Πd are diffeomorphic, we show that convEn,d has nice properties which
are not shared by conv Πn,d. We relate the study of the convex hulls to copositivty of certain
symmetric forms. The vertex representation of convEn,d can be reformulated in terms of test
sets which geometrically explains and slightly generalizes the case d = 3 investigated by Choi,
Lam and Reznick [CLR87].

We embed ∆n−1 ⊂ ∆n via a ↦ (a,0), and denote by ∆ ∶= cl (⋃n∈N ∆n) the infinite prob-
ability simplex which can be viewed as the limit of the ∆n’s. For n ≥ d we write En,d ∶=
convEn,d and Ed ∶= cl(⋃n≥d En,d).

The following observation about extreme points of En,d appeared for the first time in the
context of extremal combinatorics. In the planar setting it was proven by Bollobás to give a
description of the convex hull of the range of edge versus triangle densities of graphs [Bol76].
The result was extended to larger dimensions shortly afterwards and new proofs appeared for
instance also in [For87; KKR12; Rie12; RS22]. The cyclic polytope observation appears to be
new.

Theorem 5.1. The set En,d is a cyclic polytope and it is the convex hull of the following finite
set of points ((k2)

1
k2 , . . . , (kd)

1
kd ) ∶ k ∈ [n].

We present a short proof using the following two Lemmas. The following short proof is a
formalization of Bollobás’s original argument, which we borrow from [Zha22] and provide for
completeness.

Lemma 5.2 ([Zha22], Lemma 5.4.3). For n ≥ d a non-constant symmetric map of the form
c1e1 + c2e2 + . . . + cded ∶ Rn → R attains its extremal values on ∆n−1 at points of the form
(0, . . . ,0,1/k, . . . ,1/k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

) for 1 ≤ k ≤ n.

Proof. Let n ≥ d and ϕ(e2, . . . , ed) = c1 + c2e2 + . . . + cned ∶ Rn → R be an affine non-constant
linear map on En,d and let x∗ be a mininizer of ϕ∗ = ϕ(e2, . . . , ed) on ∆n−1. We show that
x∗ = (1/k, . . . ,1/k,0, . . . ,0) up to permutation for a 1 ≤ k ≤ n. If x∗ is not the vector containing
only 0’s and one 1 we suppose without loss generality that x1, x2 > 0 and write ϕ∗(x) = x1A +
x2B + x1x2C +D, where A,B,C,D are functions in x3, . . . , xn. Then, since ϕ∗ is symmetric we
have A = B and by fixing x1 + x2 = x∗1 + x∗2 we obtain ϕ∗(x) = x1x2C +D′. If C(x∗) ≥ 0 we
set either x1 = 0 or x2 = 0 with holding x1 + x2 = x∗1 + x∗2 fixed and obtain that x∗ was not a
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minimum. If C(x∗) < 0 we obtain ϕ∗(x∗) is minimized at x∗1 = x∗2 . Iteratively, we must have
x∗ = (1/k, . . . ,1/k,0, . . . ,0). □

Lemma 5.3. For n ≥ d, the map

Φd ∶ {((k2)
1

k2 , . . . , (kd)
1

kd ) ∶ k ∈ [n]} Ð→ {( 1
k ,

1
k2 , . . . ,

1
kd−1 ) ∶ k ∈ [n]}

((k2)
1

k2 , . . . , (kd)
1

kd ) z→ ( 1
k ,

1
k2 , . . . ,

1
kd−1 )

induces an affine isomorphism Rd−1 → Rd−1.

Proof. Let m ≥ 2 and k ∈ [n] be integers and zm ∶= (1,2, . . . ,m − 1,0, . . . ,0) ∈ Rn. Then by
Vieta’s formula we have

( k
m
) 1
km
= ∏

m−1
i=1 (k − i)
m! ⋅ km−1

= 1
m! ⋅ km−1 (k

m−1 − e1(zm)km−2 ±⋯ + (−1)m−1(em−1(zm))

= 1
m!
− 1

2(m − 2)!
1
k
+⋯ + (−1)m−1

m

1
km−1

which shows that for all k ∈ [n] the same affine linear relation of the m-th coordinates of points
in the sets {((k2)

1
k2 , . . . , (kd)

1
kd ) ∶ k ∈ [n]} and {( 1

k ,
1

k2 , . . . ,
1

kd−1 ) ∶ k ∈ [n]} is satisfied. □

Proof of Theorem 5.1. By Minkowski’s theorem a compact, convex set is the convex hull of its
extreme points. Extreme points of En,d are precisely the minima of affine linear maps on En,d.
Through evaluating we obtain (e2, . . . , ed)(0, . . . ,0,1/k, . . . ,1/k) = ((k2)

1
k2 , . . . , (kd)

1
kd ) for all 1 ≤

k ≤ n. It follows from Lemma 5.3 that all the claimed points are indeed vertices of En,d, since
points on the moment curve are in convex position and that En,d is a cyclic polytope. □

Since
lim
k→∞
((k

2
) 1
k2 , . . . ,(

k

d
) 1
kd
) = ( 1

2!
, . . . ,

1
d!
)

we immediately obtain a description of the limit set Ed. Figure 5 visualizes how the additional
vertices eventually accumulate around the point ( 1

2! ,
1
3!).

Proposition 5.4. Ed = conv {{((k2)
1

k2 , . . . , (kd)
1

kd ) ∶ k ∈ N} ⊎ {( 1
2! ,

1
3! , . . . ,

1
d!)}} .

Proof. We observe that the set ⋃n≥d En,d is convex: if v,w ∈ ⋃n≥d En,d then for some integer N
we have v,w are contained in the convex set En,d, because the sets En,d are nested. Thus, Ed is
convex as the closure of the convex set ⋃n≥d En,d. We note

((k
2
) 1
k2 , . . . ,(

k

d
) 1
kd
) ,( 1

2!
,

1
3!
, . . . ,

1
d!
) ∈ Ed

per definition and since Ed is closed. Thus, the set on the right hand side is contained in Ed.
Moreover, we have En,d ⊂ conv {{((k2)

1
k2 , . . . , (kd)

1
kd ) ∶ k ∈ N} ⊎ {( 1

2! ,
1
3! , . . . ,

1
d!)}} for all n ≥ d and

thus cl (⋃n≥d En,d) ⊂ conv {{((k2)
1

k2 , . . . , (kd)
1

kd ) ∶ k ∈ N} ⊎ {( 1
2! ,

1
3! , . . . ,

1
d!)}}, since the set on the

right-hand side is closed. □

We note (pi (0, . . . ,0, 1
k , . . . ,

1
k
))2≤i≤d = (

1
k ,

1
k2 , . . . ,

1
kd−1 ) and recall that also bd Πn,d has iso-

lated singularities at (p2, . . . , pd)(0, . . . ,0,1/k, . . . ,1/k) for all 1 ≤ k ≤ n.
For n ≥ d ≥ 4 Newton’s identities (1.1) provide polynomial (but not linear) transition maps

between En,d and Πn,d. Already the power sum p4 is quadratic in e2. However, Lemma 5.3 shows
that for any degree d ≥ 2 there still exists an isomorphism between the isolated singularities of
En,d and Πn,d, i.e

(e2, . . . , ed)(0, . . . ,0,1/k, . . . ,1/k)↦ (p2, . . . , pd)(0, . . . ,0,1/k, . . . ,1/k) for 1 ≤ k ≤ n

is an isomorphism.
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Figure 4. The sets E3,3 (left) and E6,3 (right)

Figure 5. The set E20,3

We observed in Corollary 2.19 that Πn,3 ⊂ conv{( 1
k ,

1
k2 ) ∶ k ∈ [n]}. So it seems natural to ask

whether an analogous result to Theorem 5.1 in terms of the power sums and the rational points
on the moment curve generalizes to d ≥ 4. We provide a negative answer.

Figure 6. The convex polytopes conv Πn,3 for n = 3 (left) and n = 6 (right)

Proposition 5.5. Let n ≥ d ≥ 4. Then the set conv {( 1
k ,

1
k2 ,⋯, 1

kd−1 ) ∶ k ∈ [n]} does not contain
the set Πn,d. Moreover, Πd /⊂ conv {(0, . . . ,0), ( 1

k ,
1

k2 ,⋯, 1
kd−1 ) ∶ k ∈ N}

Proof. We consider f(p1, . . . , p4) = 2p4 − 3p(3,1) + p(2,12). For n =m + 1 we have

gm(a) ∶= f(p1, . . . , p4)(a,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
#1′s=m

) = −ma3 + a2m2 + a2m + 2am2 − 3am +m3 − 3m2 + 2m.

Thus, for fixed m we observe that the univariate polynomial gm(a) has a negative leading
coefficient which shows that for sufficiently large a > 0 we must have f(p1, . . . , p4)(a,1, . . . ,1) < 0.
Therefore, f cannot be nonnegative on Rn

≥0 and since f is homogeneous f cannot be nonnegative
on ∆n−1.
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However, the form f(1, p2, p3, p4) is nonnegative on the rational points on the moment curve of
the form (1/k,1/k2,1/k3), since

f(1,1/k,1/k2,1/k3) = (k − 3/2)2 − 1/4
k3 ≥ 0

for all k ∈ N.
To conclude the proof we suppose

Πn,d ⊂ conv{(1
k
,

1
k2 ,⋯,

1
kd−1) ∶ k ∈ [n]} .

But since f(1, p2, p3, p4) is linear in the pi’s and f(1,1/k,1/k2,1/k3) ≥ 0 we have f is nonnegative
on conv {(1, 1

k ,
1

k2 ,⋯, 1
kd−1 ) ∶ k ∈ [n]} and thus nonnegative on Πn,d which is a contradiction. □

5.1. Test sets for copositivity. Choi, Lam and Reznick investigated in their paper [CLR87]
nonnegative even symmetric sextics in any number of variables ≥ 3. They found finite test
sets for nonnegativity. Note that any even symmetric sextic is of the form f(p2, p4, p6) =
c1p

3
2 + c2p2p4 + c3p6 for some c1, c2, c3 ∈ R.

Theorem 5.6 ([CLR87], Theorem 3.7). Let f(p2, p4, p6) be an even symmetric sextic in n ≥ 3
variables. Then f is nonnegative if and only if f (1, 1

k ,
1

k2 ) is nonnegative for all k ∈ [n].

Choi, Lam and Reznick derived their result by induction and using trigonometric functions.
We want to geometrically explain and slightly expand Theorem 5.6 to a certain set of symmetric
polynomials. We call a symmetric polynomial hook-shaped if it can be written as a linear
combination of elementary symmetrics of the form e(d−i,1i), i.e. f = ∑d

i=1 cie(d−i,1i) for some
scalars ci ∈ R. A hook-shaped symmetric polynomial is homogeneous and thus copositive if
and only if it is nonnegative on the probability simplex ∆n−1. By setting e1 = 1 we obtain
linear polynomials in e2, . . . , ed. Hence nonnegativity of c1 +∑d

i=2 cied−i on En,d is equivalent to
nonnegativity on the vertices of En,d. Alternatively, we can consider even symmetric polynomials
of the form ∑d

i=1 ciei(x2)e1(x2)d−i and present test sets for global nonnegativity.

Theorem 5.7. Let f be a hook-shaped symmetric form in n ≥ d variables. Then f is copositive
if and only if f (1, (k2)

1
k2 , . . . , (kd)

1
kd ) is nonnegative for all k ∈ [n].

Proof. Since f(e1, e2, . . . , ed) is homogeneous we can restrict to the domain ∆n−1 where e1 is
the constant 1 function. As f(1, e2, . . . , ed) is linear in the remaining elementary symmetrics ei

for 2 ≤ i ≤ d, we observe that f(e1, . . . , ed) is copositive if and only if f(1, x) is nonnegative En,d.
In particular, f(1, x) is nonnegative on En,d if and only if f(1, x) is nonnegative on the vertices
of En,d, which are precisely the claimed points by Theorem 5.1. □

Corollary 5.8. Let f(e1, e2, . . . , ed) = ∑d
i=1 cieie

d−i
1 be a symmetric form. Then f(e1, . . . , ed) is

nonnegative in any number of variables ≥ d if and only if f is nonnegative on the discrete set
{(1, (k2)

1
k2 , . . . , (kd)

1
kd ) ∶ k ∈ N}.

Remark 5.9. A generalization of the discrete test sets in power sums to degrees ≥ 4 cannot be
given. This follows from Proposition 5.5.

Recall that for d ≥ 3 the sets Πd and Ed are not semialgebraic by Corollary 2.20. Thus Ed

cannot be semialgebraic as the convex hull of the set Ed.

5.2. The convex body Ed. We show that the convex body Ed behaves like an infinite cyclic
polytope also from the dual point of view: it has countably infinitely many facets which can be
described by Gale’s evenness condition.

The following results on bdEd can be derived completely analogously to our examination of
bd Πd in Section 4. We omit the proofs as they are even simpler, since we work with convex
polytopes instead of curved simplices.

Lemma 5.10. bdEd = {q ∈ Rd−1 ∶ ∀n ≥ d ∃qn ∈ bdEn,d with qn →∞}.
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Let I ⊂ P(N ∪ {∞}) denote the set of all sets I ⊂ N ∪ {∞} of size d − 1 satisfying Gale’s
evenness condition with respect to the end points 1 and∞. Furthermore, for I ∈ I let FI denote
the convex hull of {((k2)

1
k2 , . . . , (kd)

1
kd ) ∶ k ∈ I}, where we use the limit point ( 1

2! , . . . ,
1
d!) if k =∞.

Theorem 5.11. bdEd = ⋃I∈I FI .
Corollary 5.12. The convex set Ed contains countably infinitely many facets indexed by Gale’s
evenness condition.
Proof. The sets FI can only intersect on their boundary and not in their interior since they are
cuts of hyperplanes. □

To conclude the section we briefly present a H-representation of En,d and show that the convex
body Ed can be defined as the intersection of countably many halfspaces. We follow ([Zie12,
Page 14]) where the H-representation of a cyclic polytope is given. For S = {k1, . . . , kd−1} ⊂ [n]
of size d − 1 we define the linear map

ℓ̃S ∶ Rd−1 → R,X ↦ det
⎛
⎜⎜⎜
⎝

1 1 . . . 1
X1 k1 . . . kd−1
⋮ ⋮ ⋮

Xd−1 kd−1
1 . . . kd−1

d−1

⎞
⎟⎟⎟
⎠
.

By properties of the Vandermonde determinant we have ℓ̃S(k, k2, . . . , kd−1) = 0 if and only if
k ∈ S. Thus, the kernel of ℓ̃S equals ⟨(k, k2, . . . , kd−1) ∶ k ∈ S⟩R and the H-representation of
C(n, d−1) is given by inequalities of the form ±ℓ̃S(X) ≤ rS for all facet defining sets S ⊂ [n] and
some rS ∈ R. We write ℓS for ℓ̃S multiplied by −1 to the correct power such that the inequality
reads ℓS(X) ≤ rS .
Proposition 5.13. Let n ≥ d ≥ 3 be nonnegative integers and let Cd−1 denote the collection of
facet defining sets of C(n, d − 1). Then the H-representation of En,d is {ℓS ○Φd(X) ≤ rS ∶ S ∈
Cd−1}.
Proof. The claim follows from the discussion above and since

En,d = Φ−1
d (conv{(1/k, . . . ,1/kd−1) ∶ k ∈ [n]}) = Φ−1

d ({x ∈ R
d−1 ∶ ℓS(x) ≤ rS , S ∈ Cd−1})

by Proposition 5.3. We have En,d = {x ∈ Rd−1 ∶ ℓS ○Φd(x) ≤ rS , S ∈ Cd−1}. □

Example 5.14. Using Sage ([Ste07]) we calculate the H-representations of En,3 for 3 ≤ n ≤ 5.
E3,3 = {x ∈ R2 ∶ x2 ≥ 0, x1 − 9x2 ≥ 0, −4x1 + 9x2 ≥ −1},
E4,3 = {x ∈ R2 ∶ x2 ≥ 0, x1 − 6x2 ≥ 0, −11x1 + 18x3 ≥ −3, −4x1 + 9x2 ≥ −1},
E5,3 = {x ∈ R2 ∶ x2 ≥ 0, −4x1 + 9x2 ≥ −1, −11x1 + 18x2 ≥ −3, −7x1 + 10x2 ≥ −2, x1 − 5x2 ≥ 0}
We recall that for integers n >m and a set I ⊂ [m] we write In = I ∖ {m} ⊎ {n}.

Lemma 5.15. Let m ≥ d ≥ 3 and I ⊂ [m] be a facet defining set of indices of Em,d containing
m as an end point. Then, for all n ≥ m the inequalities ℓIn ○Φd ≤ rIn corresponding to a facet
of En,d converge to an inequality ℓI∞ ○Φd ≤ rI∞ defining a facet of Ed.

This is to be understood in the sense that the sequence (an,1, . . . , an,d−1, rIn) containing the
coefficients of ℓIn and rIn converges to a limit inequality (a1, . . . , ad−1, rI∞).

Proof. Since all but one of the vertices of the facets corresponding to In are equal, the remaining
sequence of changing vertices converges to the limit vertex

((n
2
) 1
n2 , . . . ,(

n

d
) 1
nd
)→ ( 1

2!
,

1
3!
, . . . ,

1
d!
) ∈ Ed, n→∞.

Thus, the facets corresponding to In in En,d converge to the facet indexed by I∞ in Ed. By
continuity the defining linear inequalities must also converge which was to show. □

It follows that Ed can be defined as an intersection of countably infinitely many halfspaces.
Proposition 5.16. Let d ≥ 3, then Ed = {x ∈ Rd−1 ∶ ℓI ○Φd(x) ≤ rI ∶ I ∈ Id} .
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6. Undecidability of nonnegativity of trace polynomials

In this Section we show that the problem of deciding nonnegativity of trace polynomials in
symmetric matrices of all sizes is undecidable (see Theorem 6.2). This result stays in sharp
contrast to the case of finitely many variables. Surprisingly, we then prove that the analogous
problem defined with normalized traces is decidable (see Theorem 6.5). The key for the unde-
cidability lies in the geometry of Π3. To prove Theorem 6.2 we show that deciding copositivity
of homogeneous product symmetric polynomials in any number of variables is an undecidable
problem (see Theorem 6.6) which proof follows from [HN11; BRW22] on undecidability in graph
homomorphism densities.

Definition 6.1. For a variable X we denote by tr(X) the formal trace symbol on X. A trace
polynomial in the variables X1, . . . ,Xk is a polynomial expression in formal trace symbols of
powers of the variables X1, . . . ,Xk. A trace polynomial is univariate if k = 1.

For instance, 2 tr(X4
1) tr(X2) − tr(X5

2)3 is a trace polynomial in the variables X1,X2, while
4 tr(X1X

2
2) − 4 tr(X3

1) is not a trace polynomial. A trace polynomial can naturally be evalu-
ated on square matrices of all sizes. We call a trace polynomial f(X1, . . . ,Xk) nonnegative if
f(A1, . . . ,Ak) ≥ 0 for all symmetric matrices A1, . . . ,Ak of all sizes. We show that establishing
nonnegativity of a trace polynomial is an undecidable problem.

Theorem 6.2. The following decision problem is undecidable.
Instance: A positive integer k and a trace polynomial f(X1, . . . ,Xk).
Question: Is f(M1, . . . ,Mk) nonnegative for all real symmetric matrices M1, . . . ,Mk of all sizes

with tr(M2
i ) = 1 for all 1 ≤ i ≤ k?

We now give an intuitive explanation of undecidability, and relate trace nonnegativity to the
geometry of the limit Vandermonde cell. Recall that for any matrix A ∈ Rn×n with eigenvalues
λ1, . . . , λn we have tr(Am) = ∑n

i=1 λ
m
i . The problem of establishing trace nonnegativity is already

undecidable when we consider only trace polynomials with traces in the first three even powers of
symmetric matrices, i.e. we only consider even power sums ∑λ2

i ,∑λ4
i and ∑λ6

i of eigenvalues. If
we restirct to matrices A such that trA2 = 1, then the image of all symmetric matrices of all sizes
is simply the limit Vandermonde cell Π3. The key to the hardness of the problem is the geometry
of Π3 which we investigated in Section 2. Recall that the set bd Π3 contains countably infinitely
many isolated singularities on the rational moment curve (t, t2) (see Corollary 2.19). A k-variate
trace polynomial can be viewed as a polynomial on k-fold direct product (Π3)k. We can reduce
testing nonnegativity of certain integer polynomials on (Π3)k to just testing nonnegativity on
products of the isolated points on the moment curve. Then deciding nonnegativity of such trace
polynomials reduces to deciding nonnegativity of k-variate polynomials on Nk which is known
to be undecidable [HN11].

Remark 6.3. We deduce from Theorem 6.2 that there cannot exist a unified algorithm or
an effective certificate to determine the validity of polynomial inequalities in traces of powers
of symmetric matrices of all sizes. Note that for a finite number of variables it follows by
Artin’s solution to Hilbert’s 17th problem [Art27] that validity of polynomial inequalities on
semialgebraic sets is decidable.

Nonnegativity of trace polynomials is investigated in the context of non-commutative real
algebraic geometry. There one usually considers normalized trace polynomials. In [KPV21] the
authors prove a Positivstellensatz for univariate normalized trace polynomials.

Definition 6.4. For a variable X we denote by t̃r(X) the normalized formal trace symbol on
X. A normalized trace polynomial in the variables X1, . . . ,Xk is a polynomial expression in
normalized formal trace symbols of powers of the variables X1, . . . ,Xk. A normalized trace
polynomial is univariate if k = 1.
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As the name normalized trace operator indicates, for a matrix A ∈ Rn×n we define the eval-
uation t̃r(A) ∶= 1

n tr(A). A normalized trace polynomial is nonnegative if its evaluation on all
symmetric matrices of all sizes is nonnegative.

Theorem 6.5. The following decision problem is decidable.
Instance: A positive integer k and a normalized trace polynomial f(X1, . . . ,Xk).
Question: Is f(M1, . . . ,Mk) nonnegative for all symmetric matrices M1, . . . ,Mk of all sizes?

For matrices of fixed size deciding nonnegativity of normalized trace polynomials and trace
polynomials is equivalent. The sharp contrast appears when we ask about nonnegativity for
matrices of all sizes. Geometrically, the limit of the normalized Vandermonde map of the unit
simplex ∆n−1 corresponds to the set of the first d moments of a probability measure supported
on R≥0, and it is well-know that this set can be described by linear matrix inequalities [Sch17].
In particular, the limit is semilagebraic for all d. The phenomenon of decidability for normalized
trace can also be explained with the half-degree principle ([Tim03], Corollary 2.1), and we follow
this direction in our proof.

6.1. Proof of Theorem 6.2. We show that the subproblem of deciding copositivity of polyno-
mial expressions in p1(Xi), p2(Xi) and p3(Xi) for all 1 ≤ i ≤ k on ∆n−1 for all n is undecidable.
Recall, we can also work with the first 3 elementary symmetric polynomials on the probabil-
ity simplex. Nonnegativity of a symmetric polynomial in any number of variables can also be
formulated as nonnegativity of an associated symmetric function. A symmetric function f is a
formal power series in countably infinitely many variables which is invariant under the action
of the group S∞ = ⋃n∈N Sn and for which the set of degrees of the monomials in f is finite (see
e.g. [Mac98, §I.2] for details). The ring of symmetric functions R[x]S∞ ∶= R[x1, x2, . . .]S∞ can
be constructed as the inverse limit of the rings of symmetric polynomials with respect to the
transition maps

R[x]Sn+1 → R[x]Sn , f(x1, . . . , xn+1)↦ f(x1, . . . , xn,0).(6.1)

For n ≥ d the transition map implies

f(x1, . . . , xn+1) = g(p1, . . . , pd)↦ f(x1, . . . , xn,0) = g(p1, . . . , pd),

where the power sums are polynomials in a different number of variables. The analogous to
elementary symmetric and power sum polynomials in R[x]S∞ are the elementary symmetric
function ek ∶= ∑I⊂N,∣I ∣=k∏i∈I Xi and the power sum function pk ∶= ∑i∈NX

k
i .

A homogeneous symmetric polynomial f = ∑α cαe
α1
1 ⋯e

αd

d of degree d is nonnegative in any
number of variables n ≥ d if and only if the symmetric function f = ∑α cαe

α1
1 ⋯e

αd

d is nonnegative
on the infinite probability simplex ∆.

To prove Theorem 6.6 which follows from [HN11], we require access to polynomials with
domain Ek

d . Therefore, we need product symmetric functions, i.e. symmetric functions in
several groups of countably infinitely many variables which are invariant under the diagonal
action of Sk

∞. We denote the by ∆k the k-copies of the infinite probability simplex.

Theorem 6.6. The following problem is undecidable.
Instance: A positive integer k and a product symmetric function f in k groups of variables.
Question: Does the inequality f(a) ≥ 0 hold for all a ∈∆k?

We follow ([HN11, § 5]) and use their notation. Hatami and Norin’s work concerns undecid-
ability of determining the validity of linear inequalities in graph homomorphism densities for
graphons and answers negative a question of Lovász ([Lov08, Problem 17]). By adapting only
very few parts of Hatami and Norin’s proof we show that an undecidable problem can be em-
bedded into the problem of deciding copositivity of product symmetric homogeneous functions
in e1, e2, e3. We write ej,(i) for the j-th elementary symmetry functions in the i-th group of
variables.
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Proof of Theorem 6.6. By ([HN11, Lemma 5.1]) it follows from Matiyasevich’s solution to Hilbert’s
tenth problem that the following validity problem is undecidable:

Instance: A positive integer k and a polynomial p ∈ Z[Y1, . . . , Yk].
Question: Do there exist x1, . . . , xk ∈ {1 − 1

n ∶ n ∈ N} with p(x1, . . . , xk) < 0?
We define C ∶= conv(2e2,6e3)(∆), g(x) ∶= 2x2 − x and the piecewise linear function

L(x) ∶= 3t2 − t − 2
t(t + 1)

x − 2(t − 1)
t + 1

on the interval [0,1], where t ∈ [0,1) is chosen such that x ∈ [1 − 1
t ,1 −

1
t+1] for some t ∈

{1 − 1
n ∶ n ∈ N}, and L(1) ∶= 1. By Corollary 5.4 we have C = conv{(1,1), (1 − 1

n ,
(n−1)(n−2)

n2 ) ∶ n ∈ N}.
The piecewise linear function L takes the same value as g on all the endpoints of the intervals
[1 − 1

t ,1 −
1

t+1] and we have L(x) ≥ g(x) for all x ∈ [0,1]. Further, we define R ∶= {(x, y) ∈
[0,1]2 ∶ y ≥ L(x)}. The images of each piecewise linear part of L on [0,1] are precisely the
facets of the lower part of the boundary of C.
Let p ∈ R[Y1, . . . , Yk] be a polynomial and let M be the sum of the absolute values of its
coefficients multiplied by 100 deg(p). We consider the real auxiliary polynomial

q(Y1, . . . , Yk, Z1, . . . , Zk) ∶= p
k

∏
i=1
(1 − Yi)6 +M (

k

∑
i=1
Zi − g(Yi)) .

Then, by ([HN11, Lemma 5.4]) and the observation (1,1) ∈ R the following are equivalent:
(i) q(x1, . . . , xk, y1, . . . , yk) < 0 for some x1, . . . , xk, y1, . . . , yk with (xi, yi) ∈ R for all 1 ≤ i ≤ k;
(ii) p(x1, . . . , xk) < 0 for some x1, . . . , xk ∈ {1,1 − 1

n ∶ n ∈ N}.
Now, we consider the map

τ ∶ R[Y1, . . . , Yk, Z1, . . . , Zk] Ð→ R[Xk]Sk

f(Y1, . . . , Yk, Z1, . . . , Zk) z→ ∏k
i=1 e

3 deg f
1,(i) ⋅ f (

e2,(1)
e2
1,(1)

, . . . ,
e2,(k)
e2
1,(k)

,
e3,(1)
e3
1,(1)

, . . . ,
e3,(k)
e3
1,(k)
)
.

For f ∈ R[Y1, . . . , Yk, Z1, . . . , Zk] the rational function τ(f) is actually a homogeneous product
symmetric function. This is, since e2,(i) and e2

1,(i) (resp. e3,(i) and e3
1,(i)) have degree 2 (resp. 3)

and thus every monomial in the rational product symmetric function

f
⎛
⎝
e2,(1)

e2
1,(1)

, . . . ,
e2,(k)

e2
1,(k)

,
e3,(1)

e3
1,(1)

, . . . ,
e3,(k)

e3
1,(k)

⎞
⎠

has degree 0. Multiplying by e3 deg f
1,(i) ensures that τ(f) has always nonnegative exponent in e1,(i)

for all 1 ≤ i ≤ k.
As in ([HN11], Claims 5.7 & 5.8) we claim that the following assertions are equivalent
(a) q(x1, . . . , xk, y1, . . . , yk) < 0 for some x1, . . . , xk, y1, . . . , yk with (xi, yi) ∈ R for all 1 ≤ i ≤ k;
(b) τ(q) attains a negative value on ∆k.

First, we suppose (a). Hatami and Norine show in the proof of ([HN11, Lemma 5.4]) that if
q(x1, . . . , xk, y1, . . . , yk) < 0 for some x1, . . . , xk, y1, . . . , yk with (xi, yi) ∈ R for all 1 ≤ i ≤ k then
the xi’s can be chosen as x1, . . . , xk ∈ {1,1 − 1

n ∶ n ∈ N}, and yi = L(xi). Thus, τ(q) is negative
on ∆k by Corollary 5.4. More precisely, e1,(i) = 1,2e2,(i) = xi and 6e3,(i) = yi for all 1 ≤ i ≤ k is
feasible and thus τ(q) is not nonnegative.
Second, we suppose q(x1, . . . , xk, y1, . . . , yk) ≥ 0 for all xi, yi with (xi, yi) ∈ R for all 1 ≤ i ≤ k,
then τ(q) is nonnegative on ∆k, since Ck ⊂ Rk.

So the assertions (ii) and (b) are equivalent. In particular, the question to determine if a
given Diophantine set is non-empty was reformulated as asking whether a product symmetric
polynomial in e1,(i), e2,(i) and e3,(i) for 1 ≤ i ≤ k is nonnegative on ∆k. This proves the Theorem.

□
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We are ready to prove the main theorem on undecidability of nonnegativity of trace polyno-
mials.

Proof of Theorem 6.2. For a symmetric matrix A with trace 1 of size n × n with eigenvalues
λ1, . . . , λn we have tr(Ak) = ∑n

i=1 λ
k
i . We identify a subproblem which is already known to be

undecidable. Thus the general problem must also be undecidable.
Consider the subproblem of determining validity of nonnegativity of homogeneous trace poly-
nomials f(X1, . . . ,Xk) in which any formal trace symbol is in an even square of a variable up to
degree 6, i.e. f is a polynomial expression in tr(X2

i ), tr(X4
i ), tr(X6

i ) for 1 ≤ i ≤ k. Then deciding
nonnegativity of f for all symmetric matrices M1, . . . ,Mk of all sizes is equivalent to deciding
nonnegativity of the product symmetric function f(p2,(1),p4,(1),p6,(1), . . . ,p2,(k),p4,(k),p6,(k)).
Its nonnegativity is equivalent to copositivity of f(p1,(1),p2,(1),p3,(1), . . . ,p1,(k),p2,(k),p3,(k)).
However, this problem is undecidable by Theorem 6.6 since Newton’s identities provide a linear
relation between the power sums and elementary symmetrics up to degree 3 when p1 = 1. □

6.2. Proof of Theorem 6.5. The small adjustment of using normalized traces makes the prob-
lem decidable. An important role is played by Timofte’s half degree principle. The decidability
was implicitly observed by Blekherman and Riener in [BR21].

Theorem 6.7 ([Tim03]). A symmetric polynomial f ∈ R[x]Sn is nonnegative if and only if
f(a) ≥ 0 for any a ∈ Rn with #{a1, . . . , an} ≤max{⌊deg f

2 ⌋,2}.

We briefly illustrate why the normalized problem is decidable. Suppose we are given a power
sum pd = xd

1 + . . . + xd
n in n variables of degree d ≥ 4. To test nonnegativity we can equivalently

test nonnegativity of the ⌊deg f
2 ⌋-variate polynomials (pd)α = α1x

d
1 + . . . + α⌊deg f

2 ⌋x
d
⌊deg f

2 ⌋
for all

sequences α ∈ N⌊
deg f

2 ⌋ with ∑
⌊deg f

2 ⌋
i=1 αi = n by Theorem 6.7. Thus, testing nonnegativity of nor-

malized pd

n power sums is equivalent to testing nonnegativity of (pd

n )α =
α1
n x

d
1+. . .+

α⌊deg f
2 ⌋

n xd
⌊deg f

2 ⌋
for all α’s. We observe that nonnegativity of pd

n for all n is equivalent to nonnegativity of
β1x

d
1 + . . . + β⌊deg f

2 ⌋x
d
⌊deg f

2 ⌋
for all (β1, . . . , β d

2
) ∈∆⌊deg f

2 ⌋−1 ×R
d due to the density of Q in R.

Definition 6.8. Let f = (∑λ cλ
pλ1⋯pλl

nl )n∈N be a sequence of symmetric polynomials of degree
2d where fn, the n-th element in the sequence, is a polynomial in n variables. We define the
associated 2d-variate function Φf as

Φf(s, t) =∑
λ

cλ

l

∏
i=1
(s1t

λi
1 + . . . + sdt

λi

d )

The following Lemma generalizes the application of Timofte’s half degree principle from the
discussion above to arbitrary normalized symmetric polynomials.

Lemma 6.9 ([BR21] Theorem 3.4). f = (∑λ cλ
pλ1⋯pλl

nl )n∈N be a sequence of symmetric polyno-
mials of degree 2d where fn is a polynomial in n variables. Then fn is nonnegative for all n ∈ N
if and only if Φf is nonnegative on ∆d−1 ×Rd.

We are ready to prove Theorem 6.5.

Proof of Theorem 6.5. We note, for a symmetric matrix M ∈ Rn×n and eigenvalues λ1, . . . , λn

we have
t̃r (Mk) = 1

n
tr(Mk) = 1

n

n

∑
i=1
λk

i =
1
n
pk(λ).

Thus verifying nonnegativity of a univariate normalized trace polynomial is equivalent to ver-
ifying nonnegativity of the associated sequence of normalized symmetric polynomials in any
number of variables. By Lemma 6.9 this is equivalent to nonnegativity of a polynomial on the
semialgebraic set ∆d−1 ×Rd and thus decidable.
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For a multivariate normalized trace polynomial we proceed analogously and have that non-
negativity of a normalized trace polynomial in k variables is equivalent to nonnegativity of an
associated polynomial on the semialgebraic set (∆d−1 ×Rd)k. □

7. Conclusion and open questions

In this article we have studied the wonderful geometry of the Vandermonde map in the finite
and infinite setup. In particular, we have shown how a connection to trace polynomials allows
to show that the problem to determine if a given multivariate trace polynomial is nonnegative is
undecidable. Our proof inspired by Hatami-Norine’s proof [HN11] relied on Matiyasevich work
on Hilbert’s tenth problem [Mat70] which showed that it is not possible to computationally
decide if a Diophantine equation in several variables has an integer solution. In this context it
is worth noticing that asserting that a given univariate polynomial has a root in the integers is
a decidable task. Our construction used to prove Theorem 6.2 does not apply if we restrict to
univariate trace polynomials and therefor it remains a natural question whether verification of
nonnegativity of univariate trace polynomials is decidable.
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LINEAR SLICES OF HYPERBOLIC POLYNOMIALS AND

POSITIVITY OF SYMMETRIC POLYNOMIAL FUNCTIONS

CORDIAN RIENER AND ROBIN SCHABERT

Abstract. A real univariate polynomial of degree n is called hyperbolic if all of its n
roots are on the real line. Such polynomials appear quite naturally in different appli-
cations, for example, in combinatorics and optimization. The focus of this article are
families of hyperbolic polynomials which are determined through k linear conditions on
the coefficients. The coefficients corresponding to such a family of hyperbolic polyno-
mials form a semi-algebraic set which we call a hyperbolic slice. We initiate here the
study of the geometry of these objects in more detail. The set of hyperbolic polyno-
mials is naturally stratified with respect to the multiplicities of the real zeros and this
stratification induces also a stratification on the hyperbolic slices. Our main focus here
is on the local extreme points of hyperbolic slices, i.e., the local extreme points of linear
functionals, and we show that these correspond precisely to those hyperbolic polynomials
in the hyperbolic slice which have at most k distinct roots and we can show that gener-
ically the convex hull of such a family is a polyhedron. Building on these results, we
give consequences of our results to the study of symmetric real varieties and symmetric
semi-algebraic sets. Here, we show that sets defined by symmetric polynomials which can
be expressed sparsely in terms of elementary symmetric polynomials can be sampled on
points with few distinct coordinates. This in turn allows for algorithmic simplifications,
for example,to verify that such polynomials are non-negative or that a semi-algebraic set
defined by such polynomials is empty.

1. Introduction

A monic real univariate polynomial f which has only real roots is classically called a hy-
perbolic polynomial. Such polynomials and their multivariate relatives appear naturally in
various mathematical contexts from differential equations to combinatorics, real algebraic
geometry and optimization (see for example [16, 15, 23, 6]). By identifying monic polyno-
mials of degree n with the list of coefficients, one can describe hyperbolic polynomials of
degree n as a semi-algebraic subset of Rn. We consider linear slices, i.e., intersections with
linear subspaces, of this semi-algebraic set, which is in fact the closure of one connected
component of the complement of the discriminant variety. The study of these hyperbolic
slices is inspired by the works of Arnold who considered families of hyperbolic polynomials
where the first k coefficients were fixed. Arnold [2] and Givental [14] showed that these
sets are topologically contractible (see also [25, 24]) and have a rich geometric structure as
was shown by Kostov [18] (see also [20, 19] for more related results). In a similar spirit to
the works of Arnold and Meguerditchian we study the local extreme points of these sets
(see Definition 2.5). In analogy to their result, we show in Theorem 2.8 that these points
correspond to hyperbolic polynomials with few distinct roots. Furthermore, we show in
Theorem 2.14 that a generic hyperbolic slice only has finitely many local extreme points.
This signifies in particular that the convex hull of each of its connected components is in
fact a polyhedron. In contrast to the case considered by Arnold, our slices are in general
not contractible and not compact. However, we are able to give some sufficient condition
to decide if a hyperbolic slice is compact or has at least a local extreme point.
One of our main interests for the study of these hyperbolic slices stems from an application
to symmetric real polynomial functions, i.e., polynomial functions that are left invariant
by any permutation of the variables. Real symmetric functions are related to hyperbolic
polynomials via the so called Vieta map: Recall that for 1 ≤ i ≤ n the i-th elementary

Date: April 1, 2023.
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symmetric polynomial in n variables is defined by

ei ∶= ∑
1≤j1<j2<⋅⋅⋅<ji≤n

Xj1⋯Xji .

By Vieta’s formula the coefficients of a univariate monic polynomial of degree n are given
by evaluating these elementary symmetric polynomials at the corresponding roots. Con-
versely, it is also classical that the roots depend continuously on the coefficients and the
natural action of Sn permuting the roots does not effect the coefficients. Therefore, the
polynomial map from Rn to Rn defined by the above connection effectuates a homeomor-
phism from Rn/Sn to its image called the Vieta map. Since it is classically known that
every symmetric polynomial can be uniquely written as a polynomial in the elementary
symmetric polynomials one can view real symmetric polynomial functions as functions
on the image of the Vieta map. This connection between univariate monic polynomials
and symmetric polynomials in n variables gives rise to an application of our results on
hyperbolic slices in the context of symmetric polynomial functions: We are interested in
the question to what extend the global behavior of symmetric functions is determined by
its behavior of symmetrical points or points with a large stabilizer. For example, several
authors (e.g. [17, 36]) have studied families of symmetric polynomials which attain their
minimal values on symmetric points, i.e., points where all coordinates are equal. More
generally, it has been shown that symmetric polynomial functions of a given degree 2d
assume only non-negative values if and only if they have this property on point with at
most d distinct coordinates [34, 30]. To further this line of ideas, we introduce the notion
of k-complete symmetric polynomial functions. Those are polynomial functions whose set
of values is already obtained by evaluation only on points which have at most k distinct
coordinates (see Definition 3.1). Using the geometry of hyperbolic slices we are able to
identify a new class of k-complete functions in Theorem 3.8 which is given by functions
that are constant or linear along a hyperbolic slice (see Definition 3.5 for the technical def-
inition). The results we give here also include the mentioned findings of [34, 30] which can

be interpreted by saying that every symmetric polynomial of degree d ≥ 4 is ⌊d
2
⌋-complete.

The class of k-complete symmetric functions allows for significant algorithmic simplifica-
tions in several algorithmic tasks related to polynomial functions. For example, it is known
(see [28]) that checking if a real multivariate polynomial f is non-negative is in general
NP -hard, already in the case of polynomials of degree 4. However, as we discuss in this
article, the complexity of verifying non-negativity for a k-complete symmetric polynomial
can be drastically reduced if k < n, since the set of points that need to be considered is of
dimension k. We highlight this and several related results in the second part of the article.
Outline: In Section 2 we introduce the notion of hyperbolic slices as families of hyperbolic
polynomials defined by linear conditions on the coefficients. Our main result in this section
is that the local extreme points of such slices correspond to hyperbolic polynomials with
few distinct roots (Theorem 2.8) and that generically there are only finitely many such
local extreme points (Theorem 2.14). Finally, we give sufficient criteria for the existence of
such local extreme points in the cases when a slice is not compact. In Section 3 we study
symmetric polynomials which attain their minima on points with few distinct coordinates,
i.e., on points with a non trivial and potentially large stabilizer. Our main results there
(Theorem 3.8 and Corollary 3.10) provide a large class of such functions based on the
results from Section 2. We furthermore highlight how to efficiently verify that a given
symmetric polynomial satisfies the conditions needed to apply these results. The following
Section 4 highlights the applicability of our results. We show that our findings allow for
simple proofs for different symmetric inequalities and also recover the mentioned known
results. Furthermore, we in particular highlight in Theorem 4.6 a family of symmetric
polynomials which attain their minimum on symmetric points. Finally, we close with
some concluding remarks and outlooks in Section 5.
Notation: Throughout the article, we fix n ∈ N and denote by R[X] ∶= R[X1, . . . ,Xn] the
polynomial ring in n variables over R.
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2. Hyperbolic slices

In this section we define and analyze the notion of a hyperbolic slice. To begin we
formalize the notion of hyperbolic polynomials as used in the article.

Definition 2.1. We will denote by

H ∶= {z ∈ Rn ∣ Tn − z1T
n−1

+ ⋅ ⋅ ⋅ + (−1)nzn only has real roots}

the set of hyperbolic polynomials of degree at most n, and for 1 ≤ m ≤ n the m-boundary
of H

H
m
∶= {z ∈H ∣ Tn − z1T

n−1
+ ⋅ ⋅ ⋅ + (−1)nzn has at most m distinct roots} .

As described above we are interested in families of univariate monic hyperbolic polyno-
mials whose coefficients are restricted by linear conditions. In order to define this more
concretely, we fix throughout this section an integer 1 ≤ k ≤ n, a real point a ∈ Rk, and a
surjective linear map L ∶ Rn Ð→ Rk. This choice of a linear map and a point characterizes
the linear conditions we aim to impose on hyperbolic polynomials and the hyperbolic slices
corresponding to these choices can be defined as follows.

Definition 2.2. With the notation introduced above, the hyperbolic slice associated to L
and a is the affine linear slice

HL(a) ∶=H ∩L−1(a).

Furthermore, for 1 ≤m ≤ n we define by

H
m
L (a) ∶=Hm ∩L−1(a),

its restriction to the m-boundary.

We briefly discuss one possible connection of the above definition to polynomial inter-
polation for which our results might be interesting in their own rights: For k ∈ N consider
a1, b1, . . . , ak, bk ∈ R. Then the space of polynomials f of degree n which satisfy f(ai) = bi
for 1 ≤ i ≤ k is called a polynomial interpolation space. Now, since evaluations at given
points define linear maps, an interpolation problem for which one is interested in hyper-
bolic polynomials only constitutes one example of a hyperbolic slice defined above.

Clearly, the assumption that L is surjective is only for convenience in the notation. As
mentioned above the set of hyperbolic polynomials is tightly connected to the Vieta map.

Remark 2.3. The set H of hyperbolic polynomials is the image of the so-called Vieta map

Γ ∶ Rn Ð→ H

x = (x1, . . . , xn) z→ (e1(x), . . . , en(x))
,

and the restriction of Γ to the polyhedral cone

W ∶= {x ∈ Rn ∣x1 ≤ x2 ≤ . . . ≤ xn}

is a homeomorphism. In particular, the roots of a univariate polynomial depend continu-
ously on its coefficients. H is in fact a basic closed semi-algebraic subset of Rn. Clearly,
H = Hn ⊃ Hn−1 ⊇ ⋅ ⋅ ⋅ ⊇ H1 and Hn−1 is the topological boundary of H. Furthermore, for
1 ≤m ≤ n the m-boundary Hm is the image of the union of the m-faces of W under Γ and
therefore of dimension m. For more details, we refer to [37, Appendix V.4].

The next example shows one of the simplest situations of a hyperbolic slice obtained by
fixing the first two coefficients of a monic polynomial of degree 4.

Example 2.4. For k ≥ 2 we can fix the first k coefficients of a monic polynomial. The
set of hyperbolic polynomials in such a family defines a hyperbolic slice and this setup
corresponds to the situation studied by Arnold [2] and Kostov [18]. For example, we can
consider HL(0,−6), where

L ∶ R4 Ð→ R2

(z1, z2, z3, z4) z→ (z1, z2)
.

This choice yields the hyperbolic slice in the plane shown in Figure 1.
3



Figure 1. The hyperbolic slice HL(0,−6)

As can be seen from the example above, a hyperbolic slice is not convex but bears
some resemblance to a polytope. By the connection via the Vieta map, we have that H is
homeomorphic to the polyhedral cone W. Furthermore, one finds three extreme points/
vertices in the above picture. For convex sets in Rn the extreme points contain important
information about the set. To generalize this notion to the sets defined above, we will be
interested in the following local notion of extreme points.

Definition 2.5. Let A ⊆ Rn. We call z ∈ A a local extreme point of A, if there is a
neighborhood U ⊆ Rn of z such that z is an extreme point of conv(A ∩U). We denote the
set of all local extreme points of A by locextr(A).

Classically, in convex optimization, the interest in extreme points stems from the fact
that linear functions attain their minimum or maximum on these points. Similarly, the
following holds for local extreme points.

Remark 2.6. Let A ⊆ Rn, and ϕ ∈ Hom(Rn,R) and zϕ ∈ A a (strict) local minimal point
of ϕ in A. Then zϕ is also a local extreme point of A. Conversely, let z ∈ A be a local
extreme point of A, then there is ϕz ∈ Hom(Rn,R) such that z is a local minimal point of
ϕ in A.

Example 2.7. We more generally examine the local extreme points of the hyperbolic slices
discussed above which are similar to the one in Figure 1. We consider again the linear
map

L ∶ R4 Ð→ R2

(z1, z2, z3, z4) z→ (z1, z2)
,

and we examine local extreme points of the family of slices HL(0, a), with a ∈ R. Then we
find that the local extreme points in this case are

locextr(HL(0, a)) =H
2
L(0, a) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

0, a,±
⎛

⎝

√

−
2a

3

⎞

⎠

3

,−
a2

12

⎞
⎟
⎠
,(0, a,0,

a

2
)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

By examining the resultants of the corresponding quartic polynomials and their second
derivative, one finds that each of these local extreme points corresponds to hyperbolic poly-
nomials with at most two distinct roots.

As a first result, we are now going to establish that the above example generalizes in
the following sense. For a general hyperbolic slice, defined through k linear conditions, the
local extreme points can be characterized as hyperbolic polynomials of the k-boundary.
This generalizes Theorem [30, Theorem 4.2] to general hyperbolic slices.

Theorem 2.8. The local extreme points of a hyperbolic slice are contained in the k-
boundary, i.e.,

locextr(HL(a)) ⊆H
k
L(a).

Proof. Let z ∈ HL(a) be a local extreme point, i.e., there is a neighborhood U of z such
that z is an extreme point of conv(HL(a)∩U). We assume that z ∉HkL(a) and want to find
a contradiction. To this end, we want to find c ∈ kerL non-zero such that z ± εc ∈ HL(a)
for all ε > 0 small enough. Consider f ∶= Tn − z1T

n−1 + ⋅ ⋅ ⋅ + (−1)nzn with distinct roots
4



x1, . . . , xm where m > k and factor as follows:

f =
m

∏
i=1

(T − xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶p

⋅q,

where the set of zeros of q contains only elements from {x1, . . . , xm} and q is of degree
n −m. Write q = Tn−m + q1T

n−m−1 + ⋅ ⋅ ⋅ + qn−m and define q0 ∶= 1 and consider the linear
map

χ ∶ Rm Ð→ Rn

y z→ (∑i+j=1 qiyj , . . . ,∑i+j=n qiyj)
.

Since m > k, there is b ∈ ker(L ○ χ) ∖ {0}. We define h ∶= b1T
m−1 + ⋅ ⋅ ⋅ + bm and g ∶= h ⋅ q =

c1T
n−1 + . . .+ cn ≠ 0, where c = χ(b) by construction and therefore c ∈ kerL. Now, because

p has no multiple roots, p ± εh is hyperbolic for ε > 0 small enough: the roots depend
continuously on the coefficients and complex roots come as conjugated pairs (see Remark
2.3). Hence

(p ± εh) ⋅ q = f ± εh ⋅ q = f ± εg

is hyperbolic for all ε > 0 small enough, i.e., z±εc ∈HL(a). If we choose ε > 0 small enough
we can ensure also that z ± εc ∈ U . But then

z =
z + εc + z − εc

2
,

a contradiction to z being an extreme point of conv(HL(a) ∩U). �

Remark 2.9. If the map L is not surjective, one can obtain similar results by replacing
k with rankL.

In view of Remark 2.6 we get the following.

Corollary 2.10. Let g ∶ Rn → R be a linear or concave function and consider the opti-
mization problem

min
z∈HL(a)

g(z).

Let M denote the set of minimizers of this problem. If HL(a) is non-empty and compact,
then we have M ∩Hk

L(a) ≠ ∅. In particular HL(a) contains a point z ∈HkL(a).

Proof. Since HL(a) is compact, there is a minimizer z ∈ M such that z is an extreme
point of the convex hull of HL(a). In particular, z is a local extreme point of HL(a) and
therefore on the k-boundary of HL(a) by Theorem 2.8, i.e., z ∈M ∩HkL(a). �

As can be observed in the example shown in Figure 1 connected components of hyper-
bolic slices appear to have a similarity to polytopes. They are not convex, but appear
to be “deflated” polytopes. To make this a bit more concrete we show that a generic
hyperbolic slice has only finitely many local extreme points. This in particular implies
that their convex hull, or in fact the convex hull of each of its connected components,
is a polytope. The proof uses elementary properties of subdiscriminants. The relevance
of subdiscriminants for counting roots of real univariate polynomials is explained in [3,
Chapter 4].

Definition 2.11. Let f ∈ R[T ] be a monic polynomial of degree n with roots x1, . . . , xn in
C. Then the (n −m)-subdiscriminant, 1 ≤m ≤ n, of f is defined as

sDiscn−m(f) = ∑
I⊆{1,...,n}

∣I ∣=m

∏
i,j∈I
j>i

(xi − xj)
2.

Remark 2.12. Each (n −m)-subdiscriminant of f is defined above as a polynomial of
degree m(m − 1) in terms of the roots of f . Noticing that each of the expressions is in
turn symmetric in the roots, one immediately obtains that each subdiscriminant of f can
be expressed in the elementary symmetric polynomials evaluated at the roots, i.e., in the
coefficients of f . Indeed, the subdiscriminants of f can be obtained directly by minors
of the Sylvester matrix - also called subresultants - of f and f ′. So the degree of each
(n −m)-subdiscriminant expressed in the coefficients is 2m − 2 [3, Proposition 4.27].
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Proposition 2.13. [3, Remark 4.6 and Proposition 4.50] A monic polynomial f ∈ R[T ]

of degree n has exactly k distinct roots if and only if

sDisc0(f) = ⋅ ⋅ ⋅ = sDiscn−k−1(f) = 0, sDiscn−k(f) ≠ 0.

Moreover, if and only if additionally

sDiscn−k(f) > 0, . . . , sDiscn−1(f) > 0,

then f has only real roots.

Theorem 2.14. The k-boundary HkL(a) of a generic hyperbolic slice is finite. In particu-
lar, a generic hyperbolic slice has only finitely many local extreme points. The number of
those points is bounded by

min{2n−k
(n − 1)!

(k − 1)!
,(
n

k
)
(n − 1)!

(k − 1)!
} .

Proof. First, we establish that for a generic hyperbolic slice the k-boundaryHkL(a) is finite.

For this recall that the set of hyperbolic polynomials with at most k distinct roots, Hk, is of
dimension k by Remark 2.3. Therefore, a generic (n−k)-dimensional affine linear subspace
will intersect Hk in only finitely many points. Furthermore, in view of Proposition 2.13
we see further that Hk is contained in the algebraic set defined by the vanishing of n − k
polynomials. On the one hand, each of the subdiscriminants describing this algebraic
set is a homogeneous polynomial of degree (2n − 2), (2n − 4), . . . , (2k) expressed in the
elementary symmetric polynomials by Remark 2.12 and we can apply Bézout’s Theorem
to obtain the bound

2n−k
(n − 1)!

(k − 1)!
.

On the other hand, we can apply the weighted Bézout’s Theorem (see [27, chapter VIII]):
We assign to the i-th elementary symmetric polynomial ei the weight i. Then each subdis-
criminant is weighted homogeneous of degree n(n−1), (n−1)(n−2), . . . , (k+1)k. Indeed,
this is exactly the degree of the subdiscriminants expressed in the roots. Furthermore, we
can bound the weighted degree of each of the k affine hyperplanes describing our slice by
n,n − 1, . . . , n − k + 1. So we obtain the bound

1

n!

n!

(n − k)!
⋅
n!(n − 1)!

k!(k − 1)!
= (

n

k
)
(n − 1)!

(k − 1)!
.

�

Remark 2.15. The second bound obtained in 2.14 by the weighted Bézout’s Theorem can
even be refined, when one considers the coefficients appearing in L(z) for z ∈ H. For
example, if just the first coefficients are fixed, i.e., L(z) = (z1, . . . , zk), then (

n
k
) can be

replaced by 1.

Since the extreme points of the convex hull of a set are local extreme points, we can
deduce the following.

Corollary 2.16. The convex hull of a generic hyperbolic slice is a polyhedron. The same
applies to any of its connected components.

Note that the proof of Theorem 2.14 together with Proposition 2.13 gives an explicit
description of the k-boundary of a hyperbolic slice as a semi-algebraic set. The following
example shows that the k-boundary of a hyperbolic slice can be infinite. But even in this
case, there might only be finitely many local extreme points.

Example 2.17. Consider L ∶ R4 → R3, (z1, z2, z3, z4)↦ (z1, z3, z4) and a ∈ R. Then

HL(a,0,0) = {(a, z2,0,0) ∣ z2 ∈ R, z2 ≤
a2

4
} =H

3
L(a,0,0)

is not finite. But HL(a,0,0) is obviously convex with only local extreme point

(a,
a2

4
,0,0) ∈H

2
L(a,0,0).
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Next, we will give sufficient conditions on L for the compactness of a hyperbolic slice and
for the existence of local extreme points. For that, we will need the following definition.

Definition 2.18. Let f, g ∈ R[T ] be hyperbolic polynomials with real roots αn ≤ ⋯ ≤ α1

and βm ≤ . . . ≤ β1 respectively. We say that g interlaces f if αn ≤ βm ≤ αn−1 ≤ . . . ≤ α1 or
βm ≤ αn ≤ βm−1 ≤ . . . ≤ α1. Furthermore, we say f and g are interlacing, if f interlaces g
or g interlaces f .

Remark 2.19. If g interlaces f , then clearly f and g either have the same degree, i.e.,
n =m or the degree of g is smaller by one, i.e., m = n − 1.

The following classical result (see [10, Theorem 4.1.]) connects interlacing polynomials
to linear pencils of hyperbolic polynomials.

Theorem 2.20 (Dedieu). Let f, g ∈ R[T ] be hyperbolic, non-zero polynomials of degree at
most n. Then the following statements are equivalent:

(1) f and g are interlacing.
(2) f + ξ ⋅ g is hyperbolic for any ξ ∈ R.

From now on we express L in terms of k linearly independent linear forms l1, . . . , lk ∈
R[Z1, . . . , Zn]1 as L ∶ Rn → Rk, z ↦ (l1(z), . . . , lk(z)). We can use the results above
to give a sufficient condition on l1, . . . , lk for the existence of local extreme points of a
hyperbolic slice.

Lemma 2.21. If Z1 ∈ span(l1, . . . , lk) and HL(a) ≠ ∅, then HL(a) has a local extreme
point.

Proof. Let z ∈HL(a) and write Z1 = ∑
k
i=1 λili for some λ1, . . . , λk ∈ R. Furthermore, denote

by x = (x1, . . . , xn) ∈ Rn the roots of

fz ∶= T
n
− z1T

n−1
+⋯ + (−1)nzn.

Then e1(x) = z1 = ∑
k
i=1 λili(z) = ∑

k
i=1 λiai and hence

z2 = e2(x) =
1

2
(e1(x)

2
−

n

∑
i=1
x2i ) ≤

1

2
e1(x)

2
=

1

2
(
k

∑
i=1
λiai)

2

.

So the optimization problem

max
z∈HL(a)

z2

has a non-empty set of maximizers M . Suppose HL(a) has no local extreme point. Then
M contains a line, i.e., there is a maximizer m = (m1, . . . ,mn) ∈M and a y = (y1, . . . , yn) ∈
Rn non-zero such that y1 = y2 = 0 and m + ξy ∈ H for all ξ ∈ R. This means f ∶=

Tn −m1T
n−1 +⋯+ (−1)nmn and g ∶= −y3T

n−3 +⋯+ (−1)nyn are interlacing by 2.20, which
is not possible because of degree reasons. �

We can use the existence of an extreme point, for example, to obtain the following result
which connects to polynomial interpolation.

Corollary 2.22. Consider the set of polynomials of degree n, which are monic, have the
second coefficient fixed, and solve a k-points interpolation problem. Then there exists a
hyperbolic polynomial in this set if and only if there exists one with at most k distinct
roots.

Proof. Under the conditions, the corresponding hyperbolic slice has at least one extreme
point by Lemma 2.21. �

By prescribing not only the first but also the second-highest coefficient of a monic
polynomial, one directly obtains a sufficient condition for the compactness of a hyperbolic
slice.

Lemma 2.23. If Z1, Z2 ∈ span(l1, . . . , lk), then HL(a) is compact.
7



Proof. As the empty set is compact we can assume that there is z ∈ HL(a). Furthermore

we write Z1 = ∑
k
i=1 λili and Z2 = ∑

k
i=1 χili for some λ1, . . . , λk, χ1, . . . , χk ∈ R and denote by

x = (x1, . . . , xn) ∈ Rn the roots of

fz ∶= T
n
− z1T

n−1
+⋯ + (−1)nzn.

Then e1(x) = z1 = ∑
k
i=1 λili(x) = ∑

k
i=1 λiai and e2(x) = ∑

k
i=1 χiai and hence

n

∑
i=1
x2i = e1(x)

2
− 2e2(x) = (

k

∑
i=1
λiai)

2

−
k

∑
i=1
χiai.

This shows that x is contained in a ball, thus HL(a) is bounded. Furthermore, as the
roots of a polynomial depend continuously on the coefficients it is clear that HL(a) is
closed and therefore compact (see Remark 2.6). �

We close this section with a selection of examples of two-dimensional hyperbolic slices
which highlight the various mentioned scenarios.

Example 2.24. Consider HL(a2, a4), where a ∶= (a2, a4) ∈ R2 such that a2 < 0 and a4 > 0
and

L ∶ R4 Ð→ R2

(z1, z2, z3, z4) z→ (z2, z4)
.

Then, there are the following three possible situations.
a: If a ∶= (a2, a4) satisfy a22 − 4a4 < 0, the hyperbolic slice HL(a) will contain two local
extreme points. In particular, H2

L(a) ≠ ∅. Furthermore, the local extreme points of HL(a)
are not global extreme points. Therefore, they are not extreme points of the convex hull of
HL(a). This is illustrated in Figure 2a.
b: For all values a ∶= (a2, a4) with a22−4a4 = 0, HL(a) will contain no local extreme points.
But the 2-boundary of HL(a) is non-empty. Indeed,

T 4
+ a2T

2
+ a4 = (T −

√
−a2
2

)

2

(T +

√
−a2
2

)

2

,

and thus (0, a2,0, a4) ∈H
2
L(a). This situation is illustrated in Figure 2b.

c: For the values a ∶= (a2, a4) with a22 −4a4 > 0, HL(a) will contain no local extreme point.
Moreover, H2

L(a) is empty in this case, while HL(a) ≠ ∅. This is illustrated in Figure 2c.
Indeed, the polynomial f = T 4 + a2T

2 + a4 is hyperbolic with the 4 distinct roots

x1,2,3,4 ∶= ±

¿
Á
ÁÀ−a2 ±

√
a22 − 4a4

2
.

Therefore, the hyperbolic slice HL(a) is non-empty. On the other hand, suppose that the
2- boundary H2

L(a) is non-empty, i.e., that we can find (a1, a2, a3, a4) ∈ H
2
L(a). This in

turn implies that there are x, y ∈ R such that the polynomial

fa ∶= T
4
− a1T

3
+ a2T

2
− a3T + a4

factors either as

fa = (T − x)3(T − y) or fa = (T − x)2(T − y)2.

In the first case a comparison of coefficients shows a2 = 3xy + 3x2 and a4x
3y. Since a4 > 0

we must have x, y ≠ 0 and can solve y = a4
x3

. This implies a2 =
3a4
x2
+3x2 and 3x4−a2x

2+3a4 =

0. However, since x ≠ 0, a2 < 0 and a4 > 0 we must have 3x4 − a2x
2 + 3a4 > 0, and

thus have a contradiction. Analogously, for the second case, comparing coefficients shows

a2 = 4xy + x2 + y2 and a4 = x2y2. We solve for y and get y = ±
√
a4
x from which we find

a2 = a4
x2
+ x2 ± 4

√
a4. But since a2 < 0, a4 > 0 and a22 − 4a4 > 0 the resulting polynomial

equation x4 + (±4
√
a4 − a2)x

2 + a4 = 0 clearly has no real solution.
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(a) HL(−3,4) contains the local
extreme points (±2,−3,∓4,4).

(b) HL(−4,4) has no local ex-
treme point and (0,−4,0,4) ∈H2.

(c) HL(−5,4) has no local ex-
treme point and H2

L(−5,4) = ∅.

3. Positivity of symmetric polynomial functions

In this section we will study real polynomial functions defined by symmetric polynomi-
als. Since every symmetric polynomial can be written in a unique way as a polynomial
in elementary symmetric polynomials, we can use the geometric description of hyperbolic
slices obtained before to characterize the minimal points of a large class of symmetric
polynomial functions which are sparse in an appropriate sense (see Definition 3.5). It had
already been observed by various authors that certain symmetric functions attain their
minimal values on symmetric points (e.g. [17, 12, 21]). Other authors found that symmet-
ric polynomial functions of a bounded small enough degree attain their minima on points
with few distinct coordinates (e.g. [34, 30]). We generalize these results by considering
symmetric polynomial functions which are completely characterized through their values
on points with at most k distinct coordinates.

3.1. The notions of k-completeness and k-testability.

Definition 3.1. For k ∈ N we consider the set

Ak ∶= {x ∈ Rn ∶ ∣{x1, . . . , xn}∣ ≤ k}

of points with at most k different coordinates. Given a symmetric polynomials f ∈ R[X]

and S ⊆ Rn we say that f is

(1) k-complete on S if
f(S) = f(S ∩Ak).

(2) k-testable on S if
inf
x∈S

f(x) = inf
x∈S∩Ak

f(x).

In case S = Rn we may omit it and just speak of k-testable and k-complete polynomials.

The two notions of k-complete and k-testable are very closely connected, but the first
one is stronger, while the second one might be interesting in particular in the context of
optimization. In order to motivate the study of this class, we exemplify first how algo-
rithmic problems can be substantially simplified for k-complete and k-testable symmetric
polynomials.

Definition 3.2. A decreasing sequence of positive integers λ = (λ1, . . . , λk) which sums
up to n is called a partition of n into k parts. We will write λ ⊢k n to denote that λ is a
partition of n into k parts. Let f ∈ R[X] be a symmetric polynomial. Then for λ ⊢k n we
define

fλ ∶= f(X1, . . . ,X1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
λ1−times

, . . . ,Xk, . . . ,Xk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
λk−times

) ∈ R[X1, . . . ,Xk].

Note that the number of partitions of n into k parts is at most (
n+k
k

) and thus polynomial
in n for a fixed k. Therefore the above notion allows reducing, for example, the question
of whether a symmetric polynomial in n variables is non-negative to a polynomial number
of such queries in k variables. It is, for example, known to be NP-hard to decide the
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non-negativity of a given polynomial of degree 4 (see e.g. [5] or [28]). Clearly, by applying
the above procedure, one can obtain algorithmic simplifications which yield polynomial
complexity for this kind of problem (see also [11] where this method is applied also for
other algorithmic questions). We highlight in particular the following version of Artin’s
solution to Hilbert’s 17th problem for k-complete symmetric polynomials, which is a direct
consequence of the sketched procedure of identifying variables.

Proposition 3.3 (Hilbert’s 17th problem for k-complete polynomials). Let f ∈ R[X] be
a symmetric k-testable polynomial. Then f attains only non-negative values on Rn if and
only if for all λ ⊢k n we can find a sum of squares of polynomials t ∈ ∑R[X1, . . . ,Xk]

2

such that t ⋅ fλ is also a sum of squares of polynomials.

The main interest in the statements presented above is that the reduction of dimension
also gives new complexity bounds for the degrees of the polynomials in question. For
example, for Hilbert’s 17th problem for k-complete polynomials we can adapt the currently
known complexity bounds.

Remark 3.4. Let f be a n-variate k-complete polynomial of degree d. Then f is non-
negative if and only if we can write each fλ as a sum of at most 2k rational squares by
[29]. We can also write each fλ as a sum of squares of rational functions, where, following
[22], we obtain the following degree bounds for the numerators and denominators:

22
2d

4k

.

3.2. Sufficient and quasi-sufficient polynomials. Now, we want to show that it is
possible to produce a large class of k-complete symmetric polynomials based on the results
on hyperbolic polynomials. Throughout this section we fix 1 ≤ k ≤ n and consider the k
linearly independent linear forms l1, . . . , lk ∈ R[Z1, . . . , Zn]1 and the linear map L ∶ Rn →
Rk, z ↦ (l1(z), . . . , lk(z)). Recall that a symmetric polynomial f ∈ R[X] can be written
uniquely in terms of the elementary symmetric polynomials, say f = g(e1, . . . , en). Now
evaluation of f in a point x ∈ Rn translates into evaluation of g in a point z ∈ H and
evaluation on Ak translates into evaluation of g on Hk. By partitioning

H = ⋃
a∈Rk

HL(a) and Hk = ⋃
a∈Rk

H
k
L(a)

for the map L, we can use our previous results to show under some mild conditions that f is
k-complete or K-testable if it allows for a special representation in terms of k linear forms
of elementary symmetric polynomials. We define these representations in the following.

Definition 3.5. Let f ∈ R[X] be a symmetric polynomial and write f in terms of ele-
mentary symmetric polynomials, say f = g(e1, . . . , en) for some g ∈ R[Z1, . . . , Zn].

(1) We say that f is (l1, . . . , lk)-sufficient if g ∈ R[l1, . . . , lk].
(2) We say that f is (l1, . . . , lk)-quasi-sufficient if f admits a representation of the

form
f = f0 + f1e1 + ⋅ ⋅ ⋅ + fnen

for some (l1, . . . , lk)-sufficient polynomials f0, . . . , fn.
(3) Furthermore, we say that f is (l1, . . . , lk)-concave-sufficient if g is concave on

HL(a) for all a ∈ Rk.

Moreover, we say that a symmetric semi-algebraic set S ⊆ Rn is (l1, . . . , lk)-sufficient, if it
can be described by (l1, . . . , lk)-sufficient polynomials.

The following proposition is a direct consequence of the unique representation of a
symmetric polynomial of degree d in terms of the elementary symmetric polynomials and
may serve as a motivation for the definitions given above.

Proposition 3.6. Let f ∈ R[X] be symmetric of degree d. Then f is (Z1, . . . , Zd)-

sufficient and (Z1, . . . , Z⌊ d
2
⌋)-quasi-sufficient.

Remark 3.7. The notions defined above are increasingly strict in the following sense:
Sufficiency (1) implies quasi-sufficiency (2), which in turn implies concave-sufficiency (3)
of both f and −f .
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The results on hyperbolic slices now translate to the following statements on symmetric
real polynomial functions.

Theorem 3.8. Let S ⊆ Rn be a symmetric (l1, . . . , lk)-sufficient semi-algebraic set and let
f ∈ R[X] be a symmetric polynomial.

(1) If f is (l1, . . . , lk)-sufficient and if every non-empty hyperbolic slice HL(a) contains
a local extreme point, then f is k-complete on S.

(2) If f is (l1, . . . , lk)-concave-sufficient and HL(a) is compact for all a ∈ Rk, then f
is k-testable on S.

(3) If f is (l1, . . . , lk)-quasi-sufficient and HL(a) is compact for all a ∈ Rk and S ∩Ak
is connected, then f is k-complete on S.

(4) If f is (l1, . . . , lk)-concave-sufficient and not (l1, . . . , lk)-sufficient and

inf
x∈S

f(x) > −∞,

then f is k-testable on S.

Proof. (1): Let g ∈ R[Z1, . . . , Zn] such that f = g(e1, . . . , en). Let x ∈ S and consider
z ∶= Γ(x) and a ∶= L(z). There is z̃ ∈ HkL(a) by Theorem 2.8 since HL(a) admits a local
extreme point. So there is x̃ ∈ Ak with Γ(x̃) = z̃. Then f(x) = f(x̃) and x̃ ∈ S since f and
S are (l1, . . . , lk)-sufficient.

(2): Let g ∈ R[Z1, . . . , Zn] such that f = g(e1, . . . , en). Let x ∈ S and consider z ∶= Γ(x)
and a ∶= L(z). Since g is concave on L−1(a) by the concave-sufficiency of f and HL(a) is
compact we can apply Corollary 2.10 and get that

min
y∈HL(a)

g(y) = min
y∈Hk

L(a)
g(y),

i.e., there is z̃ ∈HkL(a) with g(z̃) ≤ g(z). Let x̃ ∈ Ak with Γ(x̃) = z̃. Then f(x̃) ≤ f(x) and
x̃ ∈ S since S is (l1, . . . , lk)-sufficient and we can conclude that f is k-testable on S.

(3): Let x0 ∈ S. We can apply (2) since f and −f are both (l1, . . . , lk)-concave-sufficient
by Remark 3.7 and get that

inf
x∈S

f(x) = inf
x∈S∩Ak

f(x) and sup
x∈S

f(x) = sup
x∈S∩Ak

f(x),

so there are x1, x2 ∈ S ∩ Ak with f(x1) ≤ f(x0) and f(x2) ≥ f(x0). Since S ∩ Ak is
connected there is x̃ ∈ S ∩Ak with f(x̃) = f(x0) by the intermediate value theorem.

(4): Let g ∈ R[Z1, . . . , Zn] such that f = g(e1, . . . , en). There is x0 ∈ S with

inf
x∈S

f(x) = f(x0)

consider z0 ∶= Γ(x0) and a ∶= L(z). Since g is concave and not constant on HL(a), g
attains its minimum on an extreme point of HL(a), i.e., we can assume that z0 ∈ H

k
L(a)

and therefore x0 ∈ Ak. �

The existence of local extreme points in Theorem 3.8 (1) is indeed necessary, as in cases
without local extreme points it is possible to construct situations where the statement will
not hold. We showcase this in the following.

Example 3.9. Let K(h) = R4, l1 ∶= Z2, l2 ∶= Z4 and L ∶ R4 → R2, z ↦ (l1(z), l2(z)) and
consider the (l1, l2)-sufficient symmetric polynomial

f = (e2 + 5)2 + (e4 − 4)2 ∈ R[X1,X2,X3,X4].

The 2-boundary H2
L(−5,4) is empty by Example 2.24 (3). So f(x) > 0 for all x ∈ A2, but

f(1,−1,2,−2) = 0.

One can in fact prove that the polynomial f in Example 3.9 is still 3-complete. Indeed,
the necessity of the existence of an extreme point in every hyperbolic slice seems to restrict
the applications of Theorem 3.8. However, by applying Lemma 2.21 and Lemma 2.23 we
can obtain the following version of Theorem 3.8 which avoids this issue at the price of a
slightly weaker conclusion.

Corollary 3.10. Let S ⊆ Rn be a symmetric (l1, . . . , lk)-sufficient semi-algebraic set and
let f ∈ R[X] be a symmetric polynomial.
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(1) If f is (l1, . . . , lk)-sufficient, then f is (k + 1)-complete on S.
(2) If f is (l1, . . . , lk)-concave-sufficient, then f is (k + 2)-testable on S.
(3) If f ∈ R[X] is (l1, . . . , lk)-quasi-sufficient and S∩Ak is connected, then f is (k+2)-

complete on S.

Moreover if Z1 ∈ span(l1, . . . , lk), then (k + 1) in (1) can be replaced by k-complete. If
Z1, Z2 ∈ span(l1, . . . , lk), then (k + 2) in (2) and (3) can be replaced by k.

The results in this section were given entirely for symmetric functions. To conclude
this section we remark the following direct translation of the results to even symmetric
polynomials or equivalently copositive symmetric polynomials.

Remark 3.11. The results on symmetric polynomials translate directly to even symmetric
polynomials, i.e., polynomials invariant by the natural action of the Hyperoctahedral group
S2 ≀ Sn. Denote by

E ∶ = {z ∈ Rn ∣ T 2n
− z1T

2(n−1)
+ ⋅ ⋅ ⋅ + (−1)nzn is hyperbolic}

= {z ∈H ∣ Tn − z1T
n−1

+ ⋅ ⋅ ⋅ + (−1)nzn has only non-negative roots}

the set of even hyperbolic polynomials. Furthermore, we define

E
k
∶= {z ∈ E ∣ Tn − z1T

n−1
+ ⋅ ⋅ ⋅ + (−1)nzn has at most k positive roots}

and EL(a) ∶= E ∩L
−1(a) and EkL(a) accordingly. Then the proof of Theorem 2.8 translates

to locextr(EL(a)) ⊆ E
k
L(a) and both sets are generically finite. By replacing Ak by

Bk ∶= {x ∈ Rn ∶ ∣{x21, . . . , x
2
n} ∖ {0}∣ ≤ k}

we can transfer the statements of Theorem 3.8 and Corollary 3.10 about k-completeness
and k-testability of (quasi-)sufficient symmetric polynomials to (quasi-)sufficient even sym-
metric polynomials f , i.e., polynomials that admit a representation of the form

f = g(e1(X
2
1 , . . . ,X

2
n), . . . , en(X

2
1 , . . . ,X

2
n))

with g ∈ R[l1, . . . , lk]. Note that in this case it suffices already to fix the first coefficient in
order to obtain compactness, so one can replace (k + 2) in Corollary 3.10 (2) and (3) by
(k + 1).

3.3. Deciding sufficiency. Generally the definition of sufficient and quasi-sufficient given
above can appear to be not directly verifiable. Especially since mostly one is given a sym-
metric polynomial without its representation in terms of linear combinations of elementary
symmetric polynomials. Therefore, we want to shortly present how to algorithmically ap-
proach the question if a given symmetric polynomial is sufficient or quasi-sufficient. In
order to decide if a symmetric polynomial f ∈ R[X] is sufficient for some collection of
linear forms l1, . . . , lk one has principle two task:

(1) Finding a representation of f = g(e1, . . . , en) in terms of elementary symmetric
polynomials: This can be achieved, for example, by using the Gröbner basis G ∶=

{g1, . . . , gk}, where

gk = ∑
α∈Nn−k+1

0
∣α∣=k

Xα1

k ⋯Xαn−k+1
n +

k

∑
i=1

(−1)iYi ∑
α∈Nn−k+1

0
∣α∣=k−i

Xα1

k ⋯Xαn−k+1
n

of the ideal I = (e1 − Y1, . . . , en − Yn) ⊆ R[X,Y1, . . . , Yn] which is independent from
f and then by computing the remainder g of f on division by G. One obtains now
f = g(e1, . . . , en) (see Proposition 4 and Proposition 5 in §1 of Chapter 7 in [8] for
details). Alternatively one can use the algorithm presented in [35].

(2) Once g ∈ R[e1, . . . , en] is obtained, one has to decide if there exist k < n linear
combinations l1, . . . , lk of the e1, . . . , en such that g ∈ R[l1, . . . , lk]. Also this can be
accomplished quite concretely, for example, by using the approach outlined by Car-
lini [7]. As described there, the smallest number k of linear forms l1, . . . , lk needed
such that g ∈ R[l1, . . . , lk] is obtained by computing the rank of the Catalectican
matrix of g. This matrix is obtained by the coefficients of the partial derivatives
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of g. More concretely, one can actually also explicitly construct these linear forms
by computing a basis for the vector space of the (d− 1)-th partial derivatives of g.

The steps described above rely mostly on linear algebra and can be efficiently implemented
also for larger numbers of variables.

Remark 3.12. In the special case when one wants to decide if a symmetric polynomials
f is ei1 , . . . , eim-quasi-sufficient (where 1 ≤ i1 ≤ ⋅ ⋅ ⋅ ≤ in ≤ k) one can actually proceed with
the following examination of the gradient of f without going through the steps above: As
a symmetric polynomial f cane be written as f = g(e1, . . . , en) we have

∇f = ∇gJe1,...,en .

Noting that Je1,...,en is invertible over R(X1, . . . ,Xn) we get

∇fJ−1e1,...,en = ∇g.

Now, if for I ⊆ {1, . . . , n} the corresponding entries in ∇g are constants, then f is (ei){1,...,n}∖I-
quasi-sufficient.

We give a short example to illustrate the algorithmic approach.

Example 3.13. We consider the following toy example of a symmetric polynomial in
three variables in order to showcase the methods described above

f = ∑
σ∈S3

σ
⎛

⎝

1

2
X3

1 +X
2
1X

2
2 + 3X2

1X2 +X
3
1X2 +X1X2X3 −X

2
1X

2
2X

2
3

+
1

2
X3

1X
3
2X

2
3 − 2X3

1X
2
2X3 −X

3
1X2X3 − 2X2

1X
2
2X3 +

5

2
X2

1X2X3
⎞

⎠
,

where S3 acts on R[X1,X2,X3] by permutation of variables.
The Gröbner basis corresponding to the ideal

I ∶= ⟨e1 − Y1, e2 − Y2, e3 − Y3⟩

is given by

G = {X1 +X2 +X3 − Y1,X
2
2 +X2X3 −X2Y1 +X

2
3 −X3Y1 + Y2,X

3
3 −X

2
3Y1 +X3Y2 − Y3}.

By computing the remainder of f on division by G one obtains

g = Y 3
1 + Y 2

1 Y2 − 2Y 2
1 Y3 − 2Y1Y2Y3 + Y1Y

2
3 + Y2Y

2
3 ∈ R[Y1, Y2, Y3]

with f = g(e1, e2, e3). In order to compute the Catalactican of g, we fix a monomial basis

M = {M1, . . . ,M6} = {Y 2
1 , Y1Y2, Y1Y3, Y

2
2 , Y2Y3, Y

2
3 }

for the ternary forms of degree 2 = deg(g) − 1. Calculating the partial derivatives

∂ig = ci1M1 + ⋅ ⋅ ⋅ + ci6M6

we obtain he Catalactican Cg of g defined as (Cg)ij = cij , i.e.

Cg =
⎛
⎜
⎝

3 2 −4 0 −2 1
1 0 −2 0 0 1
−2 −2 2 0 2 0

⎞
⎟
⎠
.

The number of linear forms needed to express g is then equal to rank(Cg) = 2. In order
to find linear forms needed to express g, it suffices to compute a basis for the span of the
second partial derivatives of g, we obtain

{Y1 − Y3, Y2 + Y3}

and indeed

g = (Y2 + Y3)(Y1 − Y3)
2
+ (Y1 − Y3)

3,

i.e. f is (Y2 + Y3, Y1 − Y3)-sufficient and (Y1 − Y3)-quasi-sufficient.
13



4. Applications and examples

We will now show some applications of the theory developed here and use it on some
concrete examples to underline the potential of the results presented. We begin with
examining the following polynomial which was given by Robinson [32] as an example of a
non-negative form which is not a sum of squares. Note that this example could also be
obtained by a variant of the half degree principle to even symmetric polynomials.

Example 4.1 (Robinson Polynomial). The non-negativity of the Robinson polynomial

R =X6
+ Y 6

+Z6
− (X4Y 2

+X2Y 4
+X4Z2

+X2Z4
+ Y 4Z2

+ Y 2Z4) + 3X2Y 2Z2

can be easily verified using Remark 3.11. Indeed,

R = e1(X
2, Y 2, Z2

)
3
− 4e1(X

2, Y 2, Z2
)e2(X

2, Y 2, Z2
) + 9e3(X

2, Y 2, Z2
)

is a Z1-quasi-sufficient even symmetric polynomial. Therefore, we only need to examine
R on the set

B1 ∶= {x ∈ R3
∶ ∣{x21, x

2
2, x

2
3} ∖ {0}∣ ≤ 1}.

Since we easily find that the two (dehomogenized) univariate polynomials

R1 = R(1, T, T ) = T 4
− 2T 2

+ 1 = (T − 1)2(T + 1)2

R2 = R(1, T,0) = T 6
− T 4

− T 2
+ 1 = (T 2

+ 1)(T − 1)2(T + 1)2.

are non-negative, R is indeed non-negative. Moreover, we directly also see that R has at
least the 10 projective zeros

(1,±1,±1), (0,±1,±1), (±1,0,±1), (±1,±1,0)

which constitute the orbits of (1,1,1) and (1,1,0). One easily checks that these zeros are
isolated. From this observation one immediately also obtains that R cannot be a sum of
squares. Indeed, since a zero of a sum of squares also has to be a zero of every summand,
a sextic which is a sum of squares can have at most 9 isolated zeros.

Furthermore, we will show how our results can be used to verify symmetric inequalities
rather easily.

Example 4.2 (AM–GM inequality). The inequality of arithmetic and geometric means
is a standard inequality from analysis, stating that for all x ∈ Rn≥0 we have

x1 + x2 +⋯ + xn
n

≥ n
√
x1 ⋅ x2⋯xn,

or equivalently
en1 − n

nen ≥ 0 on Rn≥0.
By squaring the variables this is equivalent to

F = e1(X
2
1 , . . . ,X

2
n)
n
− nnen(X

2
1 , . . . ,X

2
n)

is non-negative, which can be proven by applying again Remark 3.11 similarly to the pre-
vious example.

Example 4.3 (Maclaurin’s inequality). More general we have

i

¿
Á
ÁÀ

ei(x)

(
n
i
)

≥ j

¿
Á
ÁÀ

ej(x)

(
n
j
)

for all x ∈ Rn≥0 and i ≤ j which is equivalent to

F = (
n

j
)
2i

ei(X
2
1 , . . . ,X

2
n)

2j
− (

n

i
)
2j

ej(X
2
1 , . . . ,X

2
n)

2i

is non-negative. F is (Zi)-concave-sufficient and even symmetric. First we show that
infx∈Rk f > −∞. Since F is in particular (Z1, Zi)-concave-sufficient, it suffices to show
that

Fλ ∶= F (X, . . . ,X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
λ1−times

, Y, . . . , Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
λ2−times

,0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
λ3−times

)
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is bounded from below for all partitions λ1+λ2+λ3 = n. Since Fλ is homogeneous it suffices
to show that the dehomogenization

F̃λ = Fλ(X,1)

has positive leading coefficient. It has leading coefficient

(
n

j
)
2i

(
λ1
i
)

2j

− (
n

i
)
2j

(
λ1
j
)

2i

> 0

for i ≤ λ1 < n (this can be easily shown by induction on λ1) and F̃λ = 0 for λ1 = n and for
λ1 < i. Now we can use Theorem 3.8 (4) and Remark 3.11, so it suffices to check that

Fµ ∶= F (X, . . . ,X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
µ−times

, 0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

(n−µ)−times

)

is non-negative for all partitions µ+n−µ = n. Since Fµ is homogeneous it suffices to show
that the dehomogenization

F̃µ = Fµ(1) =

⎧⎪⎪
⎨
⎪⎪⎩

(
n
j
)
2i
(
µ
i
)
2j
− (

n
i
)
2j
(
µ
j
)
2i
, for i ≤ µ < n

0, else

is non-negative.

It is interesting to notice that the idea of certifying symmetric inequalities in the way
sketched has been done albeit not as general. For example, the main Lemma [26, Lemma
2.4] used to prove some new inequalities between elementary symmetric polynomials can
be seen as a special case of Remark 3.11 for Z1-quasi-sufficient even symmetric polynomi-
als. Indeed our setup also recovers as a special instance of Corollary 3.10 together with
Proposition 3.6 the so called Degree and Half-Degree Principle shown in [34].

Corollary 4.4 (Degree Principle). Let S ⊆ Rn be a symmetric semi-algebraic set, which
can be described by symmetric polynomials of degree at most d. Then S is empty, if and
only if S ∩Ad is empty.

Corollary 4.5 (Half-Degree Principle). Let f ∈ R[X] be symmetric of degree d. Then f

is k-complete, where k ∶= max{2, ⌊d2⌋}.

We remark that it is known to be NP-hard already for quartics to decide non-negativity
(see e.g. [5] or [28]). However, for univariate polynomials non-negativity can be certified
via a sums of squares decomposition. Such a decomposition can be efficiently obtained
via semi-definite programming. The feasible region of a semi-definite program is given
by a linear matrix inequality (LMI), i.e., an inequality of the form A0 + x1A1 + x2A2 +

. . . + xnAn ⪰ 0, where A0, . . . ,An are real symmetric matrices all of the same size and
x1, . . . , xn are supposed to be real scalars. Now for a symmetric 1-complete polynomial
of degree 2d we have that f is non-negative if and only if the univariate polynomial
f̃ ∶= f(T,T, . . . , T ) of same degree is non-negative. This in turn is the case, if and only if

there exists a symmetric matrix A ∈ R(d+1)×(d+1) which is non-negative and for which we
have f̃ = (1, T, T 2, . . . , Tn)⋅A⋅(1, T, T 2, . . . , Tn)t. Therefore, non-negativity of a 1-complete
symmetric polynomial can be decided with semi-definite programming. This motivates the
following sufficient criterion for 1-complete polynomials.

Theorem 4.6. Let l ∈ R[Z1, . . . , Zn]1 be linear and homogeneous, say l = λ1Z1 +⋯+λnZn
for some λ1, . . . , λn ∈ R. Let f be a l-sufficient symmetric polynomial. Let m denote the
largest index i of the non-zero λi, i.e., m ∶= max{i ∈ {1, . . . , n} ∣ λi ≠ 0}. If m is odd, then
f is 1-complete.

Proof. Write f as f ∶= g(l(e1 . . . , en)) for some univariate polynomial g. Let x ∈ Rn and
define a ∶= l(e1(x), . . . , en(x)) ∈ R. We will show that H1

l (a) ≠ ∅. Consider the univariate
polynomial

p ∶=
m

∑
i=1
λi(

n

i
)T i − a ∈ R[T ].
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Since m is odd, p has a real zero y ∈ R. Consider now z = (z1, . . . , zn) ∈ Rn defined by
zi ∶= (

n
i
)yi. Then z ∈H1

l (a) by construction. Now

f(x) = g(a) = g(l(z1, . . . , zn)) = f(y, . . . , y).

�

Convex sets for which membership can be described via semi-definite programming, i.e.,
which are projections of feasibility regions of semi-definite programs are called spectrahedral
shadows. Recently, Scheiderer [33] was able to show that in general the cone of positive
semi-definite forms is not in general a spectrahedral shadow. Using Corollary 3.10 and
Remark 3.11 we can identify families of convex cones of (even-)symmetric positive semi-
definite forms which are spectrahedral shadows, generalizing Theorem 4.29 in [9].

Proposition 4.7. Let P2d denote the convex cone of positive semi-definite n-ary forms
of degree 2d and 2 ≤ j ≤ n. Then, the subcones of all (Z1, Zj)-sufficient and (Z1, Z2)-
quasi-sufficient symmetric forms are spectrahedral shadows. Similarly, the subcone of all
(Z1, Zj)-quasi-sufficient even-symmetric forms is a spectrahedral shadow.

Proof. All forms in the mentioned subcones are 2-complete by Corollary 3.10 and Re-
mark 3.11. Therefore non-negativity can be decided by restricting to A2, respectively B2.
Dehomogenizing the resulting binary forms we obtain univariate polynomials, which are
non-negative if and only if they are sums of squares. �

5. Conclusion and open questions

We have defined the notion of hyperbolic slices and showed that the local extreme
points of such slices correspond to hyperbolic polynomials with few distinct roots. We
show that generically these hyperbolic slices contain at most finitely many local extreme
points. We expect that this holds generally, i.e., also in those cases when the k-boundary
is not finite. In particular, we expect that the convex hull of each connected component
of any hyperbolic slice is a polyhedron. Arnold and Giventhal [2, 14] had shown that
the hyperbolic slices which are obtained by fixing the first k coefficients are contractible.
Our examples show that hyperbolic slices are in general neither connected nor compact
and therefore in particular not contractible. It would be very interesting to study the
topological properties of these sets. Similarly to the results in [4], an understanding of the
topology of these slices might allow for new efficient algorithms to compute the homology
of symmetric semi-algebraic sets defined by k-complete polynomials. Furthermore, the
definition of hyperbolic slices naturally involved elementary symmetric polynomials. From
the viewpoint of symmetric polynomials, it seems interesting to study analogous sets for
different choices of n symmetric polynomials which generate all symmetric polynomials.
For example, the first author observed in [31] that symmetric polynomials defined by any
k Newton sums are at least (2k+1)-complete. Finally, a natural question is to explore the
connections to invariant polynomials of other groups, most notably finite reflection groups.
In [13, 1] the authors showed that the image of polynomial functions invariant by a finite
reflection group can be described by the points on flats in the hyperplane arrangement, if
the degree is sufficiently small. We expect that the notions and techniques presented here
can be transferred also to this more general setup.
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Springer International Publishing, Cham, 2021. 6

[28] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming.
Math. Programming, 39(2):117–129, 1987. 2, 10, 15

[29] A. Pfister. Zur Darstellung definiter Funktionen als Summe von Quadraten. Inventiones mathematicae,
4(4):229–237, 1967. 10

[30] C. Riener. On the degree and half-degree principle for symmetric polynomials. Journal of Pure and
Applied Algebra, 216(4):850–856, 2012. 2, 4, 9

[31] C. Riener. Symmetric semi-algebraic sets and non-negativity of symmetric polynomials. Journal of
Pure and Applied Algebra, 220(8):2809–2815, 2016. 16

[32] R. M. Robinson. Some definite polynomials which are not sums of squares of real polynomials. In
Notices of the American Mathematical Society, volume 16, page 554. AMER MATHEMATICAL SOC
201 CHARLES ST, PROVIDENCE, RI 02940-2213, 1969. 14

[33] C. Scheiderer. Spectrahedral shadows. SIAM Journal on Applied Algebra and Geometry, 2(1):26–44,
2018. 16

[34] V. Timofte. On the positivity of symmetric polynomial functions.: Part i: General results. Journal of
Mathematical Analysis and Applications, 284(1):174–190, 2003. 2, 9, 15

17



[35] T. X. Vu. On the complexity of invariant polynomials under the action of finite reflection groups.
arXiv preprint arXiv:2203.04123, 2022. 12

[36] W. C. Waterhouse. Do symmetric problems have symmetric solutions? The American Mathematical
Monthly, 90(6):378–387, 1983. 2

[37] H. Whitney. Complex analytic varieties. Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont., 1972. 3

Department of Mathematics and Statitics, UiT - the Arctic University of Norway, 9037
Tromsø, Norway

Email address: cordian.riener@uit.no

Email address: robin.schabert@uit.no

18



CLASSIFICATION OF ℵ0-CATEGORICAL C-MINIMAL
PURE C-SETS

Françoise Delona, Marie-Hélène Mourguesb,∗
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1. Introduction

C-sets are sets equipped with a C-relation. They can be understood as a slight weak-

ening of ultrametric structures. They generalize in particular linear orders and allow rich

combinatorics. They are therefore not classifiable, unless you restrict their class. It is what

we do here: we consider ℵ0-categorical and C-minimal C-sets. C-minimality is the mini-

mality notion fitting in this context: any definable subset in one variable is quantifier free

definable using the C-relation alone. In the case of ultrametric structures this corresponds

to finite Boolean combinations of closed or open balls. We classify here all ℵ0-categorical

and C-minimal C-sets up to elementary equivalence (in other words we classify all finite

or countable such structures). Although C-minimality is a generalization of o-minimality,

our result does not generalize Pillay and Steinhorn’s result: they classify (Theorem 6.1 in

[P–S]) all ℵ0-categorical and o-minimal linearly ordered structures while we only classify

ℵ0-categorical and C-minimal pure C-sets.

To state our result let us introduce some material. A C-set M has a canonical tree,

T (M), in which M appears as the set of leaves, with the C-relation defined as follows :

for α ∈ M , call br(α) := {x ∈ T (M);x ≤ α} the branch α defines in T (M) ; then for

α, β and γ in M , M |= C(α, β, γ) iff in T (M), br(β)∩ br(γ) strictly contains br(α)∩ br(β)

(which then must be equal to br(α) ∩ br(γ)). Let us give a very simple example: call

trivial a C-relation satisfying C(α, β, γ) iff α 6= β = γ and suppose M is not a singleton;

then C is trivial on M iff T (M) consists of a root, say r, and the elements of M as leaves,

all having r as a predecessor. The C-set (M,C) and the tree (T (M), <) are uniformly

biinterpretable. As usual the Ryll-Nardzewski Theorem makes the classification of indis-

cernible ℵ0-categorical C-minimal sets as a first step in our work. Recall that a structure

is said to be indiscernible iff all its elements have the same complete type We characterize

indiscernible, ℵ0-categorical and C-minimal C-sets by their canonical tree. First we define

by induction solvable trees. Consider on leaves above a node a the equivalence relation

“br(α)∩ br(β) contains nodes strictly bigger than a”. An equivalence class is called a cone

at a. So, the number of cones at a coincides with the intuitive notion of the number of

branches. A 0-solvable good tree is a singleton (with the only possible C-relation: the

empty relation). There are three types of 1-solvable good trees. Either the tree T consists

of a unique node with at least two leaves immediately above. Or for any leaf α of T ,

br(α) consists of a dense linear order and its leaf α, and at each node there is the same

number (a natural number greater than 2 or infinity) of cones. Or each br(α) consists

of a dense linear order, α and a predecessor of α, and there are two numbers m and µ

(natural numbers greater than 1, or infinity) such that at each node of T there are exactly

µ infinite cones and m cones which consist of a single leaf. An (n+ 1)-solvable good tree

is an n-solvable good tree in which each leaf is substituted with a copy of a 1-colored good

tree, the same at each leaf, with some constraints on the parameters m and µ occurring

on both sides of the construction. A solvable good tree is an n-solvable good tree for some

2



integer n. And a colored good tree is a tree elementary equivalent to a solvable one. We

prove that a pure C-set M is indiscernible, finite or ℵ0-categorical and C-minimal iff its

canonical tree T (M) is a colored good tree.

The reduction of the general classification to that of indiscernible structures uses a very

precise description of definable subsets in one variable. ℵ0-categoricity is combined with

the classical description coming from C-minimality to produce a “canonical partition”

of the structure in finitely many definable subsets, each of them maximal indiscernible.

The characterization of ℵ0-categorical and C-minimal C-sets is done via finite trees with

labeled vertices and edges, where labels are natural numbers, or infinity, and complete

theories of indiscernible, ℵ0-categorical or finite C-minimal C-sets. The reconstruction of

the structure from such a finite labeled tree uses again an induction on the depth of the

tree.

Chapter 2 lists some preliminaries. In Chapter 3 we draw a certain amount of conse-

quences of indiscernibility, ℵ0-categoricity and C-minimality of a C-structure, which leads

to the notion of precolored good tree (no inductive definition this time). Chapters 4 to

6 are dedicated to colored good trees. Chapter 4 presents 1-colored good trees, which in

fact are the same thing as precolored good trees of depth 1. In Chapter 5 we define the

extension of a colored good tree by a 1-colored good tree, construction which is the core

of the inductive definition of (n + 1)-colored good trees from n-colored good trees. Gen-

eral colored good trees are defined and completely axiomatized in Chapter 6. In Chapter

7 we show that the classes of precolored good trees, of colored good trees as well as of

canonical trees of indiscernible, finite or ℵ0-categorical and C-minimal C-sets do in fact

coincide. Chapter 8 gives a complete classification of ℵ0-categorical and C-minimal C-sets.

Notice that, if M is indiscernible the set of leaves is indiscernible in T (M) but the tree

T (M), except the singleton, never is. Its set of nodes may be indiscernible. It is the case

for 1-colored good trees described in Section 4 and no other colored good tree. This is why

our classification has almost nothing to do with the classification of countable 1-transitive

trees given by Barbina, Chicot and Truss (see [CT] and [BC]). The only common point

is as follows : 1-colored good trees of type (0) are trivially 2-transitive and a 1-colored

good tree of type (1) deprived of its leaves is 2-transitive too. Notice also that the colors”

we considere here are not, as often in model theory, unary predicates. Our classification

extend probably, with no other complications than technical, to structures in a language

consisting of C and finitely many unary predicates.
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2. Preliminaries

2.1. C-sets and good trees

Definition 2.1. A C-relation is a ternary relation, usually called C, satisfying the four

axioms:

1. C(x, y, z)→ C(x, z, y)

2. C(x, y, z)→ ¬C(y, x, z)

3. C(x, y, z)→ [C(x, y, w) ∨ C(w, y, z)]

4. x 6= y → C(x, y, y).

A C-set is a set equipped with a C-relation.

C-relations appear in [AN], [M–S] or [H–M], where they satisfy additional axioms. Our

present definition comes from [D]. As already mentioned in the introduction, a C-set M

has a canonical tree, which is in fact bi-interpretable with M , as we explain now.

Definition 2.2. We call tree an order in which for any element x the set {y; y ≤ x} is

linearly ordered.

Call a tree good if :

- it is a meet semi-lattice (i.e. any two elements x and y have an infimum, or meet, x∧y,

which means: x ∧ y ≤ x, y and (z ≤ x, y)→ z ≤ x ∧ y),

- it has maximal elements, or leaves, everywhere (i.e. ∀x, ∃y (y ≥ x ∧ ¬∃z > y))

- and any of its elements is a leaf or a node (i.e. of form x∧ y for some distinct x and y).

Let T be a good tree. It is convenient to consider T in the language {<,∧, L} where

∧ is the function T × T → T defined above and L a unary predicate for the set of leaves

(cf. Definition 2.2).

Proposition 2.3. C-sets and good trees are bi-interpretable classes.

Let us explain these two interpretations in a few words. More details can be found in

[D].

Call branch of a tree any maximal subchain. The set of branches of T carries a canonical

C-relation: C(α, β, γ) iff α ∩ β = α ∩ γ ( β ∩ γ. Now, leaves of T may be identified to

branches via the map α 7→ br(α) := {β ∈ T ;β ≤ α}. Thus, if Brl(T ) denotes the set of

branches with a leaf of T , the two-sorted structure (T,<,Brl(T ),∈) is definable in (T,<),

and the canonical C-relation on Brl(T ) also. We denote this C-set M(T ). This gives

the definition of a C-set in a good tree. The canonical tree of a C-set provides the reverse

construction. It is (almost) the representation theorem of Adeleke and Neumann ([AN],

12.4), slightly modified according to [D]. Let us describe their construction. Given a C-set

(M,C), define on M2 binary relations

(α, β) 4 (γ, δ) :⇔ ¬C(γ, α, β)&¬C(δ, α, β)
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(α, β)R(γ, δ) :⇔ ¬C(α, γ, δ)&¬C(β, γ, δ)&¬C(γ, α, β)&¬C(δ, α, β).

Then the relation 4 is a pre-order, R is the corresponding equivalence relation and the

quotient T := M2/R is a good tree. 1

Proposition 2.4 summarizes these facts in a more precise way than Proposition 2.3 did.

Proposition 2.4. Given a C-set M , there is a unique good tree such that M is isomorphic

to its set of branches with leaf, equipped with the canonical C-relation. This tree is called

the canonical tree of M and is denoted T (M).

Let L be the set of leaves of T (M). Then 〈M,C〉 and 〈T (M), <,∧, L〉 are first-order bi-

interpretable, quantifier free and without parameters, and M and L(T (M)) are definably

isomorphic. Therefore an embedding M ⊆ N induces an embedding T (M) ⊆ T (N).

Moreover, given a good tree T , T (M(T )) and T are definably isomorphic.

2.2. C-structures and C-minimality

Definition 2.5. A C-structure is a C-set possibly equipped with additional structure.

A C-structure M is called C-minimal iff for any structure N ≡ M any definable subset

of N is definable by a quantifier free formula in the pure language {C}.

Remark 2.6. Any finite C-structure is C-minimal.

C-minimality has been introduced by Deirdre Haskell, Dugald Macpherson and Charlie

Steinhorn as the minimality notion suitable to C-relations ([H–M], [M–S]). We define now

some particular definable subsets of M which, due to C-minimality, generate by Boolean

combination all definable subsets of M. If we want to distinguish between nodes and

leaves of the tree T (M), we will use Latin letters x, y, etc... to denote nodes and Greek

letters α, β, etc... for leaves (cf. Definition 2.2). According to the representation theorem,

elements of M are also represented by Greek letters.

Definition 2.7. • For α and β two distinct elements of M , the subset of M : C(α ∧
β, β) := {γ ∈M ;C(α, γ, β)} is called the cone of β at α∧β; α∧β is called its basis.

We also use the notation, for elements y > x from T (M), C(x, y) := C(x, α) for any

(or some) α ∈M such that br(α) contains y, and we say that C(x, y) is the cone of

y at x.

• For α and β in M , the subset of M : C(α ∧ β) := {γ ∈ M ;¬C(γ, α, β)} = {γ ∈
M ;α ∧ β ≤ γ} is called the thick cone at α ∧ β; α ∧ β is its basis. Note that, if

1Adeleke and Neumann work in fact with the set of pairs of distinct elements of M , instead of M2 as we
do (and reverse order). It is the reason why we get maximal elements everywhere in the tree, meanwhile
they did not get any. In the other direction also, Brl(T ) is interpretable in T meanwhile the “covering
set of branches” considered by Adeleke and Neumann is not determined by T .

5



α 6= β, the thick cone at α ∧ β is the disjoint union of all cones at α ∧ β2.

• For x < y ∈ T (M) the pruned cone at x of y is the cone at x of y minus the thick

cone at y, in other words the set C(]x, y[) = {γ ∈M ;x < (γ ∧ y) < y}. The interval

]x, y[ is called the axis of the pruned cone, x its basis.

Note that the word “cone” follows the terminology of Haskell, Macpherson and Stein-

horn while our “thick cone” replace their “0-levelled set” (with the motivation that we do

not use here n-levelled sets for n 6= 0). We also replace “interval” by “pruned cone” with

the intention that an “interval” always lives in a linear order.

It is easy to see that the subsets of M definable by an atomic formula of the language {C}
are M , ∅, singletons, cones and complements of thick cones. We can therefore rephrase

the above definition of C-minimality as follows: A C-structureM is C-minimal iff for any

structure N ≡M any definable subset of N is a Boolean combination of cones and thick

cones.

Proposition 2.8. Let M be a C-minimal C-set and A a cone, thick cone or pruned cone

with a dense axis in M . Then, considered as a pure C-set, A is C-minimal too.

Proof: The trace of a cone on a cone, say A, is a (relative) cone: this means that this

trace can be described as {x ∈ A;C(α, β, x)} for two parameters α and β from A. More

generally the trace of a possibly thick cone on a possibly thick cone is a possibly thick

cone. Thus the above statement is trivial for cones. For a pruned cone, C-minimality is

ensured by the axis density, see [D], p. 70, Example and Lemma 3.12 (the C-minimality

considered there is in some sense “external” and a priori stronger than the “internal” one

considered in the above statement).

We explain now how the biinterpretation we have seen between M and T (M) remains

valid in the expanded context of C-minimality. Given a C-structureM consider M as the

set of leaves of T (M) and add to the tree structure of T (M) all subsets of some cartesian

power T (M)n which are ∅-definable in M as ∅-definable sets. The structure obtained is

called the structure induced byM on T (M). The reverse construction is a bit more subtle:

Definition 2.9. Let N be a structure and A a ∅-definable subset of N . By definition the

language of the structure induced by N on A consists of all subsets of some An which are

definable in N without parameters.

We say that A is stably embedded in N if for all integer n every subset of An which is

definable in N with parameters, is definable with parameters from A.

2In the particular case of ultrametric spaces the C-relation is defined as follows: C(x, y, z) iff d(x, y) =
d(x, z) < d(y, z). The thick cones are the closed balls and cones are the open balls. Some balls may be
open and closed. In the same way as a closed ball, say of radius r 6= 0, is partitioned into open balls of
radius r, a thick cone at a node n is partitioned in cones at n.
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In this case the subsets of some An definable in N or in the structure induced by N on A

are the same.

Proposition 2.10. Whatever additional structure we consider on T (M), M is stably

embedded in T (M).

Proof: Consider ϕ a formula without parameters of the expanded tree T (M) with n+m

variables, parameters c = (c1, . . . , cm) from T (M) and the set D := {x = (x1, . . . , xn) ∈
Mn;T (M) |= ϕ(c, x)}. Each ci is of the form ci = αi ∧ βi for some αi, βi ∈ M hence

D := {x ∈ Mn;T (M) |= ϕ(α1 ∧ β1, . . . , αm ∧ βm, x)}, a set which is definable with

parameters from M .

Proposition 2.11. Let M be a C-minimal C-structure and T its canonical tree with the

structure induced by M. Then:

1. Each branch br(α) of Brl(T ) is o-minimal in T , in the sense that, any subset of

br(α) definable in T is a finite union of intervals with bounds in br(α) ∪ {−∞}.

2. Any node c of T is strongly minimal in the sense that, any definable set of cones at

c is finite or cofinite (in the set of all cones at c).

Proof: Haskell and Macpherson [H–M] Lemma 2.7 (i) and (ii).

Remark 2.12. Using “rosy theories” and a result of Pillay (Theorem 1.4 in [P]) we see

that any branch br(α) of T is in fact stably embedded in (T, α) and o-minimal for the

induced structure.

2.3. Some definability properties in the canonical tree

We have defined (possibly thick or pruned)(Definition 2.7) cones as subsets of M . But

they have their counterparts in the canonical tree that we define below. So cones are

subsets of M as well as of T (M), we hope the context and the distinct notation C or Γ

will make the choice clear.

As previously, when we want to make a difference, Latin letters x, y, etc... denote nodes of

T (M) which are not leaves and Greek letters α, β, etc... leaves.

Definition 2.13. • For α and β two distinct elements of M , the subset of T (M):

Γ(α∧ β, β) := {t ∈ T (M);α∧ β < t∧ β} is called the cone of β at α∧ β3. Note that

it is the canonical tree of C(α ∧ β, β).

As for cones in M , we also use the notation, for elements y > x from T , Γ(x, y) :=

Γ(x, α) for any (or some) α ∈M such that br(α) contains y and we say that Γ(x, y)

is the cone of y at x.

3Be aware that in [H–M] a cone of nodes always contains its basis, in other words a cone at a is the
union of a and what we call here a cone.
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• For α and β in M , the subset of T (M): Γ(α ∧ β) = {t ∈ T (M);α ∧ β ≤ t} is called

the thick cone at α ∧ β. Note that it is the canonical tree of C(α ∧ β). Let x be a

node of T (M), note that Γ(x) =
⋃
α∈M

x∈br(α)

Γ(x, α) ∪ {x}.

• For x < y ∈ T (M), the pruned cone at x of y is the set Γ(]x, y[) = {t ∈ T (M);x <

(t ∧ x) < t ∧ y} := Γ(x, β) \ Γ(y) where β is any branch containing y. It is the

canonical tree of C(]x, y[). The interval ]x, y[ is called the axis of the pruned cone.

The basis of a (possibly thick or pruned) cone is defined analogously to what is done for

subsets of M .

Definition 2.14. We say that a leaf α of T is isolated if there exists a node x in T such

that x < α and there is no node between x and α, in other words, α gets a predecessor in

T . If α is an isolated leaf, then its unique predecessor is denoted by p(α).

Definition 2.15. Let x be a node of T . We say that a cone Γ at x is an inner cone if the

two following conditions are realized:

1. x has no successor on any branch br(α) where α is a leaf and α ∈ Γ. Note that, x

has a successor (say x+) on br(α) for some α ∈ Γ, iff Γ is a thick cone (the thick

cone at x+).

2. There exists t ∈ Γ such that, for any t′ ∈ T with x < t′ < t, t′ is of same tree-type

as x.

Otherwise, we say that Γ is a border cone.

Remark 2.16. An inner cone is always infinite. The cone Γ(p(α), α) at the predecessor

p(α) of an isolated leaf α is a border cone which consists only of that leaf.

Definition 2.17. The color of a node x of a tree T is the couple (m,µ) ∈ (N ∪ {∞})2

where m is the number of border cones at x and µ the number of inner cones at x.

Lemma 2.18. Suppose the C-set M is finite or ℵ0-categorical.

1. Then the color of a node of T (M) is ∅-definable in the pure order of T (M), which

means that there are unary formulas ϕk and ψk, k ∈ N ∪ {∞}, of the language {<}
such that, for any node x of T (M) and k,

T (M) |= ϕk(x) iff there are exactly k border cones at x,

T (M) |= ψk(x) iff there are exactly k inner cones at x.

2. If M is furthermore C-minimal then there is no node of color (∞,∞).
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Proof: 1. By the Ryll-Nardzewski Theorem, or finitness, Condition 2 of Definition 2.15

is first-order.

2. At a node of color (∞,∞) the set of cones is partitioned in two infinite definable sets.

This contradicts strong minimality (see Proposition 2.11, 2)

3. Canonical trees of indiscernible finite or ℵ0-categorical C-minimal C-sets

We say that a structure is indiscernible if it realizes only one complete 1-type over ∅.

3.1. Indiscernible finite or ℵ0-categorical C-structures with o-minimal branches in their

canonical trees

Definition 3.1. A basic interval of a linear ordered set O will mean a singleton or a

dense (non empty and infinite) convex subset with bounds in O ∪ {−∞}.

For T a good tree and α a leaf of T the set br(α) is a chain of T with maximal element

α.

Definition 3.2. A basic one-typed interval of T is a basic interval, say I, of br(α) \ {α}
for some leaf α of T such that all elements of I have same tree-type over ∅.

Theorem 3.3. Let M be an indiscernible finite or ℵ0-categorical C-structure. Let T be

its canonical good tree. Assume that for each leaf α of T , any subset of the chain br(α)

definable in T is a finite union of basic intervals with bounds in br(α)∪{−∞}. Then there

exists an integer n ≥ 1 such that for any leaf α of T , the branch br(α) can be written as

a disjoint union of its leaf and n basic one-typed intervals, br(α) =
⋃n
j=1 Ij(α)∪ {α} with

Ij(α) < Ij+1(α). This decomposition is unique if we assume that the Ij(α) are maximal

one-typed, that is, Ij(α)∪ Ij+1(α) is not a one-typed basic interval. Possible forms of each

Ij(α) are {x}, ]x, y[ and ]x, y]. The decomposition is independent of the leaf α, that is,

the form (a singleton or not, open or closed on the right) of Ij(α) for a fixed j as well as

the tree-type of its element do not depend on the leaf α.

Remark 3.4. Remember (Proposition 2.11) that Haskell and Macpherson have shown

that, if M is C-minimal, then for each leaf α, any subset of br(α) definable in T is a

finite union of intervals with bounds in br(α) ∪ {−∞}. Thus the conclusion of the above

theorem remains the same if we add the hypothesis that M is C-minimal and remove the

condition on Brl(T ).

Proof of Theorem 3.3. In the following, a “branch of T” will always mean a branch

with a leaf, i.e. an element of Brl(T ). By Ryll-Nardzewski Theorem the ℵ0-categoricity

of M implies that for any integer p there is a finite number of p-types over ∅. Now T is

interpretable without parameters in M where it appears as a definable quotient of M2.

Since there is a finite number of 2p-types over ∅ in M , there is a finite number of p-types
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in T . Hence, T is finite or ℵ0-categorical. Thus we can partition the tree T into finitely

many sets S such that two nodes in T have the same complete type over ∅ iff they are in

the same set S. The trace on any branch br(α) of such a set S is definable and thus, by

o-minimality, a finite union of intervals. In fact it consists of a unique interval: if a node

x belongs to the left first interval of S ∩ br(α), then by definition of the sets S any other

element of S ∩ br(α) will too (look at the formula without parameter ∃β ∈ L ( x belongs

to the first interval of br(β))). For the same reason, if S ∩ br(α) has a first element, then

this interval is in fact a singleton.

Hence, for a given leaf α, br(α) is the order sum of finitely many maximal one-typed

intervals. Using indiscernibility, the number of such basic intervals, the form (singleton,

open or closed on the right) of each of them, and the tree-type of its elements, depend

only on its index and not on the branch.

Lemma 3.5. Let α, β be two distinct leaves of T . Let j? be the unique index such that

α ∧ β ∈ Ij?(α). Then, ∀j < j?, Ij(α) = Ij(β). Moreover, Ij?(α) ∩ Ij?(β) is an initial

segment of both Ij?(α) and Ij?(β).

Proof: By definition, br(α) ∩ br(β) = I1(α) ∪ · · · ∪ Ij?−1(α) ∪ {t ∈ Ij?(α); t ≤ α ∧ β} (or

{t ∈ Ij?(α); t ≤ α ∧ β} if j? = 1). The same is true with β instead of α.

Therefore, by definition and uniqueness of the partition of each branch into maximal basic

one-typed intervals, we get ∀j < j?, Ij(α) = Ij(β). Moreover, {t ∈ Ij?(α); t ≤ α ∧ β} =

{t ∈ Ij?(β); t ≤ α ∧ β} = Ij?(α) ∩ Ij?(β).

3.2. Precolored good trees

By Lemma 2.18 all nodes of a one-typed basic interval are of same color. In order

to describe the theory of the canonical tree of an indiscernible ℵ0-categorical or finite

C-minimal C-structure, we define now precolored good trees which are constructed from

the conclusion of Theorem 3.3, replacing “one-typed basic interval” by the (in general

different) notion of “one-colored basic interval”.

In this subsection, T will be a good tree, L its set of leaves and N its set of nodes.

Definition 3.6. One-colored basic interval

We say that a basic interval I of br(α) \ {α} for some leaf α of T is one-colored if I

satisfies one of the following conditions:

(0) I is a singleton {x} and the color of x is (k, 0), for k a natural number greater that

2 or infinity, that is, there are exactly k distinct cones at x, all border cones. We

say that I is of color (k, 0).

(1.a) I is open on both left and right sides: I =]x, y[. Any element of I is of color (0, k),

for k an integer greater that 2 or infinity, that is, there are exactly k distinct cones

at any element of I, and all are inner cones. We say that the basic interval I is of

color (0, k).
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(1.b) I is open on the left side and closed on the right side: I =]x, y] and any element of

I is of color (m,µ), for m,µ ∈ N∗ ∪ {∞}, that is, there are exactly m border cones

(i.e. m distinct leaves) and µ inner cones at any point of I. We say that the basic

interval I is of color (m,µ).

Definition 3.7. We say that T is a precolored good tree if there is no node of color

(∞,∞) and there exists an integer n, such that for all α ∈ L:

(1) the branch br(α) can be written as a disjoint union of its leaf and n basic one-colored

intervals br(α) = ∪nj=1Ij(α) ∪ {α}, with Ij(α) < Ij+1(α).

(2) The Ij(α) are maximal one-colored, that is, Ij(α)∪Ij+1(α) is not a one-colored basic

interval, and for all j ∈ {1, · · · , n}, the color of Ij(α) is independent of α.

(3) For any α, β ∈ L and j ∈ {1, · · · , n}, if α∧β ∈ Ij(α), then α∧β ∈ Ij(β), Ij(α)∩Ij(β)

is an initial segment of both Ij(α) and Ij(β); and for any i < j, Ii(α) = Ii(β).

The integer n, which is unique by maximality of the basic one-colored intervals, is called

the depth of the precolored good tree T .

Corollary 3.8. Let M be a finite or ℵ0-categorical, indiscernible and C-minimal C-set.

Then T (M) is a precolored good tree.

Proof: The result follows directly from Theorem 3.3, Lemma 2.18 and Lemma 3.5.

Proposition 3.9. Let T be a precolored good tree, then all leaves of T are isolated or all

leaves of T are non isolated.

Proof: Let α be a leaf of T . Assume that α has a predecessor p(α), then the last interval

In(α) is closed on the right, that is either In(α) = {p(α)} of color (k, 0), or In(α) =]x, p(α)]

of color (m,µ) with m 6= 0. By definition of precolored good trees, either for any leaf β,

the last interval of br(β) is of color (k, 0), or for any leaf β, the last interval of br(β) is of

color (m,µ), with m 6= 0. In both cases, β has a predecessor.

Definition 3.10. Definition of functions e1, . . . , en−1 on leaves.

Let T be a precolored good tree of depth n > 1. For any leaf α and for 1 ≤ j < n, we

denote ej(α) the lower bound of Ij+1(α) and Ej the range of the function ej.

Proposition 3.11. Let T be a precolored good tree of depth n > 1. Let α, β be two leaves

of T . For 1 ≤ j < n, if ej(α), ej(β) ≤ α ∧ β, then ej(α) = ej(β). Hence, we can extend

the functions ej to partial functions from T to N in the following way:

Dom(ej) =
⋃
α∈L({ej(α)} ∪ Ij+1(α) ∪ · · · ∪ In(α) ∪ {α}), and,

∀α ∈ L,∀x ∈ br(α) ∩Dom(ej), ej(x) = ej(α).

The range of ej is still Ej. The partial functions ej are definable in the pure order.
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Proof: Let α, β be two leaves and j an index such that ej(α), ej(β) ≤ α ∧ β. We

can assume without loss of generality that ej(α) ≤ ej(β) ≤ α ∧ β. Let j? be the unique

index such that α ∧ β ∈ Ij?(α). By definition of ej , j + 1 ≤ j?. Either, j + 1 < j? and

by Definition 3.7 (3), Ij+1(α) = Ij+1(β), hence ej(α) = ej(β); or j + 1 = j?, and by

3.7 (3) again, Ij+1(α) ∩ Ij+1(β) is an initial segment of both Ij+1(α) and Ij+1(β), hence

ej(α) = ej(β).

By Lemma 2.18, the color of a node is definable in the pure order. Now, all nodes of Ij(α)

have the same color, Ij(α) is a maximal interval of br(α) with this property, and there are

only finitely many such maximal intervals in br(α). This shows that the bounds of Ij(α)

are {α}-definable in the pure order.

The next proposition describes the form of maximal basic one-colored intervals in terms

of the functions ej . By convention, when a basic interval is denoted ]a, b[, b has no

predecessor. We extend the definition of p: for any c ∈ T having a predecessor, this

predecessor is denoted p(c).

Proposition 3.12. Let T be a precolored good tree of depth n.

Assume first n = 1. Then, uniformly in α, I1(α) is of the form, either (0): {r} = {p(α)}
where r is the root, or (1.a): ]−∞, α[, or (1.b): ]−∞, p(α)].

Assume now n > 1. Then, uniformly in α,

- I1(α) is of the form, either (0): {r} (and r = e1(α) or r = p(e1(α))), or (1.a): ] −
∞, e1(α)[, or (1.b): ( ]−∞, e1(α)] or ]−∞, p(e1(α)] );

- for 2 ≤ j ≤ n− 1, Ij(α) is of the form, either (0): {ej−1(α)}, or (1.a): ]ej−1(α), ej(α)[,

or (1.b): ( ]ej−1(α), ej(α)] or ]ej−1(α), p(ej(α))] );

- In(α) is of the form, either (0): {en−1(α)} = {p(α)}, or (1.a): ]en−1(α), α[, or (1.b):

]en−1(α), p(α)].

Moreover, for j < n, if Ij(α) is open on the right, then Ij+1(α) is a singleton.

Finally T has isolated leaves iff In(α) is of form (0) or (1.b).

Proof: Note first that I1(α) is a singleton iff T has a root and in this case the unique

element of I1(α) must be this root.

Case n = 1. Then, for any leaf α, br(α) = I1(α) ∪ {α}, so, by definition of one-colored

basic intervals, the assertion is clear.

Case n > 1. For j < n, recall that ej(α) is the lower bound of Ij+1(α). If Ij+1(α) is a

singleton, then its unique element must be ej(α). If Ij+1(α) is not a singleton, it is open

on the left, hence ej(α) is in Ij(α).

If I1(α) = {r}, then r = e1(α) if I2(α) is not a singleton, and r = p(e1(α)) otherwise. If

I1(α) is open on the right, it must be case (1.a). If it is closed right, either I2(α) is the

singleton {e1(α)}, hence I1(α) =] −∞, p(e1(α)], or I2(α) is open on the left with lower

bound e1(α), hence I1(α) =]−∞, e1(α)].

For, 2 ≤ j ≤ n− 1, it runs similarly. The case j = n is similar to the case n = 1.

12



The other assertions are trivial.

Proposition 3.13. Let T be a precolored good tree of depth n with isolated leaves.

If In(α) = {p(α)}, for any α ∈ L, then the set p(L) := {p(α);α ∈ L} is a maximal

antichain of T . If In(α) =]en−1(α), p(α)], then p(L) =
⋃
α∈L

In(α).

Proof: If In(α) = {p(α)} for any α ∈ L, let α and β be two distinct leaves such that

p(α) ≤ p(β). Then α ∧ β = p(α). Hence, by Lemma 3.5, p(α) = p(β). This shows that

p(L) is an antichain of T . To prove it is maximal, let t ∈ T ; either t is a leaf and t > p(t),

or t is a node, hence there exists a leaf α such that t < α, thus t ≤ p(α).

Assume now In(α) =]en−1(α), p(α)] (in other words In(α) is of type (1.b)) and let x ∈
In(α). Suppose that x < p(α), then Γ(x, α) is an inner border cone at x, by definition of

inner cones. By Definition 3.6 (1.b), there exists a border cone at x, say Γ(x, β), hence

x = p(β) ∈ p(L).

4. 1-colored good trees

In Section 6 we will introduce a very concrete class, the class of colored good trees,

which will turn out to be the same thing as precolored good trees. Its definition is inductive.

The present section defines 1-colored good trees. Section (5) will present a construction

which gives the induction step.

4.1. Definition

Definition 4.1. Let T be a good tree. We say that T is a 1-colored good tree if T satisfies

one of the following group of properties.

(0) T consists of a unique node and m leaves, where m is a natural number greater than

2 or infinity.

(1.a) There exists µ, a natural number greater than 2 or infinity, such that for any leaf α

of T , ] −∞, α[ is densely ordered and at each node of T there are exactly µ cones,

all infinite.

(1.b) There exists (m,µ), where m and µ are natural numbers greater than 1 or infinity,

(m,µ) 6= (∞,∞), such that for any leaf α of T , α has a predecessor, the node p(α),

]−∞, p(α)] is densely ordered and at each node of T there are exactly m leaves and

µ infinite cones.

We will say that (0), (1.a) or (1.b) is the type of the 1-colored good tree and (m, 0), (0, µ),

or (m,µ) its branching color.

Remark 4.2. By Corollary 3.12 a precolored good tree T of depth 1 is a 1-colored good

tree of branching color (m,µ) where (m,µ) is the color of any node of T .
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4.2. Examples

In the following pictures, a continous line means a dense order and a dashed line means

that there is no node between its two extremities.

(0) Trees of form (0) are canonical trees of C-sets equipped with the trivial C-relations

(C(α, β, γ) iff α 6= β = γ), in other words of pure sets.

α3
α2α1

Fig.1 Type (0) m = 3, µ = 0

r

(1.a) Example of color (0, µ).

Let Q be the set of rational numbers and µ an integer ≥ 2 or ℵ0. Let M be the

set of applications with finite support from Q to µ, equipped with the C-relation:

C(α, β, γ) iff the maximal initial segment of Q where β and γ coincide (as functions)

strictly contains the maximal initial segment where α and β coincide.

The thick cone at α ∧ β is the set {γ ∈M ; γ coincide with α and β on the maximal

initial segment where α and β coincide }. If α and β are different and q is the first

rational number where α(q) 6= β(q), then there are µ possible values for γ(q), in

other words there are µ different cones at α ∧ β. So M is 1-colored of type (0, µ) .

Fig.2 Type (1.a) m = 0, µ = 2

α2

α1

(1.b) Example of color (m,µ), m ≥ 1 and µ ≥ 2.

Consider a tree T of type (1.a) of color (0, µ). Decompose it in nodes and leaves as

14



N ∪L. For any m ≥ 1 consider now the tree N ∪ (N ×m) with the order extending

the one of N , elements in N×m all incomparable and a < (b, r) iff a ≤ b for a, b ∈ N
and r < m (in other words: we remove the leaves of T and add m new leaves at

each node; so, the set of nodes remains the same). This tree is of type (1.b) of color

(m,µ).

Fig. 3 Type (1.b) m = 2, µ = 2

p(α1) = p(α2)

α1

α2

Example of color (m,µ), m ≥ 1 and µ = 1.

The construction is similar to the previous one: for O a dense linear order without

endpoints and m a natural number greater than 1 or infinity, consider the tree

T = O ∪ (O × m) with the order extending the one of O, elements in O × m all

incomparable and a < (b, r) iff a ≤ b for a, b ∈ O and r < m. The set of nodes

of T is O, the vertical line in the picture below. It is a branch without leaf, i.e. a

maximal chain of T without greatest element, the unique one in T . Note that O is

definable in T . Furthermore O and T are bi-interpretable (for m = ∞ we have to

assume T and O countable).

Fig. 4 Type (1.b) m = 1, µ = 1

p(γ)

p(β)

p(α)
β

γ

α

4.3. Axiomatisation and quantifier elimination

Definition 4.3. For m and µ in N ∪ {∞} such that m + µ ≥ 2, we denote Σ(m,µ)

the set of axioms in the language L1 := {L,N,≤,∧} describing 1-colored good trees of
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branching color (m,µ), and S1 the set of all these L1-theories, S1 := {Σ(m,µ); (m,µ) ∈
(N ∪ {∞})× (N ∪ {∞}) with m+ µ ≥ 2}.

When dealing with models of Σ(m,µ), µ 6= 0, we want to have the predecessor function in

the language. For this reason we introduce Dp := {x; {y; y < x} has a maximal element },
p the function equal to the predecessor function on Dp and the identity on its complement,

and Fp = p(Dp). Note that these definitions make sense in any tree and in a model of

Σ(m,µ), m 6= 0, we have Dp = L and Fp = N .

Definition 4.4. L1 := {L,N,≤,∧} and L+
1 := L1 ∪ {p,Dp, Fp}.

Proposition 4.5. Any theory in S1 is ℵ0-categorical, hence complete. Moreover, it admits

quantifier elimination in a natural language, Σ(m,0) in {L,N}, Σ(0,µ) in L1 and Σ(m,µ)

with m,µ 6= 0 in L+
1 (namely in {L,N,≤,∧, p}).

Proof: Trees of form (0) consist of one node and leaves. They are clearly ℵ0-categorical

and eliminate quantifiers in the language {L,N}.
So from now on, we assume that Σ = Σm,µ, where µ 6= 0. Note that in this case, a model

of Σ has no root. We will prove ℵ0-categoricity and quantifier elimination using a back

and forth between finite L1-substructures in the case where m = 0 (and L+
1 -substructures

in the case where m 6= 0) of any two countable models of Σ, say T and T ′. We will use

the following facts.

Fact 0: 1. Assume first m = 0. Then all leaves (respectively all nodes) of T and T ′ have

same quantifier free L1-type. Any singleton is an L1-substructure.

2. Assume now m 6= 0. Then all leaves (respectively all nodes) of T and T ′ have same

quantifier free L+
1 -type. Any node is an L+

1 -substructure. If α is a leaf, then {α, p(α)} is

an L+
1 -substructure.

Proof: Completness of quantifier free types ‘t ∈ N ’ and ‘t ∈ L’ is proven by inspection

of quantifier free formulas. What regards substructures is clear. a

In what follows A is a finite subset of T which is a substructure in the language L1 if

m = 0 (resp. L+
1 if m 6= 0), hence closed under ∧ (resp. ∧ and p), and ϕ is a partial

L1-isomorphism (resp. L+
1 -isomorphism) from T to T ′ with domain A.

Fact 1: Let t be an element of T , t /∈ A. Then there exists a unique node nt of T such

that nt is less or equal to an element of A, and for any a ∈ A, t ∧ a = nt ∧ a.

Proof: The set B = {t ∧ a; a ∈ A} is a linearly ordered finite set (of nodes since t is not

in A). Let nt be its greatest element. So, there exists y ∈ A such that nt = t ∧ y, and

therefore nt ≤ y. Moreover, it is easy to see that, since nt is the greatest element of B,

for any a ∈ A, t ∧ z = nt ∧ z. Unicity is clear. a

Note that, nt ≤ t and (nt = t iff t is a node smaller than an element of A).

Fact 2: Assume first that m = 0. Let t ∈ T \ A. Then the L1-substructure 〈A ∪ {t}〉
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generated by A and t is the minimal subset containing A, t, nt (id est A∪{t, nt} if nt 6= t

and A ∪ {t} if nt = t).

Assume now that m 6= 0. Let x be a node of T \A. Then the L+
1 -substructure 〈A ∪ {x}〉

generated by A ∪ {x} is the minimal subset containing A, x, nx. If α is a leaf of T \ A,

the L+
1 -substructure 〈A ∪ {α}〉 generated by A∪ {α} is the minimal subset containing A,

α, nα, and p(α).

Proof: Assume first that x is a node of T \ A. Then for any a ∈ A, x ∧ a = nx ∧ a.

By definition, there is z ∈ A such that nx ≤ z, so for any a ∈ A, nx ∧ a = nx or

nx ∧ a = z ∧ a ∈ A. Now p(x) = x. Thus 〈A ∪ {x}〉 = A ∪ {x, nx} (or A ∪ {x} if nx = x).

Assume now that α is a leaf of T \ A. If α is non isolated the same argument applies. If

α is isolated then for any a ∈ A, p(α) ∧ a = α ∧ a = nα ∧ a. And as above, the minimal

subset containing A, α, nα and p(α) is closed under p and ∧. a

Fact 3: Let Γ be a cone at a ∈ A, such that Γ∩A = ∅. Then there exists a cone Γ′ of T ′

at ϕ(a) such that Γ′ ∩ ϕ(A) = ∅. Moreover, if Γ is infinite, resp. consists of a single leaf,

then there is such a Γ′ infinite, resp. consisting of a single leaf.

Proof: If Γ is an infinite cone and µ is infinite, resp. Γ = {α} and m is infinite, the result

is obvious since A is finite.

If now Γ is infinite and µ is finite, there are exactly µ infinite cones at both a and ϕ(a);

since A>a := {x ∈ A;x > a} and A′>ϕ(a) := {x ∈ A′;x > ϕ(a)} have same quantifier free

type, one of the cones at ϕ(a), say Γ′, must be such that Γ′ ∩ ϕ(A) = ∅. If Γ = {α} and

m 6= 0 is finite, then, a = p(α) and there are exactly m leaves above both a and ϕ(a). We

consider again A>a and A′>ϕ(a); since α /∈ A, there exists α′ /∈ ϕ(A) above ϕ(a). a

Fact 4: Let x ∈ T \ A such that nx = x. Then, x is a node and ϕ can be extended

to a partial L1-isomorphism if m = 0 (resp. L+
1 -isomorphism if m 6= 0) with domain

〈A ∪ {x}〉 = A ∪ {x}.
Proof: Since nx = x, 〈A ∪ {x}〉 is equal to A ∪ {x}. Since A is finite and closed under

∧ it contains a smallest element, say a, bigger than x. If the set {y ∈ A; y < x} is not

empty, set b := Max{y ∈ A; y < x} and I :=]ϕ(b), ϕ(a)[; set I :=] −∞, ϕ(a)[ otherwise.

If m = 0, I is dense. If m 6= 0, since A is closed under p, a is not a leaf, neither is ϕ(a),

so in this case too, I is dense. So in both cases, there is x′ in I. For such an x′, A ∪ {x}
and ϕ(A) ∪ {x′} are isomorphic trees, closed under p and ∧. a

Fact 5: Let t ∈ T \ A. Then ϕ can be extended to a partial L1-isomorphism (resp. a

partial L+
1 -isomorphism) with domain 〈A ∪ {nt}〉.

Proof: By Fact 4. a

Fact 6: Let t ∈ T \ A. Then ϕ can be extended to a partial L1-isomorphism (resp. a

partial L+
1 -isomorphism) with domain 〈A ∪ {t}〉.

Proof: By Fact 5, we can assume that t 6= nt and nt ∈ A. Let Γ be the cone of t at nt,
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then by definition of nt, Γ ∩ A = ∅. Assume first that m = 0. Since Γ is infinite, there

exists by Fact 3, an infinite cone Γ′ at ϕ(nt) such that Γ′∩ϕ(A) = ∅. Then we can extend

ϕ to 〈A ∪ {t}〉, by setting ϕ(t) = t′, where t′ is any node of Γ′ if t is a node, or any leaf of

Γ′ is t is a leaf. Such a leaf exists in Γ′ since T , as a good tree, has leaves everywhere”.

Assume now that m 6= 0. If Γ consists of a leaf, id est, t is a leaf and nt = p(t), then,

by fact 3, there exists a cone Γ′ at ϕ(nt) which consists only of a leaf α′. Then, we can

extend ϕ to 〈A ∪ {t}〉, by setting ϕ(t) = α′. If Γ is infinite then, by fact 3, there exists an

infinite cone Γ′ at ϕ(nt) in T ′ such that Γ′ ∩ ϕ(A) = ∅. If t is a node, we can extend ϕ to

〈A ∪ {t}〉, by setting ϕ(t) = t′, where t′ is any node of Γ′. If t is a leaf, p(t) ∈ Γ and we

can extend ϕ to 〈A ∪ {t}〉, by setting ϕ(t) = t′, and ϕ(p(t)) = p(t′), where t′ is any leaf of

Γ′. a

By Facts 1 to 6, the family of partial isomorphisms between finite subsructures of T and

T ′ respectively has the forth (and back) property, which shows quantifier elimination. By

Fact 0 this family is not empty whatever T and T ′ are. If they are countable, Facts 1 to

6 allow us to extend any of these partial isomorphisms to an isomorphism between T and

T ′, which shows ℵ0-categoricity.

Theorem 4.6. 1. Precolored good trees of depth 1 are exactly the 1-colored good trees.

For such a tree its color is its branching color.

2. If T is such a tree, M(T ) is C-minimal, indiscernible and ℵ0-categorical (or finite).

Proof: 1. Let T be a 1-colored good tree of color (m,µ). By quantifier elimination (in

the language {L,N}, L1 or L+
1 , see Proposition 4.5) all nodes of T have same tree-type.

Singletons consisting of a leaf (in case m 6= 0) are the border cones and the infinite cones

(in case µ 6= 0) are the inner cones. Moreover all leaves have same type. So, any branch

of T is the union of its leaf and a one-colored basic interval of color (m,µ) and T is a

precolored good tree.

Conversely, it has already been noticed in Remark 4.2 that 1-precolored good trees are

1-colored good trees.

2. The unique atomic formula where a leaf variable α is involved and which does not

define in any C-set a finite or cofinite union of cones at a same node, is of the form

p(α) = y, y a node; but it does in M(T ) since the color (∞,∞) is forbidden at y. By

quantifier elimination, this gives C-minimality. Proposition 4.5 has proven ℵ0-categoricity.

Indiscernability has be proven in the part 1. of the proof.

Corollary 4.7. In a 1-colored good tree T of type (1.a) any cone is elementary equivalent

to T . If T of type (1.b) any infinite cone is elementary equivalent to T . If c is a node of

T the pruned cone ]−∞, c[ is elementary equivalent to T .

Proof: In all cases the subtree we consider is a 1-colored good tree of same type and

same color as T .
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5. Extension of trees

5.1. General construction

Let T and T0 be two trees. We define T o T0, the “extension of T by T0”, as the tree

consisting of T in which each leaf is replaced by a copy of T0. More formally, let LT and

NT be respectively the set of leaves and nodes of T , L0 and N0 the set of leaves and nodes

of T0. As a set, T o T0 is the disjoint union of NT and LT × T0. The order on T o T0 is

defined as follows:

∀x, x′ ∈ NT , T o T0 |= x ≤ x′ iff T |= x ≤ x′;
∀(α, t), (α′, t′) ∈ LT × T0,

T o T0 |= (α, t) ≤ (α′, t′) iff T |= α = α′ and T0 |= t ≤ t′;
∀x ∈ NT , (α, t) ∈ LT × T0, T o T0 |= x ≤ (α, t) iff T |= x ≤ α.

Note that, by construction, NT embeds canonically in T o T0 as an initial subtree of

NToT0 .

Some illustrations will be given at the end of next subsection.

Lemma 5.1. T o T0 is a tree.

If T is a singleton, T oT0 is the same thing as T0. If T0 is a singleton, T oT0 is the same

thing as T .

The set of nodes of T oT0 is the disjoint union NT ∪LT ×N0, its set of leaves is LT ×L0.

T o T0 is good if T and T0 are.

For trees T1, T2 and T3, (T1 o T2) o T3 and T1 o (T2 o T3) are canonically isomorphic

trees.

Proof: Clear from the definition. Associativity comes essentially from the associativity

of Cartesian product and Boolean union.

Definition 5.2. We define the equivalence relation ∼ corresponding to the construction

of T o T0:

- ∼ is the equality on NT ;

- on LT × T0 equivalence classes are the copies of T0, id est the subsets {α} × T0 for

α ∈ LT .

Lemma 5.3. Distinct equivalence classes a, b satisfy: ∃u ∈ a,∃v ∈ b, u < v iff ∀u ∈
a,∀v ∈ b, u < v. Consequently the quotient T ×T0/ ∼ inherits the tree structure of T ×T0

and T × T0/ ∼ and T are isomorphic trees.

The ∼-class of any element of NT is a singleton. Consequently the embedding NT ⊆ T×T0

gives when taking ∼-classes the embedding NT ⊆ T .

Proof: Clear from definition of the equivalence relation.
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5.2. Extension of good trees

Recall that p denotes the predecessor (partial) function.

From now on T and T0 are good trees, no singletons, and we require furthermore three

conditions.

Definition 5.4. We define Conditions (?), (??) and (? ? ?):

(?) Either all leaves of T are isolated or all leaves of T are non isolated.

(??) If T has non isolated leaves, T0 should have a root.

(???) If T has isolated leaves, then p(LT ) is convex, id est ∀x, y, z ∈ T, (x, z ∈ p(LT ) ∧ x <
y < z)→ y ∈ p(LT ).

Lemma 5.5. All 1-colored good trees satisfy Conditions (?) and (? ? ?).

Proof: If T is 1-colored of type (0) all leaves of T are isolated and p(LT ) consists of the

root. If T is of type (1.a) all leaves are non isolated. If T is of type (1.b), all leaves are

isolated and p(LT ) is equal to the set of nodes of T , which is convex.

As already noticed, T o T0 is a good tree with set of leaves LT × L0 and set of nodes

NT ∪ LT ×N0.

Let us call σ the canonical embedding of NT in T0 o T and, for each α ∈ LT , τα the

embedding of T0 in T o T0, x 7→ (α, x).

In the case where T0 has a root, LT also embeds in T o T0 by the map ρ : α 7→ (α, r0),

where r0 is the root of T0. Via σ and ρ, T embeds as an initial subtree of T o T0 and

τα(T0) is the thick cone at ρ(α).

If T0 has no root, the embedding of NT does not extend naturally to an embedding of T

into T oT0 but T will appear as a quotient of T oT0. Define in this case ρ : LT → T oT0

as the (non injective) map α 7→ σ ◦ p(α). Note that by (??), T has isolated leaves hence

p(α) is defined and is a node of NT thus σ ◦ p(α) is well defined. In this case, τα(T0) is a

cone at ρ(α).

In both cases, ρ(α) = inf τα(T0).

From now on we will consider σ as the identity and not write it.

Lemma 5.6. For any (α, t) ∈ LT × T0, if cl(α, t) denotes the equivalence class of (α, t),

we have:

- cl(α, t) = τα(T0).

- If T0 has a root, say r0, cl(α, t) is the thick cone at ρ(α); so cl(α, t) = cl(α, r0).

- If T0 has no root, cl(α, t) is the cone of t at ρ(α).

Definition 5.7. The partial function e : T o T0 →: T o T0 is defined as follows:

- Dom(e) = LT × T0 if T0 has a root and Dom(e) = (LT × T0) ∪ p(LT ) if T0 has no root;

- ∀(α, t) ∈ LT×T0, e((α, t)) = ρ(α), and if T0 has no root, for any α ∈ LT , e(p(α)) = p(α).

We set E := ρ(LT ), E≥ := {x;∃y ∈ E, y ≤ x}, E> := E≥ \E, E< the complement of E≥

in T o T0 and E≤ := E< ∪ E.
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Proposition 5.8. 1. If T0 has a root, then E is an antichain and x ∼ y iff (x = y or

(x, y ∈ Dom(e) and e(x) = e(y))).

2. If T0 has no root, then x ∼ y iff (x = y or (x, y ∈ Dom(e) and e(x) = e(y) < x∧y)).

3. In both cases, ∀α ∈ L,E ∩ br(α) has e(α) as a greatest element.

Proof: Assume first that T0 has a root, say r0. By definition, for any (α, t) ∈ LT × T0 =

Dom(e), e((α, t)) = ρ(α) = (α, r0). Hence, E is an antichain. And, for all (α, β) ∈ L,

E ∩ br((α, β)) = {e((α, β))}.
Moreover, the equivalence class of (α, t) is the thick cone at (α, r0) = e((α, t)). Therefore,

(α, t) ∼ (α′, t′) iff e((α, t)) = e((α′, t′)).

Assume now that T0 has no root. Then T has isolated leaves and for any (α, t) ∈ LT ×T0,

e((α, t)) = ρ(α) = p(α) = e(p(α)). By definition, the equivalence class of (α, t) is the cone

of t at ρ(α), so (α, t) ∼ (α′, t′) iff ρ(α) = ρ(α′) and (α, t)∧ (α′, t′) > ρ(α). In other words,

(α, t) ∼ (α′, t′) iff e((α, t)) = e((α′, t′)) < (α, t) ∧ (α′, t′). This prove the second assertion.

If T0 has no root, E = {p(α);α ∈ LT }. So let (α, β) be a leaf of T oT0 and α′ be a leaf of

T , such that p(α′) ∈ br((α, β)). Then, p(α′) ≤ α in T . So, p(α′) ≤ p(α) = e(α, β). Hence,

e(α, β) is the greatest element of E ∩ br((α, β)).

The following pictures illustrate extensions T o T0 with T0 a 1-colored good tree. They

are organized in two groups, the first group has two pictures, the second one three. On

the left of both groups is the tree T . On the right the possible kinds of extensions it gives

rise to. On the first pair of pictures T has non isolated leaves. So T0 must have a root,

hence be of type (0). On the second group of pictures T has isolated leaves. So T0 may

have or not a root.

As previously, a continuous line means a dense linear order and a dashed line means a

gap.
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1. T with non isolated leaves.

We have represented only two branches of T . The picture is drawn with T0 of color (3, 0).

α1 α2

T T o T0

Fig.5

e(α1, βi) e(α2, βi)

(α1, β1) (α1, β2) (α1, β3) (α2, β1) (α2, β2) (α2, β3)

xx
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2. T with isolated leaves.

Triangles to the right represent infinite cones, triangles to the left represent unions of cones

(finite or infinite cones, depending on trees colors). On the first picture right T0 has no

root, on the last picture it has color (3, 0).

α1 α2

T

T o T0

τα1
(T0) τα2

(T0)

T oT0

Fig. 6

p(α1) = p(α2)

e(α1, t) = e(α2, t)

(α1, β1) (α1, β2) (α1, β3) (α2, β1) (α2, β2) (α2, β3)

e(α2, βi)e(α1, βi)
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The tree T oT0 equipped with E does not know about T and T0 as shows example below.

But it almost does as we will see in Corollary 5.12, first two items.

Example 5.9. Let · : and / be 1-colored good trees of color (2, 0) and (0, 2) respectively.

Then · :o (· :o /) = (· :o · :)o /. Consider on both side of the identity the final extension,

namely on the left side the extension with factors · : and · : o /, and on right side the

extension with factors · : o · : and /. Then, on both sides, E consists of the successors of

the root But · :o / has a root while / has not. Hence, the tree T oT0 equipped with E does

not even know whether T0 has a root or not.

5.3. Language and theory of T o T0

As previously defined L1 = {≤,∧, N, L}. Let L2 := L1 ∪ {e, E,E≥}.

We will have to consider on the tree T some additional structure given by additional

unary functions. As they naturally appear these functions are partial but, again, in

model theoretical framework, they have to be defined everywhere. So each such function

f appears together with two unary predicates Df and Ff for the domain and the range

of the original f . In this way, let F be a finite set of of unary functions and

P = {Df , Ff ; f ∈ F} a set of of unary predicates. They will be required to satisfy:

Conditions (4?): for any f ∈ F ,

. L ⊆ Df , Df = {x ;∃y ∈ Ff , y ≤ x} and Ff ∩ L = ∅,

. ∀t 6∈ Df , f(t) = t, and f(Df ) = Ff ,

. ∀t ∈ Df , f(t) ≤ t,

. ∀t ∈ Ff , f(t) = t.

We define L = L1 ∪F ∪P and L′ = L2 ∪F ∪P. Note that Conditions (4?) are first order

in L. We interpret L′ on T o T0 as follows:

- we have already defined the L2-structure;

- for f a function in F :

. FToT0

f = FTf and DToT0

f = (DT
f ∩ NT )∪̇LT × T0 (recall that NT embeds as an initial

subtree in T o T0);

. ∀x ∈ (DT
f ∩NT ), fToT0(x) = fT (x) and

∀(α, t) ∈ LT × T0, fToT0(α, t) = fT (α) (which belongs to NT since LT ⊆ DT
f and

f(DT
f ) ∩ LT = ∅ (both conditions due to (4?)) hence to NToT0

).

Conditions (4?) are true on T oT0 for the set of functions F ∪{e}, De = E≥ and Fe = E.

We will see (in Corollary 5.12) how the construction of T o T0 can be retraced in its

L2-theory up to the phenomenon pointed out in Example 5.9, and also that the definition

of its L′-structure is canonical (in Lemma 5.13).

Definition 5.10. Let Σ′′ be the following theory in the language L2:

- (≤,∧) is a good tree;
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- E is convex: ∀x, y, z, (x, z ∈ E ∧ x < y < z)→ y ∈ E;

- De = E≥;

- E = e(De) = e(L) and ∀x 6∈ De, e(x) = x;

- L ⊆ De and E ∩ L = ∅;
- ∀x, e(x) ≤ x;

- ∀x ∈ De, E ∩ br(x) has e(x) as a greatest element, where br(x) := {y; y ≤ x}.

In models of Σ′′, E≥ is the same thing as De and is therefore quantifier free definable.

This allows us to use freely notations E≥, E<, E≤ or E>.

In the following statement cases (1) and (2) correspond to the two possible extensions

producing a same model of Σ′′, as seen in Example 5.9.

Lemma 5.11. Let Λ be a model of Σ′′. Consider on Λ a binary relation ∼ such that:

- either E is an antichain and

either (1): x ∼ y iff (x, y ∈ E< and x = y) or (x, y ∈ E≥ and e(x) = e(y)),

or (2): x ∼ y iff (x, y ∈ E< and x = y) or (x, y ∈ E≥ and e(x) = e(y) < x ∧ y),

- or E is not an antichain and (2).

Then ∼ is an equivalence relation compatible with the order in the sense of Lemma 5.3.

More precisely, for x ∈ Λ such that the class x̄ of x is not a singleton, then x̄ = Γ(e(x))

in case (1) and x̄ = Γ(e(x), x) in case (2).

Proof: Let x ∈ Λ such that x̄ is not a singleton.

Let y ∈ x̄, then x, y ∈ E≥ and by definition of ∼, e(y) = e(x). Since e(y) ≤ y, y ∈ Γ(e(x)).

If we are in case (2), e(x) = e(y) < x ∧ y, thus y ∈ Γ(e(x), x).

Conversely, let y ∈ Γ(e(x)), then y ∈ E≥ and e(x) ≤ x ∧ y. Since e(x) ≤ y and e(y) ≤ y,

e(x) and e(y) are comparable. In case (1), E is an antichain, thus e(x) = e(y). Assume

now y ∈ Γ(e(x), x), so x ∧ y > e(x). Then, e(x) ∈ br(y) ∩ E, hence e(x) ≤ e(y). If

x∧y ≤ e(y), then by convexity of E, x∧y ∈ E so x∧y ≤ e(x) which gives a contradiction.

Thus, e(y) < x ∧ y therefore, e(y) ≤ e(x). Finally, e(x) = e(y) < x ∧ y.

Notations Let Λ be a model of Σ′′, ∼ as above. We denote Λ̄ the good tree Λ̄ := Λ/ ∼;

and, for x ∈ Λ, x̄ the equivalence class of x in Λ̄.

Corollary 5.12. Let Λ and cases (1) and (2) be as in Lemma 5.11.

1. In case (1), Λ is the disjoint union E<∪̇
⋃̇
x∈EΓ(x), where E≤ is an initial subtree, E

is an antichain and ∼ is the identity on E<. Hence Λ̄ is a tree canonically isomorphic

to E≤ with E its set of leaves. If all thick cones Γ(x), x ∈ E are isomorphic trees,

say all isomorphic to Γ0, then Λ = Λ̄ o Γ0.

2. In case (2), Λ = E≤∪̇
⋃̇
x∈E>Γ(e(x);x) with E≤ an initial subtree and ∼ the equality

on E≤; E≤ embeds canonically in the tree of nodes of Λ̄. If all cones Γ(e(x), x),

x ∈ E>, are isomorphic trees, say all isomorphic to Γ0, then Λ = Λ̄ o Γ0.
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3. In both cases, E≤ can be identified with Ē≤ := {x̄;x ∈ E≤} and E with Ē := {x̄;x ∈
E} and considered as living in Λ̄.

Proof: 1. In this case E is an antichain and by definition of the relation ∼, Λ is the

disjoint union of an initial tree with the union of disjoint final trees indexed by points

from E, namely Λ = E<∪̇
⋃̇
x∈EΓ(x) which is also E≤∪̇E>, with ∼ the equality on E≤

and x̄ = e(x) for x ∈ E>. Thus the inclusion E≤ ⊆ Λ induces the equality E≤ = Λ̄ where

more precisely E< is identified with the set of nodes of Λ̄ and E with its set of leaves.

2. By definition of ∼ in case (2), Λ has the form indicated. Hence the inclusion E≤ ⊆ Λ

induces an inclusion E≤ ⊆ Λ̄. Take any c ∈ E. By axioms of Σ′′, c = e(α) for some leaf

α ≥ c. Since E ∩ L = ∅, α > c and c = α ∧ β for another leaf β 6= α. If e(β) 6= e(α) then

β̄ 6= ᾱ hence c̄ is a node of Λ̄. If e(x) = e(α) for any leaf x such that c = α ∧ x, then any

cone at c is an equivalence class; now there are at least two different cones, hence, again,

c̄ is a node of Λ̄. Thus E≤ is contained in the set of nodes of Λ̄.

3. Follows directly from 1. and 2.

Lemma 5.13. Suppose furthermore Λ̄ equipped with an L-structure model of (4?). For

f ∈ F we note f̄ the interpretation in Λ̄ of the symbol f from L. Then there is exactly

one L′-structure on Λ defined as follows: for each function f ∈ F :

1. For x ∈ E≤, x ∈ Df iff, in Λ̄, x̄ ∈ Df̄ and in this case f(x) is the unique y ∈ E≤
such that ȳ = f̄(x̄) in Λ̄.

2. For x ∈ E≥, f(x) = f(e(x)).

This L′-structure on Λ satisfies conditions (4∗) for the set of functions F∪{e} with Fe = E

and Ff = Ff̄ (following the identification stated in Corollary 5.12, (3)) for f ∈ F .

Proof: The uniqueness of y in 1 is given by Corollary 5.12 and 1 and 2 are compatible

since e is the identity on E. For f ∈ F and x ∈ E≥, f(x) ∈ E≤; now e(x) := max(E∩br(x))

hence f(x) ≤ e(x) ≤ x; for x ∈ E≤, “f(x) = f(x) ≤ x̄ = x”. Other Conditions (4?) for f

on Λ follow from E ∩ L = ∅ and Conditions (4?) for f̄ on Λ̄.

Definition 5.14. Let T and T0 be good trees satisfying conditions (?), (??) and (? ? ?).

Assume T furthermore equipped with an L-structure model of (4?). We introduce the the-

ory Σ′ in the language L′ consisting of Σ′′ strengthened as follows. Let ∼ be the relation

defined as in Lemma 5.11, (1) if T0 has a root and (2) if it has not. Then we add the

axioms and axiom schemes:

- for any f ∈ F , conditions 1 and 2 of Lemma 5.13;

- for all x ∈ E≥ if T0 has a root or x ∈ E> if T0 has no root, the ∼-class of x is elementary

equivalent to T0 (as a pure tree);

- the quotient modulo ∼ and T are elementary equivalent L-structures;
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- if T0 has no root then by Condition (??) leaves of the quotient modulo ∼ have a prede-

cessor and, interpreted in the quotient modulo ∼, Ē = p̄(L̄), where L̄ and p̄ denote the

interpretation in Λ̄ of the symbols L and p.

Proposition 5.15. Σ′ is a complete axiomatization of T o T0. If (T,L) and T0 are

ℵ0-categorical or finite then Σ′ has a unique finite or countable model.

Proof: We note first that T o T0 is a model of Σ′. We prove now the completion of this

theory.

Assume first that T0 has a root. Take Λ |= Σ′. Assume CH for short and Λ as well as T

and T0 saturated of cardinality finite or ℵ1. As an L2-structure, Λ must be the extension

T o T0 described in Corollary 5.12, case (1). By Lemma 5.13 the rest of the L-structure

on Λ as well is determined by its restriction to E≤ id est by the L-structure T . So Σ′ has

a unique saturated model of cardinality finite or ℵ1. This shows the completeness of Σ′.

We consider now the case where T0 has no root and suppose as previously that Λ, T

and T0 are saturated of cardinality finite or ℵ1. This time Λ = E≤∪̇
⋃̇
x∈E>Γ(e(x);x)

and NT = E≤ (recall that, by Lemma 5.12 (3), NT lives also in Λ). By the third axiom

scheme, Ē = p̄(LT ) hence the L2-structure on Λ must be the extension T o T0 described

in Corollary 5.12, case (2). By Lemma 5.13 again the rest of the L-structure on Λ is

determined by the L-structure T . This shows the uniqueness of the saturated model of

cardinality finite or ℵ1 and the completeness of Σ′.

If T and T0 are the unique finite or countable models of their respective theory, we show

in the same way as above that T oT0 is the unique finite or countable model of Σ′, which

shows that this theory is ℵ0-categorical too.

Definition 5.16. If Σ is a complete axiomatization of T as an L-structure and Σ0 is a

complete axiomatization of T0 (in L1), Σ o Σ0 will denote the theory Σ′ (of L′).

5.4. When T0 is 1-colored

In this section we work under the additional assumption that T0 is 1-colored. We show

that, in this case the properties we are interested in transfer from T to T o T0.

Let us recall (see Section 2) that M(T ) and M(T o T0) denote the C-structures with

canonical trees T and T o T0 respectively.

Proposition 5.17. If T eliminates quantifiers in L∪{p,Dp, Fp} (as defined in 4.4), then

Σ o Σ0 eliminates quantifiers in L′ ∪ {p,Dp, Fp}.

Proof: We keep notations of the proof of Proposition 5.15. So T , T0 and Λ = T oT0 are

the finite or ℵ1-saturated models of Σ, Σ0 and Σ o Σ0 respectively. Take any finite tuple

from Λ. Close this tuple under e. Write it in the form (x, y1, . . . , ym) where x is a tuple

from E≤, y1, . . . , ym tuples from E> such that all components of each yi have same image

under e, call it e(yi) (thus, e(y1), . . . , e(ym) are among coordinates of x), and e(yi) 6= e(yj)
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for i 6= j. Take (x′, y′1, . . . , y
′
m) ∈ Λ having same quantifier free (L′∪{p,Dp, Fp})-type than

(x, y1, . . . , ym). Thus x′ ∈ E≤ and (y′1, . . . , y
′
m) ∈ E>. Since E≤ embeds canonically in T ,

we may see x and x′ as living in T , where they have same complete type if L∪{p,Dp, Fp}
eliminates quantifier of T . Thus there is an automorphism σ of T sending x to x′. Any

automorphism, say f , of Λ extending σ � E≤ will send for each i, e(yi) to σ(e(yi)). Hence

f(yi) and y′i are in the same copy of T0, say T i0.

Assume first that T0 is of type (0). Since T0 consists of one root and leaves and f(yi) as

well as y′i consists of distinct leaves, there is an automorphism σi of T i0 sending f(yi) to

y′i. The union of σ, the σi and the identity on other copies of T0 is an automorphism of Λ

sending (x, y1, . . . , ym) to (x′, y′1, . . . , y
′
m).

We consider now the case where T0 has no root thus E≤ = NT and

Λ = E≤ ∪̇
⋃̇
{Γ(e(z) ; z) ; z ∈ E>}.

- If T0 is of type (1.a), it eliminates quantifier in L1 which gives σi as above.

- If T0 is of type (1.b), it eliminates quantifiers in L1 ∪ {p} and in T0 the interpretation

of Dp is LT0
. For each embedding of T0 in Λ as a cone Γ(e(x);x) we have the inclusions

LT0 ⊆ LΛ ⊆ DpΛ and for any leaf α of (this) T0, pT0(α) = pΛ(α). Thus, for each i, f(yi)

and y′i have same type in T0, which gives σi as previously.

In all cases, the automorphism of Λ we have constructed respects the language L′ ∪
{pL, pL(L)} where pL is the restriction of the predecessor function to the set of leaves and

pL(L) its image. Thus we have shown that Λ eliminates quantifier in this language. Now

adding pL to L′ is quantifier free equivalent to adding p: Dp = (Dp̄ ∩ E≤) ∪ L and p

coincides with p̄ on Dp̄ ∩ E≤ and with pL on L.

Proposition 5.18. Consider on M(T o T0) and M(T ) the structure induced by their

canonical tree, respectively (T o T0,L′) and (T,L). Then M(T o T0) is C-minimal iff

M(T ) is.

Proof: Let Λ |= Σ o Σ0. For A ⊆ L(Λ̄), AΛ := {α ∈ L(Λ); ᾱ ∈ A} is a cone in Λ̄ iff A

is a cone in Λ, of same type (thick or not) except when A consists of a non isolated leaf

(in Λ̄) and AΛ a is a cone. This proves two things. First Λ̄ is C-minimal if Λ is. Secondly

if Λ̄ is C-minimal any subset of Λ of the form AΛ is a Boolean combination of cones and

thick cones. The general case is processed by hand.

Fact: For x a leaf of Λ, a composition of functions from F ∪ {p, e} applied to x is, up to

equality, a constant or of the form x, p(x) (necessary only if T0 is of type (1.b)) or t(e(x))

where t is a composition of functions from F ∪ {p} (hence a term of L ∪ {p}).

Assume the first function right in the term is p. If T0 is of type (0) we replace p with

e. If T0 is of type (1.b), p(x) 6∈ Dp. Conclusion: at most one p right. If a term t is a

composition of functions from F∪{e}, then t(p(x)) = t(x). Indeed, e(x) < x if x ∈ L hence

e(x) = e(p(x)) (by definition e(x) = max(E ∩ brx)), and f(x) = f(e(x)). Conclusion: in

composition no p right needed. Finally, for f ∈ F ∪ {e}, f(x) = f(e(x)). So, if a term is
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neither x nor p(x), we may assume it begins right with the function e. a

So non constant terms in x are all smaller that x, thus linearly ordered. Consequently, up

to a definable partition of L(Λ) (namely into the two sets {x; t(x) ≥ t′(x)} and {x; t(x) <

t′(x)}), terms of the form t(x)∧ t′(x) are not to be considered. To summarize, it is enough

to consider subsets definable by formulas t(x) ≤ t′(x), t(x) = t′(x), t(x) ≤ a, t(x) = a,

t(x) ∈ E,De, Ff or Df , and (t(x) ∧ a) = b where t and t′ are of the form described in the

above fact. To ϕ a one variable formula from L without constant associate a formula ϕΛ

(also from L, one variable and without constant) such that Λ |= ϕΛ(x) iff Λ̄ |= ϕ(x̄). Then

ϕ(e(x)) is equivalent to:

- ϕΛ(x) when T0 has a root, and

- ψΛ(x) with ψ(y) = ϕ(p̄(y)) when T0 has no root,

both already handled. Are left to be considered:

- t(e(x)) < x and, if T0 is of type (1.b), t(e(x)) < p(x) < x are always true,

- x ∈ E,Ff always wrong, as p(x) ∈ E,Ff are since p(x) occurs only if T0 is if type (1.b),

- x, p(x) ∈ E≥, Df always true,

- t(x)�b and (t(x) ∧ a)�b with � ∈ {<,=, >}, formulas that we treat now.

For b ∈ E>, t(e(x)) ≥ b is always wrong and t(e(x)) < b is equivalent to t(e(x)) < e(b). For

b ∈ E≤, Λ |= t(e(x))�b iff Λ̄ |= t(e(x))�b̄. For b ∈ E>, (t(e(x)) ∧ a) ≥ b is always wrong

and (t(e(x)) ∧ a) < b iff (t(e(x)) ∧ a) < e(b). For a ∈ E>, (t(e(x)) ∧ a) = (t(e(x)) ∧ e(a)).

Finally, for a and b in E≤, Λ |= (t(e(x)) ∧ a)�b iff Λ̄ |= (t(e(x)) ∧ a)�b̄. We are left with

formulas x�b, p(x)�b, (x ∧ a)�b and (p(x) ∧ a)�b which are routine.

Proposition 5.19. As previously consider on M(T oT0) and M(T ) the structure induced

by their canonical tree. Then M(T o T0) is indiscernible iff M(T ) is.

Proof: The right-to-left implication follows clearly from our proof of C-minimality trans-

fer from L(T ) to L(T o T0). The other direction is trivial since T is a definable quotient

of L(T o T0) (and leaves are sent to leaves in the quotient).

We conclude this section with an uniformity result:

Proposition 5.20. 1. The tree T0 has a root iff the L2-structure T o T0 satisfies both

sentences “ ∀x ∈ L, x ∈ Dp and: ∀x, y ∈ L,¬(p(x) < p(y)).

2. The equivalence relation ∼ is L2-definable, uniformly in T and uniformly in T0. This

makes T uniformly L2-interpretable in T o T0.

Proof: 1. Note that an element (α, β) of LT × T0 = LToT0
belongs to Dp iff β has a

predecessor in T0 and in this case p((α, β)) = (α, p(β)). So Dp ⊇ L iff T0 is of type (0) or

(1.b). In this case p(α, β) = (α, p(β)).

Assume first that T0 has a root, say r0.

Let (α, β), (α′, β′) be two leaves of T o T0 such that p(α, β) ≤ p(α′, β′). By definition

of the order in T o T0 and the remark three lines above, α = α′ and p(β) ≤ p(β′). But
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p(β) = p(β′) = r0, thus p(α, β) = p(α′, β′). So the second sentence of (1) is satisfied.

Assume now that T0 is of type (1.b). Let (α, β) be a leaf of T o T0, then by definition of

such a 1-colored good tree, in T0 any element of ] −∞, p(β)[ is the predecessor of a leaf,

say p(β′). So we have in T o T0, p(α, β) < p(α, β′).

2. The first item above allows us to first order distinguish whether T0 has a root or not.

Items 1 and 2 of Lemma 5.11 give the fitting definitions for both cases.

To rethink of Example 5.9, the previous proposition tells us that, if T o T0 knows that T0

is 1-colored, then it knows also whether or not T0 has a root.

6. Solvable and general colored good trees

Lemma 6.1. Let T0 be a 1-colored good tree and T a good tree such that T o T0 is well

defined. Then:

- T0 satisfies Condition (? ? ?);

- leaves of T o T0 are isolated iff leaves of T0 are, and T o T0 satisfies Condition (?);

- T o T0 satisfies Condition (? ? ?).

Proof: The first assertion comes from Lemma 5.5. The second one is clear. Let us prove

the third one. If T o T0 has isolated leaves then T0 is of type (0) or (1.b) and for all

(α, β) ∈ LToT0
, p(α, β) = (α, p(β)) ∈ LT × T0. If T0 is of type (0) T embeds canonically

in T o T0 and, via this embedding, p(LToT0) = LT , an antichain in T o T0 hence convex.

If T0 is of type (1.b) then p(LToT0) = (T oT0)\ (LToT0 ∪NT ) which is clearly convex.

Definition 6.2. A solvable good tree is either a singleton or a tree of the form (. . . (T1 o
T2) o · · · ) o Tn for some integer n ≥ 1, where T1, · · · , Tn are 1-colored good trees such

that, for each i, 1 ≤ i ≤ n− 1, if Ti is of type (1.a) then Ti+1 is of type (0).

Remark 6.3. - By Lemma 6.1 and an easy induction on n, (. . . (T1 o T2) o · · · ) o Tn is

a well defined good tree.

- Taking into account extension associativity proven in Lemma 5.1 we will allow ourselves

to write simply T1 o · · ·o Tn instead of (. . . (T1 o T2) o · · · ) o Tn.

- If T1o· · ·oTn is a solvable good tree as in Definition 6.2 then for any k ≤ n, T1o· · ·oTk
and Tk+1 o · · ·o Tn are solvable good trees.

- Conversely, let T ′ = T1 o · · · o Tn and T ′′ = Tn+1 o · · · o Tn+m be solvable good trees

as in Definition 6.2 and such that, if Tn is of type (1.a) then Tn+1 is of type (0). Then

T ′ o T ′′ = T1 o · · ·o Tn+m and T ′ o T ′′ is a solvable good tree.

- T is a solvable good tree iff it is either a singleton or a 1-colored good tree or of the form

T = T ′ o Tn for T ′ a solvable good tree which is not a singleton and Tn a 1-colored good

tree.

One difficulty is that a solvable good tree may have decompositions into iterated ex-

tensions of 1-colored good trees of different lengths.
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Example 6.4. 1. Consider the extension T = T1 o T2 where T1 and T2 are 1-colored. If

T1 is of type (1.b) of color, say (1, 1) and T2 is of type (1.a) of color (0, 2), then T1 o T2

is still 1-colored of type (1.a) of color (0, 2).

2. Consider now the extension T1 o T2 o T3 where T1, T2 and T3 are 1-colored. If T1 and

T3 are of type (1.a) of color (0,m) and T2 is of type (0) of color (m, 0), then T1 o T2 o T3

is again of type (1.a) of color (0,m).

We will now do two things: introduce technical tools in order to characterize decom-

positions of minimal length and find all exceptional situations where two or more terms

of the decomposition “collapse”.

Definition 6.5. Let T be a good tree and x a node of T . Extending Definition 4.1, we call

branching color of x and we note b-colT (x) the couple (mT (x), µT (x)), mT (x), µT (x) ∈
N ∪ {∞}, where mT (x) is the number of cones at x which are also thick cones (in other

words the number of elements of T which have x as a predecessor) and µT (x) is the number

of cones at x which are not thick cones.

In a pure solvable tree T = T ′ o Tn in all “non exceptional situations” we will be able

to define in terms of change of branching color the function e associated to the extension

T ′ o Tn.

Remark 6.6. - Branching color is definable in the pure order of T in the sense of Lemma

2.14 (no ℵ0-categoricity needed now).

- Let T be a 1-colored good tree. Then the branching color of any of its nodes is its color

in the sense of Definition 2.17 (so the same for any node of T ).

Lemma 6.7. Let T ′ be a solvable good tree, not a singleton, and Tn a 1-colored good tree

such that T := T ′ o Tn is well defined. Let E,E> and E< be as in Definition 5.7. Then

for any x ∈ NT ,

- if x ∈ E<, then b-colT (x) = b-colT ′(x);

- if x ∈ E and Tn has a root, then b-colT (x) is the branching color (in Tn) of the root of

Tn (hence of the form (m, 0));

- if x ∈ E and Tn has no root, then b-colT (x) = (0, µT ′(x) +mT ′(x));

- if x ∈ E>, then b-colT (x) is the color of any node of Tn.

Proof: Clear by construction of T ′ o Tn.

Proposition 6.8. Let T = T ′ o Tn as in Lemma 6.7 and e be as Definition 5.7. Then

the function e is definable in the pure order except when Tn is of type (1.a) of color (0, µn)

and, if T ′ = Tn−1 or T ′ = T− o Tn−1 for Tn−1 a 1-colored good tree as given by Remark

6.3, then, either:

Exception 1: Tn−1 is 1-colored of type (1.b) of color (mn−1, µn−1) and µn = mn−1 +µn−1

or,
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Exception 2: Tn−1 is 1-colored of type (0) and, if T− = Tn−2 or T− = T=oTn−2 for Tn−2

a 1-colored good tree, then Tn−2 is of type (1.a) of color (0, µn−2) and µn−2 = mn−1 = µn.

Proof: In this proof “definable” means “definable in the pure order”. Note that if the

restriction of e to LT is definable, then E≥ = {x ∈ T ;∃α ∈ LT , x ≥ e(α)} is definable

and for all x ∈ E≥, e(x) = e(α) for any α ∈ LT , α ≥ x, so e is definable.

If Tn has a root, then e(α) = p(α), for any α ∈ LT , so e is definable.

If Tn is of type (1.b), then by Lemma 6.7, the color of any element of E> is (mn, µn), with

mn 6= 0, while, if x ∈ E, b-colT (x) = (0, µT ′(x) + mT ′(x)). Therefore, for any α ∈ LT ,

e(α) = max (br(α) ∩ {x ∈ N ; b-col(x) = (0, µ)}), so e is definable.

So from now on Tn is of type (1.a) hence, by Condition (??), Tn−1 is of type (0) or

(1.b). We will prove that if T satifies neither conditions of Exception 1 nor conditions of

Exception 2, then e is definable.

Again by Lemma 6.7, the branching color of any element of E> is (0, µn), and if x ∈ E,

then b-colT (x) = (0, µT ′(x) +mT ′(x)). We are going to apply one more time Lemma 6.7,

this time to the extension T ′ = T−o Tn−1 and its corresponding subsets E′<, E′ and E′>.

If Tn−1 is of type (1.b), then E ⊂ E′>, therefore for any x ∈ E, the branching color of

x in T ′ is its branching color in Tn−1. If the first Exception is not realized, then µn 6=
mn−1+µn−1 and e is definable as follows: for any α ∈ LT , e(α) = max (br(α)∩{x ∈ NT ; b-

col(x) = (0,mn−1 + µn−1)}).
If Tn−1 is of type (0), E = E′, hence for any x ∈ E, b-colT ′(x) = (mn−1, 0), so b-

colT (x) = (0,mn−1). Therefore if µn 6= mn−1, e is definable as above. Now, if µn = mn−1,

we must consider the branching colors of nodes of E′< thus we must look down at the tree

T− = T= o Tn−2 and its corresponding subsets E−, E−< and E−> . If Tn−2 is of type (0),

or (1.b), by the previous discussion E− is definable in the pure order and E′ = E is the

subset of all successors of nodes of E−, hence definable in the pure order too. If Tn−2

is of type (1.a), then the branching color of the nodes of E−> is (0, µn−2). If the second

Exception is not realized, µn−2 6= mn−1, so as previously, the function e is definable.

Definition 6.9. We define n-solvable good trees by induction on n ∈ N:

- a 0-solvable good tree is a singleton;

- a 1-solvable good tree is the same thing as a 1-colored good tree;

- an (n + 1)-solvable good tree is a tree of the form T o Tn+1 with T an n-solvable good

tree and Tn+1 a 1-colored good tree, which is not a k-solvable good tree for any k ≤ n.

Proposition 6.10. An n-solvable good tree T with n > 1 has a unique decomposition

T ′ o Tn with T ′ an (n − 1)-solvable good tree and Tn a 1-colored good tree. If n > 0 it

has a unique decomposition T1 o · · · o Tn such that each Ti is a 1-colored good tree. In

this decomposition, no two consecutive factors realize Exception 1 and no three consecutive

factors realize Exception 2. If T1o · · ·oTn is n-solvable and such that each Ti is 1-colored,

then for any k and `, 1 ≤ k ≤ ` ≤ n, Tk o · · ·o T` is (`− k + 1)-solvable.
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Proof: By definition, if n > 1, there exist an (n−1)-solvable good tree T ′ and a 1-colored

good tree Tn such that T ′oTn. Since T is an n-solvable good tree then, T neither realizes

Exception 1 nor Exception 2. Hence, by Proposition 6.8, the function e is definable in T

and Tn = E≤ if ∀α ∈ L, e(α) = p(α), Tn = E< otherwise. This gives the unicity of T ′,

and unicity of Tn as well since ∼ (defined in 5.2) is definable from e and ∼-classes are

subtrees isomorphic to Tn.

Unicity of the decomposition T1 o T2 o · · · o Tn follows by induction on n > 0. The last

assertion is now clear.

Corollary 6.11. Let T be a solvable good tree, then there exists a unique n ∈ N such that

T is an n-solvable good tree.

From now on n is supposed to be positive.

Definition 6.12. We first define and interpret by induction the language Ln on n-solvable

good trees.

The language L1 = {≤,∧, N, L} has already been defined and Ln+1 := Ln∪{en, En, E≥,n}
where en is a symbol for a unary function and En and E≥,n are unary predicate symbols.

The language L1 is interpreted naturally as in any good tree.

If T ′ is an (n+1)-solvable good tree, it has a unique decomposition T ′ = ToTn+1 with T an

n-solvable good tree and Tn+1 a 1-colored good tree. We refer now to subsection 5.3 with

the following adaptations: F := {e1, . . . , en−1}, the language denoted L in 5.3 becomes

now language Ln and L′ becomes now Ln+1. By induction hypothesis Ln is interpreted

on T and satisfies (4∗). This gives the interpretation of Ln+1 on T ′ and shows it satisfies

(4∗).
Next we define L+

n := Ln ∪{p,Dp, Fp} (for p,Dp and Fp as defined before Definition 4.4).

In any n-solvable good tree L+
n is an extension by definition of Ln.

Proposition 6.13. Let T be an n-solvable good tree, Σ its complete theory in the language

Ln and T0 a 1-colored good tree, Σ0 its complete theory in the language L1. Then Σ o Σ0

(as defined in Definition 5.16) is the complete theory of T o T0 in the language Ln+1.

Proof: We proceed by induction on n. Case n = 1 is given by Proposition 4.5 and the

induction step by Proposition 5.15.

Proposition 6.14. Let T be an n-solvable good tree. Then

- T eliminates quantifiers in the language L+
n ,

- functions and predicates of Ln are definable in the pure order,

- T is finite or ℵ0-categorical,

- M(T ) is indiscernible and C-minimal.

Proof: The proof runs by induction on n. The first item follows from Propositions 4.5

(case n = 1) and 5.17 (induction step) and the second one from Propositions 6.10 and 6.8
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(induction step, nothing to prove here when n = 1). The third one from Propositions 4.5

for the case n = 1 and 5.13 for the induction step. The fourth one from Proposition 4.6

for the case n = 1 and Propositions 5.17 and 5.18 for the induction step.

Definition 6.15. Let T1, T2, · · · , Tn be 1-colored good trees neither realizing Exception

1 nor 2. Let Σ1,Σ2, · · · ,Σn be their theories in the language L1 and Σ1 o · · · o Σn

the Ln-theory defined by induction using Proposition 5.15, Definition 5.16 and extension

associativity. By Proposition 6.14, Σ1 o · · · o Σn is an extension by definition of its

restriction to L1 and we will also consider it as a theory in the language L1. We denote

Sn, n ≥ 1, the set of all theories Σ1 o Σ2 o · · · o Σn in the language L1 and S0 the L1-

theory of the singleton.

Definition 6.16. For n ∈ N ∪ {∞}, we call n-colored any model of Sn.

Corollary 6.17. For any n ∈ N ∪ {∞}, any finite or countable n-colored good tree is

n-solvable.

Proof: By Proposition 6.14 any theory in Sn is ℵ0-categorical.

Remark 6.18. The class of n-colored good trees, n at least two, is not elementary as

shows the following example (but the class of all i-colored good trees, for some i ≤ n, is).

Take 1-colored good trees, T of color (0,∞) and for each n ∈ N≥1 ∪ {∞}, Tn of color

(1, n). By Proposition 6.8, for n ∈ N≥1, all Tn o T are 2-colored. But any non trivial

ultraproduct of them is 1-colored as it is equivalent to T∞ o T which realizes Exception 1.

The following theorem summarizes much of what has been proven in this section.

Theorem 6.19. For any integer n any theory in Sn is complete and admits quantifier

elimination in the language L+
n . Furthermore Sn is the set of all complete theories of

n-colored good trees.

7. Classification of indiscernible ℵ0-categorical C-minimal pure C-sets

Theorem 7.1. Let M be a pure C-set. Then the following assertions are equivalent:

(i) M is finite or ℵ0-categorical, C-minimal and indiscernible

(ii) T (M) is a precolored good tree.

(iii) T (M) is a colored good tree.

Proof: (i)⇒ (ii): This is Corollary 3.8.

(iii)⇒ (i): This is Theorem 6.19.

(ii)⇒ (iii)

We will prove the result by induction on the depth n of T (M).
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The case of depth 1 is given by Remark 4.2.

Asume that any precolored good tree of depth n is a colored good tree. Let T be a

precolored good tree of depth n + 1. By Corollary 3.12, for any leaf α, the latest one-

colored interval In+1(α) of the branch br(α) is either {p(α)}, case (0), or ]en(α), α[, case

(1.a), or ]en(α), p(α)], case (1.b).

In case (0) the thick cone Tα at p(α) is a 1-colored good tree of type (0), and in case

(1.a) or (1.b), the cone Tα of α at en(α) is a 1-colored good tree of type (1.a) or (1.b)

respectively. Let us call (mn+1, µn+1) the color (independent of α) of the 1-colored good

tree Tα. Thus by Proposition 4.5, for any α, Tα |= Σmn+1,µn+1 . Let Tn+1 be the countable

or finite 1-colored good tree model of Σmn+1,µn+1
.

Now, T is an L2-structure when interpreting e by en, E = Im(en), E≥ = Dom(en) and, as

such, a model of Σ′′ (cf 5.10). Let us consider on T the equivalence relation ∼ associated

to en, as defined in 5.11, (1) if Tn+1 is of type (0) and (2) otherwise, and T := T/ ∼.

Suppose T is countable or finite. So, by categoricity of 1-colored good trees and (5.12),

T ≡ T o Tn+1.

By induction hypothesis and Corollary 6.17 there are 1-colored good trees T1, . . . , Tk such

that T = T1 o T2 o · · ·o Tk, hence, T = T1 o T2 o · · ·o Tk o Tn+1. Hence T is a colored

good tree. This remains true for any T ′ ≡ T by definition of colored good trees. This

allows us to remove the temporary assumption that T is countable or finite.

Remark 7.2. Since a tree of the form T1 o T2 o · · · o Tn where the Ti are 1-colored is

always an m-colored good tree for some m ≤ n, the proof of (ii)⇒ (i) above shows that a

precolored good tree of depth n is an m-colored good tree, with m ≤ n.

Corollary 7.3. A good tree is precolored of depth n iff it is n-colored.

Proof: We proceed again by induction on n. The case n = 1 is Theorem 4.6.

Let now T be a precolored good tree of depth n + 1, then by the remark above, T is

m-colored with m ≤ n+ 1. Assume for a contradiction that m < n+ 1, then by induction

hypothesis, T is precolored of depth m, which contradicts the unicity of the depth of a

precolored good tree (see Definition 3.7), hence m = n+ 1. Conversely, if T is n-colored,

then T is a precolored good tree whose depth must therefore be n.

We make now completely precise the equivalence between colored and precolored good

trees. In what follows, the Ei and the E≥,i are predicates of the language Ln as in

Definition 6.12, E<,i := NT \ E≥,i and E≤,i := E<,i ∪ Ei.

Definition 7.4. Let T ≡ T1 o T2 o · · ·o Tn be an n-colored good tree, n ≥ 1, where each

Ti is 1-colored. For n = 1 we set I1 := NT . For n ≥ 2 and i, 1 ≤ i ≤ n, we define by

induction on i the subset Ii of NT as follows:

- I1 := E1 = E≤,1 if T1 is of type (0) or (1.b), and I1 := E<,1 if T1 is of type (1.a);

- for i, 1 < i < n, Ii := Ei = E≤,i \
⋃

1≤j≤i−1 Ij if Ti is of type (0) or (1.b), and
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Ii := E<,i \
⋃

1≤j≤i−1 Ij if Ti is of type (1.a);

- In := En−1 if Tn is of type (0), and In := E>,n−1 ∩NT otherwise.

Proposition 7.5. Let T ≡ . . . T1 o T2 o · · ·o Tn be an n-colored good tree, n ≥ 1, where

each Ti is 1-colored. Then, for each i, 1 ≤ i ≤ n, and each leaf α of T , the set Ii ∩ br(α)

is the 1-colored basic interval Ii(α) of T seen as a precolored good tree of depth n (as in

Definition 3.7).

Proof: It is clear from their definition that the Ii cover NT . Thus it is enough to prove

that all nodes of each Ii have same tree-type in T . It will follow from quantifier elimination

(given in Theorem 6.19). Up to logical equivalence, in Ln atomic formulas in the single

variable x are either tautologies, or always false, or of the form Ei or E≥,i applied to x

or ej(x), or an equality between two such terms. Indeed, since ei ◦ ej = emin{i,j} there

is no need to consider terms in x with more than one function ei; since ei(x) ≤ x and,

ei(x) < ej(x) if i < j, there is no need of ∧ and < either. Now, an equality ej(x) = x

occurs iff Ej(x), and Ej(x) depends only on the types of Tj and Tj+1 if x ∈ Ij . We have

still to deal with the function p. Now, p coincides always with either the identity or some

function ej ; moreover an equality p(y) = y or p(y) = ej(y) is determined by the formula

Ij(y) and the type of Tj . More precisely, Ij ∩Dp = ∅ if Tj is of type (1); if Tj is of type

(0) then Ij ⊆ Dp and p and ej coincide on Ij . This achieves the proof.

Proposition 7.6. Let T ≡ T1 oT2 o · · ·oTn be an n-colored good tree, n ≥ 1, where each

Ti is 1-colored of color (mi, µi) and c a node of T . Then the color of c is (mi, µi) where i

is the unique index such that c ∈ Ii. Inner cones at c have same theory as Ti o · · · o Tn

and border cones have same theory as Ti+1 o · · · o Tn. If Ii(α) is dense for α ∈ L then

(T \ Γ(c)) ≡ T .

Proof: All nodes in Ii have same tree type which is different from the tree type of any

node of Ii+1. Thus, let Γ be a cone at c. Either Γ contains a non empty dense interval

]c, d[ included in Ii, then Γ is inner, by definition. Now, there are µi such cones. Or,

Γ = Γ(c, α) for some leaf α and either Ii(α) =]ei−1(α), c] or Ii(α) = {c}. There are mi

such cones. To determine the theory of these cones, we can without loss of generality

argue in the countable model. There is a copy of TioTi+1 o · · ·oTn containing c. In this

copy c can be identified with a node d of Ti. Any cone Γ at c is canonically isomorphic

to C o Ti+1 o · · · o Tn, where C is a cone of Ti at d. If Γ is inner then C is inner in Ti,

hence isomorphic to Ti (see Corollary 4.7). Thus, inner cones of T at c are isomorphic to

Tio Ti+1 o · · ·o Tn. If Γ is border then C is a leaf of Ti. Thus, border cones of T at c are

isomorphic to •o Ti+1 o · · ·o Tn with • a singleton hence to Ti+1 o · · ·o Tn.

In the same way, if Ii(α) is dense for α ∈ L, then (Ti \ Γ(d)) ≡ Ti, hence (T \ Γ(c)) =

T1 o · · ·o Ti−1 o (Ti \ Γ(d)) o Ti+1 o · · ·o Tn.

36



8. General classification

In this section we reduce the general classification of finite or ℵ0-categorical and C-

minimal C-sets to the classification of indiscernible ones, previously achieved in section

7. By the Ryll-Nardzewski Theorem, any ℵ0-categorical structure is a finite union of

indiscernible subsets. In a C-minimal structure M these subsets have a very particular

form. Let us give an idea: there exists a finite subtree Θ of T := T (M), closed under ∧
and ∅-algebraic with the following properties:

- any a ∈ Θ, except its root, has a predecessor in Θ since Θ is finite, call it a−; now, in T ,

]a−, a[ is either empty or not a singleton and dense, and in the second case, the pruned

cone C(]a−, a[) is indiscernible in M ,

- for a as above and b ∈ Θ, b > a, then C(]a−, b[) is not indiscernible,

- and more...

An equivalence relation is defined over Θ which identifies for example points a and b such

that none of C(]a−, a[) and C(]b−, b[) is empty and C(]a−, a[) ∪ C(]b−, b[) is indiscernible

(this is only an example; there are other elements to be identified). We call vertices the

elements of the quotient Θ̄ of Θ. They are finite antichains of T . We consider on Θ̄ the

order induced by the order of Θ (it is the classical order on antichains); it makes Θ̄ a finite

tree. An (oriented) edge links vertices A and B > A iff A is the predecessor of B in Θ̄,

A = B−. Vertices and edges of Θ̄ are labeled. As an example, on a vertex A, a first label

gives the (finite) cardinality of A seen as a subset of T , and a label on the edge (A−, A)

says whether, for any a ∈ A, ]a−, a[ is empty or not: this second label exists iff this interval

is not empty and it gives the complete theory of the indiscernible C-set C(]a−, a[).

There are other labels on vertices which are also either cardinals in N ∪ {∞} or complete

theories of indiscernible finite or ℵ0-categorical and C-minimal C-sets. Conversely, we

have isolated eleven properties which are true in Θ̄ and such that, given a labeled graph

Ξ sharing these eleven properties, there is a finite or ℵ0-categorical and C-minimal C-set

M such that Θ̄(M) = Ξ. In this sense, the classification of finite or ℵ0-categorical and

C-minimal C-sets is reduced to that of indiscernible ones.

8.1. The canonical partition

Proposition 8.1. LetM be a finite or ℵ0-categorical structure, then there exists a unique

partition of M into a finite number of ∅-definable subsets which are maximal indiscernible.

Proof: By ℵ0-categoricity, there is a finite number of 1-types over ∅. By compacity, each

of these types is consequence of one of its formulas.

Definition 8.2. We call this partition the canonical partition. Thereafter it will be denoted

(M1, · · · ,Mr).

We reformulate here for convenience the description given in [D] in the proof of Propo-

sition 3.7, with a small difference: instead of working with T (M) we will work with T (M)∗

37



defined as follows: T ∗ := T if T has a root and T ∗ := T ∪{−∞} otherwise, with −∞ < T .

In the last case, we say that “−∞ exists”. Note that the tree T ∗ has always a root, which

is either the root of T or −∞. By C-minimality each Mi of the canonical decomposition

is a finite boolean combination of cones and thick cones. We will be more precise. Let D

be the set of bases of cones and thick cones appearing in these combinations.

Definition 8.3. We define Θ0 := {x ∈ T (M)∗; for some c ∈ D,x ≤ c} and Θ1 := {x ∈
Θ0;∃i 6= j, α ∈Mi, β ∈Mj , x ∈ br(α) ∩ br(β)}. We define:

U := {suprema of branches from Θ1}
B := {branching points of Θ1}
S := {c ∈ Θ1 \ (U ∪ B); the thick cone at c without the cone of the branch of Θ1

intersects non trivially both Mi and Mj for a couple (i, j), i 6= j }
I :=

{
infima ∈ Θ1 \ (U ∪ B ∪ S) of intervals on branches of Θ1 which are maximal

for being contained in {c ∈ Θ1 \ (U ∪ B ∪ S); the thick cone at c without the cone of the

branch of Θ1 is entirely contained in a same Mi

}
Θ := U ∪B ∪ S ∪ I.

Remark 8.4. - Since D is finite, Θ0 and Θ1 are trees with finitely many branches, which

implies that U and B are finite; S is finite since it is contained in D; I is finite by o-

minimality of branches of Θ1. Hence Θ is finite.

- Θ1, U , B, S, I and Θ are all definable from the Mi, hence ∅-definable since the Mi are.

As Θ is finite, it is contained in the algebraic closure of the empty set.

- Θ is a subtree of T (M)∗ closed under ∧. Because it is finite each element of Θ has a

predecessor in Θ. Elements of Θ which are nodes (or leaves) in T (M) may not be nodes

(or leaves) in Θ. So, to avoid confusion we will use the words vertices and edges for the

tree Θ.

- We have the equivalence: M is not indiscernible iff Θ is not empty iff the root of T (M)∗

belongs to Θ.

Proposition 8.5. Let M be a C-minimal, ℵ0-categorical structure. Then the subsets

M1, · · · ,Mr of the canonical partition are the orbits over ∅ of acl(∅)-definable subsets of

the form:

• cones

• almost thick cones (i.e. cofinite unions of cones at a same basis)

• pruned cones C(]b, a[) where b < a and ]b, a[ is a dense interval without extremities,

all these cones having their basis in Θ as well as the other extremity (namely a) of the

axis in case of pruned cones.

Proof: By definition of Θ, any Mi is a finite union of pruned cones C(]b, a[), cones and

thick cones at a, with a, b ∈ Θ and a the predecessor of b in Θ. By ∅-definability, Mi is the
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union of the orbits over ∅ of these sets (for more details, see [D], Proposition 3.7). This

gives the proposition except the fact that ]b, a[ is a dense interval without extremity. This

result follows from ℵ0-categoricity using the following facts.

Fact 8.6. Assume some subset of the canonical partition is of the form Mj =
⋃n
i=1 C(]bi, ai[).

Let (b, a) be one of the couples (bi, ai). Then all the elements of the pruned cone C(]b, a[)

have same type over (b, a) in M.

Proof: Assume M ω-homogeneous. Then, for x, y ∈ C(]b, a[) there exists an automor-

phism of M sending x to y. Such an automorphism preserves Mj hence preserves a and

b. Therefore x and y have the same type over (b, a). a

Fact 8.7. All nodes of ]b, a[ have same type over (b, a).

Proof: This is a direct consequence of the preceding Fact, since any node of ]b, a[ is of

the form b ∧ x, where x ∈ C(]b, a[). a

Now, since all the nodes of ]b, a[ have same type over ∅, either ]b, a[ is dense or consists of a

unique node, or contains an infinite discrete order which is not possible by ℵ0-categoricity.

In the case where ]b, a[ consists of a single node, say c, C(]b, a[) is an almost thick cone,

namely the thick cone at c without C(c, b). So, C(]b, a[) changes from the third category

to the second category of subsets.

In particular, Fact 8.6 has the following consequence.

Fact 8.8. If a ∈ Θ has a predecessor in T (M)∗, then this predecessor belongs also to Θ.

a

Notations. Our aim is now to understand the structure induced by M on a pruned

cone C(]b, a[) of the canonical partition as in Proposition 8.5. It is in general not a pure

C-set but we know by Proposition 2.8 that, as a pure C-set it is C-minimal. So what

we have done in the previous sections applies to the C-minimal pure C-set C(]b, a[). This

means that its canonical tree Γ(]b, a[) is a colored good tree, say an n-colored good tree for

some integer n, which must be greater than 1 since ]b, a[ contains at least one node. Thus

Γ(]b, a[) =: T ≡ T1o · · ·oTn for 1-colored good trees T1, · · · , Tn. Recall (from Section 5.3)

that T1 may be taken a definable quotient of T . We call this T1 the first level of T . Since

]b, a[ is dense, T1 is infinite, of type (1.a) or (1.b). Its set of nodes, N1, embeds definably

in T , as the set I1 defined in Definition 7.4. Note that, when M is countable, then the

elementary equivalence becomes an isomorphism: Γ(]b, a[) = T1 o · · ·o Tn.

If Σ is the complete theory of the pure tree T , Σ1 will denote the theory of its first level

T1 and Σ>1 the theory of the (n − 1)-colored good tree T2 o · · · o Tn or, to understand

it in definable terms from T , the theory of each non trivial ∼1-equivalence class for ∼1

the relation corresponding to the extension T1 o (T2 o · · · o Tn) (see Section 5.2). For

i ∈ {1, · · · , n}, (mi, µi) will denote the color of the 1-colored good tree Ti.
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Lemma 8.9. Let C(]b, a[) be a pruned cone as in Fact 8.6. Then ]b, a[ is included in the

set of nodes of the first level of Γ(]b, a[), the colored good tree associated to C(]b, a[).

Proof: Any α ∈ C(]b, a[) satisfies (α∧a) > b hence I1(α) (considered in Γ(]b, a[)) intersects

]b, a[ non trivially. Take any c ∈ I1∩]b, a[. Then the formula “x belongs to I1 (taken in

the tree Γ(]b, a[))” is true for x = c. By Fact 8.7 it should be true for any x ∈]b, a[.

Till now we have exploited that each set Mi of the canonical partition is indiscernible. We

use now that it is maximal indiscernible, i.e. if i 6= j, there are no α ∈ Mi and β ∈ Mj

with same type.

Lemma 8.10. Let a ∈ Θ be maximal in Θ, a not the root of Θ. Let a− be its predecessor

in Θ. If the interval ]a−, a[ is empty, then a is not a leaf of T (M) and there exist at least

two cones at a with different complete theories as colored good trees.

Proof: Since a is maximal, following the notation of Definition 8.3, a is in U , i.e. a is

the supremum of some branch from Θ1. If ]a−, a[ is empty, a is in Θ1, hence a belongs to

at least two branches of different type in M . In particular a is not a leaf.

Lemma 8.11. Let M be a C-minimal C-set. Let a, b ∈ T (M), with b < a and such that

the interval ]b, a[ is not empty, not a singleton and is dense. Assume that the canonical

tree Γ(]b, a[) of the pruned cone C(]b, a[) is an n-colored good tree and let Σ(]b, a[) be its

complete theory. Assume furthermore that ]b, a[ is contained in the set of nodes of the first

level of Γ(]b, a[). Let C be the union of at least two cones at a, such that each of these

cones is indiscernible. Then, T (C(]b, a[) ∪ C) is a model of Σ(]b, a[) if and only if one of

the following cases appears (where we follow the conventions preceding Lemma 8.9):

(a) m1 = 0, n ≥ 2, and T (C) is an (n− 1)-colored good tree model of Σ(]b, a[)>1.

(b) m1 = 0, and C is the union of exactly µ1 cones at a, all with canonical tree model of

Σ(]b, a[).

(c) m1 6= 0 and,

- if n = 1, then C is the union of exactly m1 cones which consist of a leaf, and µ1

cones with canonical tree model of Σ(]b, a[).

- if n ≥ 2, then C is the union of exactly m1 cones with canonical tree model of

Σ(]b, a[)>1 and exactly µ1 cones with canonical tree model of Σ(]b, a[).

Proof: By hypothesis, ]b, a[ is contained in the first level of Γ(]b, a[) and µ1 6= 0 since

]b, a[ is dense. Note that C becomes the thick cone at a in the C-set C(]b, a[) ∪ C =: H.

We prove first the ”if” direction.

- Assume (a). Then, T1 is of type (1.a) and, in T (H), a is the root of an (n − 1)-colored

good tree model of Σ(]b, a[)>1. Let T ′1 be the first level of Γ(]b, a[) plus the additional

element a which is now the leaf of the branch ]b, a[. Then, T ′1 is a model of Σ(]b, a[)1.
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If M is countable, by ℵ0-categoricity, the (n − 1)-colored good tree T (C) is isomorphic

to Γ(]b, a[)>1. Hence, T (H) = T ′1 o Γ(]b, a[)>1. In general, due to Proposition 5.15,

T (H) ≡ T ′1 o Γ(]b, a[)>1. Hence T (H) is a model of Σ(]b, a[).

- Assume (b). Take any model G of Σ(]b, a[) and d any node in the first level of G. So

G appears as the disjoint union of the pruned cone Γ(] − ∞, d[) (considered in G), {d}
and µ1 cones at d, which are all models of Σ(]b, a[) by Proposition 7.6. By Proposition

7.6 again, Γ(] −∞, d[) is a model of Σ(]b, a[). By hypothesis (b) T (H) admits a similar

decomposition with a instead of d. Since Σ(]b, a[) is complete, we are able to carry on an

infinite back and forth between G and T (H). Hence T (H) is a model of Σ(]b, a[).

- Assume n = 1, so Σ(]b, a[) = Σm1,µ1
, and (c). We argue similarly to Case (b). Take G

any model of Σ(]b, a[) and d any node of G. So G is the disjoint union of its pruned cone

Γ(]−∞, d[), {d}, m1 leaves immediately above d and µ1 inner cones at d. By Proposition

7.6 these µ1 cones at d are all models of Σm1,µ1 and Γ(]−∞, d[) is a model of Σ(]b, a[). By

hypothesis (c) T (H) admits a similar decomposition with a instead of d. Thus G ≡ T (H).

- Finally, assume n ≥ 2 and (c). As above, take any model G of Σ(]b, a[) and d a node

in the first level of T (G). So G is the disjoint union of its pruned cone Γ(] −∞, d[), {d},
m1 border cones at d and µ1 inner cones at d. By Proposition 7.6, Γ(]−∞, d[) and inner

cone at d are models of Σ(]b,a[) and border cones at d are models of Σ(]b, a[)>1. Again, by

hypothesis (c), T (H) admits a similar decomposition with a instead of d, thus G ≡ T (H).

Conversely, assume T (H) is an n-colored good tree model of Σ(]b, a[). Since ]b, a[ belongs

to the first level of T (H), the color of a is (m1, µ1) or (m2, µ2).

Assume first that the color of a is (m1, µ1). Let Γ(a, α) be a cone at a, then either Γ(a, α)

is an inner cone and its theory is Σ(]b, a[), or Γ(a, α) is a border cone, model of Σ(]b, a[)>1

if n > 1 and consisting of a leaf otherwise (by Proposition 7.6 again).

If m1 = 0, then there are only inner cones at a, all models of Σ(]b, a[), and we are in case

(b).

If m1 6= 0, and n = 1, the assertion is clear.

If m1 6= 0 and n ≥ 2, then there are m1 border cones at a all models of Σ(]b, a[)>1, µ1

inner cones at a all models of Σ(]b, a[) and we are in case (c).

Assume now that the color of a is (m2, µ2). Then, necessarly, for any leaf α of T (H)

greater than a, I1(α) is open on the right with upper bound a, hence the first level of

T (H) is of type (1.a). So, m1 = 0, and a is the root of an (n− 1)-colored good tree model

of Σ(]b, a[)>1. So we are in case (a).

Lemma 8.12. Let Σ ∈ Sn be a complete theory of n-colored good trees without root and

V a new unary predicate. Let LV1 be the language L1 ∪ {V } and ΣV be the LV1 -theory

which consists of Σ together with the axiom V: V is a “branch” (i.e. a maximal chain)

in the first level of any (some) model of Σ and V has no leaf. Let ∧V be the function

∧V : x 7→ x ∧ V . Then the theory ΣV is complete, admits quantifier elimination in the

language LV+
n := L+

n ∪ {V,∧V }, and is ℵ0-categorical. Its models have an indiscernible
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and C-minimal set of leaves.

Proof: Consistency of ΣV : consider a tree T = T1 o T2 o · · · o Tn model of Σ with T1

countable or finite. Since T has no root, T1 not only is infinite but has 2ℵ0 branches.

Hence 2ℵ0 many of them have no leaf, which shows ΣV to be consistent.

We first prove the Lemma for n = 1.

Let Σ = Σm,µ ∈ S1, µ 6= 0, be a complete theory of 1-colored good tree without root. We

will use a back and forth argument between finite LV+
1 -substructures of any two countable

models T and T ′ of ΣV as in the proof of Proposition 4.5. In what follows, Facts 1 to 6

refers to this proof.

Fact: If m = 0 complete quantifier free LV+
1 -types of Σ are: x ∈ L, x ∈ V , x ∈ N \ V .

If m 6= 0 complete quantifier free LV+
1 -types of Σ are: x ∈ L and p(x) ∈ V , x ∈ L and

p(x) 6∈ V , x ∈ V , x ∈ N \V . In both cases the LV+
1 -substructure generated by a singleton

x is the smallest subset containing x, p(x) and x ∧ V .

Proof: If x /∈ L, then p(x) = x. If x ∈ L, then x /∈ V and p(x) ∧ V = x ∧ V . Moreover,

for all n ∈ N, pn(x) = x or pn(x) = p(x). The fact is now clear. a

This fact shows that the family of partial isomorphisms between finite substructures of T

and T ′ is not empty. We show now it has the back and forth property. Let A be a finite

LV+
1 -substructure of T, and ϕ be a partial LV+

1 -isomorphism from T to T ′ with domain A.

Let x ∈ T \A. By Fact 1 there exists a node nx such that x ∧ nx is the maximal element

of the set {x ∧ y; y ∈ A}.
1. Assume first that x ∈ V T \ A; thus x is not a leaf; since nx ≤ x, nx belongs to V T .

Hence, as in Fact 2, since A is an LV+
1 -substructure, the LV+

1 -substructure generated by

A and x, 〈A ∪ {x}〉V , is the minimal subset containing A, x and nx.

Assume furthermore that x = nx, so 〈A ∪ {x}〉V = A ∪ {x}. As in Fact 4, there exist

a ∈ A ∩ V T and b ∈ A ∪ {−∞} such that ]b, a[∩A = ∅ and x ∈]b, a[. Set ϕ(−∞) = −∞.

Then, ϕ(b) < ϕ(a) and ]ϕ(b), ϕ(a)[ is included in V T
′
. For any x′ in this interval, A∪{x}

and ϕ(A) ∪ {x′} are isomorphic LV+
1 -structures. We extend ϕ on x by sending it to x′.

Now, we can assume that nx 6= x and nx ∈ A. Since V has no leaf it is possible to find

x′ ∈ V T ′ , x′ > ϕ(nx). So 〈A ∪ {x}〉V is LV+
1 -isomorphic to 〈ϕ(A) ∪ {x′}〉V .

2. Assume now that x ∈ T \ (V T ∪ A). By case 1 we may assume x ∧ V ∈ A, thus

x∧ V ≤ nx. So, the LV+
1 -substructure 〈A ∪ {x}〉V is the minimal subset containing A, x,

nx and p(x). If x ∧ V < nx, none of x, p(x), nx touch V . We use quantifier elimination

of Σ in L+
1 to find x′ ∈ T ′ such that (A, x, nx) and (A′, x′, nx′) have same quantifier free

L+
1 -type. They must have same quantifier free LV+

1 -type. If x∧ V = nx then nx ∈ A and

we have an analogue of Fact 3 (with its corresponding proof):

Let Γ be a cone at a ∈ A, such that Γ ∩ (A ∪ V T ) = ∅. Then there exists a cone Γ′ of

T ′ at ϕ(a) such that Γ′ ∩ (ϕ(A) ∪ V T ′) = ∅. Moreover, if Γ is infinite, resp. consists of a

single leaf, then there is such a Γ′ infinite, resp. consisting of a single leaf.
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This allows us to find x′ ∈ T ′ such that (A, x) and (A′, x′) have same quantifier free LV+
1 -

type and achieves the forth proof. The back construction is the same.

So, we have proven elimination of quantifiers in the language LV+
1 , completeness and ℵ0-

categoricity. This achieves the case n = 1.

General case. Let (T, V ) be a countable model of ΣV . Then, T is an n-solvable good tree,

so by Proposition 6.10, T = T1 o T>1 where T1 is a model of Σ1 and T>1 is an (n − 1)-

colored good tree model of Σ>1. By ℵ0-categoricity of Σ, T1 is the unique countable model

of Σ1 and T>1 is the unique countable or finite model of Σ>1. Since V is included in the

first level T1, (T1, V ) is a model of ΣV1 := Σ1 ∪ {V}, the unique model in fact by the case

n = 1. Thus (T, V ) is the unique countable model of ΣV . This proves ℵ0-categoricity of

ΣV and its completeness.

To prove that ΣV admits quantifier elimination in the language LV+
n , we will proceed as

in the proof of Proposition 5.17.

Take any finite tuple from T and close it under e1. Write it in the form (x, y1, . . . , ym)

where x is a tuple from (E1)≤, y1, . . . , ym tuples from (E1)> such that all components of

each yi have same image under e1, call it e1(yi) (thus, e1(y1), . . . , e1(ym) are components

of x), and e1(yi) 6= e1(yj) for i 6= j. Take (x′, y′1, . . . , y
′
m) ∈ T having same quantifier

free LV+
n -type than (x, y1, . . . , ym). Since the complete theory ΣV1 eliminates quantifiers,

x and x′ have same complete type in (E1)≤ which embeds canonically in T1, and there

exists an LV+
1 -automorphism σ of T1 sending x to x′. Since Σ>1 eliminates quantifiers in

Ln−1 ∪ {p,Dp, Fp}, the rest of the proof runs similarly with e1, E1 instead of e and E.

Indiscernibility and C-minimality of the set of leaves follow from quantifier elimination.

Lemma 8.13. Let a, b ∈ T (M), with b < a and such that the interval ]b, a[ is not empty,

not a singleton and is dense. Assume that the canonical tree Γ(]b, a[) of the pruned cone

C(]b, a[) is an n-colored good tree with colors (mi, µi) for 1 ≤ i ≤ n and that ]b, a[ is

contained in its first level. Let Σ(]b, a[)V be the complete theory of the tree Γ(]b, a[) enriched

with ]b, a[. Assume furthermore that there is c ∈ T (M), c > a, such that ]a, c[ is not empty

and (Γ(]a, c[), ]a, c[) is a model of Σ(]b, a[)V . Then (Γ(]b, c[), ]b, c[) is a model of Σ(]b, a[)V

iff there are at a exactly m1 + µ1 cones and among those that do not contain c, m1 are

models of Σ(]b, a[)>1 if n > 1 (respectively m1 are leaves if n = 1) and µ1 − 1 models of

Σ(]b, a[).

Proof: According to Lemma 8.12, (Γ(]b, c[), ]b, c[) |= Σ(]b, a[)V iff [Γ(]b, c[) |= Σ(]b, a[)

and ]b, c[ lies in the first level of Γ(]b, c[)].

Assume first that (Γ(]b, c[), ]b, c[) is a model of Σ(]b, a[)V . Since ]b, c[ is included in the

first level of the tree Γ(]b, c[) and a < c, the color of a is (m1, µ1) and the cone of c at a is

one of the µ1 inner cones at a. Now all inner cones at a are models of Σ(]b, a[). And all

border cones at a are models of Σ(]b, a[)>1.

For the converse we argue as in the proof of Lemma 8.11, case (c). Take any model
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(G, V ) of Σ(]b, a[)V and v ∈ V . So G is the disjoint union of the pruned cone Γ(]−∞, v[)

(considered in G), {v}, m1 border cones at v and µ1 inner cones at v; call C the inner

cone intersecting V non trivially. Now, both (Γ(] −∞, v[), ] −∞, v[) and (C, C ∩ V ) are

models of Σ(]b, a[)V , inner cones at v are models of Σ(]b, a[) and border cones at v models

of Σ(]b, a[)>1. Following the hypotheses, there exists a similar decomposition of Γ(]b, c[)

with a in place of v. All involved theories are complete, which makes possible to carry on

an infinite back and forth between (Γ(]b, c[), ]b, c[) and (G, V ).

8.2. The labeled tree Θ̄

The automorphism group of M acts on Θ. Let Θ := {A1, . . . , As} be the set of orbits

of elements from Θ. Each Ai is a finite ∅-definable antichain of T ∗.

Definition 8.14. For A and B antichains in T ∗, let us define:

- the relation a < b : ⇐⇒ ∀a ∈ A, ∃b ∈ B, a < b and ∀b ∈ B, ∃a ∈ A, a < b (given b

this a is unique);

- let A and B be (finite) antichains in T ∗ such that A < B and, for any a ∈ A, b, c ∈ B
with a < b, c, then either b = c or a = b ∧ c; we define ]A,B[ as the (definable) subset of

M consisting of the union of cones of elements from B at nodes from A, with the thick

cones at nodes from B removed. We extend this notation to ]{−∞}, A[, or still ]−∞, A[,

which will denote the complement of the union of thick cones at all a ∈ A.

Lemma 8.15. Let A and B be in Θ. Then

- if there are a ∈ A and b ∈ B with a < b (or a = b) then A < B (or A = B).

- (Θ, <) is a finite meet-semi-lattice tree; its root, say A0, is a singleton (either {r} if r

is a root of T , or {−∞}). I̧t allows to define the predecessor A− of an element A 6= A0 of

Θ.

- If A < B there is k ∈ N≥1 such that each a ∈ A is smaller than exactly k elements from

B.

- If A = B−, a ∈ A, b, c ∈ B, a < b, a < c, b 6= c then a = b ∧ c.

Proof: By construction all elements of A have same type in M. Now B is ∅-definable,

thus if for some a ∈ A, there is b ∈ B such that a < b, the same is true for any a ∈ A.

For the same raison, if for some b ∈ B, there is a ∈ A such that a < b, it is true for any

b ∈ B. Same thing with a = b instead of a < b. This show the first assertion.

The two next assertions are clear.

About the last one: by construction, b ∧ c ∈ Θ, thus b ∧ c belongs to some element of Θ,

which must be A, since A = B− and a ≤ b ∧ c.

We now aim to collect on Θ and the indiscernible blocks Mi enough information to be

able to reconstruct M from them. To each A ∈ Θ, associate

- its cardinality nA;

- an integer sA, complete theories ΣA,1, . . . ,ΣA,sA in L1 all different and coefficients
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kA,1, . . . , kA,sA ∈ N≥1 ∪{∞} such that, at each a ∈ A, there are exactly kA,1 + · · ·+ kA,sA

cones containing no branch from Θ, kA,1 of which are models of ΣA,1,..., and kA,sA ones

models of ΣA,sA (we are here applying Ryll-Nardzewski again);

- if A 6= A0, ]A−, A[ 6= ∅, b ∈ A−, a ∈ A and b < a, the complete L1-theory Σ(A−,A) of

Γ(]b, a[).

We consider the sA, ΣA,i and kA,i (respectively the Σ(A−,A)) as labels on the vertices

(respectively the edges) of Θ and Θ, and the nA as labels on the vertices of Θ. The ΣA,i

(respectively Σ(A−,A)) may also be understood as indexing those cones at any/some a ∈ A
(respectively pruned cones Γ(]b, a[) for b ∈ A−, a ∈ A, b < a) which are models of it.

Lemma 8.16. 1. Assume A 6= A0. There is no theory Σ(A−,A) labeling (A−, A) iff

]A−, A[= ∅.

2. For A ∈ Θ and any/some a ∈ A, Θ has a unique branch at a iff there is a unique

B ∈ Θ such that B− = A, and furthermore nA = nB holds.

3. T ∗ 6= T iff sA0 = 0, A0 has a unique successor in Θ, say B, and nB = 1.

Proof: (1) holds by definition of the labels of Θ.

(2) is clear.

(3) The direction only if is clear. Let us prove the if direction. The unique element, say

a0, of A0 is either −∞ or the root of T . If A0 has a successor, a0 is not a leaf, and if

different from −∞ it must be a branching point of T . Now the hypotheses force Θ to have

a unique branch at its root. Therefore a0 = −∞.

The next lemma gives a list of constraints.

Lemma 8.17. Let A0 and A ∈ Θ, A0 the root of Θ.

(1) If A 6= A0, nA− divides nA; nA0
= 1.

(2) If A is maximal in Θ, then either sA = 0, or Σ1≤i≤sAkA,i ≥ 2.

(3) If −∞ exists and B ∈ Θ is such that B− = A0, then ]A0, B[6= ∅.

(4) If Θ has a unique branch in any/some a ∈ A, and A 6= {−∞} if −∞ exists, then

sA ≥ 1.

(5) Assume A 6= A0, a ∈ A, b ∈ A−, b < a. If ]A−, A[ is not empty, then the theory of

Γ(]b, a[) considered as an LV1 -structure with V =]b, a[ is a theory of colored good tree

enriched with a branch without leaf, as described in Lemma 8.12.

(6) Assume sA 6= 0. Then at most one kA,i is infinite and the ΣA,i are complete theories

of colored good trees.

(7) Assume A maximal in Θ, A not the root of Θ. If ]A−, A[ is empty then sA ≥ 2.
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(8) Theories ΣA,1, . . . ,ΣA,sA are all different.

(9) Assume A maximal in Θ, A not the root of Θ and such that ]A−, A[ is not empty.

Assume that models of Σ(A−,A) are n-colored trees with colors (mi, µi) for 1 ≤ i ≤ n.

Then, none of the following situations can appear:

(a) m1 = 0, n ≥ 2, sA = 1, ΣA,1 = (Σ(A−,A))>1 and kA,1 = m2.

(b) m1 = 0, sA = 1, ΣA,1 = Σ(A−,A) and kA,1 = µ1.

(c) m1 6= 0, µ1 6= 0, n = 1, sA = 2, ΣA,1 = Σ(A−,A), kA,1 = µ1, ΣA,2 = Σ(0,0) (i.e.

the theory of a tree consisting only of a leaf) and kA,2 = m1.

m1 6= 0, µ1 6= 0, n ≥ 2, sA = 2, ΣA,1 = Σ(A−,A), kA,1 = µ1, ΣA,2 =

(Σ(A−,A))>1, and kA,2 = m1.

(10) Assume A not maximal, not the root of Θ and such that ]A−, A[ is not empty.

Assume furthermore that models of Σ(A−,A) are n-colored trees with colors (mi, µi)

for 1 ≤ i ≤ n. Then the conjonction of the following conditions cannot appear:

- at least one wedge of Θ starting at A has a label

- if B is the successor of A on such a wedge, the label of (A,B) is Σ(A−,A)

- either [m1 ≥ 1, µ1 ≥ 2, sA = 2, ΣA,1 = Σ(A−,A), kA,1 = µ1 − 1 and ΣA,2 =

(Σ(A−,A))>1] or [same condition after exchanging 1 and 2 in ΣA,1, ΣA,2 and kA,1]

or [m1 = 0, sA = 1, ΣA,1 = Σ(A−,A) and kA,1 = µ1] or [µ1 = 1, sA = 1, ΣA,1 =

(Σ(A−,A))>1 and kA,1 = m1].

Proof. (1) nA− divides nA by indiscernibility of elements from A. It has already been

noticed in Fact 8.15 that A0 is a singleton.

(2) If A is maximal in Θ, either any a ∈ A is a leaf of T (M) and then sA = 0, or any such

a is a node in T (M) where no branch of Θ goes through and then Σ1≤i≤sAkA,i ≥ 2.

(3) If −∞ exists, no branch of T has a first element.

(4) Indeed a must be a node in T (M)∗.

(5) It is lemma 8.7.

(6) At most one kA,i is infinite by strong minimality of the node a, for any a ∈ A. Cones

of M are C-minimal by Proposition 2.8 and ℵ0-categorical since they are definable inM.

The cones considered here are furthermore indiscernible by construction, so their canonical

trees are colored good trees by Theorem 7.1.

(7) It is a reformulation of Lemma 8.10.

(8) By construction.

(9) The situation has already been set out in Lemma 8.11, that we apply here with b ∈ A−,

a ∈ A and C the thick cone at a. In this way T (C(]b, a[)∪C) becomes the cone Γ(b, a) of a

at b. Condition (8) prevents C(b∧a, a) from being a model of Σ(A−,A) hence indiscernible.

Would it be the case, C(b∧a, a) would be as well indiscernible in M contradicting maximal

indiscernibility of (the orbit of) C(]b, a[).

46



(10) Follows from Lemma 8.13.

A last constraint is given by the next proposition.

Proposition 8.18. (11) The tree Θ labeled with coefficients nA, sA, kA,i and theories

ΣA,i (and Σ(A−,A)) on its vertices (and edges) has no non trivial automorphism.

By construction two elements from Θ having same type inM are identified in Θ. Thus,

to prove the above proposition it is enough to show that, if M is the countable model,

then any automorphism of Θ lifts up to an automorphism ofM. This proof requires some

new tools that we introduce now.

8.3. Connection and sticking

8.3.1. Connection t of C-structures.

Let ki, i ∈ I, be cardinals such that Σki > 1 and Hi, i ∈ I, C-structures. The

underlying set of the connection H :=
⊔
i∈I Hi.ki is the disjoint union of ki copies of Hi,

i ∈ I. Its canonical tree is the disjoint incomparable union of ki copies of T (Hi), i ∈ I,

plus an additional root, say r, id est: for a, b ∈ T (H), a ≤ b in T (H) iff a = r or a and b

are in a same copy of T (Hi) for some i, and a ≤ b in this T (Hi). For i ∈ I, we call Hi,j ,

j ∈ ki, the different copies of Hi canonically embedded in H.

Language: Assumptions are as follows. Each Hi is a C-structure in the language L(Hi).
The structure on Hi is in fact given via its canonical tree: each T (Hi) is a structure in a

language L(T (Hi)) such that L(T (Hi)) \ L1 consists only of predicate or unary function

symbols. Among predicates are Df and Ff for each unary function f ∈ L(T (Hi)) and the

interpretation of the triple (f,Df , Ff ) in T (Hi) is required to satisfy Conditions (4∗) of

section 5.3.

The different languages L(T (Hi)) \ L1, i ∈ I, are disjoint.

We consider T (H) in the language

L(T (H)) := L1∪̇{Ti; i ∈ I}∪̇
⋃̇

i∈I
(L(T (Hi)) \ L1)∪̇{Er}

where each Ti is a unary predicate for the union of the ki copies T (Hi,j) of T (Hi), Er

is a unary predicate interpreted as {r} if r is the root of T (H) and L(T (Hi)) \ L1 is

interpreted in T (H) as described now. On each T (Hi,j), j ∈ ki, L(T (Hi)) has its natural

interpretation. We interpret it “trivially” outside of the T (Hi,j): a unary function of

L(T (Hi)) is defined as the identity outside of Ti and an n-ary predicate is taken to be

empty outside of
⋃
j∈ki T

n
i,j . Note that each T (Hi) is an L(T (H))-substructure of T (H).

We set Li := Ti ∩ L id est Li is a predicate for the subset
⋃
j∈ki Hij of H.

Lemma 8.19. If I finite then
⊔
i∈I Hi.ki is completely axiomatized by the axioms and

axiom schemes expressing for each i ∈ I:
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1. C-structure with a root, say r, in its canonical tree; Er = {r};

2. ∀x (
∨
k∈I Lk(x)) and ∀x (Li(x)→

∧
j 6=i ¬Lj(x));

3i. Li is a union of cones at r;

4i. Li has exactly ki cones at r, where ki ∈ N ∪ {∞} and ki = ki iff ki ∈ N;

5i. (x 6∈ Df → f(x) = x) and (x ∈ Df → r < f(x) ≤ x), for any unary function

f ∈ L(T (Hi));

6i. R ⊆ Tni and ¬R(x) for any tuple x having among its coordinates x and y such that

Er(x ∧ y), for any n-ary predicate R ∈ L(T (Hi)) \ L1;

7i. by axioms 5i, for any cone C at r, T (C) is an L(T (Hi))-substructure for any i ∈ I;

if C is contained in Li, then T (C) is required to be elementary equivalent to T (Hi)
as an L(T (Hi))-structure.

If for any i ∈ I, T (Hi) eliminates quantifiers (respectively is ℵ0-categorical), then T (
⊔
i∈I Hi.ki)

has the same property.

Proof: The three results, completeness, transfer of quantifier elimination, and transfer

of ℵ0-categoricity, are proved using a back-and-forth argument. Axioms 1 to 6 imply that:

- {r} is an L(T (H))-substructure with a uniquely determined isomorphism type

- any cone at r in T (H) is an L(T (H))-substructure (due to axioms 5)

- there is no interaction between these cones or {r} via predicates or functions from

L(T (H)) \ L1 (due to axioms 6, indeed x and y are in different cones at r exactly when

x ∧ y = r).

Consequently the L(T (H))-structure of the canonical tree of a model is completely deter-

mined by its restrictions to cones at r. To prove the lemma, we consider first the case

where I is a singleton:

Claim 8.20. Assume ki > 1. Then the theory given by axioms 1, 3i, 4i, 5i, 6i and 7i

completely axiomatizes Hi.ki. If Hi is ℵ0-categorical, so is Hi.ki. If T (Hi) eliminates

quantifiers in L(T (Hi)), so does T (Hi.ki) in L(T (Hi)) ∪ {Er}.

Proof: For any model M of this theory, T (M) is the disjoint union of {r} and ki cones

at r, all elementary equivalent to T (Hi) as L(T (Hi))-structures. Take two ℵ0-saturated

models M and N of this theory and a finite tuple x from T (M). By the considerations

above we may assume x contains r and thus decomposes x = (r, x1, ..., xn) with xi a

tuple consisting of elements all in the same cone at r and xi and xj in different cones

for i 6= j. Two elements y and z are in the same cone at r iff ¬Er(y ∧ z). Consequently

a tuple y ∈ T (N) with same quantifier free 0-type as x decomposes in the same way

y = (r, y1, ..., yn). Let a ∈ T (M) be a single element. Assume first a is in the same cone Γ
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at r as, say x1. Since Γ has the same theory as T (Hi) it eliminates quantifiers and there

is b ∈ T (N) in the cone of y1 at r such that (x1, a) and (y1, b) have the same quantifier

free type in this cone (type in the theory of T (Hi)). If a is in the cone at r of none of the

xi, then as the number of such cones is ki in both M and N , there exists b ∈ T (N) in

none of the cones of the yi with same quantifier free type as a. In both cases (x, a) and

(y, b) have same quantifier free type in T (M). a

An arbitrary model M of axioms of Lemma 8.19 is of the form
⊔
i∈I Li(M) with Li(M) ≡

Hi.ki by the case where I is a singleton or trivially if ki = 1. A finite tuple x from T (M)

containing r may be uniquely written x = (r, (xi)i∈I) with xi a finite tuple in Ti(M)\{r}.
Another tuple y in a model with same quantifier free type as x is of the form (r, (yi)i∈I)

with yi in Ti with same type as xi. As in the proof of previous claim we can carry on

an infinite back-and-forth between two ℵ0-saturated models. We argue with complete

types for each component in some Ti to prove completeness and with complete qf types

to transfer qe, using the claim above, or direct quantifier elimination in Hi if ki = 1. The

transfer of ℵ0-categoricity is clear.

Lemma 8.21. Assume I is finite, ki is infinite for at most one i ∈ I, say i0.

If all T (Hi) are pure trees and T (Hi) 6≡ T (Hk) for i 6= k in I, then
⊔
i∈I Hi.ki is a pure

tree too.

If T (Hi0) is a pure colored good tree and for any i ∈ I, Hi is C-minimal then
⊔
i∈I Hi.ki

is C-minimal too.

Proof: We extend each language L(T (Hi)) with new relations to get quantifier elimi-

nation in T (Hi). By Lemma 8.19, T (H) eliminates quantifiers in L(T (H)). This shows

that definable subsets of a model are Boolean combinations of definable subsets of the Li.

Since I and all ki except at most one are finite, each Li is a finite union of cones at r or

complement of such an union.

This shows Li is quantifier free definable with the pure C-relation and parameters. The

condition “T (Hi) 6≡ T (Hk)” provides a definition without parameters.

Since the Li are quantifier free definable with the pure C-relation H is C-minimal if all

Li are. Let us prove Li is C-minimal. For i 6= i0 the argument is the same as just used:

since ki is finite definable subsets of Li are Boolean combinations of definable subsets of its

cones at r. As these cones are C-minimal (by Proposition 2.8), Li is C-minimal too. For

i = i0 with ki0 infinite, consider on the canonical tree Ti0 of Li0 the singleton E := {r}, e
the constant function sending Ti0 to r and ∼ the equivalence relation defined as in Lemma

5.11, case (2). Now Proposition 5.15 applies and shows that, if T (Hi0) is a an n-colored

good tree and X is a 1-colored good tree of color (∞, 0), then Ti0 ≡ X o T (Hi0) as pure

trees. Thus Ti0 is a pure (n+1)-colored good tree hence its set of leaves is C-minimal.

49



8.3.2. Sticking / in a pruned cone M of a C-structure C whose canonical tree has a root

Let be given two C-structures, first C, which has a root in its canonical tree, and then

M := (M,V ), where V is a branch without leaf from T (M). We define the C-structure

M / C, sticking of C into (M,V ). The underlying set of M / C is the disjoint union

M ∪̇C, its canonical tree the disjoint union T (M)∪̇T (C) equipped with the unique order

extending those of T (M) and T (C) such that V = {t ∈ T (M); t < T (C)}.

Canonicity: M / C is the unique C-set which is the union of M and C and where C
becomes a thick cone with basis the supremum of V .

Language: As in previous subsection, we assume some additional structures given on the

canonical trees by languages L(T (M)) and L(T (C)), which are such that L(T (M)) \ L1

and L(T (C)) \ L1 consist only of predicate or unary function symbols. Among predicates

of L(T (M)) \ L1 there is V . Among predicates are Df and Ff for each unary function

f ∈ L(T (M)) or L(T (C)) and the interpretation of the triple (f,Df , Ff ) in T (M) is

required to satisfy Conditions (4∗) of section 5.3

We consider M / C in the language

L(T (M / C)) := L1∪̇{Ea, E≥a, Ga}∪̇(L(T (M)) \ L1)∪̇(L(T (C)) \ L1)∪̇{∧V }

where Ea, E≥a and Ga are unary predicates for the elements of, respectively, the singleton

consisting of the basis, call it a, of the thick cone C, C and M ; L(T (M)) and L(T (C)) are

naturally interpreted in T (M) and T (C) respectively, and then trivially (see below) outside

of T (M) and T (C) respectively; ∧V is the unary function sending a point x ∈ T (M) to

x ∧ V and the identity on T (C).

Lemma 8.22. M / C is completely axiomatized by the axioms and axiom schemes ex-

pressing

1. C-set

2. E≥a is a thick cone in the canonical tree, call a its basis

3. Ea is the singleton {a}

4. Ga is the complement of E≥a

5. V = {x ∈ Ga;x < a}

6. Ga(x)→ ∧V (x) = x ∧ V ; E≥a(x)→ ∧V (x) = x

7. x 6∈ Df → f(x) = x for any unary function f ∈ L(T (M / C))

8. x ∈ Df → a ≤ f(x) ≤ x, for any unary function f ∈ L(T (C)); ¬R(x) for any tuple

x having some coordinate in Ga and any predicate R ∈ L(T (C)) \ L1
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9. by axioms 7 and 8, E≥a is an L(T (C))-substructure; it is required to be elementary

equivalent to T (C)

10. x ∈ Df → f(x) ≤ x, for any unary function f ∈ L(T (M)); ¬R(x) for any tuple x

having some coordinate in E≥a and any predicate R ∈ L(T (M)) \ L1

11. by axioms 7 and 10, Ga is an L(T (M))-substructure; it is required to be elementary

equivalent to T (M).

If T (M) and T (C) eliminate quantifiers, or are ℵ0-categorical, then T (M / C) has the

same property. If M and C are C-minimal then M / C has the same property.

Proof: The axioms imply that any model has a canonical tree of the form Ga / E≥a,

with the interpretation of the language we have considered. Consequently it is easy to

carry on an infinite back and forth between two ℵ0-saturated models. This shows all

assertions except C-minimality. By transfer of quantifier elimination Ga and E≥a are

stably embedded in Ga / E≥a. Since the set of leaves of Ga / E≥a is the union of those

of Ga and E≥a, M / C is C-minimal if M and C are.

8.4. Proof of proposition 8.18 and reconstruction of M from Θ(M)

Consider a finite meet-semi-lattice Ξ0, A0 its root and A ∈ Ξ0 \ {A0}. Vertices and

edges are labeled as follows.

- All vertices are labeled. Labels of a vertex A ∈ Ξ0 are of several types: two integers nA ≥
1 and sA, cardinals kA,1, . . . , kA,sA ∈ N≥1∪{∞} and complete L1-theories ΣA,1, . . . ,ΣA,sA

which are not, at this point, supposed all different.

- Some edges are labeled by a complete L1-theory. For A 6= A0, the complete L1-theory

possibly labeling (A−, A) is denoted Σ(A−,A).

We must now reformulate conditions (1) to (10) of Lemma 8.17, and (11) of Proposition

8.18 in terms of meet-semi-lattice and labels only. For example, due to Lemma 8.16, the

condition “−∞ exists in T (M)” will be replaced by “sA0
= 0, A0 has a unique successor

(in Ξ0), say B and nB = 1”. So conditions (1′), (2′), (3′), (6′), (7′), (8′), (9′) and (10′) are

the same as (1), (2), (3), (6), (7), (8), (9) and (10) in Lemma 8.17 and (11′) is the same

as (11) in Proposition 8.18 with Θ replaced with Ξ0, “−∞ exists in T (M)” replaced as

indicated and “]A−, A[ not empty” replaced with “there is an L1-theory labeling (A−, A)”.

The other conditions are:

(4’) Assume A 6= A0. If A has a unique successor, say B and nB = nA, then sA ≥ 1.

(This reformulation of (4) into (4’) uses Lemma 8.23.)

(5’) An L1-theory possibly labeling an edge of Ξ0 is a complete theory of colored good

tree.
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Lemma 8.23. Given a finite meet-semi-lattice tree Ξ0, A0 its root, Ξ0 labeled with a

coefficient nA to each A ∈ Ξ0 and satisfying (1’), there is a unique ordered set Ξ which is

the disjoint union of antichains UA, A ∈ Ξ0, and satisfying that, for all A,B ∈ Ξ0:

(a) |UA| = nA,

(b)( for all a ∈ UA, exists b ∈ UB, a < b in Ξ) iff A < B in Ξ0,

(c) if B− = A and a ∈ UA, then there are exactly |nB/nA| elements b ∈ UB such that

b > a.

Furthermore:

(d) Ξ is a meet-semi-lattice tree,

(e) the set of the UA ordered by the order induced by the order of Ξ is isomorphic to Ξ0,

(f) any automorphism of the labeled tree Ξ0 lifts to an automorphism of the tree Ξ,

(g) given two points in Ξ belonging to the same antichain of Ξ0, there is an automorphism

of Ξ sending one to the other one,

(h) for A ∈ Ξ0, Ξ has a unique branch starting from some (or any) a ∈ A iff (Ξ0 has a

unique branch starting from A and, if B− = A then nB = nA).

Proof: We define inductively an order on Ξ :=
⋃̇
A∈Ξ0

UA. We take UA0
a singleton, as

it should be. Let Ξ1 ⊆ Ξ0 satisfying [(A,B ∈ Ξ0 & A < B & B ∈ Ξ1) ⇒ A ∈ Ξ1] and

assume
⋃̇
A∈Ξ1

UA already ordered in such a way that the UA are antichains and satisfy

(a), (b) and (c) for A,B ∈ Ξ1. Let X ∈ Ξ0 \Ξ1 such that X− =: B ∈ Ξ1. Since X− = B,

nB divides nX which allows us to take for each y ∈ UB an antichain Wy with nX(nB)−1

elements and UX :=
⋃̇
y∈UBWy; for x ∈ UX and y ∈ UB we set x > y iff x ∈ Wy, with no

other order relation between elements from UB ∪UX . So we have extended the order from⋃̇
A∈Ξ1

UA to
⋃̇
A∈Ξ1

UA∪̇UX . Due to (a), (b) and (c) we made the only possible choice.

By construction (a), (b) and (c) are true on Ξ1 ∪ {X}.
(d) The order Ξ we constructed is a meet-semi-lattice tree because Ξ0 is one and nA0

= 1.

(e) and (h) are clear.

(f) is proven by induction. Let σ be an automorphism of the labeled tree Ξ0, Ξ1 ⊆ Ξ0, X

and B as at the beginning of the proof of (a), (b) and (c) but we assume now furthermore

Ξ1 closed under σ. We assume also there is τ a partial automorphism of the tree Ξ defined

on
⋃̇
A∈Ξ1

UA and lifting σ � Ξ1. Let X = {X,σ(X), σ2(X), . . . , σr−1(X)} be the orbit of

X under σ. Since σ preserves the order, X is an antichain and σi(X)− = σi(B) which

belongs to Ξ1 since Ξ1 is closed under σ. So we can extend τ on
⋃̇
A∈Ξ1∪XUA by taking

any bijective map Uσi(X) → Uσi+1(X) for any i, 0 ≤ i < r.

(g) Let A ∈ Ξ0 and x, y ∈ UA. We carry on the induction of the proof of (f) starting

with σ the identity of Ξ0, τ the identity on
⋃
{X∈Ξ0;¬(X≥A)} UX and choosing a function

UA → UA sending x to y.

Theorem 8.24. Given a finite meet-semi-lattice tree Ξ0 labeled with coefficients and the-

ories satisfying (1’) to (7’), consider the language L := {C} ∪ {PA,i;A ∈ Ξ0, 1 ≤ i ≤
sA} ∪ {PA−,A;A ∈ Ξ0, A 6= A0} where all new symbols represent unary predicates. Then
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there exists a unique finite-or-countable L-structure M such that the tree Ξ built from Ξ0

and {nA;A ∈ Ξ0} according to Lemma 8.23 embeds in T (M)∗ in such a way that for any

A ∈ Ξ0, A 6= A0:

(a) Let A,B ∈ Ξ0, B = A−, and a, b ∈ Ξ, a ∈ A, b ∈ B, b < a; then, either there is no

theory labeling the edge (B,A) and b is the predecessor of a in T (M), or (Γ(]b, a[), ]b, a[)

is model of ΣV(B,A) (as defined in Lemma 8.12 from the theory labeling (B,A)); PB,A is

the union of all pruned cones C(]b, a[) for a and b as above. Any cone at b which does

not contain a is contained in one of the PB,i and, for each i ≤ sB, PB,i ∩ C(b) consists of

exactly kB,i cones at b, all with a canonical tree model of ΣB,i.

(b) “Pieces” PA,i and PA−,A, A ∈ Ξ0, 1 ≤ i ≤ sA, are stably and purely embedded in M
and the structure M is induced by them, in the sense that the definable sets of M are

exactly the Boolean combinations of definable sets of these pieces.

ThenM is C-minimal and ℵ0-categorical and any automorphism of the labeled tree Ξ that

preserves the class in Ξ0 extends to an automorphism of T (M).

Unlike the proof of Lemma 8.23, here we use a downward induction, more precisely an

induction of the depth of vertices, that we now define.

Definition 8.25. Let Ξ be a finite semi-lattice tree. The depth of a vertex in Ξ is the

minimal function from Ξ to ω such that:

- if a is a maximal element of Ξ, depth(a) = 0,

- if x < y, depth(x) ≥ depth(y) + 1.

Proof: We will define simultaneously C-structures Ma and Na for a ∈ Ξ, by induction

on depth(a), Ma for each of these a and Na if furthermore a is not the root of Ξ. The

Ma are intended to become thick cones inM and the Na cones, and they will be the only

possible choice thanks to the canonicity of both constructions of connection and sticking.

Their languages are, if a ∈ A ∈ Ξ0, L(Ma) := {C} ∪ {PB,i;B ∈ Ξ0, B > A, 1 ≤ i ≤
sB} ∪ {PB−,B ;B ∈ Ξ0, B > A} and, if Na 6= Ma, L(Na) := L(Ma) ∪ {PA−,A}. As pre-

viously we work with canonical trees: T (Ma) and T (Na) will be shown by induction to

eliminate quantifiers in languages L(T (Ma)) and L(T (Na)) respectively, and to be ℵ0-

categorical trees. By induction too the Ma and the Na are C-minimal.

Let us start.

Theories such as ΣA,i or Σ(A−,A), A ∈ Ξ0, appear among the labels. By (6’) each theory

ΣA,i is the theory of some n-colored good tree for some integer n and we consider ΣA,i in

its elimination language L(ΣA,i) := L+
n . Let ΓA,i be the unique finite-or-countable model

of ΣA,i and CA,i the C-set with canonical tree ΓA,i.

By (5’) if the label Σ(A−,A) exists, consider ΣV(A−,A), its enrichment as in Lemma 8.12.

It eliminates quantifiers in the language L(ΣV(A−,A)) := LV+
n . Let (Γ(A−,A), VA) be the

unique finite-or-countable model of ΣV(A−,A) and C(A−,A) the C-set with canonical tree

Γ(A−,A).
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- Let A be maximal in Ξ0 and a ∈ A. Due to axiom (2′) either sA = 0 or Σ1≤i≤sAkA,i ≥ 2.

If sA = 0 we take for Ma a singleton and L(T (Ma)) := L1. If Σ1≤i≤sAkA,i ≥ 2 we define

Ma :=
⊔

1≤i≤sA CA,i · kA,i. Each ΓA,i is considered in its elimination language L(ΣA,i)

and L(T (Ma)) is given by Lemma 8.19. It eliminates quantifiers. It is to be noticed that

in both cases T (Ma) has a as a root.

- If A is not maximal in Ξ0 and a ∈ A, we take forMa the connection of kA,i copies of CA,i
and (nB : nA) copies of Nb, for 1 ≤ i ≤ sA and B− = A, b ∈ B, b > a. Due to condition

(4’) this connection is well defined since the number of connected C-structures is at least

2. Here again the ΓA,i, the Nb and T (Ma) are considered in their elimination languages

(some L+
nA,i for the ΓA,i, given by induction hypothesis for the Nb, and by Lemma 8.19

for T (Ma)) and T (Ma) has a as a root.

- For A different from the root A0 of Ξ0, if there is a theory Σ(A−,A) we set Na =

Ma.(C(A−,A), VA). If there is no theory labeling (A−, A) we set Na =Ma.

- In the case where sA0
= 0, A0 has a unique successor B in Ξ0 with nB = 1, call b the

unique element of B; we defineM = Nb; then T (M) has no root and A0 embeds in T (M)∗

as {−∞}. Else, we define M =Ma0
, where A0 = {a0}.

We look now a bit more carefully at languages in the above construction. An easy down-

wards induction shows that, for a, c ∈ A ∈ Ξ0, the two structures (T (Ma),L(T (Ma)))

and (T (Mc),L(T (Mc))) are isomorphic, as are (T (Na),L(T (Na))) and (T (Nc),L(T (Nc)))
when A 6= A0. And indeed we choose to identify the languages L(T (Ma)) and L(T (Mc))

on one hand and L(T (Na)) and L(T (Nc)) on the other hand. This means that in the sit-

uation where a, c > b, b ∈ A− when constructingMb by a connection, T (Na) and (T (Nc)
are considered as two copies of the same structure, like Hi,j and Hi,k in Subsection 8.3.1.

We do not do any other identification: if for example the same language Ln appears as

elimination language in Na and Mb or in Na and Nc for two nodes a and c which do not

belong to the same antichain, then it will be duplicated, one avatar for each node.

Note that the L(T (Ma))-structure of TMa) is definable in L(Ma) and the L(T (Na))-

structure of T (Na) definable in L(Na). Hence the L(T (M))-structure of T (M) is defin-

able in L(M). By construction Ξ embeds into T (M)∗ and M satisfies properties (a) and

(b) ((b) follows from quantifier elimination). By induction this M is unique (above Ξ)

due to ℵ0-categoricity of labels theories and canonicity of connection and sticking. It is

ℵ0-categorical and C-minimal due to Lemmas 8.19, 8.22 and 8.21.

Let τ be an automorphism of Ξ preserving the projection Ξ→ Ξ0. We define by induction

an automorphism ρ of T (M) extending τ . Again there are two induction steps. Either ρ

is defined on Ξ∪ T (Ma) (or on Ξ∪ T (Nb) for each b, b− = a) and we want to extend it to

Ξ ∪ T (Na) (or to Ξ ∪ T (Ma)). Since τ preserves classes in Ξ0 it preserves labels, and the

conclusion follows by ℵ0-categoricity of involved theories and canonicity of the sticking (or

connection) construction.
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Proof of Proposition 8.18: As already noticed just after the statement of Proposition

8.18, it is enough to prove that any automorphism of the labeled tree Θ(M) lifts up to an

automorphism of T (M)∗ (M is here the countable model). Thus Proposition 8.18 follows

immediately from Lemma 8.23 and Theorem 8.24.

Theorem 8.26. If the labeled tree Ξ0 satisfies furthermore (8’), (9’), (10’) and (11’) then

M is a pure C-set, Θ(M) = Ξ and Θ(M) = Ξ0.

Proof: Let Ξ≥a := {x ∈ Ξ;x ≥ a}. We show, by induction on vertices depth, that

Ξ≥a = Θ(Ma) and, if Na 6= Ma and b ∈ B := A−, b < a, Θ(Na) = Ξ≥a ∪ {b} where b

plays here the role of −∞ for the tree Θ(Na).

1. a ∈ Θ(Ma): this means that Ma is not indiscernible, which follows from (9’) for A

maximal in Ξ0 and from (10’) if A is not maximal.

2. a remains in Θ(Na) either trivially if a has a predecessor in T (M) or because of (10’).

Since a is in Θ(Na) it is ∅-definable (in Na) and the tree Ξ≥a remains in Θ(Na).

3. So Ξ embeds in Θ(M). Elements of Ξ are thus ∅-algebraic. Elements of Ξ0 are ∅-
definable due to (11’). An induction (using Lemma 8.21 and (8’)) shows thatM is a pure

C-set.

4. Any point in T (M) \ Ξ is in some canonical copy of either some pruned cone Γ(A−,A)

or some cone ΓA,i. Since C-sets associated to these trees are indiscernible, an element of

Γ(A−,A) or ΓA,i can belong to Θ(M) only if it belongs to U (see Definition 8.3), which is

impossible in both situations.

This proves that Θ(M) is exactly Ξ and consequently Θ̄(M) is Ξ0.
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References

[AN] Samson A. Adeleke et Peter M. Neumann, Relations Related to Betweenness: Their

Structure and Automorphisms, Memoirs of the American Mathematical Society 623

(1998).

[BC] Silvia Barbina and Katie M. Chicot, Towards a Classification of Countable 1-

Transitive Trees: Countable Lower 1-Transitive Linear Orders, Orders 35 (2018), 215-

231.

[CT] Katie M. Chicot and John K. Truss, Countable 1-Transitive Trees, in Groups, Mod-

ules and Model Theory - Surveys and Recent Developments (Droste, Fuchs, Goldsmith
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DEFINABLE COMPLETENESS OF P -MINIMAL FIELDS AND

APPLICATIONS
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Abstract. We show that every definable nested family of closed and bounded subsets of a
P -minimal field K has non-empty intersection. As an application we answer a question of
Darnière and Halupczok showing that P -minimal fields satisfy the “extreme value property”:
for every closed and bounded subset U ⊆ K and every interpretable continuous function
f : U → ΓK (where ΓK denotes the value group), f(U) admits a maximal value. Two further
corollaries are obtained as a consequence of their work. The first one shows that every
interpretable subset of K × Γn

K is already interpretable in the language of rings, answering
a question of Cluckers and Halupczok. This implies in particular that every P -minimal field
is polynomially bounded. The second one characterizes those P -minimal fields satisfying a
classical cell preparation theorem as those having definable Skolem functions, generalizing a
result of Mourgues.

This article has already been published : Journal of Mathematical Logic, Vol. 22, Number
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Symmetric Real Semigroups. A summary of results.

M. Dickmann∗ A. Petrovich†

March 20, 2023

1 Introduction

The subject of this paper originates in the preprint [D]. The motivation of the latter was the
search for examples of real semigroups which are fans (RS-fans) beyond those given in [DP2]. In
[D] a detailed study was carried out of the real spectrum of and the real semigroups associated
to the rings F [[G ]] of formal power series with coefficients in a formally real (i.e., orderable)
field F and exponents in the positive cone G+ of an arbitrary totally ordered abelian group G.

For the reader’s benefit we begin with a reminder of the main results proved in [D] that bear
a relation with those summarized in the later sections §§ 4 – 8. To abridge we will frequently
write A for rings of type F [[G ]].

2 A summary of results from [D].
2.1 Basics. (a) [D, Fact 2.7]. The set of all prime ideals of A = F [[G ]] is in an inclusion
reversing bijective correspondence with the set of convex subgroups of G; hence it is totally
ordered under inclusion.
(b) [D, Proposition 2.8]. Every prime ideal I of A is real (i.e.,

∑n
i=1 a

2
i ∈ I with a1, . . . , an ∈ A

implies a1, . . . , an ∈ I).
(c) Notation. • The rings A = F [[G ]] carry a natural (Krull) valuation defined by:

v (
∑

g∈G+ agX
g) = min supp (

∑
g∈G+ agX

g),

where supp (
∑

g∈G+ agX
g) = {g ∈ G+ | ag 6= 0} for a non-null series, and v(0) = ∞. For a

non-zero series a ∈ A we denote by a
v(a)

the smallest non-zero coefficient of a.
• (Real semigroups.) For the definition, notation and basic results concerning real semigroups
(RS) the reader is referred to [DP1]. The most important examples are the RSs, G

R
, associ-

ated to (commutative, unitary) rings R, see [DST, 13.6.5, pp. 536-539]. The element in G
R

corresponding to an element a ∈ R is denoted by a. We denote by X
G

the set of characters
of the RS G, i.e., the RS-homomorphisms G−→3, where 3 = {1,−1, 0} is endowed with its
(uniquely determined) structure of RS, cf. [DP1, Corollary 2.4, p. 109] or [DP2, Example 2.8,
p. 13]. The zero-set of an element a ∈ G is Z(a) := {h ∈ X

G
|h(a) = 0} and the zero-set of a

character h ∈ X
G
is Z(h) := h−1[0]⊆G.

(d) [D, Theorem 3.1]. (i) The family {Z(a) | a ∈ A} of zero-sets of elements of G
A

is totally
ordered under inclusion.
(ii) The zero-sets of characters of G

A
are in one-one, inclusion preserving, correspondence with

the prime ideals of G
A
. Hence, they are totally ordered under inclusion. It follows that G

A
has

a unique maximal ideal. 2

∗ IMJ-PRG, Paris, France; email: dickmann@math.univ-paris-diderot.fr.
†Universidad de Buenos Aires, Argentina; email: apetrov@dm.uba.ar
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2.2 Characterizing the elements of Sper (F [[G ]]).

The elements of the real spectrum of the rings A := F [[G ]]) are determined by objects of three
types:
• A total order T of the coefficient field F ;
• A convex subgroup C of G (possibly improper);
• A subgroup H of C of index 1 or 2,
as follows:

Definition 2.2.1 Given a triple of sets T,C,H as above, we define:

α
T,C,H

= { a ∈ A | v(a) > C, or v(a) ∈ H and a
v(a)

>
T

0,

or v(a) ∈ C \H and a
v(a)

<
T

0 } ∪ {0},
and prove:
Theorem 2.2.2 (i) ([D, Proposition 4.3]) For all parameters T,C,H as above, α

T,C,H
∈

Sper (A).
(ii) ([D, Proposition 4.4]) Let α ∈ Sper (A). Then, there are parameters T,C,H such that
α = α

T,C,H
. 2

2.3 The order structure of Sper (F [[G ]]).

For ready reference we recall:
(a) The connected components of a root system (X,�) are the equivalence classes of X
under the relation of having a common �-upper bound, see [DP2, Def. 11.1 (a), p. 62]. For the
definition of a root systrem, see [DST, Appendix A5 (i), p. 584].
(b) Every spectral space comes endowed with a partial order, called specialization, see [DST,
1.1.3, p. 3]. Further, every element of the space lies under a maximal element for this order,
see [DST, Proposition 4.1.2, p. 103]. The specialization partial order of the real spectrum of
any ring is set-theoretic inclusion (and is a root system). For more details, cf. [DST, Chapter
13]. 2

Proposition 2.3.1. ([D, Proposition 5.1]) For i = 1, 2, let Ti be total orders of F , Ci be convex
subgroups of G, and Hi be a subgroup of Ci such that [Ci : Hi] ≤ 2. Then,

α
T2,C2,H2

⊆α
T1,C1,H1

⇔ T
1

= T
2
, C

1
⊆C

2
and H

1
= H

2
∩ C

1
. 2

The following Proposition describes the exact structure of the maximal inclusion chains and the
connected components of the real spectrum of A = Sper (F [[G ]]).

Proposition 2.3.2. ([D, Proposition 5.2]) Let T be a total order of F . Then,
(i) For every subgroup H of G of index ≤ 2, the set

C
T,H

= {α
T,C,H ∩C | C convex subgroup of G}

is a maximal inclusion chain of Sper (A) with minimal element α
T,G,H

and maximal element
α
T,{0} (= α

T,{0},{0}).

(ii) The set
C
T

= {α
T,C,H ∩C | C convex subgroup of G; H subgroup of G of index ≤ 2},

is a connected component of the spectral root system Sper (A), having α
T,{0} as top element.

Every connected component of Sper (A) is of this form for a unique T . 2

2.4 The real semigroup associated to the ring F [[G ]].
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Fact 2.4.1. ([D, Fact 6.1]) For every a ∈ A \ {0}, its image a ∈ G
A
is identical to a

v(a)
Xv(a),

the image in G
A
of the smallest non-zero term of the series a. 2

The value of terms of the form fXg at elements of the real spectrum of A can be explicitely
computed:

Lemma 2.4.2. ([D, Lemma 6.4]) For g ∈ G+, f ∈ F \ {0} and parameters T,C,H as in
Definition 2.2.1, we have:

(fXg)(α
T,C,H

) =


0 if g > C

sgn
T

(f) if g ∈ H
−sgn

T
(f) if g ∈ C \H.

2

Theorem 2.4.3. (Characterization of “bar equality”.) Let a, b ∈ A \ {0}. The following are
equivalent:
(1) a = b.
(2) (i) a

v(a)
· b

v(b)
∈
∑
F 2 \ {0} (i.e., a

v(a)
and b

v(b)
have the same sign in all orders of F.)

(ii) v(a) ∼ v(b) (i.e., v(a) and v(b) belong to the same convex subgroups of G.)
(iii) v(a) ≡ v(b) (mod 2G). 2

2.5 Characterization of the real semigroups G
F [[G ]]

that are fans.

The initial motivation to study the real semigroups associated to the rings A = F [[G ]] of formal
power series was to obtain examples of rings R whose associated RS G

R
is a RS-fan in the sense

of [DP2]. The analysis summarized above achieved a complete answer to this query, and reads
as follows:

Theorem 2.5.1. Let F be a formally real field and let G be a totally ordered abelian group;
A := F [[G ]] denotes the ring of formal power series with coefficients in F and exponents in
G+ = {g ∈ G |G ≥ 0}. The following are equivalent:
(1) The real semigroup G

A
associated to A is a RS-fan.

(2) The preorder
∑
F 2 of F is a (field) fan. 1 2

3 From real spectra to character spaces.
The set-theoretic framework set up for the real spectra of rings is equivalent to a function-
theoretic one for their associated real semigroups. This later approach is akin to our presentation
of symmetric real semigroups in § 4 below. We begin by explicitly stating this equivalence for
rings in general, and then develop some of its consequences in the case of rings of formal power
series.

(a) Given a ring R, to each α ∈ Sper (R) there corresponds a unique character h
α
∈ X

R
defined

by: for a ∈ R, h
α
(α) := sgn

α
(π
α
(a)), i.e., the sign (1, −1 or 0) of π

α
(a) at the total order ≤

α

of R/(α ∩ −α) determined by α (with π
α

: R−→R/(α ∩ −α) canonical). Explicitly,

h
α
(α) =


0 if a ∈ α ∩ −α
1 if a ∈ α \ (−α)
−1 if a ∈ (−α) \ α;

i.e., h
α
(α)(a) = a(α) (a = image of a ∈ R in G

R
). In other words, h

α
is the map dual to the

1 I.e., for f
1
, f

2
∈ F so that −f

1
f
2
6∈

∑
F 2, we have f

1
·
∑
F 2 + f

2
·
∑
F 2 = (f

1
·
∑
F 2) ∪ (f

2
·
∑
F 2).; cf.

[La, Chapter 5].
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element a ∈ G
R
(seen itself as a map). Obviously, Z(h

α
) = α ∩ −α.

The compositional inverse of the assignement α 7−→ h
α
is the map

X
GR
3 h 7−→ α

h
∈ Sper (R),

where α
h

= {a ∈ R |h(a) ∈ {0, 1}}.
(b) Recall (2.3 (b)) that the specialization order of Sper (R) is set-theoretic inclusion; for α, β ∈
Sper (R) we have α⊆β ⇔ h

α
 h

β
.

(c) Back to the case A := F [[G ]], from 2.3.2 we know that every connected component of A is
the set of ⊆-predecessors of the precone α

T,{0}, for a unique total order T of F , and its minimal
elements are all of the form α

T,G,H
with H a subgroup of G of index ≤ 2. We have:

Fact 3.1 (i) By maximality of α
T,{0} Z(α

T,{0}) is the unique (cf. 2.1 (d.ii)) maximal ideal of
G
A
.

(ii) Minimality of α
T,G,H

entails Z(h
T,G,H

) = {0}.
Proof. (i) is clear.
(ii) Assume there is a ∈ Z(h

T,G,H
) such that a 6= 0. From 2.4.1 it follows that a = fXg for

some f ∈ F× and g ∈ G+. Since also −a ∈ Z(h
T,G,H

), by Lemma 2.4.3 we have

a(α
T,C,H

) =

{
sgn

T
(f) if g ∈ H

−sgn
T

(f) if g ∈ C \H,
and

(−a)(α
T,C,H

) =

{
sgn

T
(−f) = −sgn

T
(f) if g ∈ H

−sgn
T

(−f) = sgn
T

(f) if g ∈ C \H,
a contradiction. 2

In the terminology of characters we have proved:

Proposition 3.2 Let A be a ring of formal power series. For every h ∈ X
GA

there are h′, h′′ ∈
X
GA

such that h′′ h h′, Z(h′) = m
GA

, and Z(h′′) = {0}. 2

Our next result about the character space of X
GA

is:

Theorem 3.3 (Coherence principle) If h
1
, h

2
∈ X

GA
are in the same connected component and

h′ is any character of G
A
, then the product h

1
h

2
h′ is also a character of G

A
.

The proof of this result requires a more sophisticated argument than that of the previous
Proposition. Auxiliary results will be stated within the proof.

Proof. Since h
1
, h

2
∈ X

GA
are in the same connected component, by 2.3.2 they are of the form

h
i

= h
T,Ci,Hi

for some (and the same) total order T of F and parameters Ci and Hi as in 2.2.
Let h′ = h

T ′,C′,H′
(possibly T ′ 6= T ). We must prove:

(†) There are a convex subgroup C of G and a subgroup H of C of index ≤ 2 such that
h

1
h

2
h′ = h

T ′,C,H
.

(Note, by 2.3.1, that if h
1
h

2
h′ = h

T ′′,C,H
, then T ′′ = T ′.)

Let a 6= 0 be an arbitrary element of G
A
\ {0}. By 2.4.1 we may assume that a = fXg, with

f ∈ F× and g ∈ G+. If g > C
1
∩ C

2
∩ C ′ (i.e., g larger that one of C

1
, C

2
or C ′ as these are

comparable under inclusion) then, by 2.4.2, k(a) = k(fXg) = 0 for k equal to one of h
1
, h

2
or

h′, and hence (h
1
h

2
h′)(a) = 0. Then, a likely candidate for C in (†) is C

1
∩ C

2
∩ C ′. For this

guess to be confirmed we need to find a subgroup H of C so that [C : H] ≤ 2 and (†) holds.
The answer is provided by:
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Proposition A. Let G be an abelian group and let S
2
(G) be the set of subgroups of G of

index at most two. Then S
2
(G) is an abelian group under the group operation ∗ defined, for

H
1
, H

2
∈ S

2
(G), by:

H
1
∗H

2
= (H

1
∩H

2
) ∪ (Hc

1
∩Hc

2
) = (H

1
4H

2
)c.

where 4 denotes symmetric difference. G is the unit for the operation ∗. S
2
(G) is of exponent

two. 2

Lemma B. Let G be an abelian group and let H
1
, . . . ,H

n
∈ S

2
(G) with n odd. Then

H
1
∗ . . . ∗H

n
= H

1
4 . . .4H

n
. 2

Applying these results to the previous situation (where n = 3, H
3

= H ′), the operation
(H

1
4H

2
4H ′) ∩ C is well-defined, i.e., gives a subgroup H of index ≤ 2 of the convex sub-

roup C of G. Direct verification using the identity

H
1
4H

2
4H ′ = (H

1
∩H

2
∩H ′) ∪ (Hc

1
∩Hc

2
∩H ′) ∪ (Hc

1
∩H

2
∩H ′ c) ∪ (H

1
∩Hc

2
∩H ′ c),

where Kc := C \K for K ∈ {H
1
, H

2
, H ′}, and item (b) in § 3 above, prove (†) and therefore

h
1
h

2
h′ ∈ X

GA
.

We illustrate this verification by checking a couple of cases (with a = fXg):
• If g ∈ H

1
∩ H

2
∩ H ′, by 2.4.2 we have h

i
(a) = sgn

T
(f) for i = 1, 2 and h′(a) = sgn

T ′
(f),

whence (h
1
h

2
h′)(a) = sgn

T
(f)2 · sgn

T ′
(f) = sgn

T ′
(f).

• If, say, g ∈ Hc
1
∩H

2
∩H ′ c, then h

1
(a) = −sgn

T
(f), h

2
(a) = sgn

T
(f), h′(a) = −sgn

T ′
(f), then,

again by 2.4.2:
(h

1
h

2
h′)(a) = −sgn

T
(f) · sgn

T
(f) · (−sgn

T ′
(f)) = −1 · (−sgn

T ′
(f)) = sgn

T ′
(f). 2

Theorem 3.3 can be generalized by a natural extension of the arguments used in the preceding
proof. The following notion is useful in these generalizations:
Definition 3.4 Let G be a RS. We say that a finite sequence 〈h

1
, . . . , h

n
〉 of characters in X

G

is coherent if the product
∏n
i=1 hi is a character. 2

In terms of this notion we get:

Theorem 3.3′. Let A be a ring of formal power series. Given characters h
1
, h

2
, g

1
, . . . , g

n−2
∈

X
GA

such that h
1

and h
2

are in the same connected component of X
GA

, the sequence
〈h

1
, h

2
, g

1
, . . . , g

n−2
〉 is coherent if and only if 〈 g

1
, . . . , g

n−2
〉 is coherent. 2

In fact, this result holds for any RS satisfying the conditions of Proposition 3.2.
Remark 3.5 A rather remarkable fact is that the coherence principle stated in Theorem 3.3′ is
equivalent for any RS satisfying the conditions of Proposition 3.2 to the following (apparently)
far more general property:

(Generalized Coherence Principle) Given characters f
1
, . . . , f

n
, g

1
, . . . , g

n
∈ X

G
such that

for all i ∈ {1, . . . n}, g
i
and f

i
are in the same connected component of X

G
, if one of these

sequences is coherent, so is the other.

In fact, this is just one of a series of (generalized) coherence principles, all equivalent under the
hypotheses on the RS G stated above. A particular case that will be used below (see axiom
[SYM.3] in Definition 4.1) is when the zero-set of all f

i
is the maximal ideal of G and g

i
 f

i
for all i = 1, . . . , n 2

4 Symmetric real semigroups.
The properties of the real semigroups associated to the rings of type F [[G]] proved in § 3 (see
3.2, 3.3, 3.3′, 3.5), suggest the following notion:

2 The given sequence may have repetitions.
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Definition 4.1 A real semigroup, G, is called symmetric if it satisfies the following require-
ments:

[Z] The family {Z(a) | a ∈ G} of zero-sets of elements of G is totally ordered under inclusion.
Equivalently, for all a, b ∈ G, either a2b2 = a2 or a2b2 = b2.

[SYM.1] For all h ∈ X
G
there exists h

0
∈ X

G
such that h

0
 h and Z(h

0
) = {0}.

[SYM.2] For all h ∈ X
G
there exists h

mG
∈ X

G
such that h h

mG
and Z(h

mG
) = m

G
.3

[SYM.3] (Coherence Axiom) Given characters h
1
, . . . , h

n
, g

1
, . . . , g

n
∈ X

G
(n ≥ 1) such that

Z(h
i
) = m

G
and g

i
 h

i
for i = 1, . . . , n, if the sequence 〈h

1
, . . . , h

n
〉 is coherent 4,

so is the sequence 〈 g
1
, . . . , g

n
〉. 2

Remarks 4.2 (1) The coherence axiom [SYM.3] is a weakening —and a relative form— of the
condition defining the notion of a fan in the category ARS of abstract real spectra (ARS-fan):
an ARS-fan is an ARS closed under the product of any three (and hence any odd number) of
its members; see [DP2, Definition 1.3 (2), p. 8]. [Note that the requirement “〈h

1
, . . . , h

n
〉 is

coherent” implies (
∏n
i=1 hi)(−1) = −1, and hence that n is odd.]

(2) Fans in the category of real semigroups (RS-fans) and symmetric RS are related but not
identical notions: each of these classes contains members that are not in the other. In fact,
from [DP2, Theorem 7.1, p. 39] it follows that

A symmetric real semigroup G is a RS-fan if and only if every quotient (G/I)\{π
I
(0)}

by a proper ideal I of G is a fan in the category of reduced special groups.

(3) Theorem 4.5 below gives the most significant relationship between the spaces of characters
of RS-fans and of symmetric RS, a relationship that justifies the noun “symmetric” given to the
class defined above. 2

Proposition 4.3 ([DP3, Corollary 7.11]) Let G be a real semigroup with the following property:
For all h, g ∈ X

G
, we have h2g ∈ X

G
.5 Let G∗ be the group of invertible elements of G. With

the representation relation induced from G, G∗ is a reduced special group. 2

The following property characterizes the connected components (cf. 2.3 (a)) of the space of
characters of symmetric real semigroups.
Proposition 4.4 ([DP3, Proposition 7.15]) Let G be a real semigroup satisfying condition [Z]
in 4.1 and
[C] Given g, h ∈ X

G
, if Z(g) ⊆ Z(h), there is h′ ∈ X

G
so that Z(h) = Z(h′) and g h′.

Let h
1
, h

2
∈ X

G
. Then the following are equivalent:

(i) h
1
and h

2
are in the same connected component of X

G
.

(ii) There exists a character h ∈ X
G
such that h

1
 h, h

2
 h and Z(h) = m

G
.

(iii) For all g ∈ G∗, h
1
(g) = h

2
(g). 2

The next Theorem and its Corollary furnish essential tools to study the class of symmetric
RS. They also justify the name “symmetric” given to it.

Theorem 4.5 ([DP3, Theorem 7.16]) Any symmetric real semigroup, G, satisfies the following
conditions:
(i) For every h ∈ X

G
, the set P

h
= {g ∈ X

G
: g h} is an ARS-fan.

(ii) For all characters h
1
, h

2
∈ X

G
such that Z(h

1
) = Z(h

2
), the sets P

h1
and P

h2
are isomorphic

as ARS-fans. 2

3 If G is a RS satisfying condition [Z], m
G

denotes the maximal ideal of G.
4 See 3.4.
5 Equivalently, for all a, b ∈ G, Z(a) ⊂ Z(b) implies Dt

G
(a, b) = {a}.
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Corollary 4.6 ([DP3, Corollary 7.17]) Let G be a symmetric real semigroup. Then every con-
nected component of X

G
is an ARS-fan. Moreover, any two connected components of X

G
are

isomorphic as ARS-fans and, in particular, as abstract real spectra. 2

The following results gives a useful criterion for the isomorphism of finite symmetric real
semigroups.

Theorem 4.7 ([DP3, Theorem 7.21]) Let G,H be finite symmetric real semigroups and let
G∗, H∗ be the reduced special groups of their invertible elements (see 4.3). The following are
equivalent:
(1) G and H are isomorphic (as RS ).
(2) (i) G∗ and H∗ are isomorphic as reduced special groups.

(ii) (X
G
,

G
 ) and (X

H
,

H
 ) are order-isomorphic posets, where

G
 and  H denote the

specialization partial orders of X
G
and X

H
, respectively. 2

5 Representation of symmetric real semigroups by rings of for-
mal power series.

In this section we address the natural question whether every symmetric real semigroup is
isomorphic to the RS associated to some ring of formal power series (in the sense of § 2).
The answer turns out to be negative in general —a counterexample is (briefly) presented in
Proposition 5.2 and Thorem 5.3 below. However, it is positive for finite symmetric RSs, as
shown by:

Theorem 5.1 ([DP3, Theorem 8.3]) Let T be a finite symmetric real semigroup and let F
be a field whose space of orders is isomorphic, as an abstract space of orders, to the space of
characters X

T ∗
of the reduced special group T ∗ of invertible elements of T 6. Then there exists

a totally ordered abelian group G satisfying the following conditions:
(i) G has finite rank 7 and a finite number of subgroups of index 2.

(ii) X
T
is isomorphic (as an abstract real spectrum) to Sper (A), where A = F [[G]], and hence

G
A
is isomorphic to T . 2

Remark. We note that Theorem 4.7 is an essential ingredient in the proof of this representation
theorem. 2

Proposition 5.2 ([DP3, Proposition 8.5 and Corollary 8.6]) Let G be a group of exponent two
with a distinguished element −1 6= 1. Then, there exists an (explicitly constructed ) RS-fan, T

G
,

whose space of characters is a two-level root-system, where:

(i) The set of elements of level 0 (i.e., those whose zero-set is {0}) are in a one-one corre-
spondence with χ(G) 8, the space of characters of the RSG-fan associated to G.

(ii) The level 1 consists of a unique character h
1
with Z(h

1
) = G ∪ {0}.

(iii) h
1
specializes (the character of T

G
corresponding to) each h ∈ χ(G).

These properties guarantee that T
G
is a symmetric RS. 2

6 See Proposition 4.3. The existence of such a field —in fact, a considerably more general result— is proved
in [M, Theorem 4.2.2, p. 65, Remark (2), p. 66, and Corollary 8.7.5, pp. 174-176 ].

7 The rank of a totally ordered abelian group is the cardinality of the set of its convex subgroups.
8 χ(G) denotes the set of group characters of G to ±1, identical with the space of characters of the (unique)

RSG-fan structure on G.
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Finally, the announced counterexample is given by:

Theorem 5.3 ([DP3, Theorem 8.7]) Let H be a group of exponent two and dimension strictly
larger than 2ℵ0 (as a vector space over the two-element field F2). Then the symmetric RS-fan
T
H

is not realizable by any ring of the form F [[G]], where F is a formally real field and G is a
totally ordered abelian group.

To see why this construction yields the desired counterexample we include the (brief) argument
proving the contention.

Proof. Suppose, towards a contradiction, that there exists a formally real field F and a totally
ordered abelian group G such that G

A
is isomorphic to T

H
, where A = F [[G]]. Since T

H
has only

two proper ideals, G has only two convex subgroups, G and {0}. Therefore, G is Archimedean
and hence isomorphic to a subgroup of the additive group <R, 0,+>. On the other hand, since
X
TH

has only one connected component, F has only one order, P . As the character space of
H may be identified with the elements of Sper (A) of the form α

P,G,K
where K is a subgroup

of G of index ≤ 2, and the cardinality of G is ≤ 2ℵ0 , it follows that the cardinality of χ(H) is
at most 22ℵ0 . On the other hand, the dimension of H over F2 being larger than 2ℵ0 , it follows
that its space of characters, or, equivalently, its dual space in the category of vector spaces over
F2 , has cardinality strictly larger than 22ℵ0 , a contradiction. 2

6 Extensions of reduced special groups by 3-semigroups.
6.1 Preliminaries. An important construction in the theory of special groups (SG) is that of
the extension of a SG by a group of exponent 2. As a motivation for an analogous construction
in the realm of real semigroups presented in this section, we begin by briefly recalling the very
basics of the notion of extension for SGs. For a more detailed treatment of this construction
and its basic properties see [ABR, Chapter IV, § 2, pp. 91-95] and [DM, pp. 11-14 and Example
5.18, p. 88].

Definition. Given a special group, G (not necessarily reduced), and a group Γ of exponent
2, the extension G[Γ] is the group G × Γ with unit 1 := (1, 1), distinguished element −1 :=
(−1, 1), and representation relation defined by 9: for g ∈ G, γ ∈ Γ,

D
G[Γ]

(1, (g, γ)) =


D
G

(1, g)× {1} if g 6= −1, γ = 1

G× Γ if g = −1, γ = 1
{1, (g, γ)} if γ 6= 1.

A direct proof that G[Γ] is a special group appears in [Li]. If the SG, G, is reduced, a proof
using the dual framework of abstract order spaces (also called spaces of orderings) can be found
in [ABR, Proposition IV.2.13 (a), p. 93].

A typical example of a extension is the reduced special group of the field of formal power series
F ((X)) with a formally real field F of coefficients: the RSG G

F ((X))
is the extension of the

RSG G(F ) = F×/(
∑
F 2)× of F by the group Z

2
= {±1}. See also [ABR, Corollary VI.1.4 (b)

and Remark VI.1.5 (a), p. 147].

Our concern in this section is whether (and to what extent) there exists a notion of extension
in the realm of real semigroups. We do not know at present of any analog of this notion applying
to RSs in full generality. However, below we present a construction of the extension of reduced
special groups by 3-semigroups (see 6.2 (ii)) that produces real semigroups. This construction

9 The binary representation relation in a SG, G, is determined by defining the set D
G
(1, ·), as for arbitrary

x, y, z ∈ G we have z ∈ D
G
(x, y)⇔ xz ∈ D

G
(1, xy).
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fits well the framework of symmetric RSs and, indeed, has an important role in it, as we will
show in § 7. 2

Definition 6.2 (i) A ternary semigroup (abbreviated TS) is a structure 〈S, · , 1, 0,−1〉 with
individual constants 1, 0,−1, and a binary operation “ · ” such that:
[TS1] 〈S, · , 1〉 is a commutative semigroup with unit.
[TS2] x3 = x for all x ∈ S.
[TS3] −1 6= 1 and (−1)(−1) = 1.
[TS4] x · 0 = 0 for all x ∈ S.
[TS5] For all x ∈ S, x = −1 · x ⇒ x = 0.
We shall write −x for −1 · x.
(ii) The semigroups satisfying conditions [TS1] and [TS2] (no constants other than 1) will be
called 3-semigroups. 2

Remarks and Notation 6.3 (i) The notion of a ternary semigroup is already a part of that
of a real semigroup; see [DP2, Definitions 2.1, pp. 10-11, and 2.7, p. 13]. However, we only
need it explicitly in these last sections.
(ii) Given a group of exponent 2 with a distinguished element −1 6= 1 we denote by X

G
the set

of group homomorphisms G−→{±1} sending −1 to −1. Likewise, X
T
will denote the set of

(TS-)homomorphisms of a ternary semigroup T into 3 (they preserve all three constants of T ),
and the set of (RS-)homomorphisms of a real semigroup T into 3 (they preserve the constants
and the representation relations of T ).
(iii) Given a 3-semigroup ∆, we denote by χ(∆) the set of all semigroup homomorphisms of ∆
into 3. Morphisms in χ(∆) will be denoted by Greek characters.
(iv) Note that a 3-semigroup may or may not have an absorbent element 0 and it does not have
a distinguished element −1. Thus, the morphisms of χ(∆) are only required to preserve product
and send 1 to 1. In particular, if ∆ does not contain an absorbent element, the constant map
sending all of ∆ to 1 is in χ(∆). If ∆ has an absorbent element 0, it is understood that the
morphisms of χ(∆) map 0 ∈ ∆ to 0 ∈ 3. Clearly, an absorbent element (if any) is unique.
(v) If ∆ is a 3-semigroup (with or without a 0), then ∆ \ {0} is also a 3-semigroup. 2

Definition 6.4 Let G be a group of exponent 2 and let ∆ be a 3-semigroup. We set G[∆] :=
(G × ∆) ∪ {0}, where 0 6∈ G × ∆, and define a binary operation · in G[∆] as follows: if
x, y ∈ G[∆],

x · y =

{
0 if x = 0 ∨ y = 0

(gg′, dd′) if x = (g, d) ∧ y = (g′, d′),

where g, g′ ∈ G and d, d′ ∈ ∆. 2

Proposition 6.5 ([DP3, Propositions 0.3 and 0.5, Appendix]) Let G be a group of exponent 2
with a distinguished element −1 (6= 1) and let ∆ be a 3-semigroup. Let 1̂ denote the unit of ∆.
Then (G[∆], ·, (1, 1̂), (−1, 1̂), 0) is a ternary semigroup. If ∆ satisfies condition [Z] (i.e., for all
a, b ∈ ∆, a2b2 = a2 or a2b2 = b2), then G[∆] also satisfies condition [Z],. 2

Our next task will be to analyze the structure of the set X
G[∆]

of TS-characters of the
ternary semigroup G[∆].
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Proposition 6.6 Let G be a group of exponent 2 with a distinguished element −1 (6= 1) and
let ∆ be a 3-semigroup with unit 1̂. Then the following conditions hold:
(i) If h ∈ X

G
and τ ∈ χ(∆), the map h · τ : G[∆] −→ 3 defined by (h · τ)(g, d) = h(g) · τ(d)

if (g, d) ∈ G×∆, and (h · τ)(0) = 0, is a character of ternary semigroups, i.e., h · τ ∈ X
G[∆]

.

(ii) Conversely, given p ∈ X
G[∆]

there are unique characters h ∈ X
G

and τ ∈ χ(∆) such that
p = h · τ . 2

Let ∆ be a 3-semigroup. An ideal of ∆ is a non-empty subset I of ∆ such that I ·∆ ⊆ I.
Note that I is a proper ideal of ∆ if and only if 1̂ 6∈ I.

The next result characterizes the ideals of the ternary semigroup G[∆] in terms of the ideals
of ∆.

Proposition 6.7 ([DP3, Proposition 0.6, Appendix]) Let G be a group of exponent 2 with a
distinguished element −1 and let ∆ be a 3-semigroup. Then the following conditions hold:
(i) If I is an ideal of ∆, then Î = (G× I) ∪ {0} is an ideal of G[∆].

(ii) If J is an ideal of G[∆] and J 6= {0}, there exists a unique ideal I of ∆ such that J = Î. 2

Definition 6.8 Let G be a reduced special group and let ∆ be a 3-semigroup satisfying con-
dition [Z]. We define ternary relations DG[∆] and Dt

G[∆] in G[∆] by the following prescription,
where x, y, z ∈ G[∆]:

x ∈ D
G[∆]

(y, z) ⇔ ∀h ∈ X
G
∀τ ∈ χ(∆)[(h · τ)(x) ∈ D

3
((h · τ)(y), (h · τ)(z)))],

and, similarly, replacing D
3
by Dt

3
, where · is the product of characters defined in 6.6. 2

The following Theorem is of central importance insofar it gives a tractable characterization of
transversal representation in G[∆]. Its proof is long and delicate.

Theorem 6.9 ([DP3, Theorem 0.8, Appendix]) Let G be a reduced special group and let ∆ be
a 3-semigroup satisfying condition [Z]. Then the transversal representation relation Dt

G[∆] (6.8)
satisfies the following formula:

[F ] Dt
G[∆](x, y) =


{x} if Z(x) ⊂ Z(y) or y = 0
{y} if Z(y) ⊂ Z(x) or x = 0
{x, y} if Z(x) = Z(y), x = (g, d), y = (g′, d′) and d 6= d′

DG(g, g′)× {d} if Z(x) = Z(y), x = (g, d), y = (g′, d) and g 6= −g′
x2 ·G[∆] if x = −y,

where Z(x) = {h · τ | (h · τ)(x) = 0, h ∈ XG and τ ∈ χ(∆)}. 2

Corollary 6.10 ([DP3, Corollary 1, Appendix]) Let G be a reduced special group and let ∆
be a 3-semigroup satisfying condition [Z]. Then the transversal representation relation Dt

G[∆]
defined in 6.8 satisfies the following condition:

[C] If x 6= −y and z ∈ Dt
G[∆](x, y) then either z ∈ {x, y} or there are g1, g2, g3 ∈ G[∆]∗ such

that g3 ∈ DG[∆](g1, g2) and zg3 = xg1 = yg2.

Moreover, if ∆∗ = { 1̂ }, transversal representation in G[∆] may be restated in terms of condition
[C], as follows:

Let x, y, z ∈ G[∆] be such that x 6= −y and Z(x) = Z(y). Then z ∈ Dt
G[∆]

(x, y) if and
only if either z ∈ {x, y} or there are g1, g2, g3 ∈ G[∆]∗ such that g3 ∈ DG[∆](g1, g2) and
zg3 = xg1 = yg2,

where ∆∗ is the set of invertible elements of the 3-semigroup ∆. 2
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The following Theorem confirms that, in the present context, extensions of RSGs by 3-
semigroups do yield real semigroups. The proof is delicate.

Theorem 6.11 ([DP3, Theorem 2, Appendix]) Let G be a reduced special group and let ∆ be a
3-semigroup satisfying condition [Z]. Then (G[∆], D

G[∆]
, ·, (1, 1̂), (−1, 1̂), 0) is a real semigroup.2

The next Proposition shows how the RSs of rings of formal power series can be naturally
presented as extensions.

Proposition 6.12 ([DP3, Proposition 0.9, Appendix]) Let F be a formally real field and let G
be a totally ordered abelian group. Let A = F [[G]] be the ring of formal power series with coeffi-
cients in F and exponents in G+. Then the real semigroup G

A
is isomorphic to the extension of

the reduced special group G(F ) = F×/(
∑
F 2)× of F by the 3-semigroup ∆ = {Xg : g ∈ G+}.

2

Our final result in this section characterizes those 3-semigroups ∆ for which all extensions
G[∆] with G a reduced special group, are symmetric.

Theorem 6.13 Let ∆ be 3-semigroup satsfying condition [Z]. Then the following conditions
are equivalent.
(i) If h ∈ χ(∆), there exists h′ ∈ χ(∆) such that h′ h and Z(h′) = {0}.

(ii) If p, q, x ∈ ∆ and px = py, then xy ∈ Id(∆).
Moreover, for every reduced special group G the extension G[∆] is a symmetric RS if and only
if ∆ satisfies conditition (ii). 2

7 Symmetric real semigroups as extensions.
We begin this section by showing that if G is a symmetric real semigroup, the inclusion
i : G∗ ∪ {0} ↪→ G has a retract (Theorem 7.5). This function turns out to be an essential
tool in proving the main result, Theorem 7.6, that every symmetric real semigroup is the ex-
tension of the RSG of its invertible elements (see 4.3) by a suitably chosen 3-semigroup.

Notation 7.1 Given a RS, G, we denote by Xmax
G

(resp., Xmin
G

) the set of maximal (resp.,
minimal) points for the specialization partial order  of the character space X

G
of G. These

sets are not empty; indeed, for every x in any spectral space, X, there are y ∈ Xmin and
z ∈ Xmax such that y x z; cf. [DST, Proposition 4.1.2, p. 103, and Corollary 4.1.4, pp.
104-105]. 2

Remarks 7.2 (i) Let G be a symmetric real semigroup and fix h
0
∈ Xmax

G
. By Theorem 4.5 (i)

the set P
h0

= {g ∈ XG : g h0} is a ARS-fan (a fan as an abstrat real spectrum), and [DP3,
Theorem 7.16] shows that the set F

h0
= {g ∈ Xmin

G
| g h

0
} is a subfan of it.

(ii) Moreover, ∆
h0

=
⋂
g∈Fh0

ker(ĝ) is a saturated subgroup of the reduced special group G
0

=

(G/{0})\{π
0
(0)} and the quotient G

0
/∆

h0
is a RSG-fan whose space of characters is isomorphic

to F
h0

([DP3, Proposition 3, Appendix]). 10

(iii) π
0

: G−→G/{0} and π
h0

: G
0
−→G

0
/∆

h0
denote the respective canonical quotient maps.

2

Theorem 7.3 Let G be a symmetric real semigroup. Let (xi)i∈I be a family of elements of G
such that (π

h0
(π

0
(xi)))i∈I is a basis of the fan G

0
/∆

h0
as a Z2-vector space (cf.7.2 (ii)). Then

for every f ∈ {±1}I and every h ∈ Xmax
G

there exists a unique g
h
∈ U

f
such that g

h
 h (i.e.,

g
h
∈ F

h
∩ U

f
), where U

f
:=
⋂
i∈I U(f(i)x

i
) ∩Xmin

G
. 2

10 Recall that ĝ : X
G
−→ 3 is the map “evaluation at g”: for h ∈ X

G
, ĝ(h) := h(g) ∈ 3.
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Theorem 7.4 Let G be a symmetric real semigroup and let U :=
⋂
i∈I U(x

i
) ∩ Xmin

G
be the

set U
f
defined in 7.3 for the function f ∈ {±1}I with constant value 1. Let µ : U → Xmax

G
be

the map µ(g) = hg where hg is the unique character in Xmax
G

such that g hg. Then µ is an
isomorphism of spaces of orderings. 2

Theorem 7.5 Let G be a symmetric real semigroup. Then there exists a retract r : G −→
G∗ ∪ {0} of the inclusion map i : G∗ ∪ {0} ↪→ G.

Sketch of proof. For each g ∈ G, let π̂
0
(g) : Xmin

G
−→ 3 be the map defined by π̂

0
(g)(h) = h(g)

for h ∈ Xmin
G

. π̂
0
(g) is a continuous function in the topology induced by X

G
, that preserves

the product of any coherent triple in Xmin
G

. In particular, if g 6= 0 we have π̂
0
(g) : Xmin

G
→ 2 =

{−1, 1}. Let µ : U → Xmax
G

be the isomorphism of spaces of orderings defined in Theorem 7.4.

Then, the composition π̂
0
(g) ◦ µ−1 : Xmax

G
→ 3 is a continuous function preserving the product

of any three elements in Xmax
G

. It follows from [M, Corollary 3.2.4] that there exists a unique

g∗ ∈ G∗ such that ĝ∗ = π̂
0
(g) ◦ µ−1. We define the map r : G −→ G∗ ∪ {0} as follows:

r(g) =

{
g∗ if g 6= 0
0 if g = 0.

This map r is the desired retract of the inclusion map i : G∗∪{0} ↪→ G. We only check that r is
a retract. Let g ∈ G∗∪{0}. Since r(0) = 0, it is enough to see that π̂

0
(g) ◦µ−1 = ĝ, for g ∈ G∗.

Let h ∈ Xmax
G

. Since µ−1(h) h, then µ−1(h)(g) = g or, equivalently, µ̂−1(h)(π
0
(g)) = h(g).

Since ĝ(h) = h(g), we conclude that r is a retract. 2

With the map r in hand, below we indicate the main steps leading to:

Theorem 7.6 Let G be a symetric real semigroup and let r : G −→ G∗ ∪ {0} be the retract
of the inclusion map i : G∗ ∪ {0} ↪→ G constructed in the preceding Theorem 7.5. Let ∆ =
{x ∈ G : r(x) = 1}. Then G is isomorphic to G∗[∆], the extension of the reduced special group
of invertible elements of G by the 3-semigroup ∆ . 2

Proposition 7.7 ([DP3, Proposition 2, Appendix]) With notation as in Theorem 7.6, the fol-
lowing conditions hold:
(i) ∆ =

⋂
h∈U ker(h), where U =

⋂
i∈I U(xi) ∩Xmin

G
and (xi)i∈I is a family of elements of G

satisfying the hypothesis of Theorem 7.3.
(ii) If x ∈ G\{0}, then x ∈ ∆ ⇔ π

0
(x) ∈ D

G0
(〈〈π

0
(xi1), . . . , π

0
(xir 〉〉) for some finite

subset {i1, . . . , ir} of I, where 〈〈π0
(xi1), . . . , π

0
(xir) 〉〉 denotes the Pfister form generated by the

coefficients {π
0
(xi1), . . . , π

0
(xir)}. 2

The following result is the key step in the proof of Theorem 7.6:

Theorem 7.8 ([DP3, Theorem 3, Appendix]) With notation as in Theorem 7.6, if the family
(xi)i∈I of elements of G satisfies the hypothesis of Theorem 7.3, we have

x ∈ ∆ if and only if either π
0
(x) = π

0
(1) or π

0
(x) = π

0
(
∏r
j=1 xij )

for some finite subset {i1, . . . , ir} of I. 2

Theorem 7.9 ([DP3, Theorems 5 and 6, Appendix]) Let G be a symmetric real semigroup and
let x, y, z ∈ G\{0} be such that x 6= −y, Z(x) = Z(y) and z ∈ Dt

G(x, y). If r : G−→G∗ ∪ {0}
is the retract constructed in Theorem 7.5, we have:
• xr(x) 6= yr(y) ⇒ z ∈ {x, y}.
• xr(x) = yr(y) ⇒ zr(z) = xr(x) = yr(y). 2

The proof of this last result is long and delicate.
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8 First-order axiomatizability.
Our definition of the symmetric real semigroups is couched in terms of characters (cf. 4.1). A
natural question, then, is whether this class admits a first-order axiomatization in the language
L

RS
= {· , 1, 0,−1, Dt} for real semigroups. The affirmative answer is given by:

Theorem 8.1 Let G be a real semigroup. Then G is a symmetric real semigroup if and only if
it satisfies the following first-order axioms in the language L

RS
of real semigroups:

[Z] ∀a, b ∈ G (a2b2 = a2 ∨ a2b2 = b2). (Condition 4.1.[Z])

[SRS.1] Given a, b1, . . . , bn, x ∈ G\{0}, if ax2 ∈ D
G

(〈〈 b1, . . . , bn 〉〉) and Z(ab1) ⊆ . . . Z(abn),
then ab2n ∈ DG(〈〈 b1, . . . , bn 〉〉), where 〈〈 b1, . . . , bn 〉〉 is the Pfister form generated by the coeffi-
cients b1, . . . , bn.
[SRS.2] ∀a, b ∈ G (Z(a) ⊂ Z(b) ⇒ Dt(a, b) = {a}).
[SRS.3] For all a, b ∈ G, if a 6= −b and c ∈ Dt

G(a, b), then either c ∈ {a, b} or there are
g1, g2, g3 ∈ G∗ such that g3 ∈ DG(g1, g2) and cg3 = ag1 = bg2. 2

Remark. Each of the axioms [SRS.i] (i = 1, 2, 3) above is equivalent to the corresponding
axiom [SYM.i] in Definition 4.1. By far the trickiest of these equivalences is for i = 3. Proving
this equivalence required, as a preliminry step, to show that any symmetric RS, G, is isomorphic
to the extension G∗[∆] (Theorem 7.6) which, in turn, needed the construction of the retract r
(Theorem 7.5) and, previously, to develop the theory of extensions presented in § 6. 2
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DEFINABLY COMPLETE DENSE C-MINIMAL STRUCTURES

FRANÇOISE DELON

Abstract. The C-minimal structures M we consider here are dense, definably complete
and in their canonical tree T (M) there is no definable bijection from an interval ]a, b[ to
an interval ]c, d[, for any b ∈ M and d /∈ M . We show that in such an M every definable
nested family of closed and bounded subsets has non-empty intersection, as long as the family
is indexed by an interval Y of the canonical tree of the form ]a, e[ for some e in M . As a
consequence, for every closed and bounded subset U ⊆M and every interpretable continuous
function f from U to Y , f(U) is bounded above in Y .

1. Introduction

P -minimal fields are definably complete in a strong sense and the structure induced on the
valuation group is the pure ordered group. The situation is very different for C-minimal
fields or general C-minimal structures. In particular, a C-minimal field may have any o-
minimal expansion of its valuation group and need not be definably complete. But as soon it
is definably complete and satisfies a weak purity assumption on its valuation group, then it
satisfies the strong form of definable completeness. Let us be more precise now.

Definition. Let M be a C-structure.

(1) Let X ⊆ Y ×M be a definable set, where (Y,<) is an ordered set interpretable in M .
We say that X is a definable nested family, in short dnf , if
(a) for every γ ∈ Y , the fiber Xγ := {x ∈M ; (x, γ) ∈ X} is non-empty and
(b) Xγ′ ⊆ Xγ for every γ, γ′ ∈ Y such that γ < γ′.
We say X is final if furthermore Y is of the form ]a, e[ for some a ∈ T (M) and e in
M ordered by the order of the canonical tree.
We say that X has non-empty intersection if

⋂
γ∈Y Xγ 6= ∅.

(2) We say M has the bound property when, for any U ⊆M a closed and bounded subset,
any e ∈M , a ∈ T (M), a < e, Y := ]a, e[ ⊆ Br(e), and every interpretable continuous
function f : U → Y , then f(U) is bounded above in Y .

(3) M is called definably complete1 if every final dnf of cones has non empty intersection
(cones are the generalization of open balls in the context of C-relations).

(4) M is called good if it is definably complete and satisfies the condition (NoBij): in the
canonical tree T (M) there is no definable bijection from an interval ]a, b[ to an interval
]c, d[, for any b ∈M and d /∈M .

Theorem (A). In every good C-minimal structure every definable final nested family of
closed and bounded subsets has non-empty intersection.

Theorem (B). Every good C-minimal structure has the bound property.
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1About this definition, see Section 5.
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2 FRANÇOISE DELON

Our main motivation for proving this result is the construction of a group law in non triv-
ial geometric C-minimal structures. Fares Maalouf achieved the construction when the C-
structure is locally modular (see [M1] and [M2]) and Theorem (B) allows us to carry it in any
geometric good C-structure, see [DMS].
The form of the present paper ought much to [CuD] where similar questions are treated in
P -minimal fields. In such fields any definable interval of the canonical tree which has no max-
imal element has the form ]a, e[, e ∈M . In fact any definable branch of the canonical tree has
the structure of a pure Z-group as shown by Raf Cluckers (see [C] Lemma 2 and Theorem 6).
The situation is very different in C-minimal fields and other C-minimal structures. Assuming
Condition (NoBij) makes things similar again. Our paper is organized as follows. Section 2 is
devoted to some preliminaries. Section 3 gives the proofs of Theorems (A) and (B). In Section
4 we present a technical variation of Theorems (A) and (B), Proposition 4.2, with the aim of
removing assumption (NoBij) from the group construction. In Section 5 we discuss the terms
of our statements.

2. Preliminaries

C-relations can be understood as a slight weakening of ultrametric spaces. In such a space
the C-relation is given as: C(x, y, z) ssi d(x, y) = d(x, z) > d(y, z). The presentation below
comes essentially from [AN].

Definition 2.1. A C-relation is a ternary relation, usually called C, satisfying the four
axioms:
1. C(x, y, z)→ C(x, z, y)
2. C(x, y, z)→ ¬C(y, x, z)
3. C(x, y, z)→ [C(x, y, w) ∨ C(w, y, z)]
4. x 6= y → C(x, y, y).
The relation is called dense if it satisfies furthermore
5. ∃x, y, x 6= y and ∀x, y (x 6= y → ∃z 6= y, C(y, x, z)).
A C-set is a set equipped with a C-relation.

Adeleke and Neumann’s representation theorem of C-sets shows a close connection between
C-sets and trees, see [AN] slightly modified in [D]).

Definition 2.2. A tree is an order in which for any element x the set {y; y ≤ x} is linearly
ordered.
Call a tree good if :
- it is a meet semi-lattice (i.e. any two elements x and y have an infimum, x∧y, which means:
x ∧ y ≤ x, y and (z ≤ x, y)→ z ≤ x ∧ y),
- it has maximal elements, or leaves, everywhere (i.e. ∀x, ∃y (y ≥ x ∧ ¬∃z > y))
- and any of its elements is a leaf or a node (i.e. of form x ∧ y for some distinct x and y).
A branch of a tree is a maximal subchain.

A branch may have or not have a leaf. Leaves of a tree T may be identified to branches
via the map x 7→ Br(x) := {α ∈ T ;α ≤ x}. The set of branches of T carries the canonical
C-relation: C(α, β, γ) iff α ∩ β = α ∩ γ ( β ∩ γ.

Proposition 2.3. C-sets and good trees are bi-interpretable classes. More precisely, any C-set
M interprets a good tree, called the canonical tree of M and denoted T (M), such that (M,C)
is definably isomorphic to the set of leaves of T (M) equipped with the canonical C-relation.

We can define in C-sets the notions generalizing open and closed balls of ultrametric spaces:



DEFINABLY COMPLETE DENSE C-MINIMAL STRUCTURES 3

Definition 2.4. (1) For x and y two distinct elements ofM , Λ(x∧y, y) := {z ∈M ;C(x, y, z)}
is called the cone of y at x ∧ y. We also use the notation, for elements y > x from
T (M), Λ(x, y) := Λ(x, α) for any (or some) α ∈ M such that Br(α) contains y, and
we say that Λ(x, y) is the cone of y at x.

(2) For x and y in M , Λ(x ∧ y) := {z ∈ M ;¬C(z, x, y)} = {z;x ∧ y ≤ z} is called the
0-levelled set at x ∧ y.

(3) A subset U of M is bounded if it is contained in some cone.

The canonical tree appears to be the set of 0-level sets, ordered by inclusion.

As it happens to balls in ultrametric spaces, the intersection of two cones or 0-leveled sets is
either empty or one of the two intersected sets. Cones form a base of a totally disconnected
topology.

Let us now define C-minimality. It has been introduced by Deirdre Haskell, Dugald
Macpherson and Charlie Steinhorn as the minimality notion suitable to C-relations (see [HM],
[MS]).

Definition 2.5. A C-structure is a C-set possibly equipped with additional structure.
A C-structure M is called C-minimal iff for any structure N ≡M any definable subset of N
is definable by a quantifier free formula in the pure language {C} or equivalently, is a Boolean
combination of cones and 0-levelled sets.

Proposition 2.6. Let M be a C-minimal C-structure and T its canonical tree. Then

(1) any node c of T is strongly minimal in the sense that, any definable set of cones at c
is finite or cofinite;

(2) for each x ∈ M the branch Br(x) of T is o-minimal in the sense that, any subset of
Br(x) definable in T is a finite union of intervals with bounds in Br(x) ∪ {−∞}.

Proof. Haskell and Macpherson [HM] Lemma 2.7 (ii) and (i). �

Corollary 2.7. Let M be a C-minimal C-structure. Then:

(1) No infinite set of cones at a same node can be linearly ordered by a definable relation.
(2) For any x and y in M and any definable partial function f : Br(x) → Br(y), the

domain of f can be partitioned into finitely many intervals such that, on each of them,
the restriction of f is either increasing, or decreasing or constant.

(3) For some x ∈ M let t be a complete 1-type over Br(x). Then t remains complete as
the type on M of an imaginary element.

Proof. (1) and (3) follow directly from Proposition 2.6, respectively (1) and (2). For (2) we go
back to classical results and proofs in o-minimality. In [PS] Pillay and Steinhorn prove that
in an o-minimal structure O, given any definable function defined on an interval ]a, b[⊆ O,
]a, b[ can be partitioned into finitely many intervals, on each of which the function is either
constant or order preserving or reversing. The key tool is Lemma 4.3. Now, the proof of this
lemma only uses that ]a, b[ is o-minimal in the sense of Proposition 2.6 (2). �

In fact item (3) of Corollary 2.7 is true for any complete type over Br(x) thanks to Theorem
1.4 in [P].

Proposition 2.8. A bounded definable subset of M is a finite union of cones, 0-levelled sets
and sets of the form Λ(δ, α) \ Λ(α) for some δ, α ∈ T (M), δ < α.

Note that the above statement is a very weak form of cellular decomposition as it does not
take into account the way the decomposition depends on parameters.
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3. Proofs

Lemma 3.1. Let M be a C-minimal dense C-structure satisfying (NoBij), r ∈ T (M) and
` > 1 an integer. Let e ∈M , a ∈ T (M), a < e, Y :=]a, e[ ⊆ Br(e) and (Aγ)γ∈Y be a definable
family of finite subsets of T (M), each of cardinality `. Assume that elements of each Aγ are
above r. Then one of the following holds:

(1) there is some α ∈ T (M) such that α ∈ Aγ for each big enough γ ∈ Y ;
(2) There is I a definable initial segment of (some branch of) T (M), without maximal

element, containing r and such that, for all y ∈ I and γ big enough in Y , there is
z ∈ Aγ(M) ∩ I such that y < z.
If M is definably complete, then I is of the form Br(x) \ {x} for some x ∈M .

Proof. Fix any x ∈ T (M) \M , x > r. Define x≤ := {y ∈ T (M) ; y ≤ x}. For γ ∈ Y , since
Aγ has exactly ` elements, there is an integer nγ 6 ` such that |{x∧ y : y ∈ Aγ}| = nγ . Since
x≤ is linearly ordered, there are ` definable functions rx,i : Y → x≤, 1 6 i 6 `, such that
{rx,i(γ); 1 6 i 6 nγ} = {x ∧ y : y ∈ Aγ} and

rx,1(γ) < rx,2(γ) < · · · < rx,nγ (γ) = rx,nγ+1(γ) = · · · = rx,`(γ).

As the function rx,i is bounded above by x and below by r, by Proposition 2.7 (2) and
Condition (NoBij), it becomes constant near infinity: for all x ∈ T (M) \M there are δx ∈ Y
and (zx,i)16i6` ∈ T (M)` such that

(∀γ ∈ Y>δx)(∀y ∈ Aγ)(
∨̀
i=1

x ∧ y = zx,i),

where by definition, Y>δx := {γ ∈ Y ; γ > δx}. Define more precisely zx,i := rx,i(γ) for any
γ > δx and set zx := zx,` = max{zx,i ; 1 6 i 6 `}.
Consider on BrM (e) the type e−. By Corollary 2.7 (3) it remains complete as the type on M
of an imaginary element. This implies that, for all γ realizing this type in some elementary
extension of M , sets Aγ have same type on M . Call this type Ae− , t1, . . . , tm, m 6 `, the
different types on M of its elements and define Ij := {y ∈ T (M) ; y ≤ tj} for 1 ≤ j ≤ m. By
construction each zx lies in some Ij and for any given j, the set of the zx ≤ tj is cofinal in
Ij . The type e− is definable hence Ae− too. Since there are only finitely many tj each one is
definable too. Case (1) of the statement of the lemma occurs when one of the tj is realized in
T (M).

Claim 3.2. If (1) does not hold, the set H := {zx ; x ∈ T (M) \M,x > r} has no maximal
element.

Proof of the claim. We show by induction on i that, if (1) does not hold then, for every γ ∈ Y ,
every x ∈ T (M) \M , x > r, and every 1 6 i 6 `, the element zx,i is not a maximal element
of H. For i = 1, by definition of zx,1,

(∀γ ∈ Y>δx)(∀y ∈ Aγ)(x ∧ y > zx,1).

If there are γ ∈ Y>δx and y ∈ Aγ such that x ∧ y > zx,1 we are done. Otherwise,

(∀γ ∈ Y>δx)(∀y ∈ Aγ)(x ∧ y = zx,1).

Since (1) does not hold, we can (definably) choose δ′x such that, for all γ ∈ Y>δ′x and y ∈ Aγ ,
zx,1 < y. Replace δx by max{δx, δ′x}. Thus the map

{ cones at zx,1} → Y>δx ,Γ 7→ sup{γ ∈ Y>δx ;Aγ ∩ Γ 6= ∅},
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is well defined on a non empty subset of { cones at zx,1}. It ranges is finite by Corollary 2.7
(1). Now this range must be cofinal in Y . Thus one of the cone lies in the image of arbitrary
large γ hence of any large enough γ. Since (1) does not hold, for all sufficiently large γ, δ ∈ Y
there are y ∈ Aγ , z ∈ Aδ, such that y ∧ z > x ∧ y = x ∧ z. Choose more precisely γ ∈ Y>δx ,
y ∈ Aγ , δ > max{δx, δy} and z ∈ Aδ. Then y ∧ z = zy,i for some 1 ≤ i ≤ ` and the result also
follows.

We handle now the case i > 1. Define Bγ := Aγ ∩{α ∈ T (M) ; α ≥ zx,i}. By o-minimality
of Y the cardinality of Bγ becomes constant for big enough γ, say γ > γ0. By definition of
the zx,j , 1 ≤ |Bγ | ≤ ` holds for γ > γ0. Now, the dnf (Bγ)γ∈Y>γ0 fits in case i = 1, which
shows the result. a
We are left to prove the assertion for a definably complete M . Such an M contains a point
x > I. The map Y → Br(x), γ 7→ max{y ∈ I ; y ∈ Aγ} induces a bijection from a final
interval of Y to a final interval of I. By (NoBij) I is cofinal in Br(x) \ {x}. �

Theorem (A). Let M be a good C-minimal dense C-structure. Let X ⊆ Y ×M be a final
dnf of closed and bounded sets. Then

⋂
γ∈Y Xγ 6= ∅.

Proof. We begin with some remarks about definable subsets of M . For Z ⊆ M a definable
subset, we consider

Θ(Z) := {ν ∈ T (M);∃x, y ∈M,x, y > ν, x ∈ Z and y 6∈ Z}.
By C-minimality Z is a finite Boolean combination of cones and 0-levelled sets, say of Γi
where each Γi is of the form Λ(αi) or Λ(αi; ai) with αi ∈ T (M) and ai ∈M , ai > αi. Clearly
if ν is in Θ(Z) then:
- any µ ∈ T (M), µ < ν, is in Θ(Z) too,
- ν ≤ αi for some i.
As a consequence Θ(Z) is a meet sub-semi-lattice of T (M) and a tree with finitely many
branches. Define U(Z) the set of suprema of branches of Θ(Z), suprema which exist in T (M)
by o-minimality of branches and definability of Θ(Z). So U(Z) is a finite set. Take α ∈ U(Z).
Then either
(a) α ∈ Θ(Z); in this case any cone at α is entirely contained either in Z or in its complement
and both situations do exist; or
(b) α 6∈ Θ(Z) (which implies that α is upper limit in T (M)); in this case Λ(α) is entirely
contained either in Z (case b.1) or in its complement (case b.2). In case (b.2), by cellular
decomposition, there is some δ ∈ T (M), δ < α, such that Λ(δ, α) \ Λ(α) ⊆ Z.
Let us apply these considerations to Z = Xγ and set Uγ := U(Xγ). Take α ∈ Uγ . If X is
definable with parameters c, consider Aγ the set of elements of T (M) with same type as α
over (c, γ). Clearly Aγ ⊆ Uγ and all elements of Aγ are in the same case, (a), (b.1) or (b.2).
Replace Y by a final subset on which the cardinality of Aγ is (finite and) independent of γ
and the case of its elements is independent of γ as well. Call ` the cardinality of Aγ and apply
Lemma 3.1.
(1) If (1) holds let α ∈ T (M) belonging to all Aγ .
- Assume first α is in case (a). Take any cone Γ at α. If Γ is not contained in every Xγ (recall:
they are decreasing) there is a minimal γ, say γΓ, such that Γ ⊆ ¬Xγ for all γ > γΓ (remember:
the family Xγ is decreasing). The definable partial function f : { cones at α } → Y , Γ 7→ γΓ

must have finite range. Let γ1 be the maximal element of its range and take γ > γ1. If f is
defined on any cone at α, Xγ does not intersect Λ(α), contradiction. Hence there is some Γ
contained in every Xγ .
- In case (b.1) all Xγ contain Λ(α).
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- Assume now we are in case (b.2). If α ∈M , then α is in every Xγ since this set is closed, this
contradicts case (b.2). So α is a node. Let δγ be minimal such that Λ(δγ , α)\Λ(α) ⊆ Xγ . So δγ
is definable on (c, γ, α). On a final subset of Y , δγ is either increasing or decreasing or constant.
By (NoBij) it can not be decreasing as X is bounded below. Neither can it be increasing since
α /∈M . Hence it is constant, say equal to β hence all Xγ contain Λ(β, α) \ Λ(α).
(2) If (2) holds let x ∈ M , x > r, be such that, for all y ∈ T (M), y < x and γ big enough in
Y , there is z ∈ Aγ(M) such that z > y. This implies that there is t ∈ Xγ , t > y. Since X is
decreasing it follows that x is an accumulation point of each Xγ , thus x ∈ Xγ as this set is
closed. �

In the next theorem the topology on Y is the order topology.

Theorem (B). Let M be a good C-minimal dense C-structure and U ⊆ M a closed and
bounded subset. Then, for every interpretable continuous function f : U → Y , f(U) is bounded
above in Y .

Proof. Assume for a contradiction that f(U) contains a final subset Y ′ of Y . Take Y ′ closed
in Y . Replace Y with Y ′ and U with U ′ := f−1(Y ′) which is still closed by continuity of f .
Let cl denote the topological closure. For each γ ∈ Y ′ let

Xγ = cl
(⋃
{(f−1(γ′) ; γ′ ∈ Y ′ and γ ≤ γ′}

)
, and

X =
⋃
γ∈Y ′

({γ} ×Xγ).

Let us show that X is a dnf of closed and bounded sets. Each fiber Xγ is closed by definition.
Since U ′ is closed and f is continuous, Xγ ⊆ U ′ for each γ ∈ Y ′. Therefore, since U ′ is
bounded, so is Xγ . Finally, for γ, γ′ ∈ U ′ such that γ < γ′ the inclusion Xγ′ ⊆ Xγ holds by
definition of X. So, by Theorem (A), there exists x ∈ U ′ such that, x ∈ Xγ for all γ ∈ Y ′. In
particular, x ∈ U ′ so take γ0 := f(x) and γ ∈ Y ′ such that γ > γ0. Since x ∈ Xγ , there is
γ′ ≥ γ such that x ∈ cl(f−1(γ′)) which contradicts that f(x) = γ0. �

4. Une variation sans hypothèse (NoBij)

Nous présentons maintenant un cas où une fonction donnée satisfaisant les hypothèses de
la fonction f de la propriété de la borne, est bornée, sans que (NoBij) soit supposée. Pour
prouver cet énoncé, on commence par établir une version adaptée du lemme 3.1.

Lemma 4.1. Let M be a definably complete C-minimal dense C-structure, r ∈ T (M) and
` an integer. Let e ∈ M , a ∈ T (M), a < e, Y :=]a, e[ ⊆ Br(e) and (Aγ)γ∈Y be a definable
family of finite subsets of T (M), each of cardinality ` and with all its elements above r. Let
V be a cone definable on M such that all elements of V have same type over the (imaginary)
canonical parameter of A. Then, one of the following holds:

(3) Aγ ∩ T (V ) = ∅ for all γ big enough in Y ; or
(4) if α is the basis of the cone V , for all β ∈ T (V ) there is γ ∈ Y and x ∈ Aγ ∩ T (V )

such that β > x > α.

Proof. By o-minimality of Y , |Aγ ∩ T (V )| is constant for γ big enough in Y , say γ > γ0. If
Aγ ∩ T (V ) is not cofinally empty, we begin applying the proof of Lemma 3.1 to the family
(Aγ ∩ T (V ))γ∈Y>γ0 . When removing assumption (NoBij), it appears the new possibility that,

for some x ∈ T (M), rx,i tends monotonously to a limit: there is some α ∈ x≤ such that,
- either: ∀β ∈ T (M), β < α, ∀γ big enough in Y , ∃δ ∈ Aγ , β < δ < α;
- or: ∀β ∈ T (M), x > β > α, ∀γ big enough in Y , ∃δ ∈ Aγ , β > δ > α.
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In the first case one of the tj (recall: the tj are the different types of elements of Ae−) must
be the type α− of x≤ (still complete as a type over T (M)); in the second case, one of the tj
is the type α+ of x≤. Such an α is algebraic over the canonical parameter of A. Call a this
canonical parameter.
Since V is a cone and all its elements have same type over a, α 6∈ T (V ).
In situation tj = α− or tj realized by α as in (1) in the statement of lemma 3.1, tj does not
intersect T (V ) for γ big enough in Y . In situation tj = α+, tj intersects (and is included in)
T (V ) only when α is the basis of the cone V , T (V ) has no root and tj is the unbounded type
of T (V ).
Lorsqu’aucune des situations (3) ou (4) n’est réalisée, la preuve se déroule comme celle de
3.1 via le Claim 3.2 et montre la première assertion de (2). Puisque M est définissablement
complet, I a un supremum x dans T (M). Puisque le type e− est complet et que les Aγ sont
de cardinalité fixée finie, cette définition de x l’algébrise sur a. Comme x est limite supérieure
dans T (M) et que tous les éléments de V ont même type sur a, x ne peut appartenir à T (V ),
ni aucun de ses conjugués sur a. En conséquence, cofinalement, Aγ n’intersecte pas T (V ). �

Proposition 4.2. Let M be a dense and definably complete C-minimal structure.
Y =]a, e[ as previously, B ⊆M a set of parameters.
U ⊂ V cones in M , all elements of V having same type over B.
Then,

(a) for any dnf X ⊆ Y ×M of closed subsets of M , X definable with parameters from B,
X ∩ (Y × U) has either ultimately empty sections or ultimately section U ;

(b) for any function f : V → Y definable with parameters from B and continuous, f(U)
is bounded in Y .

Proof. We begin to prove (a) from 4.1 as we have proven Theorem (A) from 3.1. We have
Aγ ∩ T (U) = ∅ for all γ big enough in Y . Thus, either Xγ ∩ T (U) = ∅ for all γ big enough in
Y , or Xγ ∩ T (U) = T (U) for all γ big enough. So (a) is true.
The proof of (b) from (a) is the same as for proving Theorem (B) from Theorem (A). �

5. Two remarks

5.1. If there is some β ∈ T (M) which is not a leaf and is the supremum of {γ ∈ T (M); γ < β}
Theorem B fails when replacing the condition “ f(U) bounded above in Y ” by “ f(U) has
a maximal element ”. As a counter-example, take such a β, α ∈ T (M), α < β, U :=
Γ(α;β) \ Λ(β) and f : U →]α, β[, x 7→ x ∧ β.

5.2. Paulo Ribenboim a dégagé dans les espaces ultramétriques les notions de complétude
sphérique (toute intersection décroissante de boules a une intersection non vide) et de complétude
(la même condition lorsque, de plus, le rayon des boules tend vers 0). Dans le cadre d’une
C-relation il n’est possible de comparer des distances qu’à un même point, c’est-à-dire sur
une même branche de l’arbre canonique. Dire que le rayon tend vers 0 signifie que le rayon
devient plus petit que toute distance apparaissant dans l’espace, or ceci ne peut être estimé
avec la seule C-relation. Ainsi, seule la définition de la complétude sphérique a un sens :
toute intersection décroissante de cônes a une intersection non vide. De façon inattendue, la
distinction entre les deux complétudes réapparâıt lorsqu’on considère des objets définissables.
Nous avons en effet choisi d’indexer nos boules par un intervalle d’une branche. À partir de
ce moment-là, il est aisé de d’isoler le cas où ce segment est cofinal sous la feuille. Ainsi la dis-
tinction entre complétude sphérique (ou plutôt son équivalent dans le cadre d’une C-relation,
que nous appellerons “complétude conique” (toute intersection décroissante de cônes indéxée
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par un intervalle d’une branche a une intersection non vide) et la notion plus faible, que nous
avons simplement appelée complétude (la même condition lorsque, de plus, l’intervalle des
indices est cofinal sous la feuille) réapparâıt naturellement dans le cadre définissable.
Renforçons ainsi l’hypothèse de complétude définissable en “complétude conique définissable”
(toute intersection décroissante de cônes indéxés par un intervalle d’une branche a une inter-
section non vide). Cela ne permet pas de renforcer la conclusion du Théorème A en autorisant
des dnf indexées par n’importe quel intervalle d’une branche. D’une part le cas (b.2) de la
preuve coince et d’autre part il est facile de recycler le contre-exemple de la remarque 5.1 :
Γ(aγ , b) \ Λ(b) avec b 6∈ M et aγ < b est l’exemple d’une dnf de fermés bornés d’intersection
vide.
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Distinguished subfields of Hahn fields

Salma Kuhlmann

Abstract

Let k be a field, G a totally ordered abelian group. The maximal field of gen-
eralised power series k((G)), endowed with its canonical valuation, plays a funda-
mental role in the classification of valued fields (Kaplansky, 1942 and 1945). In this
talk, we describe the group of valuation preserving automorphisms of any Hahn
field K, i.e. a subfield of the maximal Hahn field, which contains the minimal Hahn
field k(G) (the fraction field of the group ring k[G]). Under the assumption that
K satisfies two lifting properties we prove a structure theorem decomposing into
a 4-factor semi-direct product of notable subgroups. We identify a large class of
fields satisfying the two aforementioned lifting properties. We then focus on the
group of strongly additive automorphisms of K. We give an explicit description
of the group of strongly additive internal automorphisms in terms of the groups of
homomorphisms of G into k× and of G into the group of 1-units of the valuation
ring of K. To illustrate the power of our methods, we apply our results to some
special cases, such as the field of Laurent series (Schilling, 1944) and that of Puiseux
series (Deschamps, 2005).

This is joint work with Michele Serra and has been published as part of the paper
The automorphism group of a valued field of generalised formal power series; Journal
of Algebra, 605, 339-376 (2022) .

Salma Kuhlmann: FB Mathematik und Statistik, Schwerpunkt Reelle Geometrie & Algebra,
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THE EXISTENTIAL THEORY OF DISCRETE EQUICHARACTERISTIC
HENSELIAN VALUED FIELDS

ARNO FEHM

Abstract. From a model theoretic point of view, local fields of positive characteristic, i.e.
fields of Laurent series over finite fields, are much less well understood than their characteristic
zero counterparts - the fields of real, complex and p-adic numbers. I will discuss different
approaches to axiomatize and decide at least their existential theory in various languages and
under various forms of resolution of singularities.

Reference. Sylvy Anscombe, Philip Dittmann, Arno Fehm, Axiomatizing the existential
theory of Fq((t))
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STABLE AND HYPERBOLIC POLYNOMIALS AND THEIR
DETERMINANTAL REPRESENTATIONS

VICTOR VINNIKOV

A homogeneous polynomial of degree d with real coefficients is called hyperbolic
with respect to a point if any real line through this point intersects the correspond-
ing hypersurface in d real points (counting multiplicities). Hyperbolic polynomials
are in a sense the opposite of strictly positive polynomials: they have as many real
zeroes as possible. Hyperbolic polynomials were first introduced by Gärding in the
1950s [7, 8] (who often refers to Petrovsky [22] as a source) in the study of linear
partial differential equation with constant coefficients, see also Lax [20] and the
later paper [1] and [11] a good survey, as well as [26, 17, 18, 19] for an interesting
generalization of hyperbolicity to higher codimensional subvarieties of the projec-
tive space. Gärding showed that a hyperbolic polynomial determines a convex cone,
called a hyperbolicity cone. In recent years hyperbolic polynomials and hyperbol-
icity cones came to play an important in convex programming [10, 2, 24, 25] as well
as combinatorics and other areas [21].

Much like a representation as a sum of squares certifies the positivity of a polyno-
mial, its hyperbolicity is certified by a representation as a determinant of a matrix
of linear forms, with the coefficient matrices of the linear forms satisfying some posi-
tivity conditions. I will describe some of what is known about the existence of these
determinantal representations, usually ”with denominators”, see [27] for a survey
and [17, 16] for some recent progress. One fruitful approach uses a Hermitian Posi-
tivstellensatz [23, 12, 9] that gives a representation of a polynomial satisfying matrix
positivity conditions as a weighted sum of hermitian squares. This approach uses
also a relation between hyperbolic polynomials and polynomials with complex co-
efficients that are Hd-stable, i.e., have no zeroes in Hd, where H = {z ∈ C : =z > 0}
is the upper half plane [3, 4, 5], or more generally ΩC-stable, i.e., have no zeroes
in ΩC , where ΩC ⊆ Cd is a Siegel domain of the first kind (a tube domain over
a convex cone as a base): ΩC = Rd + iC with C ⊆ Rd an (open) convex cone
[13, 14, 15, 6].
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Abstract

Let T ∗ be the theory of lattice-ordered subrings, without minimal (non zero) idempon-
tents, convex in von Neumann regular real closed rings that are divisible-proyectable
and sc-regular ([12]). In this paper, a local divisibility binary relation is introduced
in order to prove quantifier elimination for the theory T ∗ in the language of lattice-
ordered rings adding the (usual) divisibility relation, the radical relation associated to
the minimal prime spectrum ([20]) and this new local divisibility relation.

1 Introduction.

Real closed rings, in one of its general presentations, were introduced by Niels Schwartz
in [23]. Leaving aside the case of real closed fields, the first model theoretic results con-
cerning real closed rings was the model-completeness of the von Neumann regular real
closed rings without (non zero) minimal idempotents in the language of lattice-ordered
rings, proved by Macintyre in [17]. The question of quantifier elimination for this theory
evolved thereafter in many different ways that strongly depended on the language under
consideration. The first result was proved by Weispfenning in [28] for the language of
lattice-ordered rings where an unary function symbol ∗ was added to the language, repre-
senting the quasi-inverse in von Neumann regular rings. This same result was later proved
using simpler techniques by Boffa-Cherlin in [4]. In [20], this elimination result was sub-
stantially improved by Prestel-Schwartz by replacing the function symbol ∗ by a binary
radical relation, namely the radical relation associated to the minimal prime spectrum.

Examples of integral real closed rings that are not fields are the real closed valuation
rings; this theory was introduced and well studied from the model theoretic point of view
by Cherlin and Dickmann in [7]; they showed quantifier elimination in the language of
ordered rings with divisibility as an additional binary relation symbol.

∗ Thanks are due to the School of Mathematics and the “Vicerrectoŕıa de Investigación” of the University
of Costa Rica for financial support through the projects B9128 and B9128-22.
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It is a well known fact that von Neumann regular rings are Boolean products of fields,
cf. [17, section 5], or cf. [10]. Boolean products of real closed valuation rings have been
caracterized in [12] as real closed projectable rings satisfying the first convexity property
(i.e.: ∀a∀b(0 < a < b → b | a)) that are sc-regular (see pp. 5 and 7 below) and divisible-
projectable (see p. 5). Following the quantifier elimination for von Neumann regular real
closed rings proved in [28] and [4], the author gave in [12] a quantifier elimination result
for this theory, that we presently call T ∗, in the language of lattice-ordered rings with an
extra binary function symbol div(a, b) representing (locally) the quotient of b by a if it
exists, and 0 if not.

In this paper, quantifier elimination for the theory T ∗ is significantly improved, replac-
ing the function symbol div(·, ·) by the binary radical relation associated to the minimal
prime spectrum (as Prestel and Schwartz did in [20]) and by adding to the language a bi-
nary relation that represents local divisibility (the usual “global” divisibility is also present
in the language).

We think that an important feature of the present result is that the new primitive no-
tions used to prove quantifier elimination for T ∗ have an interesting mathematical meaning.
In the case of the radical relation this has been amply demonstrated in [20] and subse-
quent work. For the local divisibility relation this can be unravelled from the arguments
of the present paper. We hope, in future work, to be able to examine the mathematical
significance of this relation and pursue some applications.

In Section 2 we present the basic material needed in the rest of the paper, including the
all important local divisibility relation and its basics properties. In the third section we
prove model-completeness of the theory T ∗ in the language of lattice-ordered rings enlarged
by the radical and the local divisibility relations. The model-completeness of T ∗ in our
present context is caused by the following fact: the preservation of the local divisibility by
“global” homomorphisms implies the preservation of (usual) divisibility “locally” in the
fibers, cf. Theorem 3.1.

In the fourth section we study (and characterize) the universal part of the theory T ∗

in various languages; see Theorem 4.14, Proposition 4.20, and Theorem 4.21. This entails
a noteworthy result on model-companionship, Theorem 4.22.

The hypothesis of projectability of the ring under consideration provides tools neces-
sary to prove the preservation of divisibility and local divisibility. However, this notion
has a shortcoming: it is not expressed by a universal (first order) formula in any of the
languages under consideration. To overcome this obstacle we found a set of universal ax-
ioms in the language of rings —the divisibility glueing axiom scheme (cf. Definition 4.9)—
and —the local divisibility property, (cf. Definition 4.19), in the language enriched with
the radical and the local divisibility relations—, that advantageously replace the tools
furnished by the projectability property in the proof of the (downward) preservation of
divisibility and local divisibility.

The notion of local divisibility introduced in Section 2 is not sufficient for a direct
proof of quantifier elimination of the theory T ∗. Once again, the propery of divisible-
projectability turns out to be of crucial importance for the introduction of the relation
of maximal local divisibility, a stregthening of the notion of local divisibility. In analogy
to the situation for model-completeness, this stronger notion makes it possible to show
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that the preservation of local divisibility in models of T ∗∀ , the universal part of T ∗, yields
local preservation of (usual) divisibility in the fibers (cf. Theorem 6.9). Use of this
“preservation transfer” result leads, finally, to the proof of quantifier elimination for T ∗,
via the amalgamation property in models of T ∗∀ . This is the subject matter of the last
Section 6 of the paper.

The author spent the months of June and July 2022 working at the Logic Group of
the Université Paris-Cité 1. During those months the author had fruitful and enlightening
conversations with Max Dickmann, who helped him in the elaboration of the fifth and
sixth sections of this paper. He also read many versions of this work, improving it by
his suggestions and comments. In addition, the ideas of those sections benefited from
valuable comments by Françoise Delon and Françoise Point during a sesion of the Delon-
Dickmann-Gondard seminar at the begining of June 2022, where sections 2 to 4 of the
present work were presented. The author wishes to express his gratitude to the colleagues
and institutions mentioned in this paragraph.

2 Basic notions; the local divisibility relation.

The main aim of this section is to introduce the basic facts and notions of the theory T ∗ of
real closed rings considered in this paper. Amongst them, a local divisibility relation, vari-
ants (in section 5) of which will be crucial for the proof of the main quantifier elimination
result proved in this paper.

Lor = {0, 1,+, ·, <} will be the language of ordered rings and Llor = {0, 1,+, ·,∧} will
be the language of lattice-ordered rings. All rings considered in this paper are conmutative
with unity.

An f-ring is a subdirect product of totally ordered rings. This notion can be expressed
by a first-order formula in Llor (see [3, 9.1.2]). For an f -ring A, the absolute value of
a ∈ A is |a| = a ∨ −a; two elements a, b ∈ A are orthogonal if |a| ∧ |b| = 0 (we denote
this by a ⊥ b); the polar of a ∈ A is a⊥ = {b ∈ A : a ⊥ b} and the bipolar of a is
a⊥⊥ = {b ∈ A : b ⊥ c for all c ∈ a⊥}. An f -ring A is projectable if A = a⊥ + a⊥⊥,
for all a ∈ A. Note that this notion is expressed by a first order formula in Llor. A ring
is reduced if it doesn’t have nilpotent elements other than zero. By [3, 9.3.1], if A is a
reduced f -ring, then ∀x∀y(x ⊥ y ↔ xy = 0) is valid formula in A, and therefore:

b ∈ a⊥⊥ ⇐⇒ a⊥ ⊆ b⊥ ⇐⇒ Ann(a) ⊆ Ann(b),

for any a, b ∈ A.

Let L be a first-order language, {Ax : x ∈ X} a family of L-structures and A a L-
structure. We say that A is a Boolean product of {Ax : x ∈ X} in L, denoted by
A ∈ Γa

L

(
X, (Ax)x∈X

)
, cf. [5], if the following conditions holds:

(i) X is a Boolean space.
(ii) A is a subdirect product of {Ax : x ∈ X}.
(iii) For every atomic L-formula Φ(v1, . . . , vn) and every a1, . . . , an ∈ |A|,[[

Φ(a1, . . . , an)
]]

=def

{
x ∈ X : Ax |= Φ

(
a1(x), . . . , an(x)

)}
1 Formerly called Université Paris Diderot, ex Université Paris VII.
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is a clopen subset of X.
(iv) Patchwork property: For every a, b ∈ A and any clopen set N of X, the element

c = a�N ∪ b�X\N defined by

c(y) =

{
a(y) if y ∈ N
b(y) if y ∈ X \N,

belongs to |A|. We say that A is an elementary Boolean product of {Ax : x ∈ X} in
L, denoted by A ∈ Γe

L

(
X, (Ax)x∈X

)
, if A is a Boolean product of {Ax : x ∈ X} in L and

condition (iii) is verified for all L-formulas Φ(v1, . . . , vn). These notions come from [5].
If A is a (unitary) reduced and projectable f -ring, then in [16, 6.12] it is proved that:

A ∈ Γa
Lor
(
πA, (A/p)p∈πA

)
,

where πA = {p ∈ Spec(A) : p is a minimal prime ideal} = Specmin(A). In that case:

b ∈ a⊥⊥ ⇐⇒
[[
b 6= 0

]]
⊆
[[
a 6= 0

]]
⇐⇒ supp(b) ⊆ supp(a)

⇐⇒
[[
a = 0

]]
⊆
[[
b = 0

]]
⇐⇒ ∀p ∈ πA (a ∈ p⇒ b ∈ p).

Radical relations were introduced in [19] and used in [20] to study the model theory
of von Neumann regular real closed rings (cf. [23] or [22]) without minimal idempotents
different from zero. Radical relations are defined in [20] by:

(1) a� a, for all a ∈ A;

(2) if a� b and b� c then a� c, for all a, b, c ∈ A;

(3) if a� c and b� c then a+ b� c, for all a, b, c ∈ A;

(4) if a� b then ac� bc, for all a, b, c ∈ A;

(5) a� 1, for all a ∈ A and 1 6� 0;

(6) b� b2, for all b ∈ A.

The original definition in [19] was the previous one with the relation � reversed. In
this context, it is proved in [19, Theorem 2.5] that for any radical relation � , there exists
a subset X ⊆ Spec(A) such that:

a� b⇐⇒ ∀p ∈ X (a /∈ p⇒ b /∈ p).

This radical relation is denoted by �X . The case where X = πA is a relevant one studied
in [20], and there it is proved that:

a� πAb ⇐⇒ Ann(b) ⊆ Ann(a)

⇐⇒ ∀x(bx = 0→ ax = 0)

⇐⇒ ∀x(ax 6= 0→ bx 6= 0).
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Therefore the radical relation � πA has all these possible definitions:

a� πAb ⇐⇒ Ann(b) ⊆ Ann(a) ⇐⇒ ∀x(bx = 0→ ax = 0)

⇐⇒ ∀x(ax 6= 0→ bx 6= 0) ⇐⇒ ∀p ∈ πA (a /∈ p⇒ b /∈ p)
⇐⇒ ∀p ∈ πA (b ∈ p⇒ a ∈ p) ⇐⇒

[[
b = 0

]]
⊆
[[
a = 0

]]
⇐⇒

[[
a 6= 0

]]
⊆
[[
b 6= 0

]]
⇐⇒ supp(a) ⊆ supp(b)

⇐⇒ b⊥ ⊆ a⊥ ⇐⇒ a ∈ b⊥⊥.

(†)

Henceforth, the radical relation � πA will be denoted by � . In [20], the elimination of
quantifiers of the theory of von Neumann regular real closed rings without minimal non-
zero idempotents is given in the language Llor∪{�} of lattice-ordered rings with a symbol
for this radical relation.

Notation 2.1 For any ring A and a, b ∈ A, we write a =s b for a� b and b� a.

According to [7], a real closed valuation ring is an ordered domain that satisfies the
intermediate value property for polynomials in one variable that is not a field. In [7], the
autors showed that this theory is complete and has quantifier elimination in the language
Lor ∪ {|} of ordered rings with the (usual) divisibility relation.

In [12, Definition 2.5], a lattice ordered ring A is called divisible-projectable if:

∀x∀y
(
y 6= 0→ ∃z∃w

(
x = z+w ∧ z ⊥ w ∧ y | z ∧ ∀w′(w′ 6= 0 ∧ w′ ⊥ (w−w′)→ y - w′)

))
is valid in A.

In [12, Definition 2.8], a ring A is called sc-regular if there exists an element u ∈ A
such that Ann(u) = {0} (or 1�u) and u - e for every non-zero idempotent e ∈ A. By
[12, Proposition 3.4 (i), Corollary 2.11 and Proposition 2.6], a ring A is a projectable real
closed ring with the first convexity property that satisfies the sc-regularity and divisible-
projectability if and only if

A ∈ Γe
Lor∪{|}

(
πA, (A/p)p∈πA

)
,

where A/p is a real closed valuation ring, for every p ∈ πA.

Let T ∗ be the theory of projectable real closed rings with the first convexity property
that satisfies the sc-regularity and divisible-projectability properties, and without minimal
non-zero idempotetnts. By [13, Theorem 10], a ring A is a model of T ∗ if and only if A is a
convex lattice-ordered subring of a von Neumann regular real closed ring, has no minimal
non-zero idempotents, and satifies the divisible-projectability and sc-regularity properties.

By [12, Proposition 4.6(iii)], the theory T ∗ admits quantifier elimination in Llor ∪
{div(·, ·)}, where div(·, ·) is a binary function symbol defined by:

T ∗ ` div(x, y) = c ←→ c ∈ y⊥⊥ ∧ ∃z∃w
(
x = z + w ∧ z ⊥ w ∧ cy = z ∧

∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′)
)
.

Remark that the definition of this binary funcion symbol div(·, ·) can be written using the
radical relation � by:

T ∗ ` div(x, y) = c ←→ c� y ∧ ∃z∃w
(
x = z + w ∧ z ⊥ w ∧ cy = z ∧

∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′)
)
.

In order to study the theory T ∗ from the point of view of existential formulas or model
completeness, it will be usefull to introduce the following binary predicate:
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R(y, w) ←→ ∀w′(w′ 6= 0 ∧ w′ ⊥ (w − w′)→ y - w′)
←→ ∀w′(w′ 6= 0 ∧ w′(w − w′) = 0→ y - w′),

that expresses the fact that y does not locally divide w. It will be convenient to rewrite
the relation ¬R in the following form:

¬R(y, w) ←→ ∃w′(w′ 6= 0 ∧ w′ ⊥ (w − w′) ∧ y | w′)
←→ ∃w′(w′ 6= 0 ∧ w′(w − w′) = 0 ∧ y | w′).

Note that the last term in the preceding equivalences is a formula in the language of rings.

Note that if ¬R(y, 0) is valid in a reduced ring A, there is w′ ∈ A with w′ 6= 0,
w′(−w′) = 0 and y | w′. Therefore, w′ 6= 0 and w′2 = 0, contradicting that A is reduced.
Therefore we redefine:

Definition 2.2 (Local divisibility) For any ring A, and y, w ∈ A, we say that y di-
vides locally w if:

w = 0 ∨ ∃w′(w′ 6= 0 ∧ w′(w − w′) = 0 ∧ y | w′).

We denote this by y |loc w.

The following proposition gives some elementary properties of this new local divisibility
relation.

Proposition 2.3 Let A be any ring, let y, w, c ∈ A and n ∈ N∗ = Nr {0}. The following
properties hold in A.

(i) if y | w then y |loc w,

(ii) y |loc 0 and 1 |loc w,

(iii) if 0 |loc w then w = 0,

(iv) if cy |loc w then y |loc w,

(v) if yn |loc w then y |loc w,

(vi) y |loc y
n,

(vii) y |loc w if and only if −y |loc w, if and only if y |loc −w, if and only if −y |loc −w,

(viii) if A is a domain, then y | w if and only if y |loc w.

Proof: Routine checking.
�

The following lemma is needed in the proof of Proposition 2.5 below.

Lemma 2.4 Let A be a lattice-ordered ring and let w,w′ ∈ A be such that w′ ⊥ w − w′.
Then |w′| 6 |w|.
Proof: Since |w′| ∧ |w| 6 |w′|, |w| the following inequality holds:

|w′| = |w′| ∧ |w′| = |w′| ∧ |w′ − w + w| 6 |w′| ∧
(
|w′ − w|+ |w|

)
=

(
|w′| ∧ |w′ − w|

)
+
(
|w′| ∧ |w|

)
.

From w′ ⊥ w − w′, comes |w′| ∧ |w − w′| = 0, and one obtains:

|w′| 6 0 +
(
|w′| ∧ |w|

)
= |w′| ∧ |w| 6 |w′|.

Then |w′| ∧ |w| = |w′|, and hence |w′| 6 |w|.
�
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Proposition 2.5 Let A be a lattice-ordered ring and let y, w1, w2 ∈ A. If y |loc w1 and
y |loc w2 with w1 ⊥ w2, then y |loc w1 + w2.

Proof: Suppose that y |loc w1 and y |loc w2 with w1 ⊥ w2. We consider several cases:
• The result is clear if one of w1 or w2 is 0.
• Let w1 6= 0 and w2 6= 0. If w1 +w2 = 0, by definition we have y |loc w1 +w2. Suppose,

then, that w1 + w2 6= 0. Since y |loc wi and wi 6= 0 (i = 1, 2), there is w′i ∈ A, w′i 6= 0 such
that w′i ⊥ wi − w′i and y | w′i. If w′1 + w′2 = 0 then w′2 = −w′1 and therefore:

|w′1| ∧ |w′2| = |w′1| ∧ | − w′1| = |w′1| ∧ |w′1| = |w′1|.
By Lemma 2.4 one has |w′i| 6 |wi| (i = 1, 2). Then:

|w′1| ∧ |w′2| 6 |w1| ∧ |w2|.
Since w1 ⊥ w2, the previous inequality entails |w′1| ∧ |w′2| = 0. By the asumption one gets
|w′1| = 0, whence w′1 = 0, a contradiction; hence w′1 + w′2 6= 0. Next, we want to see that:

w′1 + w′2 ⊥ (w1 + w2)− (w′1 + w′2).

We have the following inequalities:

0 6
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2)− (w′1 + w′2)
∣∣ =

∣∣w′1 + w′2
∣∣ ∧ ∣∣(w1 − w′1) + (w2 − w′2)

∣∣
6

∣∣w′1 + w′2
∣∣ ∧ (|w1 − w′1|+ |w2 − w′2|

)
6
(
|w′1|+ |w′2|

)
∧
(
|w1 − w′1|+ |w2 − w′2|

)
=

(
|w′1| ∧ |w1 − w′1|

)
+
(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
+
(
|w′2| ∧ |w2 − w′2|

)
= 0 +

(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
+ 0

=
(
|w′1| ∧ |w2 − w′2|

)
+
(
|w′2| ∧ |w1 − w′1|

)
6

(
|w′1| ∧

(
|w2|+ |w′2|

))
+
(
|w′2| ∧

(
|w1|+ |w′1|

))
=

(
|w′1| ∧ |w2|

)
+
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
+
(
|w′2| ∧ |w′1|

)
=

(
|w′1| ∧ |w2|

)
+ 2
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
.

Using again Lemma 2.4, w′i ⊥ (wi − w′i) entails |w′i| 6 |wi| (i = 1, 2). Returning to the
inequalities one gets:

0 6
∣∣w′1 + w′2

∣∣ ∧ ∣∣(w1 + w2)− (w′1 + w′2)
∣∣

6
(
|w′1| ∧ |w2|

)
+ 2
(
|w′1| ∧ |w′2|

)
+
(
|w′2| ∧ |w1|

)
6

(
|w1| ∧ |w2|

)
+ 2
(
|w1| ∧ |w2|

)
+
(
|w2| ∧ |w1|

)
= 4
(
|w1| ∧ |w2|

)
= 4 · 0 = 0,

for w1 ⊥ w2. This shows
∣∣w′1+w′2

∣∣∧∣∣(w1+w2)−(w′1+w′2)
∣∣ = 0, i.e., (w′1+w′2) ⊥ (w1+w2)−

(w′1 +w′2). Since y | w′i for i = 1, 2, then y | w′1 +w′2. Setting w′ = w′1 +w′2, we have proved
w′ 6= 0, w′ ⊥ (w1 + w2) − w′ and y | w′, i.e., ∃w′

(
w′ 6= 0 ∧ w′

(
w′ − (w1 + w2)

)
∧ y | w′

)
holds in A, showing that y |loc w1 + w2, as required.

�

Let A be a reduced f -ring. The sc-regularity of A states the existence of an element
u ∈ A such that 1�u and ∀e(e 6= 0 ∧ e2 = e→ u - e). Observe that:

u |loc 1 ←→ ∃w′(w′ 6= 0 ∧ w′(w′ − 1) = 0 ∧ u | w′)
←→ ∃w′(w′ 6= 0 ∧ w′2 − w′ = 0 ∧ u | w′)
←→ ∃e(e 6= 0 ∧ e2 = e ∧ u | e).

Therefore:
u -loc 1←→ ∀e(e 6= 0 ∧ e2 = e→ u - e).

So, the condition that A is sc-regular can be restated as A |= ∃u(1�u ∧ u -loc 1).
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3 Model completeness.

In this section we will work with the language L = Llor ∪ {� , |loc}. Let A and B be
two reduced f -rings satisfying the first convexity property and let us suppose that A is a
substructure of B in the language L; in particular A is a lattice-ordered subring of B.

Let us denote by i : A ↪→ B the inclusion, and the (dual) functorial (continuous) map:

Spec(i) : Spec(B)→ Spec(A), q 7→ i−1(q) = q ∩A.

Since A ⊆L B and the radical relation � belongs to the language, then:

a�Aa
′ ⇐⇒ i(a)�Bi(a

′),

for all a, a′ ∈ A. Let us denote πB = Specmin(B) = {q ∈ Spec(B) : q is a minimal
prime ideal } ⊆ Spec(B) and similarly for the ring A. Using [20, Theorem, p. 23, and
Proposition (a) y (b), p. 22] one has:

i∗ = Spec(i)�πBcon : πB
con → πA

con
,

where πB
con

and πA
con

are the closures of πB and πA in the constructible topology of
the spectral spaces Spec(B) and Spec(A); i∗ is surjective. As the (unitary) f -rings A
and B are projectable, by [16, 6.11] the spaces πB and πA are compact (and Hausdorff).
Remark that the topology of πA inherited by the space of irreducible `-ideals of A is the
Zariski topology on πA, cf. p. 29. By [26, Corollary 2.7], the subspaces πB and πA are
proconstructible and therefore πB

con
= πB and πA

con
= πA.

Henceforth, we assume that A and B are reduced and projectable f -rings. Under this
assumption we get:

i∗ = Spec(i)�πB : πB → πA,
and i∗ is surjective.

For q1, q2 ∈ πB, we set q1 ∼ q2 if and only if q1∩A = q2∩A, if and only if i∗(q1) = i∗(q2).
Clearly ∼ is an equivalence relation on πB. Since i∗ : πB → πA is surjective, πA can be
endowed with the quotient topology of πB induced by i∗ or by the equivalence relation
∼. By [29, Theorem 9.2, p. 60] the original topology of πA coincides with the topology
induced by i∗ whenever the function i∗ is either open or closed. Since the f -rings A and
B are projectable, by [16, 6.11], the spaces πA and πB are compact (and Hausdorff).
Since the map i∗ : πB → πA is continuous, by [29, p. 120], it is a closed function. Hence,
the original topology on πA and the quotient topology on πB induced by the equivalence
relation ∼ are the same. Therefore

j : πB/∼ → πA, q/∼ 7→ i∗(q),

is a homeomorphism of topological spaces and of Boolean spaces.

Now let p ∈ πA and q ∈ (i∗)−1
(
{p}
)
, i.e., i∗(q) = q ∩A = p. Consider the map

hpq : A/p→ B/q, a+ p 7→ a+ q.

Since p ⊆ q∩A, hpq is well defined, and q∩A ⊆ p implies that hpq is injective (straightfor-
ward checking), proving the injectivity of hpq. It is clear that hpq is a ring homomorphism.

Let us now see that hpq preserves order. Let a, a′ ∈ A be such that a+p 6 a′+p in A/p.
Then there exists c ∈ p such that c > 0 and a+ c 6 a′ in A. Since A is an L-substructure
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of B and the order is in the language L then a+ c 6 a′ in B. Since p ⊆ q∩A we get c ∈ q,
whence a + q 6 a′ + q in B/q. Thus, hpq(a) 6 hpq(a

′) in B/q. Since the orders on A/p
and B/q are total, the reverse implication follows at once from the one we just proved.
Therefore hpq : A/p→ B/q is an injective homomorphism of ordered rings. In this setting,
one has:

Theorem 3.1 Let A and B be reduced projectable f -rings satisfying the first convexity
property such that A ⊆L B, where L = Llor∪{� , |loc}. If in addition A and B are divisible-
projectable, then the homomorphism of ordered rings hpq (p ∈ πA and q ∈ (i∗)−1

(
{p}
)
)

defined above preserves divisibility.

Proof: We must prove: for any a, a′ ∈ A,

a+ p | a′ + p in A/p if and only if a+ q | a′ + q in B/q.

(⇒) Suppose a+ p | a′ + p in A/p, i.e., (a+ p)(c+ p) = a′ + p for some c+ p ∈ A/p, i.e.,
ac− a′ ∈ p. Since p ⊆ q ∩A, we have ac− a′ ∈ q, which means (a+ q)(c+ q) = a′+ q, i.e.,
a+ q | a′ + q en B/q.
(⇐) Assuming a+ q | a′ + q in B/q, we have to show a+ p | a′ + p in A/p.

• If a′ + q = 0 then a′ ∈ q, whence a′ ∈ q ∩ A = p. So a′ + p = 0, and therefore
a+ p | a′ + p in A/p.

• If a′ + q 6= 0 then a′ /∈ q. Then a′ /∈ p and so a′ + p 6= 0. Let us suppose in this case
that a + p - a′ + p en A/p. Consider N :=

[[
a - a′

]]
πA ∩

[[
a′ 6= 0

]]
πA a clopen subset of

πA. (Here we use the hypothesis that A is divisible projectable, see [12, Proposition 2.6]).
Since p ∈ N we have N 6= ∅. Let us define α′ = a′�N ∪ 0�πArN ∈ A. Since N 6= ∅, then
α′ 6= 0.

Now suppose that A |= a |loc α
′. Since α′ 6= 0, we have

A |= ∃w′(w′ 6= 0 ∧ w′(w′ − α′) = 0 ∧ a | w′).
Since w′ 6= 0, there exists p̄ ∈ πA such that w′(p̄) 6= 0. From w′(w′ − α′) = 0 comes
w′(p̄) = α′(p̄). By the definition of α′ and w′(p̄) 6= 0, one gets p̄ ∈ N and α′(p̄) = a′(p̄).
Since a | w′, there exists c ∈ A such that ac = w′, whence a(p̄)c(p̄) = w′(p̄) = α′(p̄) = a′(p̄);
so a(p̄) | a′(p̄) in A/p̄, contradicting p̄ ∈

[[
a - a′

]]
πA. Conclusion: A |= a -loc α

′. Since A is
an L-substructure of B and |loc belongs to the language, then B |= a -loc α

′. Since α′ 6= 0
then:

B |= ∀w′(w′ 6= 0 ∧ w′(w′ − α′) = 0→ a - w′).
From our initial assumption a + q | a′ + q in B/q, it follows that q ∈

[[
a | a′

]]
πB. By

case assumption we also have a′ + q 6= 0, i.e., q ∈
[[
a′ 6= 0

]]
πB. From p ∈ N comes

α′(p) = a′(p), i.e., α′ + p = a′ + p. From p = q ∩ A we get α′ + q = a′ + q in B/q and
therefore q ∈

[[
α′ = a′

]]
πB. The set M :=

[[
a | a′

]]
πB ∩

[[
a′ 6= 0

]]
πB ∩

[[
α′ = a′

]]
πB, is a

clopen set of πB with q ∈M and M 6= ∅ (here we use again that B is divisible-projectable).

Let us now set w′′ := α′�M ∪ 0�πBrM ∈ B. Since M 6= ∅, for q̄ ∈ M one has w′′(q̄) =
α′(q̄) = a′(q̄) 6= 0. Then w′′ 6= 0. Let us prove next that w′′(w′′ − α′) = 0. Let q̄ ∈ πB. If
q̄ ∈ πBrM then w′′(q̄) = 0 and so

[
w′′(w′′−α′)

]
(q̄) = w′′(q̄)(w′′−α′)(q̄) = 0. If q̄ ∈M , by

the definition of w′′ we have w′′(q̄) = α′(q̄), so (w′′−α′)(q̄) = 0, and
[
w′′(w′′−α′)

]
(q̄) = 0.

In either case,
[
w′′(w′′−α′)

]
(q̄) = 0 for all q̄ ∈ πB, whence w′′(w′′−α′) = 0. Since w′′ ∈ B

is such that w′′ 6= 0 and w′′(w′′ − α′) = 0, then a - w′′ in B.
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On the other hand, for q̄ ∈ πB one has the following:

• If q̄ ∈ πB rM , then w′′(q̄) = 0 and therefore a(q̄) | w′′(q̄) in B/q̄.

• If q̄ ∈ M then q̄ ∈
[[
a | a′

]]
πB ∩

[[
α′ = a′

]]
πB and consequently a(q̄) | a′(q̄) = α′(q̄)

in B/q̄. Therefore a(q̄) | w′′(q̄) in B/q̄.

Thus, a(q̄) | w′′(q̄) in B/q̄ for all q̄ ∈ πB, i.e., there exists cq̄ ∈ B such that a(q̄)cq̄(q̄) =
w′′(q̄). This shows:

πB =
⋃
q̄∈πB

[[
acq̄ = w′′

]]
πB.

By compactness, πB is the union of a finite number of these terms, and using the patchwork
property of B it is easy to construct an element c ∈ B such that ac = w′′, proving that
a | w′′ in B, and contradicting that a - w′′ in B (see above). This contradiction proves
that a+ q | a′ + q in B/q implies a+ p | a′ + p in A/p, completing the proof of Theorem
3.1.

�

Let A and B be two models of T ∗ such that A ⊆L B, where L = Llor ∪ {� , |loc}.
It is known that i∗ : πB → πA (q 7→ q ∩ A) is a continuous surjective map such that
πA ∼= πB/∼, where ∼ is the equivalence relation q ∼ q′ if and only if i∗(q) = q ∩ A =
q′ ∩ A = i∗(q′). Furthermore, recall that the map hpq : A/p → B/q (a + p 7→ a + q
p ∈ πA, q ∈ (i∗)−1({p})) introduced above is an injective homomorphism of ordered rings
preserving divisibility.

Let us denote by B(πA) and B(πB) the Boolean algebras of clopen sets of πA and πB
respectively. Then, j = (i∗)−1 : B(πA)→ B(πB) is an injective homomorphism of Boolean
algebras.

We want to show that A≺LB. Let φ(x1, . . . , xn) be an L-formula and a1, . . . , an ∈ A.
By [8, Theorem 1.1], there exists an acceptable sequence ζ = 〈Φ, θ1, . . . , θm〉 of formulas,
where θ1, . . . , θm are L-formulas with the same free variables as φ(x1, . . . , xn) and Φ is a
formula in the language of Boolean algebras with m free variables such that:

A |= φ(a1, . . . , an)⇐⇒ B(πA) |= Φ
([[
θ1(a1, . . . , an)

]]
A, . . . ,

[[
θm(a1, . . . , an)

]]
A

)
,

where
[[
θj(a1, . . . , an)

]]
A =

{
p ∈ πA : A/p |= θj(a1 + p, . . . , an + p)

}
, for j = 1, . . . ,m.

Since A and B are models of T ∗, A/p and B/q are real closed valuation rings, for all
p ∈ πA and q ∈ πB. Therefore, in view of 3.1 and [7], the map hpq : A/p → B/q is an
elementary monomorphism, i.e., hpq : A/p≺B/q. Then:

j
([[
θl(a1, . . . , an)

]]
A

)
=

{
q ∈ πB : B/q |= θl

(
hpq(a1), . . . , hpq(an)

)
with p = q ∩A

}
=

[[
θl(a1, . . . , an)

]]
B.

Since B(πA) are B(πB) are atomless Boolean algebras (A and B are models of T ∗)
j : B(πA)≺B(πB) is an elementary monomorphism. Then one has:

B(πA) |= Φ
([[
θ1(a1, . . . , an)

]]
A, . . . ,

[[
θm(a1, . . . , an)

]]
A

)
⇐⇒

B(πB) |= Φ
(
j
([[
θ1(a1, . . . , an)

]]
A

)
, . . . , j

([[
θm(a1, . . . , an)

]]
A

))
⇐⇒

B(πB) |= Φ
([[
θ1(a1, . . . , an)

]]
B, . . . ,

[[
θm(a1, . . . , an)

]]
B

)
.
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By [8, Theorem 1.1] one also has:

B |= φ(a1, . . . , an)⇐⇒ B(πB) |= Φ
([[
θ1(a1, . . . , an)

]]
B, . . . ,

[[
θm(a1, . . . , an)

]]
B

)
.

Therefore we have just proved:

A |= φ(a1, . . . , an) if and only if B |= φ(a1, . . . , an),

showing that A≺LB. Therefore we can state:

Theorem 3.2 The theory T ∗ is model-complete in L = Llor ∪ {� , |loc}. �

4 Universal theories.

In this section, the universal part of the theory T ∗ will be formulated and dtudied in several
languages. We begin by discussing how a reduced projectable f -ring satisfying the first
convexity property can be embedded in a model of T ∗ in the language Llor ∪ {� , |, |loc}.
Since projectability is not expressed by a universal sentence, later in this section it will be
replaced by other universal axioms, one for each of the symbols | and |loc.

Proposition 4.1 Let A be a reduced f -ring that satisfies the first convexity property.
Then there exists B |= T ∗ such that A ⊆L B, where L = Llor ∪ {�}. If, in addition, A is
projectable, this inclusion remains valid for the language L = Llor ∪ {|, � , |loc}.
The proof of this proposition will be done in several steps. The first step uses ideas from
[17, 6.1].

Step 4.2 Let A be a reduced f -ring that satisfies the first convexity property. Then there
exists B |= T ∗ such that A ⊆L B where L = Llor.

Proof: Let A be as in the hypothesis. Since A is a reduced f -ring, then A ⊆
∏
p∈πAA/p,

where πA is the space of minimal prime ideals of A and A/p is a totally ordered integral
domain, for each p ∈ πA. Clearly this inclusion is in the language Llor.

As A satisfies the first convexity property, the totally ordered rings A/p also satisfy
it, for all p ∈ πA; see [12, Lemma 2.3]. By [2], A/p is a model of the theory COVDD

(Convexely ordered valuation rings) or a model of OFD (Ordered fields), for every p ∈ πA.
By [2, Theorem 1(i)], for each p ∈ πA there exists a real closed valuation ring (not a field),
Rp, such that A/p ⊆ Rp in the language Lor ∪ {|}, and we have

∏
p∈πAA/p ⊆

∏
p∈πARp,

in the language Llor. Now, for each p ∈ πA take a copy Cp of the Cantor space and observe

that Rp ⊆ R
Cp
p by the constant inclusion x 7→ (x)Cp . It is clear that this inclusion holds

in the language Lor ∪ {|}. Therefore, one has:

A ⊆
∏
p∈πA

A/p ⊆
∏
p∈πA

Rp ⊆
∏
p∈πA

R
Cp
p , (∗)

in the language Llor. Since the theory of real closed valuation rings, denoted by RCVR,
is complete and model complete in Lor ∪ {|} (cf. [7]), by [6, Proposition 3.5.11(ii)] it has
the Joint Embedding Property (JEP) in the language Lor ∪ {|}. Therefore there exists a
real closed valuation ring (not a field), R, such that∏

p∈πA
R
Cp
p ⊆ RC , (∗∗),
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where C =
∏
p∈πACp is a product of Cantor spaces. This inclusion can be considered in

the language Llor. By [5, Theorem 2.1.(b)], one has RC ∈ Γe
L′(RCVR). This means that

B = RC is a model of T ∗ such that A ⊆ B in the language Llor. 2

Step 4.3 Let A be a reduced f -ring that satisfies the first convexity property. Then there
exists B |= T ∗ such that A ⊆L B where L = Llor ∪ {�}.
Proof: With notation as in the proof of 4.2, we need to prove that the inclusions in
(∗) and in (∗∗) preserve the radical relation. Since the radical relation b� a is given by
the universal formula ∀x(ax = 0 → bx = 0) (see section 2), it is clear that this relation
is downward preserved at each inclusion. Next, we show that it is upwards preserved.
Consider the map:

ι : A→
∏
p∈πA

A/p, a 7→ (a+ p)p∈πA.

Let a, b ∈ A and suppose A |= a� b. We want to see that
∏
p∈πAA/p |= ι(a)� ι(b). Let

c̃ = (cp + p)p∈πA ∈
∏
p∈πAA/p be such that ι(b)c̃ = 0. Then bcp + p = 0, i.e., bcp ∈ p, for

all p ∈ πA. Since a� b in A and cp ∈ A, then acp� bcp for every p ∈ πA, whence acp ∈ p,
for all p ∈ πA, i.e., ac̃ = 0. This shows that ∀c̃ (ι(b)c̃ = 0⇒ ι(a)c̃ = 0) in

∏
p∈πAA/p, i.e.,

ι(b)� ι(a) is valid in
∏
p∈πAA/p.

2

Let us now see that the radical relation is preserved at the second inclusion of (∗).
Let ã = (ap + p)p∈πA and b̃ = (bp + p)p∈πA in

∏
p∈πAA/p be such that ã� b̃, that is:∏

p∈πAA/p |= ∀x(b̃x = 0→ ãx = 0). To see that ã� b̃ is valid in
∏
p∈πARp, let x̃ =

(xp)p∈πA with xp ∈ Rp for all p ∈ πA, be such that b̃x̃ = 0. That is, (bp + p)xp = 0
for all p ∈ πA. For a fixed p ∈ πA, one has bp + p = 0 or xp = 0, as Rp is an integral
domain. If xp = 0, then (ap + p)xp = 0. If bp + p = 0 then bp ∈ p. Taking x ∈

∏
p∈πAA/p

given by xq = δpq =

{
1 if p = q
0 if p 6= q

, we have b̃x = 0 in
∏
p∈πAA/p and hence ãx = 0 by

hypothesis, that is ap + p = 0 and therefore (ap + p)xp = 0. This is satisfied at all p ∈ πA
and hence ãx̃ = 0, proving that

∏
p∈πARp |= ã� b̃.

For the third inclusion in (∗), consider r, s ∈
∏
p∈πARp, given by r = (rp)p∈πA and

s = (sp)p∈πA, so that r� s in
∏
p∈πARp. Take into account that for each p ∈ πA, the

inclusion Rp ↪→R
Cp
p is given by r 7→ (r)Cp where (r)Cp is a Cp-uple constantly equal to r.

We want to prove that ∀x(sx = 0→ rx = 0) is true in
∏
p∈πAR

Cp
p . Let x ∈

∏
p∈πAR

Cp
p be

such that sx = 0, with x = (xp)p∈πA and xp = (xip)i∈Cp . Note that sx = 0 means spx
i
p = 0

for all p ∈ πA and all i ∈ Cp. Fixing p ∈ πA, one has spx
i
p = 0, for all i ∈ Cp. Since

r� s in
∏
p∈πARp, with xp ∈

∏
p∈πARp given by xp(q) = δpq =

{
1 if p = q
0 if p 6= q

, one has

sxp = 0⇒ rxp = 0, that is, sp = 0⇒ rp = 0. Now we have two cases:

• If sp = 0 then rp = 0 and therefore rpx
i
p = 0, for all i ∈ Cp.

• If sp 6= 0 then xip = 0 for all i ∈ Cp, and therefore rpx
i
p = 0, for all i ∈ Cp.

We have shown that spx
i
p = 0 ⇒ rpx

i
p = 0 for all i ∈ Cp and all p ∈ πA. This meanss

exactly r� s in
∏
p∈πAR

Cp
p . 3

2Observe that in this paragraph the only condition used on A is to be a reduced f -ring.
3The only complication that arises in this third inclusion is notational, since everything reduces to prove
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Concerning the inclusion in (∗∗), by model-completeness of the theory of real closed
valuation rings (cf. [7]) we have Rp≺R, for all p ∈ πA. By the Feferman-Vaught theorem,
[11], we get: ∏

p∈πA
R
Cp
p ≺RC . (†)

Then, clearly, the radical relation (and any other definable relation) is preserved by this
inclusion.

2

Step 4.4 Let A be a projectable reduced f -ring that satisfies the first convexity property.
Then there exists B |= T ∗ such that A ⊆L B where L = Llor ∪ {� , |}.
Proof: As in the proof of the Step 4.3, we use the inclusions (*) and (**) in Step 4.2. We
begin by proving that the divisibility relation is preserved in the first inclusion of (∗). For
the implication (⇒), projectability is not neded. For if a, b ∈ A are such that b | a, then
there exists c ∈ A with bc = a; therefore (b + p)(c + p) = bc + p = a + p, for all p ∈ πA.
That is b+ p | a+ p, for all p ∈ πA, i.e.,:

(b+ p)p∈πA | (a+ p)p∈πA in
∏
p∈πA

A/p.

For the direction (⇐), if a, b ∈ A are such that (b + p)p∈πA | (a + p)p∈πA, there is
(cp + p)p∈πA ∈

∏
p∈πAA/p with (b + p)p∈πA · (cp + p)p∈πA = (a + p)p∈πA. Therefore

bcp + p = a + p, for all p ∈ πA. Since A is a subdirect product, there exists c̃p ∈ A such
that c̃p(p) = cp for every p ∈ πA. Considering the set Xp := [[ b · c̃p = a ]] , one has p ∈ Xp,
for all p ∈ πA. Then, πA =

⋃
p∈πAXp is a clopen covering. By compactness of πA and the

glueing property of A, there exists c ∈ A such that πA = [[ b · c = a ]] , i.e., (bc) + p = a+ p,
for all p ∈ πA, that is, bc−a ∈

⋂
p∈πA p. Since A is reduced,

⋂
p∈πA p = {0}, and therefore

bc = a, i.e., b | a in A. Then, the inclusion A ⊆
∏
p∈πAA/p holds in the language Llor∪{|}.

We shall now prove that divisibility is preserved by the other inclusions of (∗) and
(∗∗). For the inclusion in (∗∗), this is clear, since it is definable by a formula in Llor. In
general, as divisibility is definable by an existential formula, it is upwards preserved under
all inclusions. Then we need only prove that divisibility is downwards preserved at the
second and third inclusions of (∗). Note that in the proof of step 4.2, we remarked that

A/p ⊆ Rp and Rp ⊆ R
Cp
p are inclusions in the language Lor ∪ {|}. Pointwise verification

shows that divisibility goes down at the second and third inclusions of (∗).
2

Step 4.5 Let A be a projectable reduced f -ring that satisfies the first convexity property.
Then there exists B |= T ∗ such that A ⊆L B where L = Llor ∪ {� , |, |loc}.
Proof: We are going to prove that, under the given assumptions, the local divisibility
relation is preserved by all the inclusions in (∗). Since local divisibility is expressed by an
existential formula in the language Llor, it is upwards preserved in any extension. So, it
suffices to prove that it is downwards preserved under each inclusion in (∗).

For the first inclusion in (∗), let a, b ∈ A be such that b |loc a holds in
∏
p∈πAA/p and

prove that it is true in A. This is clear if a = 0. If a 6= 0, there exists w ∈
∏
p∈πAA/p

such that w 6= 0, w(w − a) = 0 and b | w in
∏
p∈πAA/p. Since w 6= 0, there is p0 ∈ πA

such that wp0 6= 0. Therefore a(p0) = wp0 6= 0 and b(p0) | wp0 = a(p0) in A/p0. Hence

that for each p ∈ πA, the inclusion Rp ↪→R
Cp
p preserves the radical relation. That is obvious since the

inclusion is given by a constant function.
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there is cp0 ∈ A/p0 so that b(p0)cp0 = a(p0). Let c ∈ A be such that c(p0) = cp0 ; then
b(p0)c(p0) = a(p0), and hence p0 ∈

[[
bc = a

]]
∩
[[
a 6= 0

]]
= N 6= ∅, a clopen subset of

πA. Since A is projectable, let w̃ ∈ A be defined by w̃ := a�N ∪ 0�πArN . Then w̃ 6= 0,
and clearly w̃(w̃ − a) = 0. It is easy to see that b | w̃ in A: the element d ∈ A given by
d = c�N ∪ 0�πArN ∈ A satisfies bd = w̃. This shows that A |= ∃w(w 6= 0 ∧ w(w − a) =
0 ∧ b | w), i.e., A |= b |loc a.

We now turn to the second inclusion:
∏
p∈πAA/p ⊆

∏
p∈πARp. To ease notation, let

X = πA with Ax = A/p and Rx = Rp for all x ∈ X. Let a = (ax)x∈X and b = (bx)x∈X in∏
x∈X Ax be such that b |loc a in

∏
x∈X Rx. If a = 0 then b |loc a in

∏
x∈X Ax. If a 6= 0,

there exists w = (wx)x∈X ∈
∏
x∈X Rx such that w 6= 0, w(w−a) = 0 and b | w in

∏
x∈X Rx.

For each x ∈ X, either wx = 0 or wx = ax ∈ Ax. Then w = (wx)x∈X ∈
∏
x∈X Ax. Since

b, w ∈
∏
x∈X Ax, then b | w in

∏
x∈X Rx implies b | w in

∏
x∈X Ax, proving b |loc a in∏

x∈X Ax.

For the last inclusion in (∗), let a = (ax)x∈X and b = (bx)x∈X in
∏
x∈X Rx be such

that b |loc a in
∏
x∈X R

Cx
x . If a = 0, obvioulsy b |loc a in

∏
x∈X Rx. If a 6= 0, there is

w = (wcx)x∈X,c∈Cx such that w 6= 0, w(w − a) = 0 and b | w in
∏
x∈X R

Cx
x . For each

x ∈ X, if there exists c ∈ Cx with wcx 6= 0, then wcx = ax 6= 0. In this case, redefine
w ∈

∏
x∈X R

Cx
x by seting wcx = ax 6= 0, for all c ∈ Cx, whence wcx 6= 0. Otherwise, if for

some x ∈ X one has wcx = 0 for all c ∈ Cx, there is nothing to redefine. Therefore w is
in
∏
x∈X Rx and one has w 6= 0, w(w − a) = 0 and b | w in

∏
x∈X R

Cx
x . It was already

proved above that b | w in
∏
x∈X Rx, whence b |loc a in

∏
x∈X Rx.

2

Steps 4.2 and 4.5 complete the proof of Proposition 4.1.
�

As noted before, projectability is not adequate for our purposes since it is not expressed
by a universal axiom. In the sequel of this section, we replace projectability by a universal
axiom scheme for each symbol in {|, |loc}. We begin with:

Lemma 4.6 Let A be a reduced and projectable f -ring; then A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for each n ∈ N.

Proof: By hypothesis we have A ∈ Γa
Lor
(
X, (Ax)x∈X

)
, where X is a Boolean space and

(Ax)x∈X is a family of totally ordered integral domains. Let a, b, c1, . . . , cn ∈ A be such
that (bc1 − a) · · · (bcn − a) = 0. Then:(

b(x)c1(x)− a(x)
)
· · ·
(
b(x)cn(x)− a(x)

)
= 0,

for all x ∈ X. For each i ∈ {1, . . . , n}, set:

Ni :=
[[
bci − a = 0

]]
= {x ∈ X : b(x)ci(x)− a(x) = 0};

these are clopen subsets of X. Since the Ax’s are integral domains, then, X =
⋃n
i=1Ni.

Without loss of generality, we can suppose that the Ni’s are pairwise disjoint and non-
empty (if some Ni is empty, eliminate the corresponding ci). By the patchwork property
of A one has:

c = c1�N1
∪ · · · ∪ cn�Nn ∈ A.

Clearly b(x)c(x)− a(x) = 0, for all x ∈ X, proving that b | a in A.
�
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Corollary 4.7 Let B be a reduced and projectable f -ring, and let A be a substructure of
B in the language Llor ∪ {|}. Then A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for all n ∈ N.

Proof: Immediate from Lemma 4.6.
�

In the same sense one has:

Corollary 4.8 Let B |= T ∗ and A be a substructure of B in the language Llor∪{|}. Then
A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for each n ∈ N.
�

In view of our previous results, we establish the following

Definition 4.9 Let A be any ring. We say that A satisfies the divisibility glueing
axiom scheme if A satisfies:

∀a∀b∀c1 · · · ∀cn
(
(bc1 − a) · · · (bcn − a) = 0→ b | a

)
,

for all n ∈ N.

The divisibility glueing axiom scheme is a set of universal formulas and the analog of
Proposition 4.1 obtained by replacing the projectability assumption by this axiom scheme
can be proved for the language Llor ∪{� , |}. In order to carry this conversion out we will
need information concerning spectral spaces and irreducible `-ideals in f -rings. For the
first the reader is referred to [9]; a suitable reference for the second matter is [3], especially
chapters 8 - 10. The notion of an irreducible `-ideal in lattice-ordered rings is defined in
[3, (8.4.1)]. We shall denote by Spec`(A) the set of irreducible `-ideals of A, and prove:

Lemma 4.10 The set Spec`(A) of irreducible `-ideals of an f -ring (with unit), A, endowed
with the topology defined by the family {S(a) : a ∈ A} as a basis of open sets, where
S(a) = {p ∈ Spec`(A) : a 6∈ p}, is a spectral space.

Proof: [3, (10.1.6)] proves that if A is an f -ring with unit, then Spec`(A) is a quasi-
compact space. It is clear that Spec`(A) is T0. By [3, 10.1.4], the sets S(a) (a ∈ A) are
quasi-compact and the family of them is closed under finite intersections. It only remains
to prove the soberness axiom for spectral spaces, [9, Axiom (S4), Definition 1.1.5, p. 4].
Using [3, 10.1.7], routine arguments show that if F is a non-empty closed irreducible subset
of Spec`(A) then there exists p ∈ Spec`(A) such that F = H(p) = {p}.

�
By [3, (9.1.5)], if A is an f -ring and p ∈ Spec`(A), then A/p is a totally ordered ring.

Nevertheless, A/p may not be an integral domain. To satisfy this requirement we restrict
to the subspace:

Y =
{
p ∈ Spec`(A) : p is prime

}
,

see [3, section (9.2), especially (9.2.5)]. Clearly, A/p is a totally ordered integral domain
for p ∈ Y .

Lemma 4.11 The set Y with the topology induced by Spec`(A) is a spectral space.
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Proof: By [9, 2.1.3], it is sufficient to prove that Y is proconstructible in Spec`(A), i.e.,
that Spec`(A)rY is open in the constructible topology of Spec`(A). Let p0 ∈ Spec`(A)rY .
Then p0 is an irreducible `-ideal that is not a prime ideal: there exists a, b ∈ A such that
ab ∈ p0 with a /∈ p0 and b /∈ p0. The set O := V (ab) ∩ D(a) ∩ D(b) is open in the
constructible topology of Spec`(A), p0 ∈ O and O ⊆ Spec`(A)rY (no p ∈ O is prime).

�

Summarizing, we have proved if A is a (reduced) f -ring, there exists a spectral space
Y ⊆ Spec`(A) such that A/p is a totally ordered integral domain, for all p ∈ Y . By [12,
Lemma 2.3], if A is an f -ring satisfying the first convexity property, A/p also satisfies this
property, for all p ∈ Y . We are ready to prove the following proposition.

Proposition 4.12 Let A be a reduced f -ring satisfying the first convexity property and the
divisibility glueing axiom scheme. Then there exists B |= T ∗ such that A is a substructure
of B in the language Llor ∪ {|}.
Proof: Let A satisfy the conditions in the hypothesis. Choose any spectral space, Y ,
with the property of Lemma 4.11 relative to A. Let X be any proconstructible subspace
of Y containing πA (by [3, 9.3.2] one has πA ⊆ Y ) (e.g., we can take X to be πA

con
, the

closure of πA in the constructible topology of Y ).

Consider the map ι : A→
∏
p∈X A/p, a 7→ (a+ p)p∈X . Clearly, ι is a homomorphism

of lattice-ordered rings. Since A is reduced and X contains πA, ι in an embedding, hence
a monomorphism of lattice-ordered rings. Clearly, if a, b ∈ A are such that b | a in A then
ι(b) | ι(a) in

∏
p∈X A/p. We prove the reverse implication.

Let a, b ∈ A be such that ι(b) | ι(a) in
∏
p∈X A/p. Set Ax := A/x for x ∈ X. Then

b(x) divides a(x) in Ax, for all x ∈ X, i.e., there is cx ∈ Ax such that b(x) cx = a(x), for
all x ∈ X. Since A is an f -ring, there exists c̃x ∈ A such that c̃x(x) = cx, for all x ∈ X,
whence b(x)c̃x(x) = a(x), for all x ∈ X. Therefore x ∈

[[
bc̃x = a

]]
= Nx, a clopen set

in the constructible topology of X. Therefore: X =
⋃
x∈X Nx,, and by compactness of

X, there are x1, . . . , xn ∈ X such that X =
⋃n
i=1Nxi . Set ci = c̃xi and Ni = Nxi , for

i = 1, . . . , n. Then, every x ∈ X satisfies b(x)ci(x) = a(x) for some i ∈ {1, . . . , n}, whence(
b(x)c1(x)− a(x)

)
· · ·
(
b(x)cn(x)− a(x)

)
= 0, for all x ∈ X, i.e., (bc1− a) · · · (bcn− a) = 0.

By the divisibility glueing property of A we get b | a. We have proved:

A |= b | a if and only if
∏
p∈X

A/p |= ι(b) | ι(a).

Thus, ι preserves the divisibility relation. Note that
∏
p∈X A/p is a reduced and

projectable f -ring; then by Proposition 4.1, there exists B |= T ∗ such that
∏
p∈X A/p ⊆ B

in the language Llor ∪ {|}, as asserted.
�

Remark 4.13 Other possible choices of the space X in the previous proof are the whole
Y =

{
p ∈ Spec`(A) : p is prime

}
, or X = πA

con
where πA is seen as a subspace of

Sper(A), the real spectrum of A, or even a subspace of RCVR-Spec(A) containing πA, cf.
[21]. We can now state:

Theorem 4.14 The universal theory of T ∗ in the language Llor ∪ {|} is the theory of
reduced f -rings satisfying the first convexity property and the divisibility glueing property.

Proof: Follows at once from Corolary 4.8 and Propostion 4.12.
�

In the remainder of this section, we determine the universal theory of T ∗ when local
divisibilty and the radical relation are added to the language. We begin with:
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Proposition 4.15 Let A be a reduced and projectable f -ring. Then A satisfies:

∀a∀b∀c (a 6� bc− a→ b |loc a). (?)

Proof: Let A be a reduced and projectable f -ring. Then A ∈ Γa
Lor
(
X, (Ax)x∈X

)
, where

X = πA is the space of minimal prime ideals and (Ax)x∈X is a family of totally ordered
integral domains. Let a, b, c ∈ A be such that a 6� bc − a. By the equivalences in (†),
section 2, page 4; there exists x ∈ X such that a(x) 6= 0 and (bc − a)(x) = 0. Let
N := [[ a 6= 0 ]] ∩[[ bc−a = 0 ]] ; N is a non-empty clopen set containing x. By the patchwork
property of A, there exists w ∈ A such that w = a�N ∪ 0�XrN . Set c′ := c�N ∪ 0�XrN ∈ A.
From the definition of N one has w 6= 0, w(w− a) = 0 and bc′ = w, which implies b |loc a.

�

Remark 4.16 It is clear that a 6= 0 in the previous proof. In general, if the formula (?)
in the preceding Proposition is valid for any radical relation � , then a 6= 0. For if a = 0
then 0 6� bc, as 0� d, for all d ∈ A. We have the following corolaries.

Corollary 4.17 Let B be reduced and projectable f -ring, and A a substructure of B in
the language Llor ∪ {� , |loc}. Then A satisfies:

∀a∀b∀c (a 6� bc− a→ b |loc a).

Proof: Follows at once from Proposition 4.15.
�

Corollary 4.18 Let B |= T ∗ with A a substructure of B in the language Llor ∪ {� , |loc}.
Then, A satisfies:

∀a∀b∀c (a 6� bc− a→ b |loc a).

�

The formula ∀a∀b∀c (a 6� bc − a→ b |loc a) establishes a compatibility condition between
the radical relation � and local divisibility.

Definition 4.19 Let A be any ring. We say that A has the local divisibility property
if A satisfies ∀a∀b∀c

(
(a 6� bc− a)→ b |loc a

)
.

We can now prove:

Proposition 4.20 Let A be a reduced f -ring satisfying the first convexity property and
the local divisibility property. Then there exists B |= T ∗ such that A ⊆ B as a substructure
in the language Llor ∪ {� , |loc}.
Proof: Let A be an f -ring with the properties of the statement. As in Proposition 4.12
consider a spectral space Y ⊆ Spec`(A) such that A/p is a totally ordered integral domain
for all p ∈ Y , together with a proconstructible subset X of Y containing πA.

As in Proposition 4.12, let ι : A →
∏
x∈X Ax be the lattice-ordered ring homorphism

given by ι(a) = (a+ x)x∈X . Since X contains πA and A is reduced, ι is a monomorphism
preserving the radical relation; hence � = �X . We want to see that ι preserves local
divisibility. Let a, b ∈ A. If b |loc a in A, clearly ι(b) |loc ι(a) in

∏
x∈X Ax. Conversely,

assume ι(b) |loc ι(a) in
∏
x∈X Ax. If ι(a) = 0 then a = 0, and b |loc a in A. Let

ι(a) =
(
a(x)

)
x∈X 6= 0, then there exists w = (wx)x∈X ∈

∏
x∈X Ax such that w 6= 0,

w
(
w − ι(a)

)
= 0 and ι(b) | w in

∏
x∈X Ax. Let c = (cx)x∈X ∈

∏
x∈X Ax be such that

ι(b)c = w. Since w 6= 0, there is x0 ∈ X such that wx0 6= 0 and wx0 = a(x0) as
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w
(
w − ι(a)

)
= 0. With c ∈ A such that c(x0) = cx0 , we get b(x0)c(x0) = a(x0); thus,

a(x0) 6= 0 and (bc− a)(x0) = 0, whence a 6�Xbc− a. Since � = �X we get a 6� bc− a in
A, and then b |loc a in A, as A satisfies the local divisibility property. This completes the
proof that ι : A→

∏
x∈X Ax preserves local divisibility.

Since A satisfies the first convexity property, then Ax also satisfies it for all x ∈ X, and
so does

∏
x∈X Ax. Since

∏
x∈X Ax is also reduced and projectable, Proposition 4.1, shows

that there is B |= T ∗ such that
∏
x∈X Ax ⊆ B in the language Llor ∪ {� , |loc}, whence

A ⊆ B in Llor ∪ {� , |loc} as well.
�

Theorem 4.14, Corollary 4.18 and Proposition 4.20 yield:

Theorem 4.21 The universal theory of T ∗ in the language Llor∪{|, � , |loc} is the theory
of reduced f -rings satisfying the first convextiy property, the divisibility glueing axiom
scheme and the local divisibility property.

�

By Theorem 3.2, T ∗ is also model-complete in the language Llor ∪ {� , |, |loc}. In view
of Theorem 4.21, we have:

Theorem 4.22 The theory T ∗ is the model-companion of the theory of reduced f -rings
satisfying the first convexity property, the divisibility glueing axiom scheme and the local
divisibility property in the language Llor ∪ {� , |, |loc}. �

5 The maximal local divisibility relation.

In this section, we study equivalent forms of the local divisibility relation valid in the
theory of reduced, projectable and divisible-projectable f -rings (and so in the theory T ∗).
The main result of this section is the equivalent form of local divisibility given in item
(vi) (or (vi)′ ) of Proposition 5.13. This equivalent form of local divisibility is the key to
the proof of Proposition 6.9, a generalization of Proposition 3.1 where the ring A can be
chosen as a model of the universal part of the theory T ∗. In turn, Proposition 6.9 is the
main ingredient in the proof of the quantifier elimination theorem 6.14.

We start with a simple fact.

Fact 5.1 Let A be any ring. Then for all a, b ∈ A one has:

b |loc a↔ a = 0 ∨ ∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
.

Proof: (⇐) is clear.
(⇒) This implication is obvious if a = 0. Otherwise, there exists w 6= 0 such that
w(w − a) = 0 and b | w. To see that w� a (i.e., ∀p ∈ πA (a ∈ p ⇒ w ∈ p)), let p ∈ πA,
with a ∈ p; then wa ∈ p. Since w(w − a) = 0, we get w2 = wa ∈ p, and hence w ∈ p.

�

Remark 5.2 Let A be any ring and let a, b ∈ A be such that ∃e(e2 = e ∧ ae 6= 0 ∧
e� a ∧ b | ae). Then, ∃w

(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
.

Proof: Set w := ae 6= 0. Note that w(a− w) = ae(a− ae) = a2e(1− e) = 0. Since x� 1
for all x ∈ A, then e� 1 and, by item (4) in the definition of a radical relation, we get
ea� a, whence w� a. Clearly b | w.

�
Conversely, we have:
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Proposition 5.3 Let A be a reduced and projectable f -ring. Let a, b ∈ A be such that
∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
. Then ∃e(e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae).

Proof: Assume the statement on the left. The idempotent e ∈ A is the support of w,
constructed using the projectability of A, as follows: let 1 = c + d, where c ∈ w⊥ and
d ∈ w⊥⊥, (see [15, Lema 3.3]). Then c · w = 0 and d�w; since w� a, we get d� a, and
w · c = 0 implies c · d = 0. Therefore, c = c · 1 = c(c+ d) = c2 + cd = c2 + 0 = c2, i.e., c is
an idempotent, and so is d = 1− c. Set e := d.

First we prove ad 6= 0. Assume ad = 0; since w� a we get dw = 0, and from d�w
follows Ann(w) ⊆ Ann(d), and then d = d2 = 0. Thus, c = 1 and w = 0, contradicting
the hypothesis w 6= 0. Therefore ad 6= 0.

Next we show w� d, that is: Ann(d) ⊆ Ann(w). Given x ∈ A so that dx = 0, from
(1 − c)x = 0 we conclude x = cx. From wc = 0 we get wx = wcx = 0. We have proved
∀x(dx = 0⇒ wx = 0), that is: w� d. Thus, d�w ∧ w� d, i.e., w =s d.

Since w� a, then wd� ad. Observing that w = w ·1 = w(c+d) = wc+wd = 0+wd =
wd, we get w� ad. Also d�w implies ad� aw = w2. Since w� 1 then w2�w and, by
transitivity, ad�w. Therefore w� ad and ad�w, that is: w =s ad.

Finally we prove that w = ad. We use that the ring A is reduced. Let p ∈ πA.
If w /∈ p then a − w ∈ p, as w(a − w) = 0 ∈ p, and so (a − w)d ∈ p. Observe that
(w − a)d = wd− ad = w − ad ∈ p. If w ∈ p, since w =s ad then ad ∈ p, and w − ad ∈ p.
Therefore w−ad ∈

⋂{
p : p ∈ πA

}
= {0}, because A is reduced. Then w = ad, and b | ad.

Altogether this shows ∃d (d2 = d ∧ ad 6= 0 ∧ d� a ∧ b | ad), as required.
�

Proposition 5.4 Let A be a reduced and projectable f -ring and a, b ∈ A. The following
assertions are equivalent:

(i) b |loc a ∧ a 6= 0,

(ii) ∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
,

(iii) ∃e (e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae).

Proof: Comes from Remarks 5.2 and 5.3.
�

Remark 5.5 By contraposition, Proposition 5.4, proves the equivalence of the following
assertions for the stated type of rings:

(i) a 6= 0→ b -loc a,

(ii) ∀w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a→ b - w

)
,

(iii) ∀e (e2 = e ∧ ae 6= 0 ∧ e� a→ b - ae).
�

Proposition 5.6 Let A be a reduced and projectable f -ring, and a, b ∈ A. The following
assertions are equivalent:

(i) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

∀w′(w′ 6= 0 ∧ w′(a− w′) = 0 ∧ w′� a ∧ b | w′ → w′�w)
]
,

(ii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e)
]
.
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Proof: (ii)⇒(i). Suppose (ii) and set w := ae. Clearly, w 6= 0 and w(a − w) = 0 are
proved as in Remark 5.2 above. Scaling e� 1 by a yields w� a. Evidently, b | w. Let
w′ 6= 0 with w′(a − w′) = 0, w′� a and b | w′. As in the proof of Proposition 5.3 we set
1 = c′+d′ with c′ ·w′ = 0 and d′�w′. Then c′ are d′ idempotents. From d′�w′ and w′� a
follows d′� a. As in the proof of Proposition 5.3, one deduces that ad′ 6= 0. It can also be
shown that w′� d′, and therefore w′ =s d

′. In a similar way it is shown that w′ = ad′ and
evidently b | ad′. From (ii) we get d′ 6 e, that is d′� e. Then, ad′� ae, i.e., w′� ae = w.

(i)⇒(ii). Let w ∈ A satisfy (i). We set 1 = c + d with cw = 0 and d�w. As before, c
and d are idempotents such that w = ad 6= 0, d� a and b | ad. In fact, one has w� d
and therefore d =s w. The idempotent we are looking for is e = d. To finish the proof,
let e′ be an idempotent such that ae′ 6= 0, e′� a and b | ae′. Setting w′ = ae′ 6= 0, we
get w′(a− w′) = a2e′(1− e′) = 0, w′� a (scaling e′� 1 by a), and b | w′. Then, (i) yields
w′�w, i.e., ae′� ad. To conclude we want to show that e′ 6 d. Let p ∈ πA be such
that e′ /∈ p, that is e′ − 1 ∈ p. Since e′� a then a /∈ p. Therefore w′ = ae′ /∈ p, whenece
w = ad /∈ p. This means a /∈ p and d /∈ p; in particular d− 1 ∈ p. We have shown that for
all p ∈ πA, e′ /∈ p implies d /∈ p, i.e., e′� d, and hence e′ 6 d.

�

The following proposition gives several statements that turn out to be equivalent to
item (ii) in Proposition 5.6:

Proposition 5.7 Let A be a reduced and projectable f -ring and a, b ∈ A. Then, the
following assertions are equivalent on A:

(i) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
,

(ii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ af 6= 0 ∧ f � a(1− e)→ b - af

))]
,

(iii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
.

Proof: (i)⇒(ii). Let e ∈ A satisfy (i). Obviously e satisfies the first five conjuncts
of (ii). Let us prove the last one. Suppose a(1 − e) 6= 0 and let f ∈ A be such that
f2 = f , af 6= 0 and f � a(1 − e). Then ef � a(1 − e) · e = 0, and ef = 0. Thus,
a(1− e)f = a(f − ef) = af 6= 0 and b - af . Hence e proves that (ii) holds.

(ii)⇒(iii). Let e ∈ A be an element satisfying all six conjuncts of (ii). Set w := ae. Then
w 6= 0, w(a− w) = 0, w� a (e� 1 implies ae� a) and b | w.

If a − w = 0 then a − ae = a(1 − e) = 0, and by (ii) one has b | a. If a − w 6= 0 then
a(1− e) 6= 0 and therefore:

(∗) ∀f
(
f2 = f ∧ af 6= 0 ∧ f � a(1− e)→ b - af

)
.
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We want to prove that ∀w′
(
w′ 6= 0 ∧ w′

(
(a − w) − w′

)
= 0 ∧ w′� a − w → b - w′

)
holds

in A. Let w′ ∈ A be such that w′ 6= 0, w′
(
(a − w) − w′

)
= 0 and w′� a − w. Since A

is projectable, then 1 = c′ + d′ with c′ · w′ = 0 and d′�w′. Since w′� a − w, we get
d′� a − w = a − ae = a(1 − e). Therefore ed′� ea(1 − e) = a(1 − e)e = 0, and ed′ = 0;
that is d′ 6 1 − e (or e 6 1 − d′). One also has c′d′ = 0 and c′, d′ are idempotents.
Also w′� d′ because Ann(d′) ⊆ Ann(w′): if d′x = 0 with x ∈ A, then xc′ = x, and
xw′ = xc′w′ = x0 = 0, that is, x ∈ Ann(w′). Then w′ =s d

′.

Next we prove that w′ = a(1−e)d′. Let p ∈ πA. If w′+p = 0, then w′ ∈ p; consequently
d′ ∈ p and a(1 − e)d′ ∈ p; that is a(1 − e)d′ + p = 0, and hence w′ + p = a(1 − e)d′ + p.
If w′ + p 6= 0, since w′

(
(a − w) − w′

)
= 0 ∈ p, then w′ + p = (a − w) + p = a(1 − e) + p;

in this case d′ + p 6= 0 and therefore d′ + p = 1 + p. Then w′ + p = a(1 − e)d′ + p. This
proves that w′ + p = a(1− e)d′ + p, for all p ∈ πA. Since A is reduced, w′ = a(1− e)d′.

We have d′2 = d′ and 0 6= w′ = a(1 − e)d′ = a(d′ − ed′) = ad′, since ed′ = 0. Then
ad′ 6= 0 and d′� a(1 − e). By (*), b - ad′. Since a(1 − e)d′ = ad′, we have b - a(1 − e)d′,
that is b - w′.

(iii)⇒(i). Let w 6= 0 satisfy (iii). By projectability of A, 1 = c+ d for some c, d ∈ A such
that c · w = 0 and d�w. As in the proof of Proposition 5.3 we get d =s w. It is also
shown that d� a and w = ad (A is reduced). Set e := d; one has w = ad 6= 0 and b | ad.
Clearly, if a(1− d) = 0 then b | a. If a(1− d) 6= 0, we need to prove that

∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))
holds in A. Let f ∈ A satisfy the first three conjuncts. Setting w′ := a(1 − e)f 6= 0, we
have:

w′
(
(a− w)− w′

)
= w′

(
(a− ad)− w′

)
= w′

(
a(1− d)− w′

)
= w′

(
a(1− e)− a(1− e)f

)
=

w′
(
a(1− e)(1− f)

)
= a(1− e)fa(1− e)(1− f) =

(
a(1− e)

)2
f(1− f) =

(
a(1− e)

)2
0 = 0.

Scaling f � 1 by a(1− e), we get w′ = a(1− e)f � a(1− e) = a− w. By (iii), b - w′, that
is, b - a(1− e)f , as needed.

�

Corollary 5.8 Let A be a reduced and projectable f -ring and a, b ∈ A. Then, the following
assertions are equivalent in A:

(i) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ b -loc a(1− e)
)]
,

(ii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ b -loc a− w
)]
.

Proof: Rewrite the last implication in statements (i) and (iii) of Proposition 5.7 using
Remark 5.5, .

�

Next we show that the assertions in Proposition 5.7 are equivalent to item (ii) in
Proposition 5.6.
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Proposition 5.9 Let A be any ring, and a, b ∈ A. The following assertions are equivalent:

(i) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e)
]
,

(ii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
.

(iii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ b -loc a(1− e)
)]

.

Proof: (i)⇒(ii). Let e ∈ A satisfy (i). We only need prove the last two conjuncts of (ii).

• If a(1− e) = 0 then a = ae, and b | a.

• If a(1−e) 6= 0, we need to prove the consequent of the last implication in (ii). For this,
let f ∈ A be such that f2 = f , a(1− e)f 6= 0 and f � a(1− e). Suppose, by contradiction,
that b | a(1−e)f . Scaling f � a(1−e) by e we get ef = 0. Then, a(1−e)f = af . Therefore
af 6= 0 and b | af . Scaling f � a(1 − e) by f one gets f2� a(1 − e)f , i.e., f � af . Since
f � 1, then af � a and, by transitivity, f � a. Thus, we have f2 = f , af 6= 0, b | af and
f � a. With e′ := f , (i) yields f 6 e, i.e., f2 6 ef = 0. So, f = 0. But this contradicts
our initial assumption that af 6= 0. So, we must have b - a(1− e)f .

(ii)⇒(i). Let e ∈ A satisfy (ii). Then e satisfies the first four conjuncts of (i); we prove
that it satisfies the fifth one. Let e′ ∈ A be such that e′2 = e′, ae′ 6= 0, e′� a and b | ae′.
We shall see that e′ 6 e or, equivalently, e′(1− e) = 0.

• If a(1 − e) = 0 then 1 − e ∈ Ann(a). Since e′� a, we have Ann(a) ⊆ Ann(e′) and
hence 1− e ∈ Ann(e′), that is: e′(1− e) = 0.

• If a(1− e) 6= 0, by (ii) we have:

∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))
.

Suppose, towards a contradiction, that e′(1−e) 6= 0. First note that a(1−e)e′ 6= 0: indeed,
if a(1−e)e′ = 0, then (1−e)e′ ∈ Ann(a), and since e′� a, we get (1−e)e′ ∈ Ann(e′), whence
(1 − e)e′ · e′ = (1 − e)e′ = 0, contradicting a(1 − e)e′ 6= 0. Set f := (1 − e)e′; obviously,
f2 = f . Note also that a(1−e)f = a(1−e)e′ 6= 0. Since e′� a, then f = e′(1−e)� a(1−e).
Thus, b - a(1− e)f . On the other hand, a(1− e)f = a(1− e)(1− e)e′ = a(1− e)e′. Since
b | ae′, we get b | a(1 − e)e′. Thus, b | a(1 − e)e′ and b - a(1 − e)e′, a contradiction.
Therefore, e′(1− e) = 0, and e′ 6 e, as required.

(ii)⇔(iii) is clear by Remark 5.5.
�

Remark 5.10 Alternatively, Proposition 5.9 can be formulated as follows: in any ring A
and for any a, b, e ∈ A, the following assertions are equivalent:

(i) e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧ ∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e),

(ii) e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧
(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))
.
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(iii) e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧
(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ b -loc a(1− e)
)

.

Observe that, by the proof of Proposition 5.9 the same idempotent e ∈ A satisfies all three
conditions (i), (ii) and (iii) above. Observe also that the element e given by Proposition 5.9
(i) is unique; for if ē1 and ē2 are idempotents satisfying 5.9 (i), then ē1 6 ē2 and ē2 6 ē1,
i.e., ē1 = ē2.

�

Corollary 5.11 Let A be a reduced and projectable f -ring, and let and a, b ∈ A. Then
the following assertions are equivalent:

(i) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

∀w′(w′ 6= 0 ∧ w′(a− w′) = 0 ∧ w′� a ∧ b | w′ → w′�w)
]
,

(ii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
.

Proof: Follows from Propositions 5.7, 5.9 and 5.6.
�

Corollary 5.11 was proved under the hypotheses of projectability and reducibility of the
ring. The author thinks this equivalence may be proved under more general assumptions.
The following proposition uses divisible-projectability of the ring and proves that local
divisibility is equivalent to an apparently stronger form.

Proposition 5.12 Let B be a reduced and divisible-projectable f -ring, and let a, b ∈ B.
The following assertions are equivalent:

(i) b |loc a and a 6= 0;

(ii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
.

Proof: (ii)⇒(i) is obvious.
(i)⇒(ii). Suppose b |loc a and a 6= 0; then b 6= 0. Since B is divisible-projectable, there are
a1, a2 ∈ B such that a = a1 + a2, a1 · a2 = 0, b | a1 and b -loc a2 or a2 = 0. If a1 = 0, then
a2 = a, and b -loc a, since a 6= 0. Therefore a1 6= 0, and a1 ·a2 = 0 says that a1(a−a1) = 0
with b | a1. From a1(a − a1) = 0 comes a1� a. Then there exists w = a1 6= 0 such that
w(a− w) = 0, w� a and b | w. If a2 = 0, then a− a1 = a− w = 0 and a1 = a with b | a.
If a2 6= 0, then a2 = a − a1 6= 0 and one gets b -loc a − a1. By Fact 5.1, this non local
divisibility means that ∀w′

(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

)
, which

proves (ii).
�

The following Proposition summarizes all equivalent forms of local divisibility in the
class of reduced, projectable and divisible-projectable f -rings proved above.

Proposition 5.13 Let A be a reduced projectable and divisible-projectable f -ring ; and
let a, b ∈ A. The following assertions are equivalent:

(i) b |loc a ∧ a 6= 0,
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(ii) ∃w
(
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w

)
,

(iii) ∃e(e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae),
(iv) ∃e

[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ e′� a ∧ b | ae′ → e′ 6 e)
]
,

(v) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

∀w′(w′ 6= 0 ∧ w′(a− w′) = 0 ∧ w′� a ∧ b | w′ → w′�w)
]
,

(vi) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
,

(vi)′ ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ b -loc a(1− e)
)]

,

(vii) ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ af 6= 0 ∧ f � a(1− e)→ b - af

))]
,

(viii) ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ ∀w′
(
w′ 6= 0 ∧ w′

(
(a− w)− w′

)
= 0 ∧ w′� a− w → b - w′

))]
,

(viii)′ ∃w
[
w 6= 0 ∧ w(a− w) = 0 ∧ w� a ∧ b | w ∧

(
a− w = 0→ b | a

)
∧(

a− w 6= 0→ b -loc a− w
)]

.

�

6 Quantifier elimination.

In the previous section we exhibited several equivalents ways of expressing the local divis-
ibility property in reduced projectable and divisible-projectable f -rings, and in particular
in models of the theory T ∗. One of these equivalences, the maximal local divisibility rela-
tion will give us more control over the fibers where the divisibility is carried out, a control
necessary to prove our main quantifier elimination result. We define:

Definition 6.1 Let A be any ring. We define a binary relation called maximal local
divisibility by: for a, b ∈ A,

b |mloc a↔ a = 0 ∨ ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ ∀f
(
f2 = f ∧ a(1− e)f 6= 0 ∧ f � a(1− e)→ b - a(1− e)f

))]
.

By Proposition 5.13, if A is any reduced projectable divisible-projectable f -ring, the max-
imal local divisibility relation can be expressed as follows:
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A |= b |mloc a↔ a = 0 ∨ ∃e
[
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae ∧

(
a(1− e) = 0→ b | a

)
∧(

a(1− e) 6= 0→ b -loc a(1− e)
)]

.

In any ring A, we clearly have:

A |= ∀a∀b
(
b |mloc a→ a = 0 ∨ ∃e

(
e2 = e ∧ ae 6= 0 ∧ e� a ∧ b | ae

))
;

Remark 5.2 gives:
A |= ∀a∀b(b |mloc a→ b |loc a).

If, in addition, A is a reduced, projectable and divisible-projectable f -ring, then the equiv-
alence of (i) and (vii) in Proposition 5.13 yields:

A |= ∀a∀b(b |mloc a↔ b |loc a).

Note that this equivalence is valid in any model of T ∗, whence:

T ∗ ` ∀a∀b(b |mloc a↔ b |loc a).

In this section we consider the language L = Llor∪{|, � , |mloc}. First of all, we are going to
adapt the characterizations of the universal theories given in section 4 to this new language
L. We have:

Proposition 6.2 Let B be reduced, projectable and divisible-projectable f -ring. Then:

B |= ∀a∀b∀c(a 6� bc− a→ b |mloc a).

Proof: By the preceding remarks this follows from Proposition 4.15.
�

Corollary 6.3 Let B be a reduced, projectable and divisible-projectable f -ring and let A
be any ring such that A ⊆ B as a substructure in the language L. Then:

A |= ∀a∀b∀c(a 6� bc− a→ b |mloc a).

Proof: Evident, since the formula in the statement is universal.
�

Corollary 6.4 Let B |= T ∗ and A be a ring such that A ⊆ B as a substructure in the
language L. Then:

A |= ∀a∀b∀c(a 6� bc− a→ b |mloc a).

Proof: In particular, B satisfies the hypothesis of Corollary 6.3.
�

Definition 6.5 Let A be any ring. We say that A has the maximal local divisibility
property if

A |= ∀a∀b∀c(a 6� bc− a→ b |mloc a). (??)

A version of Theorem 4.21 in the language L will be proved uponreplacing the local
divisibility property by the maximal local divisibility property (??). We first prove:

Proposition 6.6 Let A be a reduced f -ring satisfying the first convexity property, the
divisibility glueing axiom scheme and the maximal local divisibility property. Then there
exists B |= T ∗ such that A ⊆ B in the language L.
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Proof: The maximal local divisibility property together with ∀a∀b(b |mloc a → b |loc a),
implies the local divisibility property. By Theorem 4.21, there exists B |= T ∗ such that
A ⊆ B in the language Llor ∪{� , |, |loc}. We show that for all a, b ∈ A, A |= b |mloc a if and
only if B |= b |mloc a.

(⇒) Suppose A |= b |mloc a. Then A |= b |loc a. By the construction of B, B |= b |loc a.
Since B is a model of T ∗, B |= b |mloc a.

(⇐) Assume B |= b |mloc a. If a = 0, then A |= b |mloc a. Let a 6= 0. We know that
B |= b |mloc a implies B |= b |loc a. Since A is a substructure of B in the language
Llor ∪ {� , |, |loc}, then A |= b |loc a. Since a 6= 0, there exists w ∈ A, w 6= 0, w(a−w) = 0
and b | w, i.e., bc = w for some c ∈ A. Since w 6= 0 and A is reduced, there exists p ∈ πA
such that w+ p 6= 0, whence w+ p = a+ p 6= 0. Therefore, bc+ p = w+ p = a+ p. Thus,
bc−a ∈ p and a /∈ p, showing a 6� bc−a in A, for a, b, c ∈ A. Since A satisfies the maximal
local divisibility property, we conclude that A |= b |mloc a.

�

Theorem 6.7 The universal theory of T ∗ in the language Llor∪{|, � , |mloc} is the theory of
reduced f -rings satisfying the first convexity property, the divisibility glueing axiom scheme
and the maximal local divisibility property.

Proof: Follows from Propositios 6.6, Corollary 6.4 and Theorem 4.21.
�

We introduce a ternary relation expressing in a concise way the relationship between
an idempotent e and elements a and b in Proposition 5.9 and in Remark 5.10:

Divloc(b, a, e) ↔def (e2 = e ∧ ae 6= 0 ∧ b | ae ∧ e� a)

∧ ∀e′(e′2 = e′ ∧ ae′ 6= 0 ∧ b | ae′ ∧ e′� a→ e′ 6 e).

Recall that the idempotent e satisfying Divloc(b, a, e) is unique, cf. Remark 5.10. The
following Proposition states the fact that the support of the idempotent e satisfying
Divloc(b, a, e) is determined by the fibers where b divides a and a 6= 0.

Proposition 6.8 Let B be a reduced, projectable and divisible-projectable f -ring. Let
a, b, e ∈ B be such that B |= Divloc(b, a, e). Let B ∈ Γa

Lor∪{|}
(
X, (Bx)x∈X

)
, where X is a

Boolean space and (Bx)x∈X is a family of totally ordered integral domains. Then:[[
e = 1

]]
=
[[
b | a

]]
∩
[[
a 6= 0

]]
.

Proof: Let x ∈ X be such that x ∈
[[
e = 1

]]
. Then e(x) = 1, and since e� a then

a(x) 6= 0. Also, b | ae implies b(x) | a(x)e(x) = a(x). Therefore, x ∈
[[
b | a

]]
∩
[[
a 6= 0

]]
,

proving the inclusion ⊆. For the converse, assume
[[
e = 1

]]
(
[[
b | a

]]
∩
[[
a 6= 0

]]
. Set

M :=
[[
b | a

]]
∩
[[
a 6= 0

]]
r
[[
e = 1

]]
6= ∅,

and let e′ ∈ B be defined by e′ = 1�M ∪ 0�XrM . Clearly e′2 = e′ and e′� a; moreover,
ae′ 6= 0, since M 6= ∅. By compactness of X and the patchwork property of B, one has
b | ae′. Since B |= Divloc(b, a, e), we get e′ 6 e. But x0 ∈ M entails e′(x0) = 1 and
e(x0) 6= 1, i.e., e(x0) = 0, contradicting e′ 6 e and the assumed strict inclusion. This
proves Proposition 6.8.

�

The following Theorem shows that bringing the relation symbol |mloc into the language
entails that divisibility is preserved by local morphisms.
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Theorem 6.9 Let A |= T ∗∀ in the language Llor ∪ {|, � , |mloc} and let B be a reduced,
projectable and divisible-projectable f -ring. Let f : A → B be a monomorphism in the
language Llor ∪ {|, � , |mloc}. For q ∈ πBcon

and p ∈ πAcon
such that p = f−1(q), the map

fpq : A/p→ B/q induced by f is a monomorphism in the language L′ = {0, 1,+, ·,6, |}.

Proof. Clearly, fpq : A/p → B/q, fpq(a + p) = f(a) + q, is a monomorphism of totally
ordered integral domains. We need only show that fpq preserves the divisibility relation,
i.e., A/p |= b+p | a+p if and only if B/q |= f(b) + q | f(a) + q, for a, b ∈ A. The direction
(⇒) is clear.
(⇐) If f(a) + q = 0, this implication is clear, as f(a) ∈ q and a ∈ f−1(q) = p imply
a + p = 0. Assume f(a) + q 6= 0. Since B/q |= f(b) + q | f(a) + q, there is c ∈ B so
that (f(b) + q)(c + q) = f(a) + q, i.e., f(b)c − f(a) ∈ q; this, together with f(a) /∈ q,
yields f(a) 6� f(b)c − f(a). By Proposition 6.2 we get f(b) |mloc f(a) and f(a) 6= 0. By
Definition 6.1, there exists ē ∈ B such that ē2 = ē, f(a)ē 6= 0, f(b) | f(a)ē and ē� f(a).

The implications
(
a(1 − ē) = 0 → b | a

)
and

(
a(1 − ē) 6= 0 → ∀f

(
f2 = f ∧ a(1 − ē)f 6=

0 ∧ f � a(1−ē)→ b - a(1−ē)f
))

are also valid in B. The conclusion of this last implication

is that f(b) -loc f(a)(1 − ē) holds in B. Since B/q |= f(b) + q | f(a) + q ∧ f(a) + q 6= 0,
by Proposition 6.8 one has ē− 1 ∈ q, i.e., ē+ q = 1 + q.

On the other hand, since |mloc is in the language, we get A |= b |mloc a and a 6= 0.
Then there is an idempotent eA ∈ A such that e2

A = eA, aeA 6= 0, b | aeA, eA� a,(
a(1− eA) = 0→ b | a

)
and:(

a(1− eA) 6= 0→ ∀e′
(
e′2 = e′ ∧ a(1− eA)e′ 6= 0 ∧ e′� a(1− eA)→ b - a(1− eA)e′

))
.

Observe that the last formula can be written as a(1 − eA) 6= 0 → b -loc a(1 − eA), in
A. Aplying the monomorphism f to the first five formulas, we obtain f(eA)2 = f(eA),
f(a)f(eA) 6= 0, f(eA)� f(a), f(b) | f(a)f(eA) and f(a)

(
1 − f(eA)

)
= 0 → f(b) | f(a).

Next, we show that the formula f(a)
(
1− f(eA)

)
6= 0→ f(b) -loc f(a)

(
1− f(eA)

)
holds in

B. Otherwise, we have f(a)
(
1− f(eA)

)
6= 0 and f(b) |loc f(a)

(
1− f(eA)

)
in B. Since B is

a reduced, projectable and divisible-projectable f -ring, Proposition 5.13 entails f(b) |mloc

f(a)
(
1−f(eA)

)
in B. Since the relation symbol |mloc is in the language, then b |mloc a(1−eA)

holds in A. Therefore b |loc a(1− eA) is valid in A with a(1− eA) 6= 0, contradicting that
the formula a(1 − eA) 6= 0 → b -loc a(1 − eA) is true in A. It follows that the implication
f(a)

(
1− f(eA)

)
6= 0→ f(b) -loc f(a)

(
1− f(eA)

)
is valid in B. We have shown that both

the elements ē and f(eA) of B satisfy statement (ii) in Remark 5.10, at the values f(a)
and f(b) (instead of a and b). Since this formula is equivalent to Divloc(f(b), f(a), ·) in
B, by uniqueness (cf. Remark 5.10 or Proposition 6.8) we conclude that f(eA) = ē. Since
ē−1 ∈ q, then f(eA)−1 = f(eA−1) ∈ q, whence eA−1 ∈ f−1(q) = p, i.e., eA+p = 1+p.
Recalling that b | aeA in A, we get (b + p) | (a + p)(eA + p) = (a + p)(1 + p) = a + p in
A/p, proving A/p |= b+ p | a+ p, as needed.

�

Theorem 6.9 will be the main tool in the proof of quantifier elimination for the theory
T ∗ in the language Llor ∪ {|, � , |mloc}. This will be done using the amalgamation property
for models of the universal theory T ∗∀ .

The result in the next Lemma, needed below, is well known. For completeness’sake we
include its proof.
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Lemma 6.10 If (Ai)i∈I is a family of totally ordered integral domains, then A =
∏
i∈I Ai

is a reduced, projectable and divisible-projectable f -ring.

Proof: Clearly A is an f -ring. Since the Ai’s are integral domains, for all i ∈ I, A is
reduced. Next, we prove that A s projectable. Let a = (ai)i∈I ∈ A and b = (bi)i∈I ∈ A.
Let I0 := {i ∈ I : ai = 0} and I1 := I r I0. Define c and d in A by

c(i) =

{
b(i) if i ∈ I0

0 if i ∈ I1,
and d(i) =

{
0 if i ∈ I0

b(i) if i ∈ I1.

Clearly, b = c+ d and c · a = 0. It is easy to see that d� a, as needed.

Now we show that A is divisible-projectable. Let x, y ∈ A with y 6= 0. Set I0 :=
{i ∈ I : y(i) | x(i)} and I1 := I r I0 = {i ∈ I : y(i) - x(i)}, and define z, w ∈ A by:

z(i) =

{
x(i) if i ∈ I0

0 if i ∈ I1,
and w(i) =

{
0 if i ∈ I0

x(i) if i ∈ I1.

Clearly, z · w = 0, x = z + w and y | z.
Finally, let us see that ∀w′(w′ 6= 0 ∧ w′(w′−w) = 0→ y - w′). Let w′ ∈ A be such that

w′ 6= 0 and w′(w′−w) = 0. There exists i ∈ I such that w′(i) 6= 0. Then w′(i) = w(i) 6= 0,
since Ai is an integral domain and i ∈ I1 we get y(i) - x(i) = w(i). This yields y - w′,
showing that A is divisible-projectable.

�
Theorem 6.11 The theory T ∗∀ has the amalgamation property in Llor ∪ {|, � , |mloc}.
Proof: Let A,B,C |= T ∗∀ together with monomorphisms f : A → B and g : A → C for
the language Llor ∪ {|, � , |mloc}. By Theorem 6.7 we may replace B and C by extensions
that are models of T ∗. Thus, we may assume without loss of generality, that B and C are
reduced, projectable and divisible-projectable f -rings.

We need show that there exists D |= T ∗∀ and monomorphisms h : B → D and k : C → D
such that the following diagram is conmutative:

B

A � D,

C

h

g

f

k

that is: h ◦ f = k ◦ g.

As the radical relation is in the language, by [20, Theorem, p. 23, and Proposition
(a) and (b), p. 22] there are continuous, surjective functions f̃ : πB

con → πA
con

and

g̃ : πC
con → πA

con
; that is:

πB
con

πA
con
.

πC
con

f̃

g̃
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Since we assume that B and C are (unitary) projectable f -rings, by [16, 6.12] πB and πC
are Boolean spaces; in particular, they are quasi-compact, hence proconstructible subsets
of the Zariski spectra of B and C, cf. [26, Corollary 2.7]. The same arguments were done
at the beginning of section 3, second paragraph, p. 8. Then πB

con
= πB and πC

con
= πC.

Thus, we have:
πB

πA
con
.

πC

f̃

g̃

In order to complete (dually) this diagram, we use the pullback of πB and πC over πA
con

,
given by:

X = πB ×πAcon πC =
{

(q1, q2) ∈ πB × πC : f̃(q1) = g̃(q2)
}
.

We then have the following diagram:

πB

X � πA
con
.

πC

f̃π1

π2 g̃

All three spaces πA
con
, πB and πC are Boolean; hence so is πB × πC, cf. [18, Corollary

3.14, p. 1249]. It is straighforward to prove that X = πB ×πAcon πC is a Boolean space. 4

Then, every element q ∈ X is of the form q = (q1, q2) ∈ πB × πC, with f̃(q1) = g̃(q2),

where f̃ : πB → πA
con

and g̃ : πC → πA
con

are continuous, surjective functions. Set
p := f̃(q1) = g̃(q2) ∈ πAcon

.

Any p ∈ πAcon ⊆ Spec(A) is a prime ideal. In order to prove that p is an `-ideal, by
[3, (8.2.1) and (2.2.1)(5)] it is suficient to see that p is convex and closed under absolute
value. Since A satisfies the first convexity property, p is convex. It is easily seen that p
is closed under absolute value: since A is an f -ring,

(
x − |x|

)(
x + |x|

)
= 0 holds for all

x ∈ p. Since p is prime, either x − |x| ∈ p or x + |x| ∈ p. In either case, |x| ∈ p. By
[3, (9.2.5)], A/p is a totally ordered integral domain.

By Theorem 6.9, fpq1 : A/p → B/q1 and gpq2 : A/p → C/q2 are monomorphisms for
the language Lor ∪ {|}. Since the reduced f -ring A satisfies the first convexity property,
then A/p |= COVR∪OF, where COVR is the theory of convexely ordered valuation rings
and OF is the theory of ordered fields, both in the language Lor ∪ {|} (cf. [2, Theorem
1]). Observe that B/q1 and C/q2 are real closed valuation rings (RCVR), as B and C are
models of T ∗ (cf. [12, Corollary 2.11 and Proposition 2.4]). By quantifier elimination of
RCVR in Lor∪{|} (cf. [7]), there exists a real closed valuation ring Rq and monomorphisms
hq : B/q1 → Rq and kq : C/q2 → Rq for the language Lor ∪ {|} such that the diagram:

4 Even in the case where B and C are not projectable, it is possible to prove that πB
con×πAcon πC

con ⊆
πB

con × πCcon
is a Boolean space.
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B/q1

A/p � Rq,

C/q2

hq

gpq2

fpq1

kq

is conmutative, i.e., hq ◦ fpq1 = kq ◦ gpq2 .

Now consider the ring D =
∏

q∈X Rq , and let h : B → D and k : C → D be given by:

h(b) = (hq(b+ q1))q∈X and k(c) = (kq(c+ q2))q∈X ,

for b ∈ B and c ∈ C, where q = (q1, q2) ∈ X.

Claim 6.12 h is a monomorphism in the language Llor ∪ {|, � , |mloc}.
Proof: By Lemma 6.10, D is a reduced, projectable and divisible-projectable f -ring, and
it is easily seen h is a morphism of lattice-ordered rings. Note also that when q runs over X,
then q1 runs over πB, as f̃ is surjective. Therefore h is injective, whence a monomorphism
of lattice-ordered rings (or of f -rings).

Next, we prove that h preserves the radical relation, namely: for all b, b′ ∈ B, b� b′
if and only if h(b)�h(b′). The direction (⇐) is clear as � it is expressed by a universal
formula. Conversely, suppose that b� b′. Let x = (xq)q∈X be such that h(b′)x = 0. Then
hq(b

′ + q1)xq = 0 for all q ∈ X. Fix an arbitrary q ∈ X. We have hq(b
′ + q1) = 0 or

xq = 0. Since hq is injective, b′ ∈ q1 or xq = 0. From b� b′ in B comes b ∈ q1 or xq = 0,
whence hq(b+ q1)xq = 0. Since q ∈ X is arbitrary we conclude that h(b)x = 0, and hence
h(b)�h(b′).

As our next order of business we prove that divisibility is preserved by h, i.e., for all
b, b′ ∈ B, B |= b | b′ if and only if D |= h(b) | h(b′). The implication (⇒) is clear since the
formula defining divisibility is existential. Conversely, suppose that h(b) | h(b′) in D. This
means that hq(b+ q1) | hq(b′ + q1) in Rq, for all q ∈ X. Recall that whenever q = (q1, q2)
runs over all of X, then q1 runs over all of πB. Therefore hq(b+ q1) | hq(b′ + q1) in Rq for
all q1 ∈ πB. Since each hq preserves divisibility, we have b + q1 | b′ + q1 in B/q1, for all
q1 ∈ πB. As B is projectable, compactness of πB and the patchwork property of B entail
that b | b′ holds in B.

We show now that maximal local divisibility is preserved by h, that is: for b, b′ ∈ B,
B |= b |mloc b

′ if and only if D |= h(b) |mloc h(b′). We first deal with the implication (⇐).
Since h(b) |mloc h(b′), we have h(b) |loc h(b′). If h(b′) = 0 then b′ = 0, and hence b |mloc b

′ in
B. If h(b′) 6= 0, there is w = (wq)q∈X ∈ D such that w 6= 0, w

(
h(b′)−w

)
= 0 and h(b) | w

in D. Hence, there exists q ∈ X such that wq 6= 0. Then wq = h(b′)q = hq(b
′ + q1) 6= 0,

where q = (q1, q2) ∈ X. Since h(b) | w in D, there is c = (cq)q∈X such that h(b)c =
w. Then h(b)qcq = wq = h(b′)q, that is: hq(b + q1)cq = hq(b

′ + q1). This shows that
hq(b+ q1) | hq(b′ + q1) in Rq. Since hq preserves divisiblity, we get b+ q1 | b′ + q1 in B/q1,
i.e., there is c′ ∈ B such that bc′ − b′ ∈ q1. Remark that b′ /∈ q1. Therefore b′ 6� bc′ − b′
in B. Since B |= T ∗∀ , then B has the maximal local divisibility property: i.e. B satisfies
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∀a∀b∀c(a 6� bc − a → b |mloc a). Therefore b |mloc b
′ in B, and we have proved that maximal

local divisibility is downward preserved from D to B.

In particular, we showed that if h(b) |mloc h(b′) in D then b |loc b
′ in B. Since D is a

reduced projectable and divisible-projectable f -ring, D |= h(b) |loc h(b′)→ h(b) |mloc h(b′).
Therefore we have also proved that local divisibility is downward preserved from D to B.

As a last step, we prove that maximal local divisibility is upwards preserved from B to
D, i.e., b |mloc b

′ in B implies h(b) |mloc h(b′) in D. By hypothesis, there exists e ∈ B such that
e2 = e, b′e 6= 0, e� b′, b | b′e, b′(1 − e) = 0 → b | b′, and b′(1 − e) 6= 0 → b -loc b

′(1 − e)
(see 5.13 (vi)′). Since h is an f -ring monomorphism that preserves the radical relation
� and the divisibility relation |, we obtain h(e)2 = h(e), h(b′)h(e) 6= 0, h(e)�h(b′),
h(b) | h(b′)h(e) and h(b′)

(
1 − h(e)

)
= 0 → h(b) | h(b′). Let us prove that the last

implication is preserved by h, i.e., h(b′)
(
1 − h(e)

)
6= 0 → h(b) -loc h(b′)

(
1 − h(e)

)
.

Suppose h(b′)
(
1 − h(e)

)
6= 0. Since h is a morphism, b′(1 − e) 6= 0. By our assumption

b -loc b
′(1 − e). Since local divisibility is downwards preserved from D to B, its negation

is upwards preserved from B to D. Then, h(b) -loc h(b′)
(
1 − h(e)

)
. Summarizing, we

obtained: h(e)2 = h(e), h(b′)h(e) 6= 0, h(e)�h(b′), h(b) | h(b′)h(e), h(b′)
(
1−h(e)

)
= 0 →

h(b) | h(b′) and h(b′)
(
1− h(e)

)
6= 0 → h(b) -loc h(b′)

(
1− h(e)

)
. Then h(b) |mloc h(b′) holds

in D, completing the proof that h preserves maximal local divisibility.
2

A similar argument shows that the map k : C → D is a monomorphism in the language
Llor ∪ {|, � , |mloc}. It remains to be proved that h ◦ f = k ◦ g. Given a ∈ A, we have:

(h ◦ f)(a) = h
(
f(a)

)
=

(
hq
(
f(a) + q1

))
q∈X

=
(
hq
(
fpq1(a+ p)

))
q∈X

=
((
hq ◦ fpq1

)
(a+ p)

)
q∈X

=
((
kq ◦ gpq2

)
(a+ p)

)
q∈X

=
(
kq
(
gpq2(a+ p)

))
q∈X

=
(
kq
(
g(a) + q2

))
q∈X

= k
(
g(a)

)
= (k ◦ g)(a).

By Lenma 6.10, D is a reduced, projectable and divisible-projectable f -ring. It is easy to
see that D satisfies the first convexity property. By Lemma 4.6, D satisfies the divisibil-
ity glueing axiom scheme. By Proposition 6.2, D satisfies the maximal local divisibility
property. Then, we have D |= T ∗∀ and that the following diagram conmutes:

B

A � D,

C

h

g

f

k

thus proving that T ∗∀ has the amalgamation property in the language Llor ∪{|, � , |mloc}. �
We can then state our main result:

Theorem 6.13 T ∗ admits quantifier elimination in the language Llor ∪ {|, � , |mloc}.
Proof: By Theorem 3.2, T ∗ is model-complete in the language Llor ∪ {� , |loc}, hence
also in the language Llor ∪ {|, � , |loc}. Since T ∗ ` ∀a∀b(b |loc a ↔ b |mloc a), then T ∗ is
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model-complete in Llor∪{|, � , |mloc}. By Theorem 6.11, T ∗∀ has the amalgamation property
in Llor ∪ {|, � , |mloc}. The conclusion follows from [6, Proposition 3.5.19.].

�

Theorem 6.14 T ∗ admits quantifier elimination in the language Llor ∪ {|, � , |loc}.

Proof: Clear from Theorem 6.13, using T ∗ ` ∀a∀b(b |loc a↔ b |mloc a).
�

Theorem 6.15 The theory T ∗ is the model-completion of the theory of reduced f -rings
satisfying the first convexity property, the divisibility glueing axiom scheme and the local
divisibility property.

Proof: Follows at once from the above and [6, Proposition 3.5.19.].
�
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